
A CONTENT
ADAPTATION
SURVIVAL GUIDE

HOW TO ADDRESS MOBILE USERS IN
A FUNDAMENTALLY DIFFERENT WAY

https://deviceatlas.com

CONTENTS

03 INTRODUCTION

04 DEVICE FRAGMENTATION

05 A BAD MOBILE EXPERIENCE CAN HAVE LONG-LASTING EFFECTS

06 WHY UTILIZE CONTENT ADAPTATION?

07 DESIGN CONSIDERATIONS BEFORE APPROACHING CONTENT ADAPTATION

07 USER POSTURE

07 NAVIGATION STYLE

07 DISPLAY AND DEVICE CAPABILITIES

07 PAGE SIZE

08 CONTEXT

09 SERVER-SIDE CONTENT ADAPTATION

09 DEVICE TYPE IDENTIFICATION

09 PROPERTY CONSIDERATIONS

10 3 APPROACHES TO SERVER-SIDE ADAPTATION

19 ‘CLASSIC’ RWD OR RESS?

20 KEY TAKEAWAYS

https://deviceatlas.com

INTRODUCTION
While the average size of a typical PC screen hasn’t changed
much during the last decade, mobile devices have been released
in a myriad of sizes and shapes. As a result, users can now
access websites on a variety of web-enabled devices, from low-
end phones, to smartphones, tablets and even wearable devices.

Most marketers are acutely aware that they need to address
the needs of mobile users. However, it is hard to come up with a
solution that exploits mobile to its fullest potential.

While performance issues with RWD are being dealt with,
addressing the mobile context solely with RWD can be inefficient
in some cases. Perhaps you have looked at Responsive Web
Design (RWD), but decided that it doesn’t give the flexibility
required to treat mobile in a fundamentally different way.

What we are specifically referring to in this e-book, is the
ability to change content according to the visitor’s device
characteristics. If you are thinking of following this approach and
designing differently for mobile, then you’ve come to the right
place. This e-book will help you understand the techniques of
content redirection and adaptation.

Here’s what you’ll learn in this e-book

• Why catering to a wide range of devices is crucial
today.

• What are the advantages of content adaptation over
‘classic’ RWD?

• What techniques are available for content adaptation?

3

https://deviceatlas.com

While a top-notch mobile experience was once the preserve of
high-end devices on generous data plans, it is now available to
low and mid-range devices. Ever-growing device fragmentation
has opened up whole new markets to mobile marketers and
developers.

Check out a few notable fragmentation figures

• 1.2 billion smartphone shipped worldwide in 2013
(IDC)

• 16,000 distinct web-capable devices recognized by
DeviceAtlas device detection solution

• 19 million wearable devices will be shipped in 2014
and 111.9 million will be shipped in 2018 (predicted,
IDC research)

Device fragmentation doesn’t only refer to users on-the-go. The
results from Adobe’s 2013 Mobile Consumer Survey showed 80%
tablet users interact with their devices in the comfort of their
homes. Whilst according to a Nielsen study, 84% of smartphone
and tablet owners use their gadgets when watching TV.

Moreover, new innovative devices emerge on a regular basis.
Though initially intended for tech-savvy early-adopters, the likes
of smartwatches, smartglasses, and head-mounted displays may
become mainstream products in the near future.

The growth of mobile device usage is generally great news for
businesses because it opens new possibilities for conveying
brand messaging, but it is also a big challenge to get it right.

DEVICE FRAGMENTATION

4

https://deviceatlas.com

A BAD MOBILE EXPERIENCE CAN
HAVE LONG-LASTING EFFECTS
With powerful smartphones that allow you to view desktop
websites are constantly hitting the market, some may be inclined
not to adapt content at all. Such a decision may end up damaging
your brand’s online presence.

Providing mobile users with only a desktop website usually leads
to a bad experience, given that these websites aren’t built for
mobile devices’ screen size and resolution. They also require a lot
of processing power and bandwidth.

Users expect websites to load on mobile devices as quickly as
they do via desktop browsers. They also expect the experience
to be as good as the desktop. Numerous statistics prove that the
consequences of a poor mobile experience can be far reaching.

• 85% of users expect pages to load on mobile devices
as fast or faster than they load on desktops.

• 46% of mobile web users are unlikely to return to a
website they had trouble accessing in the past.

• 33% of tablet users are less likely to purchase online
from a company if they experience poor website
performance.

Source: mobiForge.com

One aspect of the online landscape today is that desktop websites
generally load slower and weigh more in terms of downloadable
assets. The median loading speed for the top 500 e-commerce
websites was 9.3 seconds in 2014 (7.7 seconds in 2013), while the
median page size of these top 500 sites was 1,436KB in 2014, as
against 1,094KB in 2013.

While Responsive Web Design is a great approach for providing
users with a better mobile experience, it has its limitations. RWD
websites generally require more processing power, which can
make them even slower than their non-responsive counterparts.

You can read more on RWD and other content adaptation
techniques later in this e-book.

5

https://deviceatlas.com
http://mobiforge.com/research-analysis/m-commerce-insights-give-users-what-they-want-and-make-it-fast

WHY UTILIZE CONTENT
ADAPTATION?
A website’s loading speed impacts the conversion rate and this
rule applies to mobile visitors as well. Strangeloop Networks
conducted an experiment in which 4 groups of users were
displayed 4 versions of the same mobile website, of which only
one was optimized, while the three others had varying levels of
delay. The study found that with only 1 second delay the bounce
rate was 8.3% higher than for the fully optimised site, the
conversion rate was 3.5% lower, and there was 9.4% fewer page
views.

Speed and performance are important aspects for the largest
online retailers utilizing various levels of content adaptation.
According to mobiForge’s findings from 2012, 82% of the Alexa
100 top sites used some form of server-side device detection to
serve optimised content on their main website entry point. 74%
displayed 3 different versions tailored for a variety of devices.
Every website in the Alexa top 10 used some form of content
adaptation.

These stats are on par with 2014 Radware study which found that
81% of the top 100 retail sites as rated by Alexa.com use content
adaptation by sending a mobile specific website to smartphones.

Here are a few notable examples of content adaptation.

TripAdvisor

• Different versions of website sent to different devices.

• A GPS-based list of restaurants, hotels and
attractions nearby.

• A super-light (40KB) version for low-end phones.

Home Depot

• An m-dot website using location sharing to detect a
customer’s nearest store.

• Access to real-time store inventory and details on the
aisle location of products.

AccuWeather

• An m-dot website for mobile devices.

• A GPS-based ‘use current location’ option for
checking the weather forecast.

6

https://deviceatlas.com
http://www.radware.com/mobile-sotu2014/

DESIGN CONSIDERATIONS
BEFORE APPROACHING
CONTENT ADAPTATION
There are a number of important considerations before designing
a website that offers a consistent context-aware experience for
different types of users.

NAVIGATION STYLE

An important aspect to consider refers to available input
methods, such as touchscreen, gesture, voice control, remote
control, controllers, etc. Input methods define the range of
possible interactions.

DISPLAY AND DEVICE CAPABILITIES

Web-enabled devices can vary significantly and have different
capabilities from raw processor speed, to location capabilities, to
screen size, to page rendering abilities.

PAGE SIZE

Processing power is not the only factor affecting websites’
loading speed on mobile devices. There’s also bandwidth
availability and the user’s data plan. A hefty website may take a
long time to download, even accessed on devices with 4G support
and multi-core CPUs. Also many users get charged for data, so a
large page can be considerably expensive to access.

See connectivity analysis for more info.
https://deviceatlas.com/resources/dynamic-
data#connectionSpeed

CONTEXT

How and why a user is accessing a website is important to
understand, so the most suitable content can be served. If a
mobile user is on WiFi, they may be more accepting of larger
pages and increased site depth, whereas if the user is out and
about on a mobile carrier then they may want just specific
information.

7

https://deviceatlas.com
https://deviceatlas.com/resources/dynamic-data#connectionSpeed
https://deviceatlas.com/resources/dynamic-data#connectionSpeed

8

USER POSTURE

Mobile devices are often used on-the-go, but a more stationary
home use is also very common. According to some media
theorists there are two engagement styles for stationary use,
including ‘lean back’ and ‘lean forward’. ‘Lean forward’ implies
paying attention to the interaction with the medium, while ‘lean
back’ refers to a less focused use. User posture allows you to
make decisions about the type of content displayed on mobile
devices.

Did you know...?
Mobile search increasingly important

• 25% of overall search queries are now on mobile
devices.

• 58.7% of smartphone users and 73.9% of tablet users
access search.

• 42% of calls to businesses are driven by mobile
search.

• 80% of local searches on mobile devices turn into
purchases.

Source: mobiForge, Search Engine Land

https://deviceatlas.com
http://mobiforge.com/research-analysis/global-mobile-statistics-2014-part-b-mobile-web-mobile-broadband-penetration-3g4g-subscribers-and-ne#mobilesearch
http://searchengineland.com/study-78-percent-local-mobile-searches-result-offline-purchases-188660

SERVER-SIDE CONTENT
ADAPTATION
Content adaptation is all about providing the user with a first-
class experience specifically tailored for the user’s device and
context. You can achieve that by applying a number of techniques.

Server-side content adaptation combines web design with
server-side device techniques. These do not exclude responsive
design (RWD) which is briefly explained later in this e-book.

DEVICE TYPE IDENTIFICATION

In order to serve the best content to each user, you need to
analyse their devices. To do this you can use web traffic logs and
a device detection platform such as DeviceAtlas. The recognition
is based on HTTP header parsing to return all the important
information about the device, such as the device type, OS, type of
browser, device name and make, etc.

Then you can classify the users into a number of ‘buckets’ to
reduce the amount of custom design work that needs to be done.
Device type is often used as the criteria for bucket definition and
typically there are buckets for smartphones, tablets and desktop
users. There could be also a basic experience for low-end
devices.

PROPERTY CONSIDERATIONS

The device properties to target depend on the type of adaptation
and how fine-grained it should be. At the simplest level the
property isMobilePhone might be used to redirect a user to
the mobile version of a site. However, typically a finer-grained
control is more effective.The following table outlines some of the
properties that could be used with DeviceAtlas’s recognition.

9

https://deviceatlas.com

Properties Use case
isMobilePhone Used for coarse grained

targeting mobile phones.
primaryHardwareType Used for finer redirection or

template selection.
touchScreen Used in conjunction with

other properties to decide if a
device is a smartphone. It is
also an important property to
ensure the interaction with the
website is optimal.

displayWidth & displayHeight Used to dynamically resize
images to suit different screen
sizes.

devicePixelRatio Used to identify “retina”
screens and when used with
the displayWidth/Height
properties can help determine
the optimal image size to
serve.

DeviceAtlas provides you with a list of 157 device properties. For
a full list see the properties page on deviceatlas.com.

3 APPROACHES TO SERVER-SIDE ADAPTATION

In this section you’ll find 3 examples of server-side content
adaptation.

The following approaches will be discussed with code samples:

1. Redirection - The user is redirected to another website
suitable for their device.

2. Templates - A different output template is used depending on
the device.

3. Dynamic Adaptation - The page content is modified to suit the
device.

10

https://deviceatlas.com
https://deviceatlas.com/resources/available-properties

Note

The adaptation examples here are based on Java and
Servlets. The usage under other languages, especially
dotNet, would be very similar.

These techniques are based on DeviceAtlas solution,
however they may refer to other device recognition
solutions as well.

Creating a DeviceAtlas instance

Before showing examples for Redirection, Templates and
Dynamic Adaptation, we explain how to correctly create a
DeviceAtlas API instance which would be common between all
web-application use cases.

web.xml

<web-app ...>
 <listener>
 <listener-class>TheListenerClass
 </listener-class>
 </listener>

 ...

</web-app>

11

https://deviceatlas.com

TheListenerClass.java

import java.servlet.*;

public class TheListenerClass implements
ServletContextListener {

 public void contextInitialized(ServletContextEvent
 e) {
 /* load the datafile in a try/catch block as several
 exceptions may be thrown */
 try {
 // create a DeviceApiWeb instance
 DeviceApiWeb deviceApi = new DeviceApiWeb();
 // load the device atlas JSON data file
 deviceApi.loadDataFromFile(“/PATH/TO/
 DEVICEATLAS/DATA-FILE.json”);

 /* store the DeviceApiWeb instance in the
 servlet context */
 ServletContext context = e.getServletContext();
 context.setAttribute(“DeviceApiWeb”,
 deviceApi);

 } catch (java.io.FileNotFoundException ex) {
 // data file was not found
 /* you would need to become aware of this
 exception */
 } catch (Exception ex) {
 // other errors (you can log the errors)
 }
 }

}

1. Redirection

This is the simplest technique to handle different user types.
It simply redirects the user to a different site or subdomain
depending on the user’s device type.

Let’s assume that DESKTOP_URL, TABLET_URL, LOWEND_
MOBILE_URL, HIGHEND_MOBILE_URL and DESKTOP_URL are
the addresses of our specialized sites.

12

https://deviceatlas.com

13

// get the API instance from servlet context
DeviceApiWeb deviceApi = (DeviceApiWeb)context.
getAttribute(“DeviceApiWeb”);

// get the properties from the current request object
Properties properties = deviceApi.
getProperties(request);

/* Based on device properties redirect the user to the
 proper site or subdomain. In this example the
 redirection in based on device type assuming we
 already have specialized sites for each device type. */

/* it’s a desktop browser or a device that is
 masquerading itself as desktop browser */
if (properties.contains(“isBrowser”, true) ||
properties contains(“isMasqueradingAsDesktop”,
true)) {
 /* redirects to the URL/website designed to handle
 desktop browser requests */
 response.sendRedirect(DESKTOP_URL);
 return;
}

// it’s a tablet device
if (properties.contains(“isTablet”, true)) {
 /* redirects to the URL/website designed to handle
 tablet requests */
 response.sendRedirect(TABLET_URL);
 return;
}

// it’s a mobile device
if (properties.contains(“mobileDevice”, true)) {
 /* you can create conditions on various properties
 to understand if the device is low-end or
 high-end or even get more specific details on what
 it supports */

 /* redirects low-end devices which support WML
 but not basic XHTML to a URL/website which
 provides contents wrapped in WML */
 if (properties.contains(“markup.wml1”, true) &&
 properties.contains(“markup.xhtmlBasic10”,
 false))
 {
 response.sendRedirect(LOWEND_MOBILE_
 URL);
 return;
 }

https://deviceatlas.com

 // continued from previous page

 /* redirects high-end devices to the URL/
 website designed to handle their requests */
 response.sendRedirect(request.
 getContextPath() + HIGHEND_MOBILE_URL);
 return;
}

// it’s a robot
if (properties.contains(“isRobot”, true)) {
 out.println(“output something like the site-map for
 the robots”);
} else {
 /* anything not handled is redirected to a default
 URL (desktop experience) */
 response.sendRedirect(DESKTOP_URL);
}

2. Templates

In this technique the website logic and content remains the same
for all requests regardless of the device and browser.

However, each page can present its response based on several
templates and styles, with each template designed to serve
content for a specific type of device, browser or any other device
property. RWD can be implemented within every template to fine-
tune the experience within certain sets of resolutions.

The API is used to get device properties and select the best
template available for the properties. This technique is very
easy to implement and especially suitable for making existing
solutions device aware.

/* At this point the processes required for the page
have been done and the output content has been
prepared. We have to select a template to warp
around the contents. Let’s assume method
“loadTemplate()” loads a template file. */

// get the API instance from servlet context
DeviceApiWeb deviceApi = (DeviceApiWeb)context.
getAttribute(“DeviceApiWeb”);

14

https://deviceatlas.com

// continued from previous page

// get the properties from the current request
object
Properties properties = deviceApi.
getProperties(request);

// it’s a tablet device
if (properties.contains(“isTablet”, true)) {
 loadTemplate(“templates/tablet.tpl”);
 return;
}

// it’s a mobile device
else if (properties.contains(“mobileDevice”, true)) {
 /* you can create conditions on various properties
 to distinct between low-end and high-end devices
 */

 /* low-end devices which only support WML but
 not basic XHTML receive contents wrapped in
 WML */
 if (properties.contains(“markup.wml1”, true) &&
 properties.contains(“markup.xhtmlBasic10”,
 false)) {
 loadTemplate(“templates/wml.tpl”);
 }

 // it’s a E-Reader device
 else if (properties.contains(“isEReader”, true)) {
 loadTemplate(“templates/ereader.tpl”);
 }
 // it’s a high-end mobile device
 else {
 loadTemplate(“templates/mobile.tpl”);
 }
 return;
}
 // it’s a spam
 else if (properties.contains(“isRobot”, true)) {
 out.println(“output something like the site-map
 for the robots”);
 return;
}

// the default template is set to desktop browsers
loadTemplate(“templates/desktop.tpl”);

15

https://deviceatlas.com

A sample template code:

<!doctype html>
<html>
 <head>
 <title>Title</title>
 <meta http-equiv=”Content-Type”
 content=”text/html; charset=UTF-8” />
 <meta name=”viewport”
 content=”width=device-width, initial-scale=1.0”
 />
 <link type=”text/css” rel=”stylesheet”
 href=”css/tablet.css” media=”all” />
 <%
 if (properties.contains(“touchScreen”, true))
 {
 out.print(“<link type=\”text/css\”
 rel=\”stylesheet\” href=\”css/touch.
 css\” media=\”all\” />”);
 }
 %>
 </head>

 <%
 String displayWidth = “1024”;
 if (properties.containsKey(“displayWidth”)) {
 displayWidth = properties.
 get(“displayWidth”).asString();
 }
 %>

 <body style=”max-width:<%=displayWidth%>px”>

 <h1>Tablet Device Experience</h1>
 <div id=”contents” class=”clearfix”>

Contents:

<%
 if (properties.contains(“html.video”, true)) {
 out.print(“<p>This browser supports the
 video HTML tag, we can use it to show a
 video here</p>”);
 }

16

https://deviceatlas.com

// continued from previous page

 if (properties.contains(“flashCapable”,
 true)) {
 out.print(“<p>Flash is supported, so we
 can display flash here</p>”);
 } else {
 out.print(“<p>Flash is not supported
 </p>”);
 }

 %>

 </div>

 </body>
</html>

3. Dynamic Adaptation

In this technique, a website provides a service or serves content
that changes depending on the device.

For example, the website could feature GPS-based location
specific options, but display them only on devices with GPS on
board. Another example would be to display mobile app download
options for different operating systems, such as Android, iOS,
Windows Mobile, etc. Device properties can be used to detect the
OS and then only show the specific download for that operating
system.

/* Example: Find a suitable app download link for the
device */

// get the API instance from servlet context
DeviceApiWeb deviceApi = (DeviceApiWeb)context.
getAttribute(“DeviceApiWeb”);

// get the properties from the current request object
Properties properties = deviceApi.
getProperties(request);

// all available download links for our app
Map<String, String> allDownloadLinks = new
HashMap<String, String>();

17

https://deviceatlas.com

// continued from previous page

allDownloadLinks.put(“Android”,
“#download-android-app”);
allDownloadLinks.put(“iOS”, “#download-ios-app”);
allDownloadLinks.put(“RIM”, “#download-rim-app”);
allDownloadLinks.put(“Windows Phone”,
“#download-windows-phone-app”);

// available links will be in downloadLinks
Map<String, String> downloadLinks = null;

// if osName is detected
if (properties.containsKey(“osName”)) {

 String osName = properties.get(“osName”).
 asString();

 // try to find desktop OS names
 if (osName.contains(“android”)) {
 osName = “Android”;
 } else if (osName.contains(“ios”) || osName.
 contains(“apple”)) {
 osName = “iOS”;
 } else if (osName.contains(“win”)) {
 osName = “Windows”;
 }
 // get the download link for the OS
 String link = allDownloadLinks.get(osName);
 if (link != null) {
 downloadLinks = new HashMap<String,
 String>();
 downloadLinks.put(osName, link);
 }
}

// if operating system is unknown show all links
if (downloadLinks == null) {
 downloadLinks = allDownloadLinks;
}

/* Now we can display “downloadLinks” in the page
template. */

18

https://deviceatlas.com

‘CLASSIC’ RWD OR RESS?
Responsive Web Design is a set of design principles and
techniques that allow a website to be flexible enough to work
well at changing resolutions. Responsive content rearranges
itself according to the screen’s resolution and orientation.

In its ‘classic’ client-side version, the same HTML code is sent
to every device and then CSS alters the rendering so that the
website is displayed differently according to the screen size.

Responsive Web Design achieves screen width independence,
but in its ‘classic’ version it actually doesn’t provide the user with
an experience specifically optimized for mobile given that the
rearrangement of content is based on the browser’s width.

Server-side adaptation techniques such as Templates and
Dynamic Adaptation don’t preclude the use of RWD. This is a
technique called RESS (Responsive Web Design with Server Side
components). It offers a way to get the best of RWD and server
side device recognition, which results in significant performance
improvements over ‘classic’ RWD. You can find out more in our
e-book on RESS.

19

https://deviceatlas.com
https://deviceatlas.com/blog/whitepaper-framework-responsive-design-server-side-components-ress-using-deviceatlas

20

KEY TAKEAWAYS
This content adaptation guide indicates that a ‘one-size-fits-all’
approach is not always the best option for your mobile strategy.
It is possible to come up with a fine-tuned content adaptation
approach, providing your users with an exquisite experience that
is specifically optimized for mobile.

Here’s 7 key takeaways from our content adaptation guide.

1. The growing capabilities of mobile devices have increased
users’ expectations for a top-notch mobile experience.

2. The consequences of below-par mobile optimization can
damage a brand’s online presence.

3. Addressing mobile users only with RWD may not be the best
option for your business needs.

4. Content adaptation requires accurate server-side device
recognition.

5. Device detection solutions such as DeviceAtlas provide you
with a list of device properties for precise targeting.

6. Content adaptation can be based on buckets of users who are
provided with targeted mobile experience based on templates
and/or dynamic adaptation.

7. RESS allows you to combine RWD with server-side device
detection components.

Why not add device awareness
to your website?
DeviceAtlas can power your content adaptation
decisions by providing you with accurate device
intelligence in real time.

DeviceAtlas is the most accurate and comprehensive
device data solution on the market. It is sourced from
multiple industry-leading partnerships ensuring the
most accurate detection rates.

https://deviceatlas.com
https://deviceatlas.com/pricing-and-trial

