GSM Association	Non-confidential

	[bookmark: _Toc61529303][bookmark: _Toc24045298][bookmark: _Toc465251113][bookmark: _Toc513720302][bookmark: _Toc285463288][bookmark: _Toc345073597][bookmark: _Toc460482158][bookmark: _Toc327547998][bookmark: _Toc327548198][bookmark: _Toc101946531][bookmark: _Toc74460299][bookmark: _Toc38966436]Change Request Form

	[image:]
	TS.43

	Document Summary

	Official Document Number, Document Title and Version Number
	TS.43 Service Entitlement Configuration v6.0 (Current)
	Official Document Type
	Non-binding Permanent Reference Document
	Change Request Security Classification
	Non-confidential
	Is this a new document or a Major or Minor Change?
	Major Update
	Will this Change Request result in a Major or Minor version update?
	Major Version
	This document is for
	Discussion
	Input Editor and Organisation
	

	Additional Contributors
	F. de Turenne (Orange), J. Lepreux (Orange)
	Issuing Group/Project
	TSG
	Approving Group/Project
	TSG
	Change Request Creation Date
	19/01/202109/07/2021
	What are the reasons for and benefits of creating this new document or Change Request?
	

	
© GSMA © 2021. The GSM Association (“Association”) makes no representation, warranty or undertaking (express or implied) with respect to and does not accept any responsibility for, and disclaims liability for the accuracy or completeness or timeliness of the information contained in this document. The information contained in this document may be subject to change without prior notice. This document has been classified according to the GSMA Document Confidentiality Policy. GSMA meetings are conducted in full compliance with the GSMA Antitrust Policy.

	Review Log (to be completed by GSMA Support Staff)

	Workflow Step
	Document Review Comments
	GSMA Support Staff Name
	Comments Date

	Step 1: Change Request Creation (no comments required)

	Step 2: Document Quality and/or Legal Review

	Document Quality Team
	INSERT COMMENTS HERE
Please enter details for the Quality Review
Confirm Document Quality Team feedback
Record any issues, actions and key decisions
	GSMA Support Staff Name
	DD/MM/YY

	Legal Review
	INSERT COMMENTS HERE
Please enter details for the Legal Review
Confirm Legal feedback
Record any issues, actions and key decisions
	GSMA Support Staff Name
	DD/MM/YY

	Step 3: Formal Review

	Group(s)/Project(s) Review(s) Comments and Feedback
	INSERT COMMENTS HERE
Please enter details for the Group(s)/Project(s) Review(s)
Record any issues, actions and key decisions
Confirm outcome of Formal Review

	GSMA Support Staff Name
	DD/MM/YY

	Step 4: Formal Approval(s)

	Group(s)/Project(s) Approval(s) Comments and Feedback
	INSERT COMMENTS HERE
Please enter details for the Group(s)/Project(s) Approval(s)
Record any issues, actions and key decisions
Confirm outcome of Formal Approval
	GSMA Support Staff Name
	DD/MM/YY

Page 1 of 103
1. Introduction
0. [bookmark: _Toc61529304]Overview
This document describes the procedure for configuration of a device-based service performed during the entitlement verification step of the service or during the activation of that service.
The device services covered in this document are Voice-over-Wi-Fi (VoWiFi), Voice-over-LTE (VoLTE), SMS over IP (SMSoIP) and On-Device Service Activation (ODSA) of Companion devices (associated with a requesting device) and Primary devices.
The specification leverages the protocol and document presentation described in GSMA PRD RCC.14 [5]. In this context, the term “entitlement” refers to the applicability, availability and status of that service (or feature) on a device.
The entitlement configuration is exchanged between a VoWiFi, VoLTE, SMSoIP, Companion ODSA or Primary ODSA client on a device and a Service Provider’s Entitlement Configuration Server. It is independent from the service configuration procedure between clients and the Service Provider’s configuration server described in GSMA PRD RCC.14 [5].
Entitlement configuration defines a mechanism for a Service Provider to inform mobile devices of the status of IP Multimedia Subsystem (IMS) network services like VoWiFi, VoLTE and SMSoIP.
In the ODSA context it defines the interaction between an ODSA client, a client application on a device that entitles and activates a companion or primary device’s subscription, and the Service Provider.
This procedure leverages the subscription profile of the end-user, identified by the SIM card, and the network’s readiness in supporting the service. The entitlement client can then dynamically activate (or deactivate) the service according to the activation (respectively deactivation) status retrieved from the Service Provider’s Entitlement Configuration Server.
When required by the service, entitlement configuration also covers on-device service activation flow, for example to display a web page describing the service or to get end-user consent on the service’s Terms and Conditions.
Service configuration in this document deals with the configuration parameters controlling the entitlement of a service. Those parameters come in addition to the ones defined in GSMA PRD IR.51 [2] and GSMA PRD IR.92 [3] that relate to the internal settings and configuration of IMS services. IMS service configuration as defined in GSMA PRD IR.51 [2] and GSMA PRD IR.92 [3] are out of scope.
0. [bookmark: _Toc61529305]In Scope
This document covers both the device and network aspects of the entitlement configuration for VoWiFi, VoLTE and SMSoIP services as well as for On-Device Service Activation (ODSA) of Companion and Primary devices. Service-specific aspects need to be described in documents relating to those services as in GSMA PRDs IR.51 [2] and IR.92 [3] for IMS services.
The entitlement configuration can be obtained via either cellular or Wi-Fi data connectivity. In case Wi-Fi data connection is used, this document assumes that a Wi-Fi bearer is available to the device and the requirements of that Wi-Fi bearer conform to GSMA PRD TS.22 [7]. Configuration and provisioning of the Wi-Fi bearer is described in GSMA PRD TS.22 [7] Section 3.
0. [bookmark: _Toc61529306]Interactions with Other GSMA Specifications
Entitlement configuration is an optional mechanism between applications/services on devices (like VoWiFi and VoLTE) and the SP’s core network that occurs during service activation. The procedure requires both end-user’s subscription data and network readiness information from the SP.
To support that exchange, an entitlement configuration server leverages the GSMA PRD RCC.14 [5] protocol to carry the required entitlement data between devices’ applications and the network. The entitlement configuration procedure is separate from the service configuration procedure specified in GSMA PRD RCC.14 [5]. A device or application shall not query for both entitlement and service configurations in the same request.
The result of entitlement configuration for a service offers the assurance that the end-user’s associated subscription and the core network’s readiness have been verified, allowing the service to be offered to the end-user.
2. [bookmark: _Toc61529307]Positioning of VoWiFi, VoLTE and SMSoIP entitlements with respect to TAD and MNO Provisioning
The positioning of VoWiFi, VoLTE and SMSoIP entitlement configuration with respect to existing GSMA device configuration procedures (GSMA PRD TS.32 [8], GSMA PRD IR.51 [2] and GSMA PRD IR.92 [3]) is presented in Figure 1. It shows the typical timeline and triggers that would induce the procedures (note that the horizontal axis represents Time).
[image:]
[bookmark: _Ref61461658]Figure 1. TS.43 VoWiFi, VoLTE and SMSoIP entitlement procedure with respect to TS.32, IR.51 and IR.92
The GSMA PRD TS.32 [8] procedure of Technical Adaptation of Device (TAD) is implemented by device OEMs on a MNO-wide basis (or a range of IMSI) due to the device’s factory reset or SIM detection. General IMS, VoLTE and VoWiFi parameter values are set without taking into account end-user subscription or network related information.
The MNO provisioning procedure of GSMA PRD IR.51 [2] and IR.92 [3] also offers the possibility of setting general IMS, VoLTE and VoWiFi parameters on the device during initial service configuration. However, it is not associated with user-triggered service activation or the verification of the services’ entitlement / applicability.
The entitlement-level configuration for VoLTE and VoWiFi specified in the GSMA PRD TS.43 takes place after or outside the aforementioned GSMA’s device and service configuration procedures. It is also triggered by events not associated with GSMA PRD TS.32 [8], GSMA PRD IR.51 [2] and GSMA PRD IR.92 [3]:
when the service needs to verify its entitlement status (during service initiation),
when the end-user wishes to activate the service (via the service’s settings menu)
2. [bookmark: _Toc61529308]Relationship with TS.32, IR.51 and IR.92 VoWiFi/VoLTE/SMSoIP Parameters
The VoWiFi, VoLTE and SMSoIP configuration parameters of this PRD complement the ones from GSMA PRD TS.32 [8], GSMA PRD IR.51 [2] and GSMA PRD IR.92 [3].
While those specifications define general-purpose VoWiFi, VoLTE and SMSoIP parameters to enable or disable those services on the device, the GSMA PRD TS.43 defines parameters that relate to service initiation and end-user activation (capture of Terms & Conditions, capture of physical address).
The parameters in this PRD are also based on end-user subscription’s data and on the network readiness for those services.
In case the VoWiFi, VoLTE or SMSoIP service has not been allowed and activated on the device due to a Technical Adaptation of Device (TAD) or MNO provisioning procedure, the client performing the entitlement configuration should be disabled.
The VoLTE, SMSoIP and VoWiFi configuration parameters defined in each specification are presented in Table 1.

	GSMA PRD
	VoLTE Status Parameters
	SMSoIP Status Parameters
	VoWiFi Status Parameters

	GSMA PRD TS.32[8]
	VxLTE 1.27
Voice/Video over LTE allowed when roaming
VxLTE 1.28
Voice/Video over LTE allowed
	VxLTE 1.07
SMSoIP Networks Indications (not used or preferred)
	VoWiFi 3.01
Voice and Video / Voice enabled over Wi-Fi

	GSMA PRD IR.92 [3]
	As a Media_type_restriction_policy
Voice and/or Video over LTE allowed
Voice and/or Video over LTE allowed while roaming
	SMSoIP_usage_policy
(When to use SMSoIP)
	N/A

	GSMA PRD IR.51[2]
	N/A
	N/A
	As a Media_type_restriction_policy
Voice and/or Video over Wi-Fi enabled

	TS.43 (this document)
	VoLTE entitlement status
	SMSoIP entitlement status
	VoWiFi entitlement status
VoWiFi T&Cs capture status
VoWiFi address capture status
VoWiFi provisioning status

[bookmark: _Ref61438063][bookmark: _Ref59442858]Table 1: VoLTE, SMSoIP and VoWiFi Configuration Parameters in GSMA Specifications
Note:	That the configuration parameter VxLTE 1.21 - IMS Enabled (Yes/No) from TS.32 [8] and “IMS Status” from IR.92 [3] is not impacted by the GSMA PRD TS.43. The overall IMS function on the device can still be controlled by this parameter.
2. [bookmark: _Toc61529309]Controlling Access to Network and PS Data for Entitlement Configuration
GSMA PRD IR.92 [3] defines parameters to allow device and client services to be exempt of the 3GPP PS Data Off feature. When one such parameter, Device_management_over_PS, is set, it indicates that device management over PS is a 3GPP PS data off exempt service.
GSMA PRD TS.43 extends the Device_management_over the_PS parameter to include Entitlement Configuration as a type of “device management” service that can be exempt of 3GPP PS Data Off.
The home operator can also configure a policy on the Entitlement Client around the access type used during entitlement configuration. This is done with the AccessForEntitlement parameter with values listed in Table 2.
	AccessForEntitlement Value
	Description

	0
	any access type

	1
	3GPP accesses only

	2
	WLAN/Wi-Fi only

	3
	3GPP accesses preferred, WLAN/Wi-Fi as secondary

	4
	WLAN/Wi-Fi preferred, 3GPP accesses as secondary

	5-255
	not assigned

[bookmark: _Ref61438884][bookmark: _Ref59442917]Table 2. AccessForEntitlement Parameter
A "not assigned" value is interpreted as "any access type" value.
When not preconfigured by the home operator with the AccessForEntitlement parameter, the Entitlement Client shall perform entitlement configuration requests over Wi-Fi if available. When there is no Wi-Fi connectivity, the Entitlement Client shall perform requests over cellular if it is not forbidden (i.e. PS data off and not exempt).
0. [bookmark: _Toc61529310]Abbreviations
	Abbreviation
	Definition

	APNS
	Apple Push Notification Service

	CP AC
	Client Provisioning Application Characteristic

	DNS
	Domain Name Server

	EAP-AKA
	Extensible Authentication Protocol for 3rd Generation Authentication and Key Agreement

	EID
	eUICC Identifier

	eUICC
	Embedded Universal Integrated Circuit Card

	FCM
	Firebase Cloud Messaging

	FQDN
	Fully Qualified Domain Name

	GCM
	Google Cloud Messaging

	HTTP
	Hyper-Text Transfer Protocol

	HTTPS
	Hyper-Text Transfer Protocol Secure

	ICCID
	Integrated Circuit Card Identifier

	IMEI
	International Mobile Equipment Identity

	IMS
	IP Multimedia Subsystem

	IMSI
	International Mobile Subscriber Identity

	JSON
	JavaScript Object Notation

	JWT
	JSON Web Token

	LPA
	Local Profile Assistant

	LTE
	Long-Term Evolution

	MCC
	Mobile Country Code (As defined in E.212)

	MDM
	Mobile Device Management

	MNC
	Mobile Network Code (As defined in E.212)

	MO
	Management Object

	MSISDN
	Mobile Subscriber Integrated Services Digital Network Number

	ODSA
	On-Device Service Activation

	OIDC
	OpenID Connect

	OMNA
	Open Mobile Naming Authority, registry available at: http://www.openmobilealliance.org

	OTP
	One-Time Password

	PRD
	Permanent Reference Document

	RCS
	Rich Communication Services

	SIM
	Subscriber Identity Module

	SMS
	Short Message Service

	SMSoIP
	SMS Over IP

	SP
	Service Provider

	TAD
	Technical Adaptation of Devices

	TLS
	Transport Layer Security

	T&C
	Terms & Conditions

	UDH
	User Data Header

	URL
	Uniform Resource Locator

	VoWiFi
	Voice-over-Wi-Fi

	VoLTE
	Voice-over-LTE

	WNS
	Windows Push Notification Service

	XML
	Extensible Markup Language

	XSD
	Extensible Markup Language Schema Definition

0. [bookmark: _Toc61529311]Definitions
	Definition
	Meaning

	Client
	Component/module on a device that provides the VoLTE or VoWiFi service. A client verifies with the network’s Entitlement Configuration Server if it is entitled or not to offer that service to end-users.

	Entitlement
	The applicability, availability and status of a service, needed by the client before offering that service to end-users.

	Entitlement Configuration
	Information returned to the client by the network, providing entitlement information on a service.

	Entitlement Configuration Server
	The network element that provides entitlement configuration for different services to clients.

0. [bookmark: _Toc61529312]References
	Ref
	Document
Number
	Title

	1.
	OMA-APPIDREG
	OMA Registry of Application Identifiers (AppID) http://www.openmobilealliance.org/wp/OMNA/dm/dm_ac_registry.html

	1. [bookmark: _Ref59440990]
	IR.51
	GSMA PRD IR.51 - “IMS Profile for Voice, Video and SMS over untrusted Wi-Fi access” Version 5.0, 23 May 2017. http://www.gsma.com

	1. [bookmark: _Ref59441020]
	IR.92
	GSMA PRD IR.92 - “IMS Profile for Voice and SMS” Version 15.0, 14 May 2020. http://www.gsma.com

	1. [bookmark: _Ref59458961]
	NG.102
	GSMA PRD NG.102 - “IMS Profile for Converged IP Communications”
Version 6.0, 13 April 2019. http://www.gsma.com

	1. [bookmark: _Ref59440782]
	RCC.14
	GSMA PRD RCC.14 “Service Provider Device Configuration”, Version 8.0, 18 October 2019. http://www.gsma.com

	1. [bookmark: _Ref59441535]
	RFC2119
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997. http://www.ietf.org/rfc/rfc2119.txt

	1. [bookmark: _Ref59441134]
	TS.22
	Recommendations for Minimum Wi-Fi Capabilities of Terminals, Version 6.0, 14 December 2018. http://www.gsma.com

	1. [bookmark: _Ref59441823]
	TS.32
	Technical Adaptation of Devices through Late Customisation, Version 7.0, 20 April 2020. http://www.gsma.com

	1.
	E.212
	Mobile network codes (MNC) for the international Identification plan for public networks and subscriptions(according to recommendation ITU-T E.212 (05/2008))

	1. [bookmark: _Ref59441953]
	SGP.21
	Remote SIM Provisioning Architecture. http://www.gsma.com

	1. [bookmark: _Ref59441965]
	SGP.22
	Remote SIM Provisioning Technical Specification. http://www.gsma.com

	1. [bookmark: _Ref59444209]
	RFC2616
	Hypertext Transfer Protocol HTTP/1.1 IETF RFC, http://tools.ietf.org/html/rfc2616

	1. [bookmark: _Ref56008162]
	RCC.07
	GSMA PRD RCC.07 “Rich Communication Suite - Advanced Communications
Services and Client Specification”, Version 11.0, 16 October 2019. http://www.gsma.com

	1. [bookmark: _Ref55994425]
	OpenID
Connect
	OpenID Connect Core; OpenID Foundation
http://openid.net/connect/

	1. [bookmark: _Ref55994181]
	RFC6749
	The OAuth 2.0 Authorization Framework. https://tools.ietf.org/html/rfc6749

	1. [bookmark: _Ref59442121]
	RFC7521
	Assertion Framework for OAuth 2.0 Client Authentication and Authorization Grants. https://tools.ietf.org/html/rfc7521

	1. [bookmark: _Ref55994293]
	RFC7523
	JSON Web Token (JWT) Profile for OAuth 2.0 Client Authentication and Authorization Grants. https://tools.ietf.org/html/rfc7523

0. [bookmark: _Toc61529313]Conventions
“The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”, “recommended”, “may”, and “optional” in this document are to be interpreted as described in [6].”
1. [bookmark: _Toc61529314]Entitlement Configuration Procedures
1. [bookmark: _Toc61529315]Default Entitlement Configuration Server
The client shall follow a discovery procedure to obtain the address of the entitlement configuration server, with a resulting FQDN based on the following format:
aes.mnc<MNC>.mcc<MCC>.pub.3gppnetwork.org
Whereby <MNC> (Mobile Network Code) and <MCC> (Mobile Country Code) shall be replaced by the respective values of the home network in decimal format and with a 2-digit MNC padded out to 3 digits by inserting a 0 at the beginning.
1. [bookmark: _Ref59445534][bookmark: _Toc61529316]User-Agent HTTP header
The client shall include the User-Agent header in all HTTP requests. The User-Agent header should be compiled as defined in RCC.07 [13] section C.4.1 “User-Agent and Server Header Extensions” including the following amendment:
product-list =/ enabler *(LWS enabler)
 [LWS terminal]
 [LWS client]
 [LWS OS]
The rule “enabler” is defined in RCC.07 [13] and extended as:
enabler =/ GSMA-PRD-TS43 ; GSMA PRD reference
GSMA-PRD-TS43 = "PRD-TS43"
The rule “client” is defined in RCC.07 [13] and extended as:
client =/ "client-" client-ts43 SLASH client-ts43-version
client-ts43 = "IMS-Entitlement" / "Companion-ODSA" / "Primary-ODSA" / "Server-ODSA"
client-ts43-version = alphanum *15(alphanum / "." / "-");version identifying the client,
The rules “terminal” and “OS” are those defined in RCC.07 [13] section C.4.1
- Examples:
User-Agent: PRD-TS43 term-Vendor1/Model1-XXXX client-IMS-Entitlement/1.0 OS-Android/8.0

User-Agent: PRD-TS43 term-Vendor1/Model1-XXXX client-Companion-ODSA/1.55B.devkey-20 OS-Android/10.0

User-Agent: PRD-TS43 term-Vendor1/Model1-XXXX client-Primary-ODSA/dev20200812 OS-Other/0.4
Where XXXX is a 20 characters max string identifying the model.
1. [bookmark: _Ref59443388][bookmark: _Ref59444288][bookmark: _Toc61529317]HTTP GET method Parameters
A client supporting service entitlement configuration shall indicate the support by inclusion of an "app" HTTP GET request parameter as defined in RCC.14 [5] with the proper identifiers for the targeted entitlement.
The Open Mobile Naming Authority (OMNA) maintains a registry of values for Application Characteristic Identifier (AppID) and the range ap2001-ap5999 is used for externally defined Application entities. The following AppIDs are used for VoWiFi, VoLTE and SMSoIP entitlement applications, and for the ODSA for Companions application:
VoLTE Entitlement - AppID of “ap2003”
VoWiFi Entitlement - AppID of “ap2004”
SMSoIP Entitlement – AppID of “ap2005”
ODSA for Companion device, Entitlement and Activation – AppID of “ap2006”
ODSA for Primary device, Entitlement and Activation – AppID of “ap2009"
Data Plan Information Entitlement Configuration - AppID of “ap2010"
ODSA for Server Initiated Requests, Entitlement and Activation – AppID of “ap2011”
The parameters from RCC.14 [5] are used for entitlement configuration requests (“IMSI”, “token”, “vers”, “app”, “terminal_vendor”, “terminal_model”, “terminal_sw_version”). In addition new parameters are introduced specific for entitlement purposes, as described in Table 30.
	HTTP GET parameter
	Type
	Description
	Usage

	terminal_id
	String
	The unique identifier for the device, for example IMEI (preferred) or a UUID. This identifier must be persistent.
	Required.

	entitlement_version
	String
	GSMA PRD version implemented by the client. Set to this current version, or earlier one (see section 2.5).
	Required.

	app_name
	String
	The name of the device application making the request.
	Optional.

	app_version
	String
	The version of the device application making the request.
	Optional.

	notif_token
	String
	The registration token to be used when notifications are transmitted to the device over a cloud-based messaging infrastructure (refer to 2.6).
	Optional, required each time the device obtains or disables a registration token from the notification service.
Sent at the same time as “notif_action” parameter.

	notif_action
	Integer
	The action associated with the registration token “notif_token” parameter.
Possible values are:
0 - disable notification token
1 - enable GCM notification token
2 - enable FCM notification token
3 - enable WNS push notification
4 - enable APNS notification token
	Optional, required if the “notif_token” parameter is present.

[bookmark: _Ref61438854][bookmark: _Ref59443186]Table 3. GET Parameters for Entitlement Configuration Request
Entitlement use cases can also define its own set of request parameters. Refer to 6.2 for the parameters associated with the Companion and Primary ODSA use cases.
Table 4 presents a sample HTTP GET request for VoWiFi entitlement with the parameters located in the HTTP query string.
	GET ? terminal_id = 013787006099944&
token = es7w1erXjh%2FEC%2FP8BV44SBmVipg&
terminal_vendor = TVENDOR&
terminal_model = TMODEL&
terminal_sw_version = TSWVERS&
entitlement_version = ENTVERS&
app = ap2004&
vers = 1 HTTP/1.1

Host: entitlement.telco.net:9014
User-Agent: PRD-TS43 TVENDOR/TMODEL IMS-Entitlement/TSWVERS OS-Android/8.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Connection: keep-alive

[bookmark: _Ref61438842][bookmark: _Ref59458769]Table 4. Example of an HTTP GET Entitlement Configuration Request
1. [bookmark: _Ref55994699][bookmark: _Toc61529318]HTTP POST Method
In addition to the HTTP GET, the HTTP POST method can be used by the client for entitlement configuration request. In this case, the parameters are located in the HTTP message body and should follow the JSON object value format. The same parameters defined in Section 2.3 are used for the POST request.
If a client supports the POST method, it shall use it instead of the GET method for entitlement configuration requests. The Entitlement Configuration Server should be able to process both GET and POST methods. In case the server does not support POST, it shall return an HTTP response with 405 “Method Not Allowed”. In that case, the client should resend the request using the GET method.
The message body of the HTTP POST request follows the content type of "application/json" and is provided as a JSON object value (it is not encoded). The resulting HTTP response can be encoded as described in 2.9.1.
Table 5 presents a sample HTTP POST request for VoWiFi entitlement with the parameters located in the HTTP message body.
	POST / HTTP/1.1
Host: entitlement.telco.net:9014
User-Agent: PRD-TS43 TVENDOR/TMODEL IMS-Entitlement/TSWVERS OS-Android/8.0Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Connection: keep-alive
Content-Type: application/json

{
 "terminal_id" : "013787006099944",
 "entitlement_version" : "ENTVERS",
 "token" : "es7w1erXjh%2FEC%2FP8BV44SBmVipg",
	"terminal_vendor" : "TVENDOR",
	"terminal_model" : "TMODEL",
	"terminal_sw_version" : "TSWVERS",
	"app" : "ap2004",
	"vers" : "1"
}

[bookmark: _Ref61438821][bookmark: _Ref59443547]Table 5. Example of an HTTP POST Entitlement Configuration Request
1. [bookmark: _Ref48232167][bookmark: _Toc61529319]Protocol version control
As clients and servers may support different versions of the same protocol, a control phase is required. The main rules for this check are:
The client indicates the supported protocol version in the parameter “entitlement_version”.
The server shall answer accordingly to the request if it supports the version indicated in the parameter, or it shall return a 406 “Not Acceptable” response when it does not, including a Reason-Phrase set to “protocol not supported”.
1. [bookmark: _Ref55992317][bookmark: _Toc61529320]Network Requested Entitlement Configuration
Two mechanisms are available to operators to trigger an entitlement configuration request from a device application, either:
by sending a Short Message Service (SMS) message to the target device, or
by sending a notification message to the device over a cloud-based messaging infrastructure (APNS, FCM, GCM or WNS)
When an application is notified in this manner, it shall generate the proper Service Entitlement request to the entitlement configuration server:
For applications “ap2003”, “ap2004” and “ap2005” (VoLTE, VoWiFi or SMSoIP entitlement) a GET or POST HTTP request for the corresponding app is generated.
For applications “ap2006” or "ap2009" (ODSA for Companion or Primary device), a GET or POST HTTP request for the corresponding app and the operation of AcquireConfiguration is generated.
5. [bookmark: _Toc61529321]SMS-Based Notifications
To notify the target device of a change in the entitlement configuration, the entitlement configuration server can use the same method described in Chapter 3 of RCC.14 [5] and generate a Short Message Service (SMS) message towards the target device via application-port addressed SMS with a User Data Header (UDH).
The User Data Header (UDH) contains the following Information Elements:
UDH length : 6 (six octets)
Information-Element-Identifier (IEI) : x05, message is using "application port addressing scheme, 16-bit address"
Destination application port : by default set to 8095 or 0x1F9F
Source application port : set to 0
The content of the message is different from RCC.14 [5], in order to differentiate a network-triggered notification coming from a configuration server and one coming from an entitlement configuration server:
Instead of the SMS user-data set to: user-id “-rcscfg” [“,” param]
The following is used: user-id “-aescfg” [“,” param]
The “parm” parameter contains the application(s) notified with this SMS. An example of the SMS content is:
214011001388741-aescfg,ap2003
This message would trigger (or wake up) the VoLTE application on the device to create and send a request (HTTP GET with service parameters) to the Entitlement Configuration Server. If several applications are targeted, they would appear as a comma-separated list, for example:
214011001388741-aescfg,ap2003,ap2004,ap2005
5. [bookmark: _Ref56006936][bookmark: _Toc61529322]Messaging Infrastructure-Based Notifications
A notification message can also be sent by the Entitlement Configuration Server to the device over a cloud-based messaging infrastructure that devices registered with in order to receive network-initiated messages. The device’s application is reached and identified via the notif_token present in the original GET request received by the entitlement configuration server.
The details of the cloud-based messaging technology is implementation dependent and not covered in this specification. The payload of the notification message is a JSON object value that should contain a “data” element with at least two key-value pairs:
"app": the application targeted for re-configuration, with value of either "ap2003", “ap2004”, “ap2005” or “ap2006”.
If multiple applications are targeted, the value is a JSON array of strings.
"timestamp": the time of the notification, in ISO 8601 format, of the form YYYY-MM-DDThh:mm:ssTZD, where TZD is time zone designator (Z or +hh:mm or -hh:mm).
An example of the notification payload for VoLTE follows:
"data":
 {
 "app": "ap2003",
 "timestamp": "2019-01-29T13:15:31-08:00"
 }
An example of the notification payload for multiple applications follows:
 "data":
 {
 "app": ["ap2003", "ap2004", "ap2005"],
 "timestamp": "2019-01-29T13:15:31-08:00"
 }
1. [bookmark: _Toc61529323]Roaming Conditions
The fact that the device is roaming does not impact the ability of a client to request an entitlement configuration. The client can send the HTTP-based entitlement configuration request over an available data connection, either Wi-Fi or a cellular data APN. Refer to NG.102 [4] for the configuration and usage of those connections as related to operator traffic.
The device can therefore be in a roaming situation when requesting for an entitlement configuration on VoLTE and/or VoWiFi.
1. [bookmark: _Toc61529324]Authentication Mechanism
The different authentication procedures described in of RCC.14 [5] shall be followed during the entitlement configuration exchange.
Entitlement configuration is usually triggered by the device or client and the user is not aware of an entitlement configuration process taking place. It is then preferable for the entitlement configuration server to rely on authentication mechanisms like “User Authentication via HTTP Embedded EAP-AKA” which does not involve user interactions.
In case access to the device’s SIM data is not possible (which would prevent authentication based on EAP-AKA), authentication following the OpenID or OAuth 2.0 procedure is the preferred alternative.
Both authentication methods are detailed in the following two sections.
7. [bookmark: _Ref59447406][bookmark: _Ref59457299][bookmark: _Ref59457683][bookmark: _Toc61529325]Embedded EAP-AKA Authentication by Entitlement Configuration Server
The Embedded EAP-AKA procedure of RCC.14 [5] involves a separate authentication server included in the flow as part of an HTTP Redirect response (as per OpenID Connect). In case an operator does not carry such OpenID Connect authentication server with EAP relay capabilities and its entitlement configuration server supports the EAP relay function, it is possible for the server to omit the HTTP Redirect and exchange the EAP payloads directly with the client.
This flow is shown in Figure 2. Note that the EAP payload specification along with the GET and POST headers and parameters defined in RCC.14 [5] for the HTTP Embedded EAP-AKA procedure of RCC.14 [5] are kept. The only difference is the omission of the HTTP 302 Found responses (HTTP redirects).
[image:]
[bookmark: _Ref61439465]Figure 2. Embedded EAP-AKA Authentication Flow with Entitlement Configuration Server Supporting EAP Relay Function
If the Entitlement Configuration Server is handling the EAP-AKA relay to an operator’s Authentication server (a 3GPP AAA for example), Table 6 shows the mapping between the responses codes from the 3GPP AAA and the corresponding HTTP GET response. The response code are coming from AVP « Result-Code » or AVP « Experimental-Result » sent by the 3GPP AAA in the Diameter EAP Response (DER).
	DER Result Code
	HTTP GET Response
	Reason

	1001
	200 OK
	Waiting for AKA challenge response from device

	2001
	200 OK
	Successfully authenticated by AAA

	4001,
5001,
5003
	503 Retry After / Service Unavailable
	4001 DIAMETER_AUTHENTICATION_REJECTED,
5001 DIAMETER_ERROR_USER_UNKNOWN, and
5003 DIAMETER_ERROR_IDENTITY_NOT_REGISTERED are considered errors that can be resolved at the device

	3001-3010,
5002, 5004-5017
	503 Retry After / Service Unavailable
	Those are error codes for protocol errors, and miscellaneous AAA errors, that could be resolved in subsequent requests from devices

	Connection failure to 3GPP AAA
	500 Internal Server Error
	Lack of connectivity to 3GPP AAA is presented as an internal error for the Entitlement Configuration Server

[bookmark: _Ref61439572][bookmark: _Ref59443840]Table 6. Mapping Between 3GPP AAA’s DER Result Code and HTTP Response Code
7. [bookmark: _Ref56005701][bookmark: _Toc61529326]Authentication with OAuth 2.0 / OpenID Connect Procedure
The OpenID Connect (OIDC) authentication method is available for clients that cannot access the AKA function of the SIM on the device and the Service Provider decides not to use other Authentication methods like SMS-OTP. The end-user must instead go through an authentication procedure managed by the Service Provider’s OAuth 2.0 / OIDC authentication server. The invocation of OIDC-based authentication by the entitlement configuration server follows the procedure defined in Section 2.8 of RCC.14 [5].
Figure 3 presents an overview of the steps for the OIDC-based authentication procedure, shown here for informational purposes.
After deciding that OIDC procedure is needed (lack of token or invalid token, no EAP_ID in GET request, other authentication methods not available), the entitlement configuration server redirects (with 302 Found) the GET request from the device’s client to the Service Provider’s OIDC authentication endpoint.
The OIDC authentication endpoint can offer different types of authenticators, some of which involve actual user actions.
When the end-user is authenticated, the entitlement configuration server will receive an OAuth 2.0 “auth code” from the authentication server (via the client or user agent on the device, again using a 302 Found).
The entitlement configuration server requests for both an access token and an ID Token from the Service Provider’s OIDC Token endpoint.
After validating the OAuth 2.0 access token and the OpenID token, the entitlement configuration server can identify the end-user subscription and resumes processing of the original GET resource request.
[image:]
[bookmark: _Ref61461685][bookmark: _Ref78299806]Figure 3. OAuth 2.0 / OpenID Authentication Flow with Entitlement Configuration Server
7. [bookmark: _Ref52806901][bookmark: _Ref59445701][bookmark: _Toc61529327]Server to Server Authentication using OAuth 2.0 server and JWT
The server to server authentication using OAuth2.0 is available for server applications (client) that needs to access a service without any user interaction.
The authentication flow described in this section follows the architecture described in Figure 4 where (as defined in reference [15] – 1.1 Roles) the different roles are (between brackets how it is mapped to the systems involved in this TS.43 spec):
Resource Owner [server managing devices – aka MDM –]. An entity capable of granting access to a protected resource. In the scope of this
Client [server ODSA App]. An application making protected resource requests on behalf of the resource owner and with its authorization.
Resource Server [ODSA Device GW – Entitlement Configuration Server].The server hosting the protected resources, capable of accepting and responding to protected resource requests using access tokens.
Authorization server [Service Provider’s OAuth2.0 server]. The server issuing access tokens to the client after successfully authenticating the resource owner and obtaining authorization.

[image:]
[bookmark: _Ref61461698]Figure 4. Client Authentication Flow (server to server AuthN using OAuth2.0)
Previously to send and Access Token Request, it is necessary that the Client gets client_id and client_secret from the Authorization Server. The process to obtain these two parameters are not covered in this specification.
Client applications have an attribute named client_type (see reference [15] – 2.1 Client Types) and when this client_type is confidential (as it is in our case) the client authentication is required to get the access token.
Among the different method to perform the Client Authentication, the one using JSON Web Token (JWT) is the selected one for this specification (see reference [17] for additional info). This method does not require the client_secret to be sent in the request at all but it is used to sign the JWT.
In the context of client authentication, the JWT is called client assertion. The access token request requires (as defined in reference [16] - 4.2 Using Assertions for Client Authentication) client_assertion_type 	(the value is the following fixed string,	 urn:ietf:params:oauth:client-assertion-type:jwt-bearer) and client_assertion (the JWT containing the information for client authentication).

The JWT (as defined in reference [17] - 3 JWT Format and Processing Requirements) payload must contain (at least):
iss (issuer). It contains a unique identifier for the entity that issued the JWT. It should be the client_id.
sub (subject). It identifies the principal that is the subject of the JWT. It should be the client_id.
aud (audience). It contains a value that identifies the authorization server as an intended audience. It should be the URL of the authorization server.
exp (expiration time). It indicates the time window during which the JWT can be used.
Figure 5 presents an overview of the steps for the Client authentication (server to server) procedure to get the access token. The validation of this access token is described in each process where this authentication takes place.
[image:]
[bookmark: _Ref61461709]Figure 5. Getting Access Token in Client Authentication Flow
7. [bookmark: _Toc61529328]Error processing
Some errors might occur during the OIDC user authentication procedure, see OpenID Connect [14] section Authentication Error Response. For example, the user could decline a consent screen, or the Open Id Connect server could get a technical issue (e.g. invalid request).
For the user to be presented an ad-hoc explanation page related to an authentication error, the ODSA entitlement parameters AuthenticationErrorURL and AuthenticationErrorUserData are defined in section 6.5.2 allowing the client application to interact with the Service Provider’s portal web server.
The Figure 6 presents an overview of the steps for the OIDC-based authentication procedure in case of error, shown here for informational purposes.
Steps 1-4 are similar to those described in previous section. In the next steps:
1. The user does not succeed to complete the OIDC-based authentication procedure.
1. The Service Provider’s OIDC authentication endpoint returns to the Client the redirection URI specified in the Authorization Request with the appropriate error and state parameters.
1. The client on primary device redirects the error URL to the Entitlement Server.
1. The Entitlement Server generates an XML document as a 200 OK answer. This document does not embed a token, as the opposite of the successful case, but an URL and data to be used by the client (parameters AuthenticationErrorURL and AuthenticationErrorUserData).
1. The client is notified of the error thanks to the presence of these parameters in the document and displays the error webview referenced by the AuthenticationErrorURL, using the AuthenticationErrorUserData in the query string.
1. The end user closes the webview, activating the dismissFlow callback.
[image:]
[bookmark: _Ref61461818]Figure 6. OAuth 2.0 / OpenID Authentication Error Flow with Entitlement Configuration Server
1. [bookmark: _Toc61529329]Configuration Document for Entitlements
8. [bookmark: _Ref59443504][bookmark: _Toc61529330]General
The attributes for the entitlement of VoWiFi, VoLTE or SMSoIP and the result of operation requests from Companion and Primary ODSA applications are conveyed between the entitlement configuration server and the client via a configuration document. This document is located in the returned 200 OK response message and can follow two formats:
An XML document similar to the one defined in section 4 of RCC.14 [5], composed of a set of characteristic types, each with a number of parameters
A JSON object composed of a number of structured values (a set of fields presented as name-value pairs) corresponding to the characteristic types of the XML document
The configuration entitlement server may apply a content encoding mechanism supported by the client.
The client should indicate supported content decoding mechanisms via the Accept-Encoding HTTP header as defined in RFC2616 [12]. The server shall in turn indicate the applied content encoding mechanism in the Content-Encoding HTTP header in accordance with RFC2616 [12].
It is recommended that clients and entitlement configuration servers support the encoding format "gzip".
8. [bookmark: _Toc61529331]New Characteristics for XML-Based Document
Extending the XML definition from RCC.14 [5], new APPLICATION characteristics are defined for the entitlements of VoWiFi, VoLTE, SMSoIP and for the operation results of the Companion and Primary ODSA applications, with a unique Application Identifier (AppID) assigned to each.
Refer to 2.3 for the AppID assigned to the entitlement applications for VoWiFi, VoLTE, SMSoIP and to the Companion and Primary ODSA applications.
An example configuration document containing the combined entitlement parameters for the VoWiFi, VoLTE and SMSoIP services is shown in Table 7. This is an example and as such non-normative. The example presents all those entitlements, but only the requested service entitlements shall be included in the document (based on the received “app” request parameter).
For the Companion and Primary ODSA applications, refer to 6.6 for the XML document examples defined for each operation of those applications.
	<characteristic type="APPLICATION">
 <parm name=”AppID” value=”ap2004”/>
 <parm name=”Name” value=”VoWiFi Entitlement settings”/>
 <parm name=”EntitlementStatus” value=”X”/>
 <parm name=”ServiceFlow_URL” value=”X”/>
 <parm name=”ServiceFlow_UserData” value=”X”/>
 <parm name=”MessageForIncompatible” value=”X”/>
 <parm name=”AddrStatus” value=”X”/>
 <parm name=”TC_Status” value=”X”/>
 <parm name=”ProvStatus” value=”X”/>
</characteristic>
<characteristic type="APPLICATION">
 <parm name=”AppID” value=”ap2003”/>
 <parm name=”Name” value=”VoLTE Entitlement settings”/>
 <parm name=”EntitlementStatus” value=”X”/>
 <parm name=”MessageForIncompatible” value=”X”/>
</characteristic>
<characteristic type="APPLICATION">
 <parm name=”AppID” value=”ap2005”/>
 <parm name=”Name” value=”SMSoIP Entitlement settings”/>
 <parm name=”EntitlementStatus” value=”X”/>
</characteristic>

[bookmark: _Ref61460130][bookmark: _Ref59444308]Table 7. VoWiFi, VoLTE and SMSoIP entitlement document structure (non-normative)
8. [bookmark: _Toc61529332]Inclusion in the Complete XML document
The complete XML document with combined VoWiFi, VoLTE and SMSoIP entitlement configurations is illustrated in Table 8. This is an example and as such non-normative. The example presents all those entitlements, but only the requested service entitlements shall be included in the document (based on the received “app” request parameter).
	<?xml version="1.0"?>
<wap-provisioningdoc version="1.1">
 <characteristic type="VERS">
 <parm name="version" value="X"/>
 <parm name="validity" value="Y"/>
 </characteristic>
 <characteristic type="TOKEN">		 <!-- This section is OPTIONAL -->
 <parm name="token" value="U"/>
 <parm name="validity" value="V"/> <!-- Optional parameter -->
 </characteristic>

<!-- Potentially additional optional characteristics such as MSG, User and Access Control -->
<!-- see [PRD-RCC.14] -->

 <characteristic type="APPLICATION">
 <parm name=”AppID” value=”ap2004”/>
 <parm name=”Name” value=”VoWiFi Entitlement settings”/>
 <parm name=”EntitlementStatus” value=”X”/>
 <parm name=”ServiceFlow_URL” value=”X”/>
 <parm name=”ServiceFlow_ UserData” value=”X”/>
 <parm name=”MessageForIncompatible” value=”X”/>
 <parm name=”AddrStatus” value=”X”/>
 <parm name=”TC_Status” value=”X”/>
 <parm name=”ProvStatus” value=”X”/>
 </characteristic>
 <characteristic type="APPLICATION">
 <parm name=”AppID” value=”ap2003”/>
 <parm name=”Name” value=”VoLTE Entitlement settings”/>
 <parm name=”EntitlementStatus” value=”X”/>
 <parm name=”MessageForIncompatible” value=”X”/>
 </characteristic>
 <characteristic type="APPLICATION">
 <parm name=”AppID” value=”ap2005”/>
 <parm name=”Name” value=”SMSoIP Entitlement settings”/>
 <parm name=”EntitlementStatus” value=”X”/>
 </characteristic>
</wap-provisioningdoc>

[bookmark: _Ref61460207][bookmark: _Ref59444414]Table 8. Complete XML-based entitlement document structure (non-normative)
8. [bookmark: _Toc61529333]JSON-Based Configuration Document
The JSON object value returned as part of an entitlement configuration request for the entitlements of VoWiFi, VoLTE and SMSoIP is presented in Table 9. Each characteristic type of the XML document is mapped to the JSON document as a structured object with several fields.
For the Companion and Primary ODSA applications, refer to 6.6 for a description of the JSON-based document defined for each operation of those applications.
	{
 "Vers" : {
 "version" : "X",
 "validity" : "Y"
 },
 "Token" : { // Optional
 "token" : "U",
 "validity" : "V"
 },
 "ap2004": { // VoWiFi Entitlement settings
 "EntitlementStatus" : "X",
 "ServiceFlow_URL" : "X",
 "ServiceFlow_ UserData" : "X",
 "MessageForIncompatible" : "X",
 "AddrStatus" : "X",
 "TC_Status" : "X",
 "ProvStatus" : "X"
 },
 "ap2003" : { // VoLTE Entitlement settings
 "EntitlementStatus" : "X",
 "MessageForIncompatible" : "X"
 },
 "ap2005" : { // SMSoIP Entitlement settings
 "EntitlementStatus" : "X"
 }
}

[bookmark: _Ref61460227][bookmark: _Ref59444431]Table 9. JSON-based entitlement document for VoWiFi, VoLTE and SMSoIP (non-normative)
8. [bookmark: _Ref56006988][bookmark: _Toc61529334]Result of Notification Registration
An application can request to receive entitlement notifications from the network by including the notif_action and notif_token parameters in a configuration request (refer to Table 3 for details on the parameters).
The Entitlement Configuration Server shall provide the result of registering the application in the configuration document using the RegisterNotifStatus configuration parameter as defined in Table 10.
	General Entitlement parameter
	Type
	Values
	Description

	RegisterNotifStatus
(Conditional)
	Integer
	0 - SUCCESS
	Registration of the notification was successful

	
	
	1 – INVALID TOKEN
	The provided notif_token was invalid

	
	
	2 – DUPLICATE TOKEN
	The provided notif_token is a duplicate

[bookmark: _Ref61460256][bookmark: _Ref59444577]Table 10. Entitlement Parameter - Notification Registration Status
8. [bookmark: _Toc61529335]Additional Details on TOKEN
As seen in Table 8 and Table 9, the document for entitlement configuration contains the VERS and TOKEN attributes, as defined by RCC.14 [5]. In addition to the definition of TOKEN from RCC.14, the following rules apply to the entitlement configuration’s TOKEN:
TOKEN is not restricted to entitlement configuration requests made from non-3GPP access networks access types
A “validity” attribute is allowed and indicates the lifetime of the provided token
The token shall be kept by clients during reboot cycles
The token is of variable length
1. [bookmark: _Toc61529336]HTTP Response Codes
Table 11 presents the possible entitlement configuration server response codes (including associated reasons) at the HTTP level.
	GET Response Code	
	Reason
	Device’s Action

	200 OK + with application data
	New or updated application data sent to the device
	Process the returned application data

	302 Found
	OAuth 2.0 / OpenID Connect authentication should be followed. Refer to Section 2.8.2 for details on the procedure and its initiation.
	Redirect the GET request to the OIDC AuthN endpoint specified by the Location: field of the 302 Found response

	400 Bad Request
	Invalid or missing GET parameters or wrong format
	Retry on next reboot/the next time the client app starts

	403 Forbidden
	Invalid identities (device id, primary or companion)
	Retry on next reboot/the next time the client app starts

	405 Method not Allowed
	The server does not support the HTTP POST method used by the client
	Retry the request using GET method

	406 Not Acceptable
	The server does not support the entitlement_version used by the client
	Apply the procedure defined by the Service Provider for the case of no configuration data is available (for example silent abort or error message)

	500 Internal Server error
	Internal error during processing of GET request
	Retry on next reboot/the next time the client app starts

	503 Retry after / Service Unavailable
	The server does not have access to external resources (temporary error)
	Retry after the time specified in the “Retry- After” header

	511 Network Authentication Required
	To initiate authentication with the server, when proper AuthN parameters are missing, the OTP is invalid, or the token obtained through a previous authentication exercise expired
	Client app should go through an authentication procedure with the entitlement configuration server and get a new token

	The server is unreachable
	Entitlement configuration server is missing or down
	Retry on next reboot, the next time the client starts

[bookmark: _Ref61460293][bookmark: _Ref59444656]Table 11. HTTP Response Codes from Entitlement Configuration Server
1. [bookmark: _Toc61529337]VoWiFi Entitlement Configuration
The following sections describe the different configuration parameters associated with the VoWiFi entitlement as well as the expected behaviour of the VoWiFi client based on the entitlement configuration document received by the client.
2. [bookmark: _Toc61529338]VoWiFi Entitlement Parameters
Parameters for the VoWiFi entitlement provide the overall status of the VoWiFi service to the client, as well as the different sub-status associated with the activation procedure of the service.
The VoWiFi entitlement parameters also include information associated with the web views presented to users by the VoWiFi client during activation and management of the service.
0. [bookmark: _Ref59444836][bookmark: _Toc61529339]VoWiFi Entitlement Status
Parameter Name: EntitlementStatus
Presence: Mandatory
This parameter indicates the overall status of the VoWiFi entitlement, stating if the service can be offered on the device, and if it can be activated or not by the end-user.
The different values for the VoWiFi entitlement status are provided in Table 12.
	VoWiFi Entitlement parameter
	Type
	Values
	Description

	EntitlementStatus
(Mandatory)
	Integer
	0 - DISABLED
	VoWiFi service allowed, but not yet provisioned and activated on the network side

	
	
	1 - ENABLED
	VoWiFi service allowed, provisioned and activated on the network side

	
	
	2 - INCOMPATIBLE
	VoWiFi service cannot be offered

	
	
	3 - PROVISIONING
	VoWiFi service being provisioned on the network side

[bookmark: _Ref61460306][bookmark: _Ref59444683]Table 12. Entitlement Parameter - VoWiFi Overall Status
0. [bookmark: _Ref59444962][bookmark: _Toc61529340]VoWiFi Client’s Web Views Parameters
Parameter Names: ServiceFlow_URL and ServiceFlow_UserData
Presence: Mandatory
During the activation procedure of the VoWiFi service, end-users can be presented with web views specific to the Service Provider. VoWiFi web views allow end-users to change user-specific attributes of the VoWiFi service, like the acceptance of the service’s Terms and Conditions (T&C) and the end-user’s physical address (needed in some regions for VoWiFi emergency calling purposes).
The entitlement parameters associated with the VoWiFi service’s web views are described in Table 13.
	VoWiFi Entitlement parameter
	Type
	Description

	ServiceFlow_URL
(Mandatory)
	String
	The URL of web views to be used by VoWiFi client to present the user with VoWiFi service activation and service management options, which may include entering physical address and agreeing to the T&C of the VoWiFi service.

	ServiceFlow_UserData
(Mandatory)

	String
	User data associated with the HTTP web request towards the ServiceFlow URL. It can contain user-specific attributes to ease the flow of VoWiFi service activation and management.
See below for details on the content.

[bookmark: _Ref61460327][bookmark: _Ref59444703]Table 13. Entitlement Parameters - VoWiFi Web Views Information
The content of the ServiceFlow_UserData parameter is defined by the requirements of the Service Provider’s VoWiFi web views. In a typical case, the web view is presented when VoWiFi service is activated by the end-user. At such time the VoWiFi client connects the user to the ServiceFlow_URL and includes the ServiceFlow_UserData in the HTTP web request.
In order to improve user experience, this parameter should include user and service-specific information that would allow the VoWiFi’s web views to identify the requestor and be aware of the latest VoWiFi entitlement status values.
An example of the ServiceFlow_UserData string is:
"imsi=XXXXXXXXX&msisdn=XXXXXXXX&tnc=X&addr=X&prov=X&device_id=XXXXXXXX&entitlement_name=VoWiFi&signature=Xl%2F1tT23C0dNI32hiVZZS”
This example contains elements associated with the device and user identities as well as service-related information like the current T&C, address and provisioning status of the VoWiFi service. Note the use of “&” is required to allow the ‘&’ character to be used in a string value within an XML document.
0. [bookmark: _Ref56016469][bookmark: _Toc61529341]VoWiFi Address Parameters
Parameter Name: AddrStatus, AddrExpiry, AddrIdentifier
Presence:
AddrStatus: Mandatory
AddrExpiry, AddrIdentifier: Optional
In some regions, end-users must provide their static physical address before being allowed to use the VoWiFi service. Those entitlement parameters indicates if that condition must be met before offering the VoWiFi service and provide additional information on the captured location (expiration and identifier).
Also, if a physical address from the end-user is indeed needed for the VoWiFi service, this parameter indicates the state of the “address capture” process.
The different values for the VoWiFi address status are provided in Table 14.
	VoWiFi Entitlement parameter
	Type
	Values
	Description

	AddrStatus
(Mandatory)
	Integer
	0 - NOT AVAILABLE
	Address has not yet been captured from the end-user

	
	
	1 - AVAILABLE
	Address has been entered by the end-user

	
	
	2 - NOT REQUIRED
	Address is not required to offer VoWiFi service

	
	
	3 - IN PROGRESS
	Address capture from end-user is on-going

	AddrExpiry
(Optional)
	Time
	in ISO 8601 format, of the form YYYY-MM-DDThh:mm:ssTZD
	The time/date when the address expires and should be recaptured from the user

	AddrIdentifier
(Optional)
	String
	Generated by emergency system
	Associated identifier of the location, to be used during an IMS emergency session by the device, as defined in 3.1.3.

[bookmark: _Ref61460338][bookmark: _Ref59444740]Table 14. Entitlement Parameters - VoWiFi Address
The absence of the AddrExpiry parameter indicates that there is no expiration date for the address.
0. [bookmark: _Toc61529342]VoWiFi T&C Status
Parameter Name: TC_Status
Presence: Mandatory
In some regions, end-users must agree to the Terms and Conditions (T&C) of the VoWiFi service before being allowed to use it. This entitlement parameter indicates if that condition must be met before offering the VoWiFi service.
Also, if acceptance of the VoWiFi’s T&C is indeed needed from the end-user, this parameter indicates the state of the “T&C acceptance” process.
The different values for the VoWiFi T&C status are provided in Table 15.
	VoWiFi Entitlement parameter
	Type
	Values
	Description

	TC_Status
(Mandatory)
	Integer
	0 - NOT AVAILABLE
	T&C have not yet been accepted by the end-user

	
	
	1 - AVAILABLE
	T&C have been accepted by the end-user

	
	
	2 - NOT REQUIRED
	T&C acceptance is not required to offer VoWiFi service

	
	
	3 - IN PROGRESS
	T&C capture and acceptance is on-going

[bookmark: _Ref61460349][bookmark: _Ref59444804]Table 15. Entitlement Parameter - VoWiFi T&C Status
0. [bookmark: _Toc61529343]VoWiFi Provisioning Status
Parameter Name: ProvStatus
Presence: Mandatory
In some cases, the network is not provisioned by default to support VoWiFi service for all end-users. Some type of network-side provisioning must then take place before offering the VoWiFi service to the end-user. This entitlement parameter indicates the progress of VoWiFi provisioning on the network for the requesting client.
The different values for the VoWiFi provisioning status are provided in Table 16.
	VoWiFi Entitlement parameter
	Type
	Values
	Description

	ProvStatus
(Mandatory)
	Integer
	0 - NOT PROVISIONED
	VoWiFi service not provisioned yet on network side

	
	
	1 - PROVISIONED
	VoWiFi service fully provisioned on network

	
	
	2 - NOT REQUIRED
	Provisioning progress of VoWiFi is not tracked / not required

	
	
	3 - IN PROGRESS
	VoWiFi provisioning is still in progress

[bookmark: _Ref61460363][bookmark: _Ref59444820]Table 16. Entitlement Parameter - VoWiFi Provisioning Status
0. [bookmark: _Toc61529344]VoWiFi Message for Incompatible Status
Parameter Name: MessageForIncompatible
Presence: Mandatory
When the status for the VoWiFi entitlement is INCOMPATIBLE (see 3.1.1) and the end-user tries to activate VoWiFi, the VoWiFi client should show a message to the end-user indicating why activation was refused.
This entitlement parameter provides the content of that message, as decided by the Service Provider. Table 17 describes this VoWiFi entitlement parameter.
	VoWiFi Entitlement parameter
	Type
	Description

	MessageForIncompatible
(Mandatory)
	String
	A message to be displayed to the end-user when activation fails due to an incompatible VoWiFi Entitlement Status

[bookmark: _Ref61460373][bookmark: _Ref59444854]Table 17. Entitlement Parameter - VoWiFi Message for Incompatible Status
2. [bookmark: _Toc61529345]Client Behaviour for VoWiFi Entitlement Configuration
The entitlement parameters for VoWiFi provides an overall status for the service as well as additional information associated with the activation procedure and provisioning of the service.
As such, the entitlement configuration for VoWiFi carries information that impacts the behaviour of the VoWiFi client.
The client shall then activate (or deactivate) the VoWiFi service according to the combination of the VoWiFi’s general setting on the device (controlled by the end-user) and the received VoWiFi entitlement configuration.
The client shall also use the VoWiFi entitlement parameters to decide if VoWiFi web views for activation and service management should be presented to the end-user. This include country-specific details on the need for VoWiFi’s Terms & Conditions acceptance and the requirement to capture or not the user’s physical address - a country’s regulations may require users to enter their physical address as well as agree to the Terms & Conditions of the service when activating VoWiFi.
2. [bookmark: _Ref59444987][bookmark: _Toc61529346]Entitlement Modes of VoWiFi Client
To simplify the description of the client’s behaviour with respect to the VoWiFi entitlement configuration, a set of “VoWiFi entitlement modes” for the client is defined, each with specific expectations on the client side.
The relationship between the values of the VoWiFi entitlement parameters and the VoWiFi entitlement modes are shown in Table 18.
	VoWiFi Entitlement Parameters
	VoWiFi Entitlement mode

	Entitlement
Status
	ProvStatus
	TC_status
	AddrStatus
	

	INCOMPATIBLE
	Any
	Cannot be offered

	DISABLED
	Any
	At least one is NOT AVAILABLE
	Service Data Missing

	
	
	At least one is IN PROGRESS
	Service Data being Updated

	DISABLED
	NOT PROVISIONED, IN PROGRESS
	AVAILABLE or NOT REQUIRED
	Service being Provisioned

	PROVISIONING
	Any
	

	ENABLED
	PROVISIONED or
NOT REQUIRED
	AVAILABLE or NOT REQUIRED
	Can be activated

[bookmark: _Ref61460385][bookmark: _Ref59444881]Table 18. VoWiFi Entitlement Modes
The description of each VoWiFi entitlement mode follows.
2. [bookmark: _Toc61529347]VoWiFi Entitlement Mode - Cannot be offered
The Client shall stay in this mode when:
EntitlementStatus is INCOMPATIBLE
The Client shall not activate the VoWiFi service.
Due to end-user’s action, the client may send a request to the Entitlement Configuration Server to refresh the VoWiFi entitlement status. If the received status is still INCOMPATIBLE, the device shall either display MessageForIncompatible when it is not void, or the default device error message (if any).
2. [bookmark: _Toc61529348]VoWiFi Entitlement Mode - Can be activated
The Client shall stay in this mode when all the following conditions are met:
EntitlementStatus is ENABLED
ProvStatus is PROVISIONED or NOT REQUIRED
TC_status and AddrStatus are AVAILABLE or NOT REQUIRED
When entering this mode, the client shall activate the VoWiFi service if the VoWiFi’s service setting on the device is equivalent to ON (may require end-user action).
2. [bookmark: _Toc61529349]VoWiFi Entitlement Mode - Service Data Missing
The Client shall stay in this mode when all the following conditions are met:
EntitlementStatus is DISABLED
ProvStatus is any values
Either TC_status or AddrStatus is NOT AVAILABLE
In that mode the Client shall not activate the VoWiFi service.
Due to end-user’s action, the Client may send a request to the Entitlement Configuration Server to refresh the VoWiFi entitlement status. If the received status lead to the same mode, the Client shall open a web view and instruct the end-user to enter the required missing VoWiFi service information (T&C or static physical address).
2. [bookmark: _Toc61529350]VoWiFi Entitlement Mode - Service Data Being Updated
The Client shall stay in this mode when all the following conditions are met:
EntitlementStatus is DISABLED
ProvStatus is any values
Either TC_status, or AddrStatus is set to IN PROGRESS
In that mode the Client shall not activate the VoWiFi service.
2. [bookmark: _Toc61529351]VoWiFi Entitlement Mode - Service Being Provisioned
The Client shall stay in this mode when all the following conditions are met:
EntitlementStatus is DISABLED
TC_status and AddrStatus are set to AVAILABLE or NOT REQUIRED
ProvStatus is set to NOT PROVISIONED or IN PROGRESS
Or
EntitlementStatus is PROVISIONING
ProvStatus,TC_status and AddrStatus are set to any values
The Client shall not activate the VoWiFi service. After an end-user action (going into VoWiFi service settings for example), the client shall show that the service is pending or being provisioned.
2. [bookmark: _Toc61529352]VoWiFi Client Considerations around Web View Callbacks
During the activation procedure of the VoWiFi service, end-users can be presented with web views specific to the Service Provider (hosted by a VoWiFi portal web server). To support this feature, the VoWiFi entitlement parameters ServiceFlow_URL and ServiceFlow_UserData associated with the invocation of VoWiFi service’s web views by the VoWiFi client are defined in section 3.1.2.
At the completion of the web service flow by the VoWiFi portal web server, the web page shall invoke a specific JavaScript (JS) callback function associated with the VoWiFi client. The callback functions shall provide the overall state of the web flow to the VoWiFi client and indicate that the VoWiFi web view on the device needs to be closed.
The object associated with the callback functions is VoWiFiWebServiceFlow and two different callback functions are defined to reflect the state of the web logic.
3. [bookmark: _Toc61529353]entitlementChanged() Callback function
The entitlementChanged() callback function indicates that the VoWiFi service flow ended properly between the device and VoWiFi portal web server.
The web view to the end-user should be closed and the VoWiFi client shall make a request for the latest VoWiFi entitlement configuration status, via the proper TS.43 entitlement configuration request.
Based on the returned set of status parameters, the VoWiFi client shall behave as specified in 3.3.
The following call flow presents how the entitlementChanged() callback function fits into the typical steps involved with VoWiFi entitlement configuration. At the end of the VoWiFi service flow the callback function (step 7) is invoked by the web server and the VoWiFi client acts accordingly by requesting for the latest VoWiFi entitlement configuration.
[image:]
Figure 7. VoWiFi Entitlement Configuration Flow with entitlementChanged() Callback
3. [bookmark: _Toc61529354]dismissFlow() callback function
The dismissFlow() callback function indicates that the VoWiFi service flow ends prematurely, either caused by user action (DISMISS button for example) or by an error in the web sheet logic or from the network side.
As a result of the dismissal of the service flow, the VoWiFi entitlement status has not been updated by the VoWiFi portal.
The web view to the end-user should be closed and the VoWiFi client should not make a request for the latest VoWiFi entitlement configuration status.
The call flow in Figure 8 presents how the dismissFlow() callback function fits into the typical steps involved with VoWiFi Entitlement Configuration. Due to an error or user action the callback function (step 6) is invoked by the web server and the VoWiFi client acts accordingly.
[image:]
[bookmark: _Ref61461836]Figure 8. VoWiFi Entitlement Configuration Flow with dismissFlow() Callback
1. [bookmark: _Toc61529355]VoLTE Entitlement Configuration
The following sections describe the different configuration parameters associated with the VoLTE entitlement as well as the expected behaviour of the VoLTE client based on the entitlement configuration document received by the client.
3. [bookmark: _Toc61529356]VoLTE Entitlement Parameters
Parameters for the VoLTE entitlement provide the overall status of the VoLTE service to the client and other client-related information.
0. [bookmark: _Toc61529357]VoLTE Entitlement Status
Parameter Name: EntitlementStatus
Presence: Mandatory
This parameter indicates the overall status of the VoLTE entitlement, stating if the service can be offered on the device, and if it can be activated or not by the end-user.
The different values for the VoLTE entitlement status are provided in Table 19.
	VoLTE Entitlement parameter
	Type
	Values
	Description

	EntitlementStatus
(Mandatory)
	Integer
	0 - DISABLED
	VoLTE service allowed, but not yet provisioned and activated on the network side

	
	
	1 - ENABLED
	VoLTE service allowed, provisioned and activated on the network side

	
	
	2 - INCOMPATIBLE
	VoLTE service cannot be offered

	
	
	3 - PROVISIONING
	VoLTE service being provisioned on the network side

[bookmark: _Ref61460399][bookmark: _Ref59445074]Table 19.Entitlement Parameter - VoLTE Overall Status
0. [bookmark: _Toc61529358]VoLTE Message for Incompatible Status
Parameter Name: MessageForIncompatible
Presence: Mandatory
When the status for the VoLTE entitlement is INCOMPATIBLE and the end-user tries to activate VoLTE, the client should show a message to the end-user indicating why activation was refused.
This entitlement parameter provides the content of that message, as decided by the Service Provider. Table 20 describes this VoLTE entitlement parameter.
	VoLTE Entitlement parameter
	Type
	Description

	MessageForIncompatible
(Mandatory)
	String
	A message to be displayed to the end-user when activation fails due to an incompatible VoLTE Entitlement Status

[bookmark: _Ref61460409][bookmark: _Ref59445092]Table 20. Entitlement Parameter - VoLTE Message for Incompatible Status
3. [bookmark: _Toc61529359]Client Behaviour to VoLTE Entitlement Configuration
The client shall activate (or deactivate) the VoLTE service according to the combination of the VoLTE settings on the device (controlled by the end-user) and the received VoLTE Entitlement status described in this document. This is presented in Table 21.
	VoLTE Entitlement Status
	VoLTE Client Behavior

	INCOMPATIBLE
	The Client shall not activate the VoLTE service.
The client may send a request to the Entitlement Configuration Server to refresh the VoLTE entitlement status. If the received status is still INCOMPATIBLE, the device shall either display MessageForIncompatible parameter when it is not void, or the default device error message (if any).

	DISABLED
	The Client shall not activate the VoLTE service.
After an end-user action (going into VoLTE service settings for example), the client may send a request to the Entitlement Configuration Server to refresh the VoLTE entitlement status.

	PROVISIONING
	The Client shall not activate the VoLTE service.
After an end-user action (going into VoLTE service settings for example), the client shall show that the service is pending or being provisioned.

	ENABLED
	The client shall activate the VoLTE service if the VoLTE’s service setting on the device is equivalent to ON (may require end-user action).

[bookmark: _Ref61460419][bookmark: _Ref59445106]Table 21. VoLTE Client Behaviour
1. [bookmark: _Toc61529360]SMSoIP Entitlement Configuration
The following sections describe the different configuration parameters associated with the SMSoIP entitlement as well as the expected behaviour of the SMSoIP client based on the entitlement configuration document received by the client.
4. [bookmark: _Toc61529361]SMSoIP Entitlement Parameters
Parameters for the SMSoIP entitlement provide the overall status of the SMSoIP service to the client and other client-related information.
0. [bookmark: _Toc61529362]SMSoIP Entitlement Status
Parameter Name: EntitlementStatus
Presence: Mandatory
This parameter indicates the overall status of the SMSoIP entitlement, stating if the service can be offered on the device, and if it can be activated or not by the end-user.
The different values for the SMSoIP entitlement status are provided in Table 22.
	SMSoIP Entitlement parameter
	Type
	Values
	Description

	EntitlementStatus
(Mandatory)
	Integer
	0 - DISABLED
	SMSoIP service allowed, but not yet provisioned and activated on the network side

	
	
	1 - ENABLED
	SMSoIP service allowed, provisioned and activated on the network side

	
	
	2 - INCOMPATIBLE
	SMSoIP service cannot be offered

	
	
	3 - PROVISIONING
	SMSoIP service being provisioned on the network side

[bookmark: _Ref61460430][bookmark: _Ref59445132]Table 22. Entitlement Parameter - SMSoIP Overall Status
4. [bookmark: _Toc61529363]Client Behaviour to SMSoIP Entitlement Configuration
The client shall activate (or deactivate) the SMSoIP service according to the combination of the SMSoIP settings on the device (controlled by the end-user) and the received SMSoIP Entitlement status described in this document. This is presented in Table 23
	SMSoIP Entitlement Status
	SMSoIP Client Behavior

	INCOMPATIBLE
	The Client shall not activate the SMSoIP service.
The client may send a request to the Entitlement Configuration Server to refresh the SMSoIP entitlement status.

	DISABLED
	The Client shall not activate the SMSoIP service.
After an end-user action (going into SMSoIP’s service settings for example), the client may send a request to the Entitlement Configuration Server to refresh the SMSoIP entitlement status.

	PROVISIONING
	The Client shall not activate the SMSoIP service.
After an end-user action (going into SMSoIP’s service settings for example), the client shall show that the service is pending or being provisioned.

	ENABLED
	The client shall activate the SMSoIP service if the SMSoIP’s service setting on the device is equivalent to ON (may require end-user action).

[bookmark: _Ref61520685][bookmark: _Ref59445147][bookmark: _Ref61460451]Table 23. SMSoIP Client Behaviour
1. [bookmark: _Ref61463776][bookmark: _Toc61529364]On-Device Service Activation (ODSA) Entitlement and Configuration
The ODSA procedure for eSIM-based devices is initiated by a client application on a requesting or primary device. The ODSA application requires entitlement and configuration information from the Service Provider in order to complete the procedure. The following sections present the different operations associated with ODSA of eSIM devices and the resulting configuration documents.
5. [bookmark: _Toc61529365]ODSA Architecture and Operations
The ODSA client application runs on a requesting or primary device and allows the end-user to perform a seamless activation of the subscription and associated services on the eSIM of either a companion device or the primary device, without involvement of Service Provider’s customer or support personnel.
In order to have access to the eSIM, the ODSA client application shall be invoked at the request of the end-user and shall capture proper interactions (e.g. user consent) as described in SGP.21 [10] and SGP.22 [11].
The architecture for the companion ODSA use case is shown in Figure 9. The Entitlement Configuration Server acts as the Service Provider’s ODSA Gateway for the ODSA procedure (labelled as the “ODSA GW” in Figure 9), providing entitlement and configuration data to the “ODSA for Companion devices” application.
The device hosting the ODSA client is the "requesting" device. It may or may not have access to a SIM with an active profile from the Service Provider. The interface between the ODSA client on the requesting device and the companion device is out-of-scope of this specification.
[image:]
[bookmark: _Ref61461846]Figure 9. ODSA for Companion eSIM devices, architecture and TS.43 positioning
The architecture for primary ODSA use case is shown in Figure 10. The device is "primary" as it has direct access to the eSIM being activated through the ODSA procedure. As in the companion ODSA use case, the ODSA may or may not have access to a SIM with an active profile from the Service Provider. The interface between the ODSA client and the eSIM is out-of-scope of this specification.
[image:]
[bookmark: _Ref61461863]Figure 10. ODSA for Primary eSIM devices, architecture and TS.43 positioning
This specification does not cover the HTML-based interactions between the ODSA application and the Service Provider’s portal web server (labelled as the “Operator Portal” in Figure 9 and Figure 10). The ODSA web server can be used to present different subscription options to the end-user and capture Terms & Conditions agreements.
The product implementations for the Entitlement Configuration Server and the Service Provider’s portal web server shall protect the privacy of the subscriber and of the end-user on all data that could be used for tracking such as ICCID, MSISDN, EID.
Instead of just one entitlement configuration request, the ODSA application requires several exchanges with the Entitlement Configuration Server. Each exchange is associated with an operation, resulting in the need of a new string-based operation request parameter.
Table 24 presents the allowed operations for the eSIM ODSA procedure.
	ODSA Operation
	Description

	CheckEligibility
	To verify if end-user is allowed to invoke the ODSA application

	ManageSubscription
	To request for subscription-related action on a primary or companion device.

	ManageService
	To activate / deactivate the service on the primary or companion device.
This is an optional operation.

	AcquireConfiguration
	To provide service-related data about a primary or companion device.

	AcquirePlan
	To request available plans to be offered by the MNO to an specific user or MDM

[bookmark: _Ref61460460][bookmark: _Ref59445514]Table 24. ODSA Operations
5. [bookmark: _Ref59443341][bookmark: _Toc61529366]ODSA Request Parameters
The ODSA procedure for Primary and Companion devices requires additional parameters in the HTTP requests, outside of the ones described in 2.2. Table 25 presents the new parameters and their associated ODSA operations.
	New GET parameters for ODSA application
	Type
	Values
	Description

	operation	
	String
	CheckEligibility ,
ManageSubscription,
ManageService,
AcquireConfiguration,
AcquirePlan
	Indicates the operation requested by the “ODSA for eSIM device” application

	operation_type	
	Integer
	Used by the ManageSubscription operation.

	
	
	0 - SUBSCRIBE
	to activate a subscription for the eSIM device.

	
	
	1 - UNSUBSCRIBE
	to cancel a subscription for the eSIM device.

	
	
	2 – CHANGE SUBSCRIPTION
	to manage an existing subscription on the eSIM device.

	
	
	3 – TRANSFER SUBSCRIPTION
	to transfer a subscription from an existing device (with physical SIM or eSIM) to the eSIM device

	
	
	4 – UPDATE SUBSCRIPTION
	to inform the network of a subscription update on the eSIM device

	
	
	Used by the ManageService operation.

	
	
	10 – ACTIVATE SERVICE
	Indicates this is a request to activate a service on the eSIM device.

	
	
	11 – DEACTIVATE SERVICE
	Indicates this is a request to deactivate a service on the eSIM device.

	

	companion_terminal_id
	String
	Used by all the Companion ODSA operations.

	
	
	Any string value
	A unique identifier for the companion device. Suggested source is the IMEI of the device.

	companion_terminal_
vendor
(Optional)
	String
	Used by the operations CheckEligibility, ManageSubscription and ManageService for Companion ODSA.

	
	
	Any string value
	Manufacturer of the companion device.

	companion_terminal_
model
(Optional)
	String
	Used by the operations CheckEligibility, ManageSubscription and ManageService for Companion ODSA.

	
	
	Any string value
	Model of the companion device.

	companion_terminal_
sw_version
(Optional)
	String
	Used by the operations CheckEligibility, ManageSubscription and ManageService for Companion ODSA.

	
	
	Any string value
	Software version of the companion device.

	companion_terminal_
friendly_name
(Optional)
	String
	Used by the operations CheckEligibility, ManageSubscription and ManageService for Companion ODSA.

	
	
	Any string value
	User-friendly identification for the companion device which can be used by the Service Provider in Web Views.

	companion_terminal_
service
	String
	Used by the ManageSubscription and ManageService operation for Companion ODSA.

	
	
	SharedNumber
	Indicates that the service being managed is “Shared Number”, where the companion device carries the same MSISDN as the primary device

	
	
	DiffNumber
	Indicates that the service being managed is “Different Number”, where the companion device carries a different MSISDN from the primary device

	companion_terminal_
iccid
(Optional)
	String
	Used by the ManageSubscription and AcquireConfiguration operations for Companion ODSA.

	
	
	Value following the ICCID format
	The ICCID of the companion device being managed, provided only if there is a communication profile on the companion’s eUICC

	companion_terminal_eid
(Optional)
	String
	Used by the ManageSubscription and AcquireConfiguration operations for Companion ODSA.

	
	
	Value following eUICC format
	eUICC identifier (EID) of the companion device being managed

	

	terminal_iccd
(Optional)	
	String
	Used by the ManageSubscription and AcquireConfiguration operations for Primary ODSA, in case a primary SIM is not accessible (or not present). terminal_id is associated with the device or eSIM being managed.

	
	
	Any string value
	The ICCID of the primary eSIM being managed, provided only if there is a communication profile on this eUICC

	terminal_eid
(Optional)
	String
	Used by the ManageSubscription and AcquireConfiguration operations for Primary ODSA, in case a primary SIM is not accessible (or not present). terminal_id is associated with the device or eSIM being managed.

	
	
	Value following eUICC format
	eUICC identifier (EID) of the primary eSIM being managed

	

	target_terminal_id
(Conditional)
	String
	Used by the ManageSubscription and AcquireConfiguration operations for Primary ODSA, in case of a multi-SIM device and terminal_id is associated with the device's other SIM. This parameter provides the identity of the eSIM being managed.

	
	
	Any string value
	A unique identifier for the eUICC being managed. Suggested source is the IMEI associated with the eUICC.

	target_terminal_iccid
(Optional)
	String
	Used by the ManageSubscription and AcquireConfiguration operations for Primary ODSA, in case of a multi-SIM device where the target_terminal_id parameter is utilized

	
	
	Value following the ICCID format
	The ICCID of the primary eSIM being managed, provided only if there is a communication profile on this eUICC

	target_terminal_eid
(Optional)
	String
	Used by the ManageSubscription and AcquireConfiguration operations for Primary ODSA, in case of a multi-SIM device where the target_terminal_id parameter is utilized

	
	
	Value following eUICC format
	eUICC identifier (EID) of the primary eSIM being managed

	old_terminal_id
(Optional)
	String
	Used by the ManageSubscription/TRANSFER SUBSCRIPTION for Primary ODSA in case the request is created by an old primary device.

	
	
	Value following terminal_id format
	The unique identifier, for example IMEI (preferred) or a UUID for the old primary device.

	old_terminal_iccid
(Optional)
	String
	Used by the ManageSubscription/TRANSFER SUBSCRIPTION for Primary ODSA in case the request is created by an old primary device.

	
	
	Value following the ICCID format
	The Profile’s ICCID of an old primary device to be selected by an end-user for subscription transfer to a new primary device.

	

	requestor_id
(Optional)
	String
	Used by the operations CheckEligibility, ManageSubscription, AcquireConfiguration and AcquirePlan for server-initiated ODSA

	
	
	Any string value
	A unique identifier for the system (for example MDM) sending the request.

	enterprise_id
(Optional)
	String
	Used by the operations CheckEligibility for server-initiated ODSA

	
	
	Any string value
	Identifier provided by the MNO to identify the enterprise

	enterprise_terminal_id
(Optional)
	String
	Used by the ManageSubscription and AcquireConfiguration operations for server-initiated ODSA.

	
	
	Any string value
	A unique identifier for the enterprise device. Suggested source is the IMEI of the device.

	enterprise_terminal_eid
(Optional)
	String
	Used by the ManageSubscription and AcquireConfiguration operations for server-initiated ODSA.

	
	
	Any string value
	eUICC identifier (EID) of the device being managed

	plan_id
(Optional)
	String
	Used by the operations ManageSubscription for server-initiated ODSA to identify the selected plan for an specific subscriber identified by enterprise_terminal_id and enterprise_terminal_eid

	
	
	Any string value
	Identifier of the specific plan offered by an MNO

[bookmark: _Ref61460470][bookmark: _Ref55995238]Table 25. New parameters for ODSA application
5. [bookmark: _Toc61529367]Devices Identifiers used for Request Parameters
Table 3 and Table 25 presents a number of identity parameters (ending with _ID, _id, _eid or _iccid) that need to be associated with an identifier on the primary or companion device. The following offers the mapping between device identifiers and identity parameters for companion and primary ODSA use cases and their different operations.
Figure 11 shows the suggested association between identity parameters device identifiers for the Companion ODSA use case where a requesting device's SIM is accessible. Authentication is performed using EAP-AKA with that SIM.
[image:]
[bookmark: _Ref61461888]Figure 11. Identifier Mapping for Companion ODSA with access to SIM on Requesting Device
Figure 12 shows the suggested association between identity parameters device identifiers for the Companion ODSA use case where a SIM on the requesting device is not accessible. Authentication is performed using OAuth 2.0 / OIDC. Note the use of the application's UUID in case the requesting device's IMEI is not known.
[image:]
[bookmark: _Ref61461903]Figure 12. Identifier Mapping for Companion ODSA when Requesting Device's SIM is not present or accessible
Figure 13 shows the suggested association between identity parameters device identifiers for the Primary ODSA use case where a SIM on the device that belongs to the Service Provider is accessible. Authentication is performed using EAP-AKA with that SIM.
[image:]
[bookmark: _Ref61461915]Figure 13. Identifier Mapping for Primary ODSA with access to a SIM
Figure 14 shows the suggested association between identity parameters device identifiers for the Primary ODSA use case where the data and AKA of a primary SIM is not accessible (or not present). Authentication is performed using OAuth 2.0 / OIDC.
[image:]
[bookmark: _Ref61461925]Figure 14. Identifier Mapping for Primary ODSA when existing SIM data is not accessible or not present
Figure 15 shows the suggested association between identity parameters device/server identifiers for the Server-Initiated ODSA use case. Authentication is performed using server-to-server OAuth 2.0 as described in section 2.8.3.
[image:]
[bookmark: _Ref61461935]Figure 15. Identifier Mapping for Server-initiated ODSA
5. [bookmark: _Toc61529368]Examples of ODSA Requests
This section presents samples of ODSA requests using the GET method. It is also possible to use the POST method as indicated in Section 2.4. In the POST case, the parameters would be located in the message body as a JSON object instead of being in the HTTP query string.
3. [bookmark: _Toc61529369]CheckEligibility Request Example
Table 26 presents an example for the CheckEligibility operation for an ODSA application.
	GET ? terminal_id = 013787006099944&
token = es7w1erXjh%2FEC%2FP8BV44SBmVipg&
terminal_vendor = TVENDOR&
terminal_model = TMODEL&
terminal_sw_version = TSWVERS&
entitlement_version = ENTVERS&
app = ap2006&
operation = CheckEligibility&
companion_terminal_id = 98112687006099944&
vers = 1 HTTP/1.1

Host: entitlement.telco.net:9014
User-Agent: PRD-TS43 TVENDOR/TMODEL Primary-ODSA/TSWVERS OS-Android/8.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Connection: keep-alive

[bookmark: _Ref61460511][bookmark: _Ref59445732]Table 26. Example of a CheckEligibility ODSA Request
3. [bookmark: _Toc61529370]ManageSubscription Request Example
Table 27 presents an example for the Manage Subscription operation for an ODSA application.
	GET ? terminal_id = 013787006099944&
token = es7w1erXjh%2FEC%2FP8BV44SBmVipg&
entitlement_version = ENTVERS
app = ap2006&
operation = ManageSubscription&
operation_type = 0& ! subscribe
companion_terminal_id = 98112687006099944&
companion_terminal_eid = JHSDHljhsdfy763hh&
vers = 1 HTTP/1.1

Host: entitlement.telco.net:9014
User-Agent: PRD-TS43 TVENDOR/TMODEL Primary-ODSA/TSWVERS OS-Android/8.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Connection: keep-alive

[bookmark: _Ref61460522][bookmark: _Ref59445742]Table 27. Example of a ManageSubscription ODSA Request
3. [bookmark: _Toc61529371]ManageService Request Example
Table 28 presents an example for the Manage Service operation for an ODSA application.
	GET ? terminal_id = 013787006099944&
token = es7w1erXjh%2FEC%2FP8BV44SBmVipg&
terminal_vendor = TVENDOR&
terminal_model = TMODEL&
terminal_sw_version = TSWVERS&
entitlement_version = ENTVERS&
app = ap2006&
operation = ManageService&
operation_type = 10& ! activate service
companion_terminal_id = 98112687006099944&
companion_terminal_service = DiffNumber&
vers = 1 HTTP/1.1

Host: entitlement.telco.net:9014
User-Agent: PRD-TS43 TVENDOR/TMODEL Primary-ODSA/TSWVERS OS-Android/8.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Connection: keep-alive

[bookmark: _Ref61460530][bookmark: _Ref59445755]Table 28. Example of a ManageService ODSA Request
3. [bookmark: _Toc61529372]AcquireConfiguration Request Example
Table 29 presents an example for the Acquire Configuration operation for an ODSA application.
	GET ? terminal_id = 013787006099944&
token = es7w1erXjh%2FEC%2FP8BV44SBmVipg&
terminal_vendor = TVENDOR&
terminal_model = TMODEL&
terminal_sw_version = TSWVERS&
entitlement_version = ENTVERS&
app = ap2006&
operation = AcquireConfiguration&
companion_terminal_id = 98112687006099944&
vers = 1 HTTP/1.1

Host: entitlement.telco.net:9014
User-Agent: PRD-TS43 TVENDOR/TMODEL Primary-ODSA/TSWVERS OS-Android/8.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Connection: keep-alive

[bookmark: _Ref61460541][bookmark: _Ref59445770]Table 29. Example of an AcquireConfiguration ODSA Request
3. [bookmark: _Toc61529373]AcquirePlan Request Example
Table 30 presents an example for the AcquirePlan operation for a server ODSA application.
	GET ? requestor_id = 06170799658&
token = es7w1erXjh%2FEC%2FP8BV44SBmVipg&
terminal_vendor = TVENDOR&
terminal_model = TMODEL&
terminal_sw_version = TSWVERS&
entitlement_version = ENTVERS&
app = ap2011&
operation = AcquirePlan& ! get plans
vers = 1 HTTP/1.1

Host: entitlement.telco.net:9014
User-Agent: PRD-TS43 TVENDOR/TMODEL Primary-ODSA/TSWVERS OS-Android/8.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Connection: keep-alive

[bookmark: _Ref61460559]Table 30. Example of an AcquirePlan ODSA Request
5. [bookmark: _Toc61529374]ODSA Configuration Parameters
4. [bookmark: _Toc61529375]General / Always-Present Configuration Parameters
Parameter names:
OperationResult: Mandatory
This parameter provides the result of the requested operation as described in Table 31.
	General Configuration Parameter
	Type
	Values
	Description

	OperationResult
(Mandatory)
	Integer
	1 - SUCCESS
	Operation was a success

	
	
	100 - ERROR, GENERAL
	There was a general error during processing

	
	
	101 - ERROR, INVALID OPERATION
	An invalid operation value was provided in request

	
	
	102 - ERROR, INVALID PARAMETER
	An invalid parameter name or value was provided in request

[bookmark: _Ref61460671][bookmark: _Ref59445799]Table 31. General Configuration Parameters for ODSA Operation
4. [bookmark: _Ref59444137][bookmark: _Ref59446163][bookmark: _Ref59446185][bookmark: _Toc61529376]CheckEligibility Operation Configuration Parameters
Parameter names and presence:
CompanionAppEligibility: Mandatory for Companion ODSA
PrimaryAppEligibility: Mandatory for Primary ODSA
EnterpriseAppEligibility: Mandatory for server-initiated ODSA
CompanionDeviceServices: Mandatory for Companion ODSA
NotEnabledURL: Optional
NotEnabledUserData: Optional
NotEnabledContentsType: Optional
AuthenticationErrorURL: Optional
AuthenticationErrorUserData: Optional
Those parameters are associated with the eligibility of offering the ODSA application on the requesting device and for the end-user. The application usually runs on the primary device (with SIM or eSIM). The eligibility value can be based on factors like the type of end-user’s subscription/plans and the device details.
The CompanionDeviceServices parameter represents the different services that can be activated on the companion device.
The URL, User Data and Contents Type parameters offer the option of using operator-specific web views when the end-user attempts to invoke the Companion or Primary ODSA application when it is not enabled. If absent, the device presents instead an internally-generated message to the end-user.
The different values for the configuration parameters of the CheckEligibility operation are provided in Table 32.
	“Check Eligibility” Configuration parameter
	Type
	Values
	Description

	CompanionAppEligibility
or
PrimaryAppEligibility
or
EnterpriseAppEligbility
	Integer
	0 - DISABLED
	ODSA app cannot be offered and invoked by the end-user or server (for a specific enterprise_id)

	
	
	1 - ENABLED
	ODSA app can be invoked by end-user or server (for a specific enterprise_id) to activate a new subscription

	
	
	2 - INCOMPATIBLE
	ODSA app is not compatible with the device or server

	CompanionDeviceServices
(Mandatory)
	String
	Comma-separated list with all services available on the companion device

	
	
	SharedNumber
	Indicates that the “Shared Number” service is active on the companion device (where the device carries the same MSISDN as the primary one)

	
	
	DiffNumber
	Indicates that the “Diff Number” service is active on the companion device (where the device carries a different MSISDN from the primary one)

	NotEnabledURL
(Optional)
	String
	URL to a Service Provider site or portal
	The provided URL shall present a Web view to user on the reason(s) why the ODSA app cannot be used/invoked

	NotEnabledUserData
(Optional)
	String
	Parameters or content to insert when invoking URL provided in the NotEnabledURL parameter
	User data sent to the Service Provider when requesting the NotEnabledURL web view.
It should contain user-specific attributes to improve user experience.
The format must follow the NotEnabledContentsType parameter.
For content types of JSON and XML, it is possible to provide the base64 encoding of the value by preceding it with encodedValue=.

	NotEnabledContentsType
(Optional)
	String
	Specifies content and HTTP method to use when reaching out to the web server specified in NotEnabledURL.

	
	
	NOT present
	Method to NotEnabledURL is HTTP GET request with query parameters from NotEnabledUserData.

	
	
	json
	Method to NotEnabledURL is HTTP POST request with JSON content from NotEnabledUserData.

	
	
	xml
	Method to NotEnabledURL is HTTP POST request with XML content from NotEnabledUserData.

	AuthenticationErrorURL (Optional)
	String
	URL to a Service Provider site or portal
	The provided URL shall present a Web view to user on the reason(s) why the authentication failed.

	AuthenticationErrorUserData
(Optional)
	String
	Parameters or content to insert when invoking URL provided in the AuthenticationErrorURL parameter
	User data sent to the Service Provider when requesting the AuthenticationErrorURL web view.
It should contain user-specific attributes to improve user experience.

[bookmark: _Ref61460683][bookmark: _Ref59445844]Table 32. Configuration Parameters – Check Eligibility ODSA Operation
4. [bookmark: _Ref59446298][bookmark: _Toc61529377]ManageSubscription Operation Configuration Parameters
Parameter names and presence:
SubscriptionResult: Mandatory
SubscriptionServiceURL: Conditional
SubscriptionServiceUserData: Conditional
SubscriptionServiceContentsType: Conditional
DownloadInfo: Conditional
Those parameters provide the result of an ODSA subscription request, including any additional data needed to complete the subscription (URL to send users to, or communication profile download information for the eSIM device).
The different values for the configuration parameters of the ManageSubscription operation are provided in Table 33.
	“Manage Subscription” Configuration parameters
	Type
	Values
	Description

	SubscriptionResult
(Mandatory)
	Integer

	1 - CONTINUE TO WEBSHEET
	Indicates that end-user must go through the subscription web view procedure, using information included below.

	
	
	2 - DOWNLOAD PROFILE
	Indicates that a communication profile must be downloaded by the eSIM device, with further information included in response

	
	
	3 – DONE
	Indicates that subscription flow has ended and the end-user has already downloaded the profile so there is no need to perform any other action.
This value is only present as part of the ManageSubscription request where operation_type="4 – UPDATE SUBSCRIPTION"

	SubscriptionServiceURL
(Conditional)
	String
	URL to a Service Provider site or portal
	Present only if SubscriptionResult is “1”.
URL refers to web views responsible for a certain action on the eSIM device subscription.
The Service Provider can provide different URL based on the operation_type input parameter (subscribe, unsubscribe, change subscription).

	SubscriptionServiceUserData
(Conditional)
	String
	Parameters to insert when invoking URL provided in Subscription
ServiceURL
	Present only if SubscriptionResult is “1”, and also optional.
User data sent to the Service Provider when requesting the SubscriptionServiceURL web view.
It should contain user-specific attributes to improve user experience.
The format must follow SubscriptionServiceContentsType.
For content types of JSON and XML, it is possible to provide the base64 encoding of the value by preceding it with encodedValue=.

	SubscriptionService ContentsType
(Conditional)
	String
	Specifies content and HTTP method to use when reaching out to the web server specified by SubscriptionServiceURL

	
	
	NOT present
	Method to SubscriptionServiceURL is HTTP GET request with query parameters from SubscriptionServiceUserData.

	
	
	“json”
	Method to SubscriptionServiceURL is HTTP POST request with JSON content from SubscriptionServiceUserData.

	
	
	“xml”
	Method to SubscriptionServiceURL is HTTP POST request with XML content from SubscriptionServiceUserData.

	DownloadInfo
(Conditional)
	Structure
	multi-parameter value - see next table for details
	Present if SubscriptionResult is “2”.
Specifies how and where to download the communication profile associated with the companion or primary device.

[bookmark: _Ref61460695][bookmark: _Ref59445890]Table 33. Configuration Parameters – Manage Subscription ODSA Operation
The DownloadInfo configuration parameter is defined as a structure with several parameters as shown in Table 34.
	“Download Info” parameters
	Type
	Values
	Description

	ProfileIccid
(Optional)
	String
	ICCID of the profile to download from SM-DP+
	Can be a new ICCID or the re-usable ICCID that was provided in the request parameter companion_terminal_iccid or target_terminal_iccid

	ProfileSmdpAddress
(Conditional)
	String

	URL to SM-DP+ platform of MNO
	Address(es) of SM-DP+ to obtain communication profile. If more than one, they must be comma-separated.
It is not needed if ProfileActivationCode is present.
Note: for this download method to be used, the client must provide the EID of the eSIM in the request, as either terminal_eid, companion_terminal_eid or target_terminal_eid as defined in Table 25.

	ProfileActivationCode
(Conditional)
	String
	Encoded in Base64.
Must follow the activation code format from GSMA SGP.22
	Activation code as defined in SGP.22 to permit the download of a communication profile from an SM-DP+.
It is not needed if ProfileSmdpAddress is present.

[bookmark: _Ref61460706][bookmark: _Ref59445912]Table 34. Configuration Parameters – Download Info for Manage Subscription
4. [bookmark: _Toc61529378]ManageService Operation Configuration Parameters
Parameter names and presence:
ServiceStatus: Mandatory
The parameter provide the result of an ODSA service request.
The different values for the configuration parameters of the ManageService operation are provided in Table 35.
	“Manage Service” Configuration parameters
	Type
	Values
	Description

	ServiceStatus
(M)
	Integer

	1 - ACTIVATED
	eSIM device’s service is activated.

	
	
	2 - ACTIVATING
	eSIM device’s service is being activated.

	
	
	3 - DEACTIVATED
	eSIM device’s service is not activated.

	
	
	4 - DEACTIVATED, NO REUSE
	eSIM device’s service is not activated and the associated ICCID should not be reused.

[bookmark: _Ref61460740][bookmark: _Ref59446016]Table 35. Configuration Parameters – Manage Service ODSA Operation
4. [bookmark: _Toc61529379]Acquire Configuration Operation Configuration Parameters
Parameter names and presence:
CompanionConfigurations: Conditional for Companion ODSA,
Top level, present if there is one or more companion device(s) associated with the requesting device that carry a configuration for ODSA
CompanionConfiguration: Within CompanionConfigurations, one or more
PrimaryConfiguration: Mandatory for Primary ODSA
EnterpriseConfiguration: Conditional for server-initiated ODSA
CompanionConfiguration, PrimaryConfiguration and EnterpriseConfiguration are multi-parameter structures that provides the configuration settings of the subscription and service running on the eSIM device.
If the eSIM device subscription was just activated by the Service Provider and the requesting AcquireConfiguration operation was the first one received since the activation, CompanionConfiguration shall contain a DownloadInfo element. As with the ManageSubscription operation, DownloadInfo specifies how to obtain the communication profile for the eSIM device from the Service Provider.
The CompanionConfiguration and PrimaryConfiguration structures have the parameters listed in Table 36.
	“Acquire Configuration” configuration parameters
	Type
	Values
	Description

	ICCID
(Conditional)
	String
	a valid ICCID, encoded as a 10 octet string
	Integrated Circuit Card Identification - Identifier of the communication profile on the device’s eSIM.
Present if a profile exists for the eSIM device.

	CompanionDeviceService
(Mandatory for a Companion Configuration)
	String
	SharedNumber
	Indicates that the configuration is for the “Shared Number” service (where the device carries the same MSISDN as the primary one)

	
	
	DiffNumber
	Indicates that the configuration is for the “Different Number” service (where the device carries a different MSISDN from the primary one)

	ServiceStatus
(Mandatory)
	Integer
	1 to 4
	Refer to Table 33 for a description of the allowed values for ServiceStatus.

	PollingInterval
(Optional)
	Integer
	A valid positive integer number including 0 value.
	Specifies the minimum interval (in minutes) with which the device application may poll the ECS to refresh the current ServiceStatus using AcquireConfiguration request.
This parameter will be present only when ServiceStatus=2-ACTIVATING.
[bookmark: _Hlk55573832]If parameter is not present or value=0, this polling procedure is not triggered and ODSA App will keep waiting for any external action to continue the flow.
The maximum number of AcquireConfiguration requests before sending a ServiceStatus= 4 - DEACTIVATED, NO REUSE will be defined as an ECS configuration variable (MaxRefreshRequest)

	DownloadInfo
(Conditional)
	Structure
	multi-parameter value - see Table 33 for details
	Specifies how and where to download the communication profile associated with the eSIM device.
Present in case the profile is to be downloaded at this stage.

[bookmark: _Ref61460754][bookmark: _Ref59446032]Table 36. Companion and Primary Configuration for Acquire Configuration ODSA Operation
4. [bookmark: _Toc61529380]AcquirePlan Operation Configuration Parameters
Parameter names and presence:
PlanOffers: Conditional. Top level, list of all plan offered by the MNO. Present if there is one or more PlanOffer.
PlanOffer: Within PlanOffers, one or more.
The different values for the configuration parameters of the operation AcquirePlan are provided in Table 37
	“PlanManage” configuration parameters
	Type
	Values
	Description

	PlanOffers
(Conditional)

	Array
	Array of PlanOffer – see Table 38 for details
	Array of plans offered by the MNO.

[bookmark: _Ref61460789][bookmark: _Ref52879281]Table 37. Configuration Parameters – AcquirePlan ODSA Operation
PlanOffer configuration parameter is defined as a structure with several parameters as shown in Table 38.
	“PlanOffer” parameters
	Type
	Values
	Description

	PlanId
	String
	Any string value
	ID for the plan offered by the MNO.

	PlanName
(Optional)
	String
	Any string value
	Name of the plan offered by the MNO. It is considered as an optional parameter due to it is not required in any request but it is recommended to make easier the Plan identification.

	PlanDescription
(Optional)
	String
	Any string value
	Description of the plan offered by the MNO. It is considered as an optional parameter due to it is not required in any request but it is recommended to make easier the Plan identification.

[bookmark: _Ref61460798][bookmark: _Ref52879357]Table 38. Configuration Parameters – PlanOffer for AcquirePlan
4. [bookmark: _Toc61529381]Client Processing of Parameters Associated with SP Web Portal
The response to CheckEligibility and ManageSubscription operations may contain response parameters that permit a client application to interact with a Service Provider's portal web server. This clause explains how the client application should process those portal-related parameters.
For CheckEligibility the response parameters associated with an SP web portal are:
NotEnabledURL
NotEnabledUserData
· NotEnabledContentsType
· AuthenticationErrorURL
AuthenticationErrorUserData
For ManageSubscription the response parameters associated with a SP web portal are:
SubscriptionServiceURL
SubscriptionServiceUserData
SubscriptionServiceContentsType
Refer to 6.5.2 and 6.5.3 for the definition of those response parameters. For simplicity purposes, this clause refers to the parameters by their common endings: URL, UserData and ContentTypes.
The URL parameter specifies the web address of the SP portal. The device client connects to the portal by sending a GET or POST request to URL. ContentsType specifies the format of UserData and how the resulting HTTP request should carry UserData to the SP web portal.
An overview of the procedure for ManageSubscription is shown in the Figure 16.
[image:]
[bookmark: _Ref61461951]Figure 16. Example Processing of Web Portal Response Parameters by Client
The processing rules for UserData and ContentTypes are provided in Table 39.
	ContentTypes parameter
	UserData parameter
	Expected HTTP Request to SP Web Portal

	NOT present
	Contains user information as query parameters, of the form field1=value1&field=value2&... to be included in GET request.
	GET <URL>?<UserData> HTTP /1.1
. . .

	value of json
	Contains user information presented in a JSON object value.
If it is preceded by encodedValue=, UserData is a base64 string and must first be decoded to text before inclusion in POST.
	POST <URL> HTTP /1.1
Content-Type: application/json
. . .

<UserData as JSON object>

	value of xml
	Contains user information presented in a XML document.
If it is preceded by encodedValue=, UserData is a base64 string and must first be decoded to text before inclusion in POST.
	POST <URL> HTTP /1.1
Content-Type: text/xml,application/xml
. . .

<UserData as XML document>

[bookmark: _Ref61460845][bookmark: _Ref59446313]Table 39. Processing Rules for the Response Parameters ContentTypes and UserData
5. [bookmark: _Ref59444390][bookmark: _Ref59444451][bookmark: _Toc61529382]Examples of ODSA Responses
5. [bookmark: _Toc61529383]CheckEligibility Response Example
Table 40 presents an example for the CheckEligibility response to a Companion ODSA application.
	<?xml version="1.0"?>
<wap-provisioningdoc version="1.1">
 <characteristic type="VERS">
 <parm name="version" value="1"/>
 <parm name="validity" value="172800"/>
 </characteristic>

 <characteristic type="TOKEN">
 <parm name="token" value="ASH127AHHA88SF"/>
 </characteristic>

 <characteristic type="APPLICATION">
 <parm name="AppID" value="ap2006"/>
 <parm name="CompanionAppEligibility" value="1"/>
 <parm name="CompanionDeviceServices" value="SharedNumber"/>
 <parm name="NotEnabledURL" value="/www.MNO.org/AppNotAllowed"/>
 <parm name="NotEnabledUserData" value="msisdn=XX&device_id=XX"/>
 <parm name="OperationResult" value="1"/>
 </characteristic>
</wap-provisioningdoc>

[bookmark: _Ref61460856][bookmark: _Ref59446329]Table 40. Example of a CheckEligibility ODSA Response in XML format
Table 41 presents an example for the CheckEligibility response to a Companion ODSA application in JSON format.
	{
 "Vers" : {
 "version" : "1",
 "validity" : "172800"
 },
 "Token" : { // Optional
 "token" : "ASH127AHHA88SF"
 },
 "ap2006" : { // ODSA for Companion Device app
 "CompanionAppEligibility" : "1",
 "CompanionDeviceServices" : "SharedNumber",
 "NotEnabledURL" : "/www.MNO.org/AppNotAllowed",
 "NotEnabledUserData" : "msisdn=XX&device_id=XX",
 "OperationResult" : "1"
 }
}

[bookmark: _Ref61460865][bookmark: _Ref59446344]Table 41. Example of a CheckEligibility ODSA Response in JSON format
5. [bookmark: _Toc61529384]ManageService Response Example
Table 42 presents an example for the ManageService response to a Companion ODSA application.
	<?xml version="1.0"?>
<wap-provisioningdoc version="1.1">
 <characteristic type="VERS">
 <parm name="version" value="1"/>
 <parm name="validity" value="172800"/>
 </characteristic>

 <characteristic type="TOKEN">
 <parm name="token" value="ASH127AHHA88SF"/>
 </characteristic>

 <characteristic type="APPLICATION">
 <parm name="AppID" value="ap2006"/>
 <parm name="ServiceStatus" value="3"/>
 <parm name="OperationResult" value="1"/>
 </characteristic>
</wap-provisioningdoc>

[bookmark: _Ref61460877][bookmark: _Ref59446357]Table 42. Example of a ManageService ODSA Response
Table 43 presents an example for the ManageService response to a Companion ODSA application in JSON format.
	{
 "Vers" : {
 "version" : "1",
 "validity" : "172800"
 },
 "Token" : { // Optional
 "token" : "ASH127AHHA88SF"
 },
 "ap2006" : { // ODSA for Companion Device app
 "ServiceStatus" : "3",
 "OperationResult" : "1"
 }
}

[bookmark: _Ref61460889][bookmark: _Ref59446367]Table 43. Example of a ManageService ODSA Response in JSON format
5. [bookmark: _Toc61529385]ManageSubscription Response Example
Table 44 presents an example for the ManageSubscription response in XML format to a Companion or Primary ODSA application. This response indicates that the end-user is to be sent to an ODSA portal web server.
	<?xml version="1.0"?>
<wap-provisioningdoc version="1.1">
 <characteristic type="VERS"
 <parm name="version" value="1"/>
 <parm name="validity" value="172800"/>
 </characteristic>

 <characteristic type="TOKEN">
 <parm name="token" value="ASH127AHHA88SF"/>
 </characteristic>

 <characteristic type="APPLICATION">
 <parm name="AppID" value="ap2006"/>
 <parm name="SubscriptionServiceURL" value="http://www.MNO.org/CDSubs"/>
 <parm name="SubscriptionServiceUserData" value="imsi=XX&msisdn=XX"/>
 <parm name="SubscriptionResult" value="1"/> <!-- continue to websheet -->
 <parm name="OperationResult" value="1"/>	
 </characteristic>
</wap-provisioningdoc>

[bookmark: _Ref61460899][bookmark: _Ref59446396]Table 44. Example of a ManageSubscription ODSA Response in XML format to send user to ODSA portal
Table 45 presents an example for the ManageSubscription response in XML format to a Companion or Primary ODSA application. This response provides information on the profile to download.
	<?xml version="1.0"?>
<wap-provisioningdoc version="1.1">
 <characteristic type="VERS"
 <parm name="version" value="1"/>
 <parm name="validity" value="172800"/>
 </characteristic>

 <characteristic type="TOKEN">
 <parm name="token" value="ASH127AHHA88SF"/>
 </characteristic>

 <characteristic type="APPLICATION">
 <parm name="AppID" value="ap2006"/>
 <characteristic type="DownloadInfo">
 <parm name="ProfileSmdpAddress" value="SMDP+ ADDR"/>
 <parm name="ProfileActivationCode" value="COMM PROFILE CODE"/>
 </characteristic>
 <parm name="SubscriptionResult" value="2"/> <!—download profile -->
 <parm name="OperationResult" value="1"/>	
 </characteristic>
</wap-provisioningdoc>

[bookmark: _Ref61460909][bookmark: _Ref59446407]Table 45. Example of a ManageSubscription ODSA Response in XML format with profile download information
Table 46 presents an example for the ManageSubscription response in JSON format to a Companion or Primary ODSA application. This response indicates that the end-user is to be sent to an ODSA portal web server.
	{
 "Vers" : {
 "version" : "1",
 "validity" : "172800"
 },
 "Token" : { // Optional
 "token" : "ASH127AHHA88SF"
 },
 "ap2006" : { // ODSA for Companion Device app
 "SubscriptionServiceURL" : "http://www.MNO.org/CDSubs",
 "SubscriptionServiceUserData" : "imsi=XX&msisdn=XX",
 "SubscriptionResult" : "1", // continue to websheet
 "OperationResult" : "1"
 }
}

[bookmark: _Ref61460918][bookmark: _Ref59446418]Table 46. Example of a ManageSubscription ODSA Response in JSON format to send user to ODSA portal
Table 47 presents an example for the ManageSubscription response in JSON format to a Companion or Primary ODSA application. This response provides information on the profile to download.
	{
 "Vers" : {
 "version" : "1",
 "validity" : "172800"
 },
 "Token" : { // Optional
 "token" : "ASH127AHHA88SF"
 },
 "ap2006" : { // ODSA for Companion Device app
 "DownloadInfo" : {
 "SubscriptionServiceURL" : "SMDP+ ADDR",
 "ProfileActivationCode" : "COMM PROFILE CODE"
 },
 "SubscriptionResult" : "2", // download profile
 "OperationResult" : "1"
 }
}

[bookmark: _Ref61460929][bookmark: _Ref59446430]Table 47. Example of a ManageSubscription ODSA Response in JSON format with profile download information
5. [bookmark: _Toc61529386]AcquireConfiguration Response Example
Table 48 presents an example for the AcquireConfiguration operation in XML format for a Companion ODSA application.
	<?xml version="1.0"?>
<wap-provisioningdoc version="1.1">
 <characteristic type="VERS">
 <parm name="version" value="1"/>
 <parm name="validity" value="172800"/>
 </characteristic>
 <characteristic type="TOKEN">
 <parm name="token" value="ASH127AHHA88SF"/>
 </characteristic>
 <characteristic type="APPLICATION">
 <parm name="AppID" value="ap2006"/>
 <characteristic type="CompanionConfigurations">
 <characteristic type="CompanionConfiguration">
 <parm name="ICCID" value="8991101200003204510"/>
 <parm name="CompanionDeviceService" value="SharedNumber"/>
 <parm name="ServiceStatus" value="1"/>
 </characteristic>
 </characteristic>
 <parm name="OperationResult" value="1"/>
 </characteristic>
</wap-provisioningdoc>

[bookmark: _Ref61460941][bookmark: _Ref59446441]Table 48. Example of an AcquireConfiguration ODSA Response in XML format
Table 49 presents an example for the AcquireConfiguration operation in JSON format for a Companion ODSA application.
	{
 "Vers" : {
 "version" : "1",
 "validity" : "172800"
 },
 "Token" : { // Optional
 "token" : "ASH127AHHA88SF"
 },
 "ap2006" : { // ODSA for Companion Device app
 "CompanionConfigurations" : [{
 "CompanionConfiguration" : {
 "ICCID" : "8991101200003204510",
 "CompanionDeviceService" : "SharedNumber",
 "ServiceStatus" : "1"
 }
 }],
 "OperationResult" : "1"
 }
}

[bookmark: _Ref61460953][bookmark: _Ref59446454]Table 49. Example of an AcquireConfiguration ODSA Response in JSON format
5. [bookmark: _Toc61529387]AcquirePlan Response Example
Table 50 presents an example for the AcquirePlan operation in XML format for a Server-initiated ODSA application.
	<?xml version="1.0"?>
<wap-provisioningdoc version="1.1">
 <characteristic type="VERS">
 <parm name="version" value="1"/>
 <parm name="validity" value="172800"/>
 </characteristic>

 <characteristic type="TOKEN">
 <parm name="token" value="ASH127AHHA88SF"/>
 </characteristic>

 <characteristic type="APPLICATION">
 <parm name="AppID" value="ap2011"/>
 <characteristic type="PlanOffers">
 <characteristic type="PlanOffer">
 <parm name="PlanId" value="Plan0001"/>
 <parm name="PlanName" value="Family Plan"/>
 <parm name="PlanDescription" value="This is the description of the Plan0001"/>
 </characteristic>
 <characteristic type="PlanOffer">
 <parm name="PlanId" value="Plan0376/>
 <parm name="PlanName" value="All included Plan"/>
 <parm name="PlanDescription" value="This is the description of the Plan0376"/>
 </characteristic>
 </characteristic>
 <parm name="OperationResult" value="1"/>
 </characteristic>
</wap-provisioningdoc>

[bookmark: _Ref61460965]Table 50. Example of an AcquirePlan Server-initiated ODSA Response in XML format
Table 51 presents an example for the AcquirePlan operation in XML format for a Server-initiated ODSA application.
	{
 "Vers" : {
 "version" : "1",
 "validity" : "172800"
 },
 "Token" : { // Optional
 "token" : "ASH127AHHA88SF"
 },
 "ap2011" : { // ODSA for Server-initiated app
 "PlanOffers" : [{
 "PlanOffer" : {
 "PlanId" : " Plan0001",
 "PlanName" : "Family Plan",
 "PlanDescription" : "This is the description of the Plan0001"
 },
 },{
 "PlanOffer" : {
 "PlanId " : "Plan0376",
 "PlanName " : "All included Plan",
 "PlanDescription" : "This is the description of the Plan0376"
 }
 }],
 "OperationResult" : "1"
 }
}

[bookmark: _Ref61460974][bookmark: _Ref52881184]Table 51. Example of a AcquirePlan Server-initiated ODSA Response in JSON format
5. [bookmark: _Toc61529388]ODSA Application Considerations around Web View Callback
During the procedure for ODSA on Companion or Primary eSIM devices, end-users can be presented with a set of web views specific to the Operator. The web views are hosted by an Operator portal web server as shown in Figure 9.
To support proper communication between web views and the ODSA application, the application should support JS callbacks to allow for the portal to share the following events and corresponding data elements described in Table 52.
	Callback Event
	Data
	Description

	Communication profile ready for download
	Profile download method and corresponding parameters (Activation Code or SM-DP+ address, see Table 33 for details)
	The eSIM ODSA procedure was a success. The resulting communication profile can be downloaded.

	Web flow finished
	None
	The end-user has completed the ODSA web view flow. The device app needs to perform an AcquireConfiguration operation to retrieve the status of the profile and associated service.

	Web flow dismissed
	None
	The end-user or web portal logic has ended the ODSA web views without completing the ODSA procedure. A communication profile is not available.

	End-user logged out
	None
	The end-user was logged out of the web views. The active authentication token must be deleted and re-authentication is required for subsequent requests.

[bookmark: _Ref61460985][bookmark: _Ref59446588]Table 52. Callback Events for ODSA Web Views
The six different callback functions are embedded in the ODSAServiceFlow object. They are defined to reflect the state of the web logic according to the opened web view:
	Callback name
	Webview
opened on SubscriptionServiceUrl
	Webview
opened on NotEnabledUrl
	Webview
opened on AuthenticationErrorURL

	profileReadyWithActivationCode(activationCode)
	X
	
	

	profileReadyWithDefaultSmdp (defaultSmdpAddress, iccid = "0")
	X
	
	

	SelectionCompleted (ICCID, IMEI)
	X
	
	

	finishFlow ()
	X
	
	

	dismissFlow ()
	X
	X
	X

	deleteToken()
	X
	
	

Table 53. Callback signatures for ODSA Web Views
6. [bookmark: _Toc61529389]profileReadyWithActivationCode(activationCode)
Calling this method indicates that a service profile, identified by the activation code, is ready for download.
The parameter activationCode is mandatory. It is a string with GSMA SGP .22 v2.1 or higher format.
After this call back is called, the related profile will be downloaded, and the web view will not be closed.
6. [bookmark: _Toc61529390]profileReadyWithDefaultSmdp(defaultSmdpAddress, iccid = "")
Calling this method indicates that a service profile, identified by its iccid, from a SM-DP+ server, is ready for download.
Default Smdp here does not refer to an SM-DP+ being the Default SM-DP+ server for the requesting device, but to the service profile being prepared for Default SM-DP+ Download Use case, as defined in GSMA SGP.22 v2.1 or higher.
The parameter defaultSmdpAddress is mandatory, it is a string containing the FQDN of the SM-DP+, not an URL.
The parameter iccid is a string, whose default value is empty.
After this call back is called, the related profile will be downloaded, and the web view will not be closed.
6. [bookmark: _Toc61529391]SelectionCompleted(iccid, imei) callback function
Calling this method indicates that a service profile, identified by its old ICCID and/or IMEI, was selected by the user on the websheet.
The parameter iccid is a string, whose default value is empty.
The parameter imei is a string, whose default value is empty.
After this callback, the webview will be closed.
6. [bookmark: _Toc61529392]dismissFlow() callback function
Calling this method ends prematurely the ODSA service flow, whatever the cause (user action, user not eligible…), without a service profile being downloaded.
This callback has no parameter.
The web view to the end-user will be closed.
The call flows in the next figures show some examples of the callback use in the different webviews.
In the Figure 17, the webview is opened in step 10, following an end-user action. While the subscription page is displayed (13), the end-user may cancel the subscription, for instance with a dedicated button on the page. This should call the dismissFlow() callback. The ODSA client closes the webview.
[image:]
[bookmark: _Ref61461986]Figure 17. Example of dismissFlow callback in SubscriptionServiceURL webview
In the Figure 18, the webview is opened in step 10, following an end-user action. Once the "not enabled" page is displayed (13), giving information about the cause of the ineligibility, the end-user may discard it, for instance with a "close" button on the page. This should call the dismissFlow() callback. The ODSA client closes the webview.
[image:]
[bookmark: _Ref61461995]Figure 18. Example of dismissFlow callback in NotEnabledURL webview
6. [bookmark: _Toc61529393]finishFlow()
Calling this method shall dismiss the ODSA Web Service Flow on device side and trigger an AcquireConfiguration request to the ECS to refresh the service status.
This callback has no parameter.
The web view will be closed.
6. [bookmark: _Toc61529394]deleteToken()
Calling this method erases the current authentication token to perform a full re-authentication request. This may be called in the subscription webview when the user account has been changed, for instance.
This callback has no parameter.
1. [bookmark: _Ref59457664][bookmark: _Toc61529395]Companion ODSA Procedure Call Flows
The following sections present a number of informational call flows for the different user experiences and use cases of the Companion ODSA procedure. The ODSA client application on the requesting device is invoked at the request of the end-user and should capture proper user consent in order to have access to the companion device.
The exchanges between the Entitlement Configuration Server (ECS) (aka ODSA Device Gateway) and the Service Provider’s (SP) back-end systems are shown for informational purposes only. This applies as well for the exchanges that involve the ODSA Portal Web Server.
6. [bookmark: _Ref59446748][bookmark: _Ref59446856][bookmark: _Ref59447069][bookmark: _Toc61529396]Subscription Activation via ODSA Portal – Initial Steps
The following presents the case where:
The companion ODSA client application is allowed for the type of requesting device and enabled for the end-user (entitled);
The companion device does not have an active subscription and communication profile from the Service Provider;
The SP's ODSA portal web server is responsible for completing the subscription activation for the companion device.
Figure 19 shows the initial steps of the flow involving the SP's ODSA portal, where the Companion ODSA client application acquires proper entitlement and subscription data from the SP's ECS. The steps are:
End-user invokes the Companion ODSA client application on the requesting device which connects with the companion device to initiate the ODSA procedure (over a protocol outside the scope of this specification).
1. The companion ODSA client application makes a CheckEligibility request to the ECS.
2. The ECS queries the SP's back-end system managing the end-user’s entitlements and services.
3. The ECS processes the answer from the SP's back-end system and generates the proper 200 OK response containing CompanionDevice entitlement set to ENABLED and allowed services in the CompanionDeviceServices field set to SharedNumber.
4. Since the CompanionDevice entitlement value is correct and target service is allowed, the companion ODSA client application sends an AcquireConfiguration request to the ECS to obtain information on any communication profiles associated with the companion device.
5. The ECS queries the SP's back-end system managing the subscriptions and active profiles. The device may also add the parameters notif_token and notif_action to the AcquireConfiguration request, in case Infrastructure-based push-notifications (see 2.6.2) should be used later. These parameters may be added to any GET/POST request by the device.
6. The ECS processes the response from the SP's back-end system and generates the proper 200 OK response containing CompanionDeviceConfigurations without any CompanionConfiguration (no profile/subscription is associated with the companion device). If in step 5, the device registered for push notifications, the ECS now also uses the RegisterNotifStatus parameter to notify the device about the Notification Registration (see 2.9.5).
7. The companion ODSA client application makes a ManageSubscription request to the ECS with an operation_type set to SUBSCRIBE (value of 0) to initiate the subscription procedure for the companion device.
8. The ECS queries the SP's back-end system to determine the next step and method to use for the companion device's subscription request.
9. The ECS processes the response from the SP's back-end system and generates the proper 200 OK response to send the application and end-user to the SP's ODSA portal. The response contains a SubscriptionResult set to CONTINUE_TO_WS (value of 1), and SubscriptionServiceURL along with SubscriptionServiceUserData presenting the URL of the ODSA Portal web server and any user-specific data that would be useful to the Portal.
[image:]
[bookmark: _Ref61462005]Figure 19. Initial steps for companion ODSA procedure involving ODSA portal
6. [bookmark: _Toc61529397]ODSA Portal with Immediate Download Info – Final Steps
The following presents the case where:
The companion ODSA client application was already informed to use the SP's ODSA portal to complete the subscription procedure (refer to 7.1);
The ODSA portal is able to generate the communication profile download information as a result of the exchanges with the end-user.
Figure 20 shows the final steps of the Companion ODSA procedure in the case where the ODSA portal provides the profile download information back to the application (immediate delivery). The steps are:
10. The ODSA client application connects with the ODSA portal web server using the URL provided in the ManageSubscription operation response, allowing the web pages from the portal to be displayed to the end-user
11. The ODSA portal web server presents a set of plan offers to the end-user and captures the selection from the end-user
12. The ODSA portal makes a request towards the SP's back-end system to activate the selected plan and subscription
13. The SP's back-end system interacts with the SM-DP+ over the ES2+ interface to make the required profile requests associated with the new subscription (for example, DownloadOrder, ConfirmOrder and ReleaseProfile) resulting in an activation code and ICCID for the companion device
14. The ODSA portal provides the communication profile download information (activation code) to the ODSA client application using a JavaScript call back function
15. The ODSA client application informs the companion device to download the profile
16. The companion device downloads the communication profile from the SM-DP+
17. Optional - The ODSA application makes a ManageService request to the ECS with an operation_type set to ACTIVATE SERVICE (value of 10) to have the network activate and provision the NumberShare service on the companion device
18. The ECS makes the appropriate requests to the SP's back-end system for service activation on the companion device's subscription
19. The SP's back-end system replies back with service status and the ECS generates the proper response with service status to the ODSA client application.
20. The ODSA client application makes an AcquireConfiguration request to the ECS to verify that the subscription and service for the companion device are in the proper states
21. The ECS queries the SP's back-end system managing the subscriptions and profiles
22. The ECS processes the response from the SP's back-end system and generates the proper 200 OK response containing CompanionDeviceConfigurations with a CompanionDeviceConfiguration entry for the newly active subscription bearing the ACTIVATED status (value of 1).
23. As the companion device’s subscription and service are in the right states, the ODSA client application informs the companion device to initiate cellular service
[image:]
[bookmark: _Ref61462014]Figure 20. Final steps for companion ODSA procedure with profile download info from ODSA portal
6. [bookmark: _Ref59457865][bookmark: _Toc61529398]ODSA Portal with Delayed Download Info – Final Steps
The following presents the case where:
The companion ODSA client application was already informed to use the SP's ODSA portal to complete the subscription procedure (refer to 7.1);
The ODSA portal interacts with the end-user for plan selection and subscription activation but does not return the profile download information to the application;
The companion ODSA client application subsequently obtains the profile information and service activation status by querying the ECS;
The ManageService operation is not used by the companion ODSA application.
The finalization of the process depends on the usage of network-generated notification messages (refer to 2.6). If notifications are used, the device will continue with the push-enabled procedure 7.3.1 . If notifications are not used, the ODSA client will go into polling (7.3.2).
2. [bookmark: _Ref48833134][bookmark: _Toc61529399]ODSA Portal with Delayed Download Info – Final Steps - Push
The following presents the case where:
The application registered for network based event notification (refer to 2.6)
In this example the companion ODSA client has registered for push-notifications, so the application waits for a notification from the ECS when the profile is ready (refer to 2.6).
Figure 21 shows the final steps of the Companion ODSA procedure in the case where the profile download information is obtained by the application after the end-user interactions with the ODSA portal (delayed delivery). The steps are:
1. The ODSA client application connects with the ODSA portal web server using the URL provided in the ManageSubscription operation, allowing the web pages from the portal to be displayed to the end-user
25. The ODSA portal web server presents a set of plan offers to the end-user and captures the selection from the end-user
26. The ODSA portal makes a request towards the SP's back-end system to activate the selected plan and subscription
27. The SP's back-end system interacts with the SM-DP+ over the ES2+ interface to make the required profile requests associated with the new subscription (for example, DownloadOrder, ConfirmOrder and ReleaseProfile), and indicates to the ODSA portal that the final response with the download info is delayed (asynchronous)
28. The ODSA portal indicates to the ODSA client application the end of the end-user flow via a JavaScript call back function without providing the profile download information (activation code)
29. [bookmark: _Ref56004689]The ODSA client application makes an AcquireConfiguration request to the ECS to verify that the subscription and service for the companion device are in the proper states. It also adds the notif_token and notif_action to the request, so that infrastructure-based notifications can be used.
30. The ECS queries the SP's back-end system managing the subscriptions and profiles.
If the subscription is not yet ready and profile info is not yet available, go to step 18.
If the subscription is ready, as well as profile download info, go to step 20
31. [bookmark: _Ref56004625]The ECS generates a 200 OK response with a CompanionDeviceConfiguration entry bearing the ACTIVATING status (value of 2). It also uses the RegisterNotifStatus parameter to notify the device about the Notification Registration (0 = SUCCESS).
32. The ODSA application now waits, until it receives a new status by the ECS via the established notification mode.
33. [bookmark: _Ref56004636]After a delay, as soon as the ECS gets notified about a status change from the MNO-backend, the ECS notifies the ODSA application about a Status Change, using the method defined in notif_action. The ODSA application therefore repeats the AcquireConfiguration, going to step 16
34. The ECS generates a 200 OK response with a CompanionDeviceConfiguration entry for the newly active subscription bearing the ACTIVATED status (value of 1) and a filled in DownloadInfo structure.
35. As the companion device’s subscription and service are in the right states, the ODSA client application informs the companion device to download the profile
36. The companion device downloads the communication profile from the SM-DP+
37. The ODSA client application informs the companion device to initiate cellular service
 [image:]
[bookmark: _Ref61462025]Figure 21. Final steps for companion ODSA procedure with ODSA portal, delayed profile download info and enabled push-notifications
2. [bookmark: _Ref48832872][bookmark: _Toc61529400]ODSA Portal with Delayed Download Info – Final Steps - Polling
The following presents the case where:
The application did not register for event notification (refer to 2.6)
In this example the companion ODSA client application polls the ECS continuously until the profile is ready and the service status is correct. Alternatively, the application can register for ODSA events and wait for the network-generated notification message (refer to 2.6).
Figure 22 shows the final steps of the Companion ODSA procedure in the case where the profile download information is obtained by the application after the end-user interactions with the ODSA portal (delayed delivery). The steps are:
1. The ODSA client application connects with the ODSA portal web server using the URL provided in the ManageSubscription operation, allowing the web pages from the portal to be displayed to the end-user
39. The ODSA portal web server presents a set of plan offers to the end-user and captures the selection from the end-user
40. The ODSA portal makes a request towards the SP's back-end system to activate the selected plan and subscription
41. The SP's back-end system interacts with the SM-DP+ over the ES2+ interface to make the required profile requests associated with the new subscription (for example, DownloadOrder, ConfirmOrder and ReleaseProfile), and indicates to the ODSA portal that the final response with the download info is delayed (asynchronous)
42. The ODSA portal indicates to the ODSA client application the end of the end-user flow via a JavaScript call back function without providing the profile download information (activation code)
43. [bookmark: _Ref56004965]The ODSA client application makes an AcquireConfiguration request to the ECS to verify that the subscription and service for the companion device are in the proper states
44. The ECS queries the SP's back-end system managing the subscriptions and profiles.
If the subscription is not yet ready and profile info is not yet available, go to step 18.
If the subscription is ready, as well as profile download info, go to step 20
45. [bookmark: _Ref56004946]The ECS generates a 200 OK response with a CompanionDeviceConfiguration that could be different based on the number of refresh requests the device has made.
a) #Request < MaxRefreshRequest. The CompanionDeviceConfiguration response will bear the ACTIVATING status (value of 2). A specific polling interval value could be sent to define the new polling interval (in minutes) of the device application to refresh the service status. This new polling interval value could be different to the previous one based on the number of requests made by the device.
b) #Request = MaxRefreshRequest. The CompanionDeviceConfiguration response will bear the DEACTIVATED, NO REUSE status (value of 4). At this point, the activation flow is finished.
46. After a delay (polling interval defined in the previous response), the ODSA application repeats the AcquireConfiguration, going to step 16
47. [bookmark: _Ref56004952]The ECS generates a 200 OK response with a CompanionDeviceConfiguration entry for the newly active subscription bearing the ACTIVATED status (value of 1) and a filled in DownloadInfo structure.
48. As the companion device’s subscription and service are in the right states, the ODSA client application informs the companion device to download the profile
49. The companion device downloads the communication profile from the SM-DP+
50. The ODSA client application informs the companion device to initiate cellular service
[image:]
[bookmark: _Ref61462034]Figure 22. Final steps for companion ODSA procedure with ODSA portal and delayed profile download info
6. [bookmark: _Toc61529401]Subscription Activation without ODSA Portal
The following presents the case where:
The companion ODSA client application is allowed for the type of primary device and enabled for the end-user (entitled);
The companion device does not have an active subscription and communication profile from the Service Provider;
The SP is able to activate a subscription and create a communication profile for the companion device without involving the ODSA portal web server.
Figure 23 presents a call flow where the profile download information for the companion device is made available by the SP at the time of the ManageSubscription request. There is no need to send the end-user to an ODSA portal web server.
The steps 1 to 8 are the same as in 7.1. The remaining steps are:
1. The ECS queries the SP's back-end system to determine the next step and method to use for the companion device's subscription request (no need for ODSA portal)
1. The SP's back-end system interacts with the SM-DP+ over the ES2+ interface to make the required profile requests associated with the new subscription (for example, DownloadOrder, ConfirmOrder and ReleaseProfile) resulting in an activation code and ICCID for the companion device returned to the ECS
53. The ECS processes the response from the SP's back-end system and generates the proper ManageSubscription 200 OK response with a SubscriptionResult set to DOWNLOAD_PROFILE (value of 2), and a filled in DownloadInfo structure.
54. The ODSA client application informs the companion device to download the profile
55. The companion device downloads the communication profile from the SM-DP+
56. The ODSA client application makes an AcquireConfiguration request to the ECS to verify that the subscription and service for the companion device are in the proper states
57. The ECS queries the SP's back-end system managing the subscriptions and profiles
58. The ECS processes the response from the SP's back-end system and generates the proper 200 OK response containing CompanionDeviceConfigurations with a CompanionDeviceConfiguration entry for the newly active subscription bearing the ACTIVATED status (value of 1).
59. The ODSA client application informs the companion device to initiate cellular service

 [image:]
[bookmark: _Ref61462043]Figure 23. Call flow for Companion ODSA procedure without ODSA Portal
6. [bookmark: _Toc61529402]Subscription Pre-activation via another Channel
The following presents the case where:
The companion ODSA application is allowed for the type of primary device and enabled for the end-user (entitled);
The companion device has an active subscription and communication profile from the Service Provider, created beforehand through another channel (for example point of sale or call to a SP's representative).
Figure 24 presents a call flow where the profile download information for the companion device is made available by the SP at the time of the AcquireConfiguration request. There is no need to send the end-user to an ODSA portal web server.
The steps 1 to 4 are the same as in 7.1. The remaining steps are:
1. The ODSA client application makes an AcquireConfiguration request to the ECS to verify that the subscription and service for the companion device are in the proper states
61. The ECS queries the SP's back-end system managing the subscriptions and profiles, which shows that the companion device already has a subscription and associated communication profile
62. The ECS processes the response from the SP's back-end system and generates the proper 200 OK response containing CompanionDeviceConfigurations with a CompanionDeviceConfiguration entry for the newly active subscription bearing the ACTIVATED status (value of 1) and a filled in DownloadInfo structure.
63. The ODSA client application informs the companion device to download the profile
64. The companion device downloads the communication profile from the SM-DP+
65. The ODSA application informs the companion device to initiate cellular service
[image:]
[bookmark: _Ref61462059]Figure 24. Call flow for Companion ODSA procedure with pre-activated subscription
[bookmark: _Ref61463777][bookmark: _Toc61529403]

6. Early eligibility check with OIDC and web portal
6.
The following presents the case where:
The companion ODSA application is allowed for the type of requesting device;
The companion device has not yet an active subscription and communication profile from the Service Provider;
The companion device model is not supported by the Service Provider;
The authentication mechanism is based on OAuth 2.0 / OpenID Connect;
The SP's ODSA portal web server is responsible for completing the subscription activation for the companion device.

Figure 25 presents a call flow where the user is advised about the incompatibility of the model without needing to authenticate, with a 302 HTTP redirect mechanism.These steps are:
1. End-user invokes the Companion ODSA client application on the requesting device which connects with the companion device to initiate the ODSA procedure (over a protocol outside the scope of this specification).
1. The initial GET request described in 2.8.2 includes the companion_terminal_id parameter, set to the companion device IMEI. There is no token as it is the first time the user is trying to entitle the companion device.
1. The ECS determines that the companion device is not eligible to the service, and returns
1. the HTTP 302 redirect answer to indicate the “not enable” web page to the ODSA client.
1. and 5. this later can display a web page explaining the issue to the end-user. The page may be closed with a call to the dismissFlow() callback.
The benefits of this use case is to keep the user journey simple by checking first the device compatibility before asking the user to authenticate. Nevertheless, this requires the client to provide the optional companion_device_id parameter, initialized with its IMEI. When this optional use case is implemented
, devices not providing the companion_device_id parameter are still managed as described in Figure 3. OAuth 2.0 / OpenID Authentication Flow with Entitlement Configuration Server.
[image:]

[bookmark: _Ref76733686][bookmark: _GoBack]Figure 25. Companion device incompatibility detected by companion_terminal_id

[bookmark: _Ref76739943]

1. Primary ODSA Procedure Call Flows
The following sections present a number of informational call flows for the different user experiences and use cases of the Primary ODSA procedure. The ODSA application on the primary device is invoked at the request of the end-user and should capture proper user consent in order to have access to the eSIM on that primary device.
The exchanges between the Entitlement Configuration Server (ECS) (aka ODSA Device Gateway) and the Service Provider’s (SP) back-end systems are shown for informational purposes only. This applies as well for the exchanges that involve the ODSA Portal Web Server.
7. [bookmark: _Ref56005527][bookmark: _Ref56005519][bookmark: _Toc61529404]New eSIM Subscription Activation via ODSA Portal
The following presents the case where:
The Primary ODSA client application is allowed for the type of primary device and enabled by the SP (entitled);
The primary device does not have an active subscription and communication profile from the SP and the end-user does not have a subscription on another device;
The SP supports the OpenID Connect authentication flow, which also includes a "create account" option for new subscription request;
The SP's ODSA portal web server is responsible for completing the subscription activation for the primary device's eSIM.
Figure 25 shows the initial steps of the flow for the activation of a new subscription leveraging the SP's ODSA portal. The Primary ODSA client application acquires proper entitlement and subscription data from the SP's ECS. The steps are:
1. User requests On-Device Activation via the Primary ODSA client application that sends an initial POST or GET request with proper terminal parameters to the ECS
72. As there is no parameter associated with authentication or identification, the ECS invokes OAuth/OpenID authentication and connects the app/end-user with the SP's OpenID/OAuth 2.0 platform
73. At the conclusion of the Authentication (which includes account creation steps), the ECS receives proper ID and access tokens from the OpenID platform and returns an ECS-generated AuthN Token to the ODSA application (see 2.8.2 for details)
74. The Primary ODSA client application makes a CheckEligibility request to the ECS
75. The ECS queries the SP back-end system managing the entitlements and profile associated with ODSA applications
76. The ECS generates proper response with application status (ENABLED)
77. Optional - Since the target service is allowed, the Primary ODSA application sends an AcquireConfiguration request to the ECS to obtain information on any communication profiles associated with the device.
78. The ECS queries the SP's back-end system managing the subscriptions and active profiles.
79. The ECS processes the response from the SP's back-end system and generates the proper 200 OK response without any PrimaryDeviceConfigurations (no profile/subscription is associated with the device).
80. The Primary ODSA client application sends a ManageSubscription request to the ECS to start the subscription procedure with the SP.
81. The ECS queries the SP back-end system responsible for managing subscriptions and makes a request for a new subscription
82. The ECS generates a proper response with the subscription procedure data. It contains a SubscriptionResult set to CONTINUE_TO_WS (value of 1), and SubscriptionServiceURL along with SubscriptionServiceUserData presenting the URL of the ODSA Portal web server and any user-specific data that would be useful to the Portal.
[image:]
[bookmark: _Ref61462088]Figure 25. Primary ODSA procedure for New Subscription involving ODSA Portal – Initial Steps
Figure 26 presents the final steps of the flow for the activation of a new subscription leveraging the SP's ODSA portal. The Primary ODSA app connects the end-user to the SP's ODSA Portal to finalize the subscription activation. The steps are:
83. The Primary ODSA device application sends the end-user to the SP's ODSA web server portal
84. The SP ODSA portal captures the subscription and plan selection from the end-user
85. The SP's back-end system managing subscription receives a new subscription request from the SP portal
86. A set of eSIM profile requests over the ES2+ interface (for example, DownloadOrder, ConfirmOrder and ReleaseProfile) is made to the SM-DP+, for the new subscription associated with the device eSIM, resulting in an activation code and ICCID for the primary device
87. Via a JavaScript call back function, the SP ODSA portal sends subscription information (details of the communication profile) back to the Primary ODSA app.
88. The Primary ODSA device application informs the eSIM to download the profile, which is obtained from the SM-DP+.
89. The device's eSIM gets the profile from the SM-DP+ via ES9+ channel.
90. The Primary ODSA app makes another ManageSubscription to the ECS to provide/confirm the download of the newly created ICCID and to validate that the primary device subscription is ready and in proper activated state.
91. The ECS queries the Subscription Management system
92. The ECS generates the proper response with subscription result (3-DONE).
93. Optional - The Primary ODSA client application makes an AcquireConfiguration request to the ECS to verify that the subscription and service for the device are in the proper states
94. The ECS queries the SP's back-end system managing the subscriptions and profiles
95. The ECS processes the response from the SP's back-end system and generates the proper 200 OK response containing a PrimaryConfiguration entry for the newly active subscription bearing the ACTIVATED status (value of 1).
96. As the primary device’s subscription and service is in right state, primary device can initiate cellular service.
[image:]
[bookmark: _Ref61462101]Figure 26. Primary ODSA procedure for New Subscription involving ODSA Portal – Final Steps
7. [bookmark: _Toc61529405]Additional eSIM Subscription Activation via ODSA Portal
The following presents the case where:
The Primary ODSA device application is allowed for the type of primary device and enabled by the SP (entitled);
The primary device already carries an active subscription and communication profile from the SP, accessible on a SIM;
The SP's ODSA portal web server is responsible for completing the subscription activation for the primary device's eSIM.
Figure 27 shows the initial steps of the flow for the activation of an additional subscription leveraging the SP's ODSA portal. The Primary ODSA device application acquires proper entitlement and subscription data from the SP's ECS.
[image:]
[bookmark: _Ref61462111]Figure 27. Primary ODSA procedure for Additional Subscription involving ODSA Portal – Initial Steps
Figure 28 shows the final steps of the flow where the Primary ODSA app connects the end-user to the SP's ODSA Portal to finalize the subscription activation.
The steps are:
1. User requests On-Device Activation via the Primary ODSA application that sends an initial POST or GET request with proper terminal parameters to the ECS. The request contains the EAP_ID parameter, indicating that the app has access to a SIM or eSIM with an active subscription/profile.
98. The ECS initiates the EAP-AKA authentication procedure and performs the proper EAP-AKA exchange with the application (see 2.8.1 for details)
99. At the conclusion of the Authentication the ECS returns an ECS-generated AuthN Token to the ODSA application
100. Steps 4 to 26 are the same as in clause 8.1.
The difference is the addition of the target_terminal_id parameter for CheckEligibility, AcquireConfiguration and ManageSubscription, carrying the device identifier for the eSIM. The terminal_id parameter carry the device identifier for the SIM with the active subscription.

[image:]
[bookmark: _Ref61462119]Figure 28. Primary ODSA procedure for Additional Subscription involving ODSA Portal – Final Steps
7. [bookmark: _Ref56005730][bookmark: _Toc61529406]Subscription Transfer with OTP – initial steps
The following presents the case where:
The Primary ODSA device application is allowed for the type of primary device and enabled by the SP (entitled);
The end-user has an active subscription with the SP identified by its MSISDN;
There is no need to involve the SP's ODSA portal web server as the same type of subscription and plan is activated on the new device.
Figure 29 shows the steps of the flow for the activation of a subscription based on an existing subscription validated with a One-Time Password (OTP). The steps are:
1. User requests On-Device Activation via the Primary ODSA client application. The client discovers that the end-user wants to transfer an existing subscription and sends an initial request to the ECS, which includes proper terminal and msisdn parameters.
102. The ECS performs OTP-based authentication by sending an OTP to the end-user (any method can be used, like SMS or e-mail) and returns a new Cookie to the client.
103. The Primary ODSA client application captures the OTP from the end-user and relays it to the ECS with another request, this time with otp parameter and proper Cookie.
The ECS validates the received OTP and generates response with new ECS-generated Authentication Token back to the client application.
[image:]
[bookmark: _Ref61462130]Figure 29. Primary ODSA procedure for Subscription Transfer with OTP
7. [bookmark: _Ref56005738][bookmark: _Toc61529407]Subscription Transfer with OAuth/OpenID – initial steps
The following presents the case where:
The Primary ODSA device application is allowed for the type of primary device and enabled by the SP (entitled);
The end-user has an active subscription with the SP, but cannot receive an OTP via SMS due to, e.g., the end-user has their device (including eSIM and/or pSIM) lost and/or stolen;
There is no need to involve the SP's ODSA portal web server as the same type of subscription and plan is activated on the new device.
Figure 30 shows the initial steps of the flow for the activation of a subscription based on an existing subscription validated via OAuth or OpenID. The steps are:
1. User requests On-Device Activation via the Primary ODSA client application that sends an initial POST or GET request with proper terminal parameters to the ECS
105. As there is no parameter associated with authentication or identification, the ECS invokes OAuth/OpenID authentication by redirecting the flow to the SP's OAuth 2.0/OpenID platform (using a 302 Found/Redirect response)
106. Authentication of the end-user by the SP's OpenID/OAuth 2.0 platform is performed, using proper SP-selected authenticators (see 2.8.2 for details)
107. At the conclusion of the Authentication, the ECS receives proper ID and access tokens from the OpenID platform and returns an ECS-generated AuthN Token to the ODSA application

[bookmark: _Ref61462139]Figure 30. Primary ODSA procedure for Subscription Transfer with OAuth/OpenID
7. [bookmark: _Toc61529408]Subscription Transfer with OTP or OAuth/OpenID– final steps
The following presents the case where:
The Primary ODSA device application is allowed for the type of primary device and enabled by the SP (entitled);
The end user is already authenticated using a method described in 8.3 or 8.4;
Figure 31 shows the steps of the flow for the activation of a subscription based on an existing subscription:
Steps 1 to 4 handle the authentication as shown in clause 8.3 or 8.4 .
1. The Primary ODSA client application makes a CheckEligibility request to the ECS.
109. The ECS queries the SP back-end system managing the entitlements and profile associated with ODSA applications
110. The ECS generates proper response with application status (ENABLED)
111. The Primary ODSA client application sends a ManageSubscription request to the ECS to start the subscription procedure with the SP. If the old_terminal_iccid is available, the device should also add the parameter.
112. The ECS checks with the BSS/OSS to verify if there are more than one device/ICC linked with the subscription. If the old_terminal_iccid is available, the ECS checks this value for correctness.
113. If an identifier for the old terminal is needed, the ECS obtains it using e.g. the Websheet procedure in chapter 8.6.
114. The ECS requests for a new subscription from the SP's back-end system.
115. A set of eSIM profile requests over the ES2+ interface (for example, DownloadOrder, ConfirmOrder and ReleaseProfile) is made to the SM-DP+, for the new subscription associated with the primary device eSIM, resulting in an activation code and ICCID for the primary device.
116. The ECS requests for a subscription cancellation from the SP's back-end system.
117. A set of eSIM profile requests over the ES2+ interface is made to the SM-DP+, to cancel the current subscription.
118. The ECS sends subscription information (details of the communication profile) back to the app along with subscription result (2-DOWNLOAD PROFILE).
119. The primary ODSA client application informs the eSIM to download the profile.
120. The device's eSIM gets the profile from the SM-DP+ via ES9+ channel.
121. The Primary ODSA client application makes another ManageSubscription to the ECS to provide/confirm the download of the newly created ICCID and to validate that the primary device subscription is ready and in proper activated state.
122. The ECS queries the Subscription Management system
123. The ECS generates the proper response with subscription result (3-DONE).
124. Optional - The Primary ODSA client application makes an AcquireConfiguration request to the ECS to verify that the subscription and service for the new device are in the proper states
125. The ECS queries the SP's back-end system managing the subscriptions and profiles
126. The ECS processes the response from the SP's back-end system and generates the proper 200 OK response containing a PrimaryConfiguration entry for the newly active subscription bearing the ACTIVATED status (value of 1).
127. As the primary device’s subscription and service is in right state, primary device can initiate cellular service
[image:]
[bookmark: _Ref61462152]Figure 31. Primary ODSA procedure for Subscription Transfer with OAuth/OpenID
7. [bookmark: _Ref55464753][bookmark: _Toc61529409]Obtaining terminal identifier with Websheet
The following presents the case where:
The Primary ODSA initiated a request at the ECS for which an identifier for another device is needed, e.g. subscription transfer
The ECS can’t uniquely identify the old device using the MSISDN, because multiple SIM-cards are associated with the MSISDN (e.g Mulit-SIM).
The ECS redirects the device to a webserver, in order to let the user select the old terminal identifier
Figure 32 shows the procedure where the old terminal identifier is needed in a subscription transfer procedure, and is obtained using a Websheet:
1. The Primary ODSA client application sends a request to the ECS to start the subscription procedure with the SP, in this case a ManageSubscription.
129. The ECS needs an identifier for the old device, as it was not included in the request. The ECS redirects the ODSA client to the WebServer
130. The ODSA client requests the Web Server using the URL and UserData received in step 10.
131. The web server presents the user the active subscriptions, so that the user can choose the one he claims as his old device.
132. The Web Server uses the SelectionCompleted callback, and returns the identifiers old_terminal_id and/or old_terminal_iccid to the ODSA client.
133. The Primary ODSA client application sends its initial request from step 1, adding the identifiers received in step 5.
Alternatively to step 5 and 6, the webserver can also forward the identifier to the ECS directly.
[image:]
[bookmark: _Ref61463132]Figure 32. Obtaining the old terminal identifier via web server
1. [bookmark: _Ref61463778][bookmark: _Toc61529410]Data Plan Information Entitlement Configuration
Mobile devices that support high data rate Radio Access Types (RAT) can receive guidance from the Service Provider on how certain data-intensive and low-latency applications should access the device's available RATs.
As opposed to device or application configuration that is applied to all devices by a Service Provider, the Data Plan Information described in this clause is based on the end-user's subscription and associated plans.
The Data Plan Information is relayed by the requesting device to the applications using a method outside the scope of this specification. The returned configuration data contains the type of data plans associated with the end-user's subscription and assigned (if available) to each device’s RAT.
This is especially relevant for devices with 5G access which offers high-speed, high-volume data connectivity to the device's applications. With the inappropriate data plan in place, applications could exceed the usage limits of the subscription's data plan and result in a negative user experience due to data overage fees.
The device must therefore be made aware of the types of data plans active on the current subscription (for each RAT if applicable) and provide that information to target applications that are data and bandwidth-intensive. The device's subscription is identified through the authentication feature of TS.43, preferably via the EAP-AKA method (see 2.8.1) as it is seamless for the end-user and involves in a secure manner the device's SIM.
Figure 33 presents the high-level architecture of the Data Plan Information use case.
[image:]
[bookmark: _Ref61463143]Figure 33. Data Plan Information high-level architecture
8. [bookmark: _Toc61529411]Data Plan Information Configuration Parameters
Parameter names and presence:
DataPlanInfo: Top level, list of all data plan information associated with the device's subscription
DataPlanInfoDetails: Within DataPlanInfo, one or more
DataPlanInfoDetails is a multi-parameter structures that provides data plan information for a particular Radio Access Types (RAT). The DataPlanInfoDetails structure has the parameters listed in Table 54.
	“Data Plan Info” configuration parameters
	Type
	Values
	Description

	AccessType
	Integer
	0 to 5
	The Radio Access Type (RAT) associated with the Data Plan

	
	
	0 - all
	All the different RAT on the device

	
	
	1 – WiFi
	Wi-Fi access type

	
	
	2 – 2G
	RAT of type 2G

	
	
	3 – 3G
	RAT of type 3G

	
	
	4 - LTE
	RAT of type LTE (4G)

	
	
	5 – NG-RAN
	RAT of type NG-RAN (5G)

	DataPlanType
	String
	Metered
	The data plan is of the metered type	

	
	
	Unmetered
	The data plan is of the un-metered type

[bookmark: _Ref61461010][bookmark: _Ref49267328]Table 54. Data Plan Information Configuration Parameter
8. [bookmark: _Toc61529412]Data Plan Information Response Example
Table 55 presents an example for a returned Data Plan Information entitlement configuration in XML format where the only RAT that is metered is NG-RAN (5G).
	<?xml version="1.0"?>
<wap-provisioningdoc version="1.1">
 <characteristic type="VERS">
 <parm name="version" value="1"/>
 <parm name="validity" value="172800"/>
 </characteristic>

 <characteristic type="TOKEN">
 <parm name="token" value="ASH127AHHA88SF"/>
 </characteristic>

 <characteristic type="APPLICATION">
 <parm name="AppID" value="ap2010"/>
 <characteristic type="DataPlanInfo">

 <characteristic type="DataPlanInfoDetails">
 <parm name="AccessType" value="1"/>
 <parm name="DataPlanType" value="Unmetered"/>
 </characteristic>

 <characteristic type="DataPlanInfoDetails">
 <parm name="AccessType" value="2"/>
 <parm name="DataPlanType" value="Unmetered"/>
 </characteristic>

 <characteristic type="DataPlanInfoDetails">
 <parm name="AccessType" value="3"/>
 <parm name="DataPlanType" value="Unmetered"/>
 </characteristic>

 <characteristic type="DataPlanInfoDetails">
 <parm name="AccessType" value="4"/>
 <parm name="DataPlanType" value="Unmetered"/>
 </characteristic>

 <characteristic type="DataPlanInfoDetails">
 <parm name="AccessType" value="5"/>
 <parm name="DataPlanType" value="Metered"/>
 </characteristic>

 </characteristic>
 </characteristic>
</wap-provisioningdoc>

[bookmark: _Ref61461023][bookmark: _Ref40126129]Table 55. Example of a Data Plan Information response in XML format
Table 56 presents an example for a returned Data Plan Information entitlement configuration in JSON format where only 3G, LTE and NG-RAN data plan info details are returned and both LTE and NG-RAN are metered.
	{
 "Vers" : {
 "version" : "1",
 "validity" : "172800"
 },
 "Token" : { // Optional
 "token" : "ASH127AHHA88SF"
 },
 "ap2010" : { // Data Plan Information app
 "DataPlanInfo" : [{
 "DataPlanInfoDetails" : {
 "AccessType" : "3",
 "DataPlanType" : "Unmetered"
 },
 },{
 "DataPlanInfoDetails" : {
 "AccessType" : "4",
 "DataPlanType" : "Metered"
 },
 },{
 "DataPlanInfoDetails" : {
 "AccessType" : "5",
 "DataPlanType" : "Metered"
 }
 }
]
 }
}

[bookmark: _Ref61461034][bookmark: _Ref40126985]Table 56. Example of a Data Plan Information response in JSON format
8. [bookmark: _Toc61529413]Data Plan Information Call Flow
Figure 34 shows the call flow for the Data Plan Information entitlement configuration use case. Authentication steps are not shown for simplification purposes.
[image:]
[bookmark: _Ref61463155]Figure 34. Data Plan Information Call Flow
The steps are:
1. The device makes a Data Plan Information entitlement request with proper App ID and token acquired from an authentication exchange.
135. The ECS queries the Service Provider's back-end system for plan information associated with the end-user's subscription.
136. The ECS receives the plan information and creates an entitlement response of the proper format.
137. The device applies the data plan info details for the targeted applications
If there is some change in plan status that could impact on the data plan info, the ‘Telco Back-End’ will inform to the ECS about this change. ECS will notify to the device using any of the available options (see section 2.6) to refresh this data as shown in the Figure 35.
[image:]
[bookmark: _Ref61463166]Figure 35. Data Plan Information request triggered by carrier notification
The steps are:
138. Service Provider informs the ECS of a change in data plan info.
139. The ECS generates the notification message based on the notify_* parameters received earlier from the device (see 2.6 for details). This notification will trigger a new Data Plan Information entitlement request as detailed in Figure 34.
140. Steps 7 to 10 are exactly the same as steps 1 to 4 detailed in Figure 34.
1. [bookmark: _Ref61463779][bookmark: _Toc61529414]Server-initiated ODSA Procedure Call Flows
In specific environments like the enterprise one, there are some needs to manage the device subscriptions. This could be managed by Mobile Device Management (MDM) software for the purpose to simplify and enhance the management of the end user devices.
The activation flow for the new devices is similar to the one implemented for the Companion devices (see section 7) where the MDM works as a primary device and the end user device as a companion one.
One of the main differences is that behind the device (MDM system) initiating the request there is no user, neither an eSIM/SIM but just a server. Due to this restriction, it is no possible to use authentication methods like Embedded EAP-AKA (see section 2.8.1) or OAuth2.0/OpenID with customer interaction (see section 2.8.2) and it is necessary to use Server to Server Authentication using OAuth2.0 as described in section 2.8.3 of this document.
The architecture for the server-initiated ODSA use case is shown in Figure 36. The Entitlement Configuration Server acts as the Service Provider’s ODSA Gateway for the ODSA procedure (labelled as the “ODSA GW” in Figure 36), providing entitlement and configuration data to the server (MDM) managing the devices for “ODSA server-initiated” application.
[image:]
[bookmark: _Ref61463196]Figure 36. ODSA server initiated request, architecture and TS.43 positioning
9. [bookmark: _Toc61529415]Initial considerations
The main difference between this use case and the others related to ODSA is that there is not any direct interaction with the use, and the device doesn’t interact with the entitlement configuration server (ECS) until it is already activated. At that point on time, and if the policies applied by the MDM allow it to do that, it could interact as any other device having the proper TS.43 apps.
The MDM is not a terminal but a server, but, even so, in the request there will be some parameters referring to terminal_* present on the requests as part of the RCC.14 standard. For these mandatory parameters, it is recommended to use dummy values, keeping the new ones (requestor_id or enterprise_* as referred in Table 25).
Due to there is no real info for the targeted device in the CheckEligibility request, it should be the MDM the one in charge of checking the eligibility of the device to use any specific service when onboarding with a new plan. These policies/rules are managed by the MDM and are out of the scope of this spec.
9. [bookmark: _Toc61529416]Subscription Activation initiated by the server
The following premises are considered for this the case:
The requesting server (through the ODSA client application) is allowed to request new eSIM profiles for and specific Enterprise (enterprise_id).
The ODSA GW (Entitlement Configuration Server) is able to keep the authentication tokens for each requesting server (requestor_id) and enterprise (enterprise_id) to avoid sending the enterprise_id in each request triggered by the requesting server once it has the authentication token.
If the authentication token is invalid or expires, the server initiating the ODSA request will need to get a new Access Token (from the Authorization server) to perform the new Authentication through the ECS (Resource Server).
Figure 37 shows the steps of the flow for the activation of an eSIM managed by the requesting server (aka MDM).
[image:]
[bookmark: _Ref61463216]Figure 37. ODSA initiated by a server flow
The steps are the following ones and can be split in three sections:
Steps at MNO level for MULTIPLE enterprises:
1. The server ODSA application request (and gets) an access token to the SP’s Authentication Server. For additional info about how the requesting server gets the access token see section 2.8.3.
Steps at enterprise level for MULTIPLE devices:
142. The server ODSA application makes a CheckEligibility request to the ECS providing the access token (ACC_TOKEN) and the Enterprise ID (enterprise_id) to operate.
143. The ECS validates the access token with SP OAuth2.0 Server.
144. Additional to the access token validation, the ECS checks if the Enterprise is entitled to manage subscriptions.
145. Once access token validation and enterprise entitlement check is successful, the ECS will create an AuthN Token that will be sent back to the ODSA client application. The ECS will associate this token to the ODSA app ID (requestor_id) and Enterprise ID for future requests. This avoids to send the Enterprise ID in each request.
146. The server ODSA application makes an AcquirePlan request to get all the plans offered by the SP to a specific Enterprise. Note that it is not necessary to send the enterprise_id parameter as the ECS knows it based on the authentication token received.
147. The ECS queries, based on the enterprise_id, for this plan info to the SP back-end system managing this info.
148. The ECS generates a proper response with the different plans available for offering.

Steps at enterprise level for EACH device:
149. A new device (belonging to an enterprise) sends an activation request to the requesting server. This new device will be managed as an enterprise device for the requesting server.
150. The server ODSA client application makes an AcquireConfiguration request to the ECS to obtain information on any communication profiles associated with the device.
151. The ECS queries the SP's back-end system managing the subscriptions and active profiles.
152. The ECS processes the response from the SP's back-end system and generates the proper 200 OK response containing EnterpriseDeviceConfigurations without any EnterpriseConfiguration (no profile/subscription is associated with the enterprise device).
153. The server ODSA client application makes a ManageSubscription request to the ECS with an operation_type set to SUBSCRIBE (value of 0) to initiate the subscription procedure for the enterprise device.
154. [bookmark: _Ref55297774]The ECS makes a request towards the SP's back-end system to activate the selected plan and subscription.
155. The SP's back-end system interacts with the SM-DP+ over the ES2+ interface to make the required profile requests associated with the new subscription (for example, DownloadOrder, ConfirmOrder and ReleaseProfile) resulting in an activation code and ICCID for the enterprise device.
156. [bookmark: _Ref55297776]The ECS processes the response from the SP's back-end system and generates the proper ManageSubscription 200 OK response with a SubscriptionResult set to DOWNLOAD_PROFILE (value of 2), and a filled in DownloadInfo structure with the proper ActivationCode.
157. The server ODSA client application informs the enterprise device to download the profile.
158. The new device (acting as an enterprise one) downloads the communication profile from the SM-DP+.
1. [bookmark: _Toc61529417]Subscription Activation for Delayed Activations
It is possible that carrier could consider to delay the eSIM profile activation in their backend systems, so a polling or notification mechanisms should be implemented to notify when the profile is ready to be used.
In case of implementing the polling mechanism, it should be necessary to include the loop for refreshing status between steps 14 and 16 in the Figure 37 as explained in the section 7.3.
In case of implementing the notifications, and due to there is no standard notification API for these MDMs, carriers, ECS vendors and MDM vendors should agree the way to implement this. This specification/agreement is out of scope of TS.43.

1. [bookmark: _Toc61529418]Document Management
0. [bookmark: _Toc61529419]Document History

	Version
	Date
	Brief Description of Change
	Approval Authority
	Editor / Company

	V1.0
	July 2018
	First version
	TG#11
	J. Sicard / HPE

	V2.0
	October 2018
	Updated with changes detailed in CR1002
	TSG
	J. Sicard / HPE

	V3.0
	Not Published
	Added eSIM devices configuration and restructuring the document.
	TSG
	J. Sicard / HPE

	V4.0
	December 2019
	Adding Companion devices configuration. CR1003
	TSG#38
	J. Sicard / HPE

	V5.0
	April 2019
	Changed title, Chapter 6 reflects generic ODSA operations and parameters, Companion ODSA call flows are in separate Chapter 7, new Chapter 8 presents Primary ODSA call flows, clarifications added for POST content encoding and UserData response parameter, new logout callback function. CR1004 & CR1005
	TSG39j
	J. Sicard / HPE

	V6.0
	January 2021
	Chapter 6 reflects JS callback functions, poll and push mechanisms defined for delayed profile delivery in chapter 7, use case data plan information added in chapter 9, server initiated ODSA use case added in chapter 10, OID error processing, entitlement version handling, user agent format, obtaining identifiers with web sheet
	TSG#42
ISAG#x
	F. Schmitt / DT

[bookmark: _Toc61529420]Other Information

	Type
	Description

	Document Owner
	Terminal Steering Group (TSG)

	Editor / Company
	Florian Schmitt / Deutsche Telekom AG

It is our intention to provide a quality product for your use. If you find any errors or omissions, please contact us with your comments. You may notify us at prd@gsma.com
[bookmark: _Toc38963218][bookmark: _Toc38963219]Your comments or suggestions & questions are always welcome.
Reference Doc: TS.43v6.0 	Page 81 of 103
image1.png
GSMA

image2.png
Technical Adaptation of Device - TAD

Existing Client Configuration Mechanisms

T

MNO Provisioning

Entitlement Verification

|
(T5.32) } (IR.51, IR.92) (T5.43)
| 1
Device OEM | SP Core NW.
| S —
| Initial provisioning of RO
Select Packagebased | | Service options
on MCCMNG, ! Subscription
e SP Name, | Basic Service Entitlement
IMSI prefix/range, service | params Con Network
Customization | Corfiguration iguration
ozt IcciD prefix/range | | igurati Server Status
|
| |
| 1
Load I senice | Entitement
Package Device w/ | Configuration | Devicew/ | Validation & Devicew/
Client } Client : Configuration Client

| Service |
| Profile |
| |
| |

Factory Reset or “ Initial Service !

SIM Detection

Configuration

Service Activation

TIME®

image3.emf
200 OK

Content-Type: text/vnd.wap.connectivity-xml

<?xml version="1.0"?>

<wap-provisioningdoc version="1.1">

 <characteristic type="VERS"> . . .</characteristic>

 <characteristic type="TOKEN"> . . . </characteristic>

 <characteristic type="APPLICATION"> . . . </characteristic>

</wap-provisioningdoc>

Client

on Primary

Device

P

1

2

SIM

DEA

(multi round

Auth)

4

6

7

Client applies the

Entitlement configuration

XML

3GPP

AAA

DER

AKA Chall

200 OK

Content-Type: application/vnd.gsma.eap-relay.v1.0+json

Set-Cookie: <CookieA>

{ "eap-relay-packet" : "<EAP Packet in base64 encoding>" }

Client processes the EAP-

AKA payload and sends

back the response

POST /?

Host: aes.mnc<MNC>.mcc<MCC>.pub.3gppnetwork.org

Cookie: <CookieA>

Accept: application/vnd.gsma.eap-relay.v1.0+json, text/

vnd.wap.connectivity-xml

{ "eap-relay-packet" : "<EAP Packet in base64 encoding>" }

Server relays EAP payload to

AuthN server

5

DEA

(result=success)

Auth Resp

With successful AuthN, server

creates entitlement configuration

response with token

Entitlement

Config Server

Client issues configuration

request, indicating it can

support EAP-AKA relay

GET /resource? EAP_ID=<Root NAI> &

vers=<VERS Id> & app=<APP Id> & . . .

Host: aes.mnc<MNC>.mcc<MCC>.pub.3gppnetwork.org

Accept: application/vnd.gsma.eap-relay.v1.0+json, text/

vnd.wap.connectivity-xml

Server detects EAP-AKA capability from

client, inititates EAP procedure with

AuthN server and obtains EAP Challenge

Another EAP

Challenge needed?

3

DER

AKA Resp

Yes

No

image4.emf
200 OK

Content-Type:

text/vnd.wap.connectivity-xml

<?xml version="1.0"?>

<wap-provisioningdoc version="1.1">

 <characteristic type="VERS"> . . .

 <characteristic type="TOKEN"> . . .

 <characteristic type="APPLICATION"> . . .

</wap-provisioningdoc>

OIDC server goes through an

AuthN with the user, may ask

for MSISDN

Generate OIDC Auth Code

back to requester

Service Prpvider

OAuth 2.0 / OIDC

Server

Client redirects GET

to OIDC Server

1

2

3

4

User goes through AuthN

Procedure

302 Found

Location: <AES_URL>?

code=<OIDC_AUTH_CODE>&

state=<STATE_VAL>

6

Client makes a GET

request w/o token and

EAP_ID

GET ?

terminal_id=<TERMID> &

app=<APP Id> & <app parameters>

Host: aes.mnc<MNC>.mcc<MCC>.pub.3gppnetwork.org

GET /authorize?

 response_type=code&

 scope=openid&

 client_id=<CLIENT_ID>&

 redirect_uri=<AES_URL>&

 state=<STATE_VAL>&

 nonce=<NONCE_VAL>

5

302 Found

Location: <OIDC_URL>/authorize?

 response_type=code&

 scope=openid&

 client_id=<CLIENT_ID>&

 redirect_uri=<AES_URL>&

 state=<STATE_VAL>&

 nonce=<NONCE_VAL>

Server recognizes client

requires OIDC AuthN and

redirects GET to OIDC server

200 OK

{ "access_token":"<ACC_TOKEN>",

 "token_type´: ³Bearer",

 "id_token":"<ID_TOKEN>" }

7 Client redirects GET back

to server, now with OIDC

Auth Code

9

GET ?

 code=<OIDC_AUTH_CODE>&

 state=<STATE_VAL>

Server requests for the

OIDC access token using

auth code

8

POST /token

 grant_type=authorization_code&

 code=<OIDC_AUTH_CODE>&

 redirect_uri=<AES_URI>

Generate access and ID

Tokens back to client

Server extracts sub id from

ID Token, obtains service

data and generates Token

10

Auth

Endpoint

Token

Endpoint

Client

on Primary

Device

P

SIM

Entitlement

Config Server

image5.emf
Authorization Server

OAuth 2.0 Server

Resource Server

Entitlement Config Server

Client

server ODSA App

Request Access Token

Access Token

API Request w/

Access Token

Validate

Access Token

return

return

Handle

Request

image6.emf
ODSA

Client

Requesting Server

OAuth 2.0

Server

POST /token

 client_id=<MDM OAUTH ID>

 client_assertion_type = urn:ietf:...:client-assertion-type:jwt-bearer &

 client_assertion = <JWT {

��������������³iss´=³<MDM OAUTH ID>´, ³sub´=´<MDM OAUTH ID>´,

��������������³aud´�, ³exp´, «}>

 . . .

200 OK

{

 "access_token": "<ACC_TOKEN>",

 "token_type": "Bearer",

 "expires_in": <EXPTIME_TOK>

}

image7.png
Entitiement
Config Server

Client makes a GET
request w/o token and
EAP_ID |
—_— i
GET?
teminal_id=<TERMID> &
app=<APP ¢ & <app parameters>
Host: aes mnc<!i1C>mec<l CC> pub. 3gppnetwork org

302 Found requires OIDC AuthN and

i
|

i T

|

: Server recognizes cient | 2|
i Location: <0IDC_URL>/authorize? | redirects GET to OIDC server

b

response_type=code&.
scope=openid&
! client_id=<CUENT_ID>&
! redrect_uri=<AES_URL>&
Cient redrects GET [3] State=<STATE_VAL>&
10 OIDC Server nonce=<NONCE_VAL>

Service Provider
OAuth 2.0/ 0IDC
Server

[4] 0IDC server goes through an
AuthN with the user, may ask

dlient_ig=<CLIENT_ID>&
redrect uri=<AES_URL>&
stat

|
|

|

|

|

|

| GET /authorize? |
o I
T

|

I

|

STATE_VAL>& |
|

nonce=<NONCE_VAL>

302 Found

Location: <AES_URL>?
State=<STATE VAL>&
rror=<ERROR_VAL>&
error_description=<ERR_DES

Client redrects GET back
to server CRIPTION_VAL> ;
]
GET 2 A }
state=<STATE_VAL> [Server generates an ad hoc| 8
answer with auth error URL
200 0K | & data.
Content-Type: |

textivndwap. connectivity-xmi

i
i
<2xmi version="1.07> i
<wap-provisioningdoc version="1.1"> d
<characteristic type="VERS> .. 1
<characteristic type="APPLICATION"> H
<parm name= "AuthenticationEmorURL™>... |

T
r
'
|
'
|
|
I
1
I
|
I
'
I

i <parm name= "AuthenticationE morUserData"
i </charadteristic>
i

=l

<Map-provisioningdoc>

|
Cient extracts Auth error [3] ODSA Auth
URL and data and displays Error Portal
the webview

L GET? —_—
AuthenticationE rorU serData

Host: AuthenticationErrorURL

200 0K
dismissFlow() callback

e N

User goes through AuthN

for MSISDN

procedure, but ends with error

B e page

Token
Endpoint

User close the webview,

Calling the dismissFlow callback

image8.png
BSS/0SS.

Entitiement Config
Server

terminal_id=<TERMID> &
app=ap2004 & |

™ token=<AUTH_TOK>& VOWiFi Status Query_ 4
entiliement_version=1.0 & f '_(suss_m) —

terminal_vendor=<TERI_VEND> & |

Status Answer
" (VOWIFI_STATUS) ™

200 0K |

Content-Type: textvnd wap connectivity-xml]
EnttementStatus=<VOWIFI_ENT> 5|
TC_Status=</OWIFI_TC> .
ProvStatus=<VOWIF_PROV> !
AddrStatus=<VoWiFi parameters> i
ServiceFlow_URL=<OWIFI PORTAL URL> &

ServiceFlow_UserData=<VOWIFI_USROATA>

m-..)‘___"_

VoWiF satus s notyat |
enabled and sctvated

VoWiFi
Portal Web Server
POSTI0 !
[£]—vowr1_portAL URL——
(VOWIFT_USRDATA) Capturs T6C and
Address from enduser

Actvaie VoWiFi
T

K Actvation Answer___|

¢ - el

VoWiFiWebServiceFlow. _ [5] (O '

N ‘enttlementChanged() G |

Rachack Vol S | !
| cer Eniement Gonfig !

| terminal_id=<TERMID> & Server 1

|

2pp=ap2004 &

token=<AUTH_TOK>& VoWiFi Status Query. |
entilement_version=1.0 & : '—(suss,m) —

fminal vendorTERIVEND> & !
|
|

. Status Answer
« (VOWIFI_STATUS)
200 OK [
—Content-Type-texthnd wap comectviyaml - — 3]
3l the VoW Staus= </ OVIFL*> h
ServiceFlow_ URL=<VOWFI_PORTAL URL> |
SenvceFlow_ Use Gataz</OVIF_USROATA> |
|
i

Vol satus is now
enabled and sctvated

image9.emf
BSS / OSS

Entitlement Config

Server

SIM

VoWiFi

Client

Primary

Device

VoWiFiWebServiceFlow:

dismissFlow()

POST to

VOWIFI_PORTAL_URL

(VOWIFI_USRDATA)

GET ?

 terminal_id=<TERMID> &

 app=ap2004 &

 token=<AUTH_TOK> &

 entitlement_version=1.0 &

 terminal_vendor=<TERM_VEND> & «

200 OK

Content-Type: text/vnd.wap.connectivity-xml

 EntitlementStatus=<VOWIFI_ENT>

 TC_Status=<VOWIFI_TC>

 ProvStatus=<VOWIFI_PROV>

 AddrStatus=<VoWiFi parameters>

 ServiceFlow_URL=<VOWIFI_PORTAL_URL>

 ServiceFlow_UserData=<VOWIFI_USRDATA>

3

1

2

4

6

VoWiFi Status Query

(SUBS_ID)

Status Answer

(VOWIFI_STATUS)

Capture T&C and

Address from end-user

VoWiFi status is not yet

enabled and activated

End-user makes VoWiFi

configuration request

VoWiFi client does not request for

configuration from entitlement

configuration server, uses

previously cached values

VoWiFi

Portal Web Server

7

End-user selects

DISMISS or CANCEL

button or error occurs

image10.png
Telco Engagement Telco Back-End
Management
OpeniD Operator Party
Connect 0IDC Server s
s
S
§ H
[—Web /HTML: Operator 3 >
Portal 2 s Commerce
Companion Requesting H s
Device Device. < &
K
= g
esiM J optional 75,43 - ODSA ODSA GW @ Production
: I Entitiement
3cpP
Auth — — 5 S35
so+- smoP+

image11.png
Telco Engagem ent

Telco Back-End

Management
OpeniD Party
Operator N|
Connect 0IDC Server z
2Ly
<
" s
£ H
2 g
Web / HTML Operator g NEs
Portal g 2 Commerce
38 z
L
3
2
w
ODsA W — @ Production
Entitlement
Config Server
36PP
Auth — — e

SM-DP+

image12.png
Requesting — 3GPPAAA
Device

ODSA GW
Entitlement Config
Server

it v S A v A
: N,

[t | [vem | e il 5~ <t com
'+ companion_terminal_eid = <ElDcomp>
CCibems '+ companion_terminal_iccid = <ICCIDcomp>.

image13.png
« teminal_d = <UUDapo>

« comparion_terminal_id = <11Elcomg>

IMElcomp

TDoms « comparion_teminal_icad = <ICCIDcomp>

image14.png
— 3GPP AAA

ODSA GW
Entitlement Config
Server

+ Autheniication via EAP-AKA using <A<As >
« EAP_ID = <lSisim>

'« terminal_id = <IVElsim>

« target_terminal_id = <IlElesim>

'+ target_terminal_eid = <EIDesim>

« target terminal_iccid = <ICC Desim>

image15.png
redirect
OAUth 20 /.. OAuth 2.0/

tokens

ODSA GW
Entitlement Config
Server

+ Authentication via O1DC
« terminal_id = <IMElesim> or <UUIDapp>
« terminal_eid = <ElDesim>

« terminal_iccid = <ICCIDesirm>

image16.emf
ODSA GW

Entitlement Config

Server

Requesting Server



Authentication via server-to-server OAuth 2.0

with <OAuthID>



requestor_id = <UUIDclient>



enterprise_terminal_id = <DEVIDenterp>



enterprise_terminal_eid (Opt) = <EIDenterp>

TS.43 –�ODSA Protocol

MNO

OAuth 2.0

Server

OAuth 2.0

/token

ODSA

Client



OAuthID



UUIDclient



DEVIDenterp



EIDenterp

ICCIDenterp

eSIM

User Info

image17.png
Requesting or
Primary Device

ODSA Device GW
Entitlement Config Srv

| operation_type = 0-SUBSCRIBE.

2000K -
‘SubscriptionResult = 1-CONTINUE TO WS

-+ SubscriptionServiceURL = <URL>
SubscriptionServiceUserData = <UserData> |
‘SubscriptionServiceContentsType = <Contents Type> .

<Contents Type>
<URL> |
Content.Type: application/ type of the content. hl
<UserData>
<UserData>

— — — —HTTPWebExchanges— — — — —

o—— Mo ___

image18.jpeg
ODSA Device GW

Entitiement Config Server B55/08S

End-user invokes the
Primary ODSA Appication

T
| eeriposT
| operation = ManageSubscription &
opertion_type = 0-SUBSCRIEE | Subscrption Query
— JE—
temina 4 = <IEIsim> or <UUDapp>, T (GubscrptioniD iElesi) ,
et teminal_d - <IHE esim>, o
token= <AuhTaxers

 Subscrption Ansver_|
2000K - “Send_fo URL)
SubscrptionResult= 1-CONTINUE TO WS

SubscrptionSeniceURL = <SubscrpfionURL>

SubscrptionSeniceU serData = <SubscriberDatax

ODSA User GW
Portal WebServer
‘GET ?SubscriberData T

Host: SubscrptionsURL i
|

-dismissFlow() -

Enduser Press « Cancel >

Buton in webview, calling the dismissF low() callback.
“The webview s cosed

-y

image19.jpeg
End-user invokes the
Primary ODSA Appication
T
| GET/POST
‘operation

heckEligibiliy &

tamet_teminal_id = <llElesim>,
token = <AutfToken>

2000k -
OperationResut
NotEnabledURL = <HofEnabled)RL>
NotEnabledserData = <llofEnableData>

ODSA User GW
Portal WebServer

[13]__GET NotEmbledserdata T

T —

e

KseensaedimissEon)-

Endusern Press ¢ 0K »
button in vebview, caling the gismissF low) calback
“The webviews cosed

&

ODSA Device GW

Entitiement Config Server B55/08S

teminal id = <€ sim> or <UUIDapps | Eligiity Query

1CONTINUE TOWS _

T T
I 1
I |
| 1
| |
I 1
I |
] 5
1

Elghiity Anster
* (Send_to_URL)

image20.png
‘Companion Requesting

Device Device
eSIM ODSA SIM ‘ODSA Device GW
Client Entitlement Config Server Bss/oss
T T
| Pair w/ | |
< i ! I |
Companion GET/POST | |
ap2006, operation = CheckEligibility, { |
terminal_id = <IMElsim> or <UUIDapp> I
token = <AuthToken> . . . 3| ProfleQuery

200 OK -
R CompanionDeviceStatus = ENABLED
CompanionDeviceServices = SharedNumber

I
1
| GET/POST
| app2006, operation = AcquireConfiguration &

5 terminal_id = <IMElsim> or <UUIDapp>, 3 »

companion_terminal_id = <IMElcomp>, | Subscription Status Query
token=<AuthToken>. 6 L—(SubscriptionID, IMElcomp)—y
<notif_token>, <notif_action> : :

Subscription Status Aster

200 OK " (SubscriptionStatus)
R RRERLELELCELEE ~ no companion configuration:
! Query ! <RegisterNotifStatus>
‘Companion |

GET/POST
| ap2006, operation = ManageSubscription &
operation_type = 0-SUBSCRIBE,
terminal, <IMElsim> or <UUIDapp>, —— 3 Subscription Query
companion_terminal_id = <IMElcomp>, 9 i (SubscriptionID,
companion_terminal_eid = <EIDcomp>,
token=<AuthToken>. ..

1
1
1
2000K- === (Send_to_URL)
SubscriptionResult = 1-CONTINUE TO WS o

SubscriptionServiceURL = <SubscriptionURL>
SubscriptionServiceUserData = <SubscriberData>

image21.emf
GET / POST

 ap2006, operation = AcquireConfiguration,

 terminal_id = <IMEIsim> or <UUIDapp>,

 companion_terminal_id = <IMEIcomp> ,

 token=<AuthToken>

SM-DP+ BSS / OSS

ODSA User GW

Portal Web Server

15

12

13

14

Present Plans

to end-user

Activate Subscription

(SubscriptionID,

EIDcomp, PlanID)

ES2+

exchange

Activate Subscription

Answer

(ICCIDcomp)

Profile Ready for Download

(download Info with

ActivationCode)

Activate

Service

200 OK -

CompanionConfigurations =

 [CompanionConfiguration =

 [ICCID = <ICCIDcomp>

 ServiceStatus = 1-ACTIVATED

 CompanionDeviceService = SharedNumber

]

]

22

23

24

17

11

POST to

SubscriptionURL (SubscriberData)

GET / POST

 ap2006, operation = ManageService,

 operation_type = 10-ACTIVATE SERVICE,

 terminal_id = <IMEIsim> or <UUIDapp>,

 companion_terminal_id = <IMEIcomp>,

 companion_terminal_service = SharedNumber,

 token=<AuthToken> . . .

18

Activate Service

(SubscriptionID,

IMEIcomp,

CompanionService)

Activate Service Answer

(ServiceStatus)

200 OK -

 ServiceStatus = 1-ACTIVATED

19

20

21

ODSA Device GW

Entitlement Config Server

Subscription Status Query

(SubscriptionID, IMEIcomp)

Subscription Status Answer

(SubscriptionStatus)

DownLd Profile

(ActCode)

16

Finish Flow ()

ODSA

Client

Requesting

Device

SIM

Companion

Device

eSIM

Get Communication Profile

ES9+ Exchange

image22.png
Companion Requesting

Device Tenee
i (ODSA User GW
s Clent ser
LOpsh User oW Bssioss | | swope

j
i
i
i
i
i
i
Actvate Subscription
] [13—(subscriptionld, ——
| EiDcorp, PlaniD) Eso
1 excrange™
! ! Actvate Subscripion | !
| {eereneenAnswer . !
i FinshFlow (delayed) I I
! f (0 downloag Info) ! !
1 i . I I
1 i I I
' ! 0D 5A Device GW ! '
:) Entitiement Config Server 1 '
| | GET/POST T | |
| ™| ap2006, operation = AcquireConfiguration, 1 i
i <IMElsim> or <UUIDapp>, — i i
| ‘companion_terminal_jd = <IMEl comp>, ‘Subscripton Staus Query | I
| token=<AUToken> (17} —(Subscrptoni, Eicomp)— '
| nOl_token = <nct_toker, notf_action = <action> | i
i _Subsciption Status Answer .
' 2000k - Gubscrptonsiatis) !
| ‘CompanionCorfigurations = [- | '
1 [CompanionGorfiguration = 0ot ey s i i
i [1CCID = <ICCIDcomp> “senyoe acided? I i
! SenviceStatus = 2ACTIVATING e ! !
| CompanionDeviceSavice = Sharedhiumber ves ! |
i 1 i i
i 1 | i
! RegisterNotfStatus = 0-SUCCESS ! !
| Device vait | {Deiay | ! !
1l
| | New Status ¢.-..Subscription Status Updte...| :
| (Sent as network natffcation using notif_action) __ K™~ (SubsciptionStatus) | i
i ap2006, oporation = AcquireConfiguration i i
| Token = <ol loken> ! !
i
i i i
i i i
| 2000K - ! |
] ‘CompanionCorfigurations = | !
i [ComparionCorfiguration i i
i [1CCID = <ICCIDcomp> i i
| SenviceStatus = 1-ACTIVATED ; ! |
| CompanionDeviceService = Sharedhumber | |
] Downloadfo= | |
i [profieActvationCode = <ActivationCode> i i
i ! | i
1 I
| GetProtie___ [z | ! !
2 : 1 |
Get Commurication Profie,
— £59+ Exchango I I
e E‘ ' | i
[+ Ssenvie i i
" s " "

image23.emf
200 OK -

CompanionConfigurations =

 [CompanionConfiguration =

 [ICCID = <ICCIDcomp>

 ServiceStatus = 1-ACTIVATED

 CompanionDeviceService = SharedNumber

 DownloadInfo =

 [profileActivationCode = <ActivationCode>

]

]

ServiceStatus=1

ACTIVATED

GET / POST

 ap2006, operation = AcquireConfiguration,

 terminal_id = <IMEIsim> or <UUIDapp>,

 companion_terminal_id = <IMEIcomp> ,

 token=<AuthToken>

SM-DP+ BSS / OSS

ODSA User GW

Portal Web Server

15

12

13

14

Present Plans

to end-user

ES2+

exchange

Activate Subscription

Answer

(delayed)

Finish Flow

(no download Info)

Get Profile

(ActCode)

17

21

11

POST to

SubscriptionURL (SubscriberData)

16

ODSA Device GW

Entitlement Config Server

20

Activate

Service

23

22

Activate Subscription

(SubscriptionID,

EIDcomp, PlanID)

Subscription Status Query

(SubscriptionID, IMEIcomp)

Subscription Status Answer

(SubscriptionStatus)

ODSA

Client

Requesting

Device

SIM

Companion

Device

eSIM

200 OK -

CompanionConfigurations =

 [CompanionConfiguration =

 [ICCID = <ICCIDcomp>

 ServiceStatus = 2-ACTIVATING

 PollingInterval = <PollingIntervalMinutes>

 CompanionDeviceService = SharedNumber

]

]

19

Delay

Retry steps 16 to

17, until download

Info available or

Cancelled

#Request <

MaxRefreshReq

200 OK -

CompanionConfigurations =

 [CompanionConfiguration =

 [ICCID = <ICCIDcomp>

 ServiceStatus = 4-DEACTIVATED, NO REUSE

 CompanionDeviceService = SharedNumber

]

]

18-b

no

LOOP WHILE

(ServiceStatus = 2) AND (PollingInterval <> 0)

18-a

18

yes

ServiceStatus=4

DEACTIVATED, NO REUSE

Download profile?

yes

END

Activation Flow

profile ready and

service activated?

no

image24.png
CompanionDeviceService = Sharediumber
1

Companion Requesting
Device Device
oDsA 0D SA Device GW
Client Entitiement Config Server BSSIOSS| | SMOP-
T T
I Parw | |
* i | |
[Comeanion T GeT/ posT I i
i 1 ap2006, operation = CheckEliibilty, i 1
! terminal i = <IMEsiT or <UUIDap] ! !
! | token=AutToken> 3] Profle Query N !
| | (SubscriptionIDY | |
i i _ProfleAnswer____ | i
| | (EntitiStatus) | |
| ‘ nox ' | :
| - CompanionDevicestatus = ENABLED ! |
i | CompanionDeviceSenvices = SharedNumber I i
i i I 1
! | GETIPOST ! !
i ‘app2008, operation = AcquireConfiguration & | | |
i S — terminal = <IWEsim> o <ULIDap>, Subscription Status Query | i
i ‘companion_terminal id = <IEicomp=, B ey 4 i
! token=<AuMToken> —{SubscrpfionlD, ")—H‘ !
i i i
i n i
! 2000K - (Subscriptionsatus) | |
I ~no companion configuration ™ I '
l Quey _ | i i
(*—Comparion™—1 i i
| °" | GET/POST i i
| | ap2006, operation = ManageSubscription & i i
! | operation_type= 0-SUBSCRIBE, | |]
! | tonmina jd = SWEIsime or <UUIDapp=, —————— Subscription Query ! !
i ‘companion_terminal id = <M Eicomp=, 51 (SubscriptioniD, 4]
i Companion_terminal eid = <EIDComE>, —MElcomp EIDComp i
I token=<AuToken> _
i d
i ‘Subscription Answer i
| 2000K - " (cCIDeomp) : '
i ‘SubscriptionResut = 2DOVNLOAD PROFILE i
! * Downloadrfo = - i
= - i
|« DownLs Prfie_ i [profieActvationCode = <ActvationCode>| |
1+ (actCode) I i
= | Get Communication Profle__| |
[0 Exchnge _—
! | GET/POST | .
| 15l app200s, operation = AcquireConfiguration & |
i — terminaLid= <IMEIsiT> or <UD~ supscrpton Status Query
i ‘companien_terminal id = <IMElcomp>, 75| (SubscrptioniD, IMEicomp}—s|
! token=<AuMToken> phent. i
i i
i 2000K - o
! CompanionConfigurations | (SubscriptionSatus) |
i [CompanionConfiguration !
I [1CCID = <ICCIDcomp> L i
I SenviceStatus = +ACTIVATED I
i I
I
I
s

image25.png
Companion
Device

ODSA Device GW
Entitiement Config Server

BSS/0SS

SMDp+

GET/ POST

'app2006, operation = AcquireConfiguration &
F— terminal_id = <IMElsi> or <UUIDapp>,

‘companion_terminal_i
token=<AutiToken>

<IMEicomp=,

[1CCID = <iCCIDcomp=
‘SenviceStatus = T-ACTIVATED

Downloado =

‘ESe+ Exchange

‘CompanionDeviceStatus = ENABLED
CompanionDeviceServices = Sharediumber

CompanionDeviceService = SharedNumber ~~

[proffleActivationCode = <ActivationCode>

Get Communication Profile

e

(SubscriptionStatus)

I
|
|
|
|
|
|
|
|
|
i
T
|
|

s

eooNe o

image26.png
Compﬂnion

p—Palrwl Companion———!

ODSA
Client

GET/POST
ap2006,

terminal_id = <IN Elesim> or <UUIDapp>,
companion_terminal_i

= <MEI>

302 Redirect -

" Location: url?userdata”

4 —GETuri? <userdata>

ODSA Device GW
Entitlement Config Server

ODSA User GW
Portal Web Server

image27.png
Compﬂnion

p—Palrwl Companion———!

ODSA
Client

4 —GETuri? <userdata>

GET/POST
ap2006,

terminal_id = <IN Elesim> or <UUIDapp>,
companion_terminal_i

= <MEI>

302 Redirect -

" Location: url?userdata”

ODSA Device GW
Entitlement Config Server

ODSA User GW
Portal Web Server

(no download Info) ™

image28.png
Compﬂnion

p—Palrwl Companion———!

ODSA
Client

4 [——GETurli? <userdata>

GET/POST

ap2006, operation = CheckEligibility,
terminal_id = <IN Elesim> or <UUIDapp>,

companion_terminal_i

200 OK -

= <MEI>

. CompanionAppEiigibility = 2-INCOMPATIBLE
NotEnabledURL = <url>
NotEnabledUserData= <userdata>

ODSA Device GW
Entitlement Config Server

R —1

..... I3

ODSA User GW
Portal Web Server

image29.png
Companion

ODSA
Client

Device
Primary
Device

3 [——GETurli? <userdata>

GET/POST
ap2006, operation = CheckEligibility,
terminal_id = <IN Elesim> or <UUIDapp>,

companion_terminal_model= <model>

200 OK -

. CompanionAppEligibility = 2-INCOMPATIBLE

NotEnabledURL = <uri>
NotEnabledUserData= <userdata>

ODSA Device GW
Entitlement Config Server

ODSA User GW
Portal Web Server

image30.png
Compﬂnion

p—Palrwl Companion———!

ODSA
Client

4 —GETuri? <userdata>

GET/POST

ap2006, operation = CheckEligibility,
terminal_id = <IN Elesim> or <UUIDapp>,
companion_terminal_i

= <MEI>

302 Redirect -

" Location: url?userdata”

ODSA Device GW
Entitlement Config Server

ODSA User GW
Portal Web Server

(no download Info) ™

image31.png
Compﬂnion

p—Palrwl Companion———!

ODSA
Client

4 —GETuri? <userdata>

GET/POST

ap2006, operation = CheckEligibility,
terminal_id = <IN Elesim> or <UUIDapp>,
companion_terminal_i

= <MEI>

302 Redirect -

" Location: url?userdata”

ODSA Device GW
Entitlement Config Server

ODSA User GW
Portal Web Server

(no download Info) ™

image32.png
ObsA DeviceoW | [1NO oAUt
Entitlement Config Server 0IDC Server BSSI0SS
A 1 i
| 1 |
T i 1 i
Gt posT ! ! !
1 "ap2008, teminal_id = <iElesim> or <UUIDapg>, .. ———3 | 1
i Tk & sment ! | |
z Enciser Audnentiaton ! !
OAuth 20/ Openid At
: T
T T . i
[eeeeeeeesssssssereeseeeeessssssss 2000K - Tokenneeeeee| 3 !
) | 1
| cerirost 1 1
T op2009,opesten - Chockeigiy, t |
Emina s+ e or L1025, = prose ey |

[ornenennas aeeeennnndf

‘SubscritionSenviceURL = <SubscrptionURL>

- -
! I [7]— app2005, opemtion = w-mm&—) |

! | teminal_id = <IElesin> or <UUIDapp>, Subscrption Status Query !
! ! okene <AuthTokers 5] GubserstionD) —

| | |
| | b
| | Lo
! o
- [

I

i

I—; X

temina_ = <€ esim> or <UDage>, T onlD Elesin

| token= <AutnToken> b Subscrtion |

i g]

i 2000K - | i

‘SubscrptionResut = 1-CONTINUE T0 WS B i

i

n ‘SubscrptionSenvicelserData = <SubscrberDa> i n

image33.emf
13

14

16

ES2+

exchange

20

POST to <SubscriptionURL> w/ <SubscriberData>

Present Plans, Capture T&C,

Request Subscription

Get Communication Profile

ES9+ exchange

200 OK –�

 SubscriptionResult=<DONE>

17

18

ODSA User GW

Portal Web Server

Finish Flow ()

DownLd Profile

(ActCode)

GET / POST

 ap2009, operation = ManageSubscription &

 operation_type = 4-UPDATE,

 terminal_id = <IMEIesim> or <UUIDapp>,

 terminal_iccid = <ICCIDesim>,

 token = <AuthToken> . . .

ODSA Device GW

Entitlement Config Server

Confirm Subscription

(SubscriptionID, ICCIDesim)

15

19

Confirm Subscription

Answer

21

22

Activate

Service

26

BSS / OSS SM-DP+

GET / POST

 app2009, operation = AcquireConfiguration &

 terminal_id = <IMEIesim> or <UUIDapp>,

 token=<AuthToken> . . .

23

200 OK

PrimaryConfiguration =

 [ICCID = <ICCIDesim>

 ServiceStatus = 1-ACTIVATED

]

24

25

eSIM

ODSA

CLient

Primary

Device

Activate Subscription

(SubscriptionID,

IMEIesim, PlanID)

Activate Subscription

Answer

(ICCIDesim)

Profile Ready for Download

(download Info with

ActivationCode)

Subscription Status Query

(SubscriptionID, IMEIesim)

Subscription Status Answer

(SubscriptionStatus)

Optional

image34.png
DA Device GW T3 P,
Entitlement Config Server AAA BSSI0SS P

: s .

! ! !

| | |

| | |

| | i

wetges oo ————— | |

o catTorens | |

EndUser Authentication | |

e ch At |

. |

T . i

p—— eeeeeeeaeee 200 OK - <AulTokens -eeen 3 !

I cenrpost | |

Sl mina e e o L Uee g !

— vinal_id = Isim> or-)app> ———————————————3 rof
{arge tomin - <Eleam>, =Tt
fcersiie o ot psver_

<MElsim> or <UUDapp>,

target_temminal_id = <l Elesim>,
token=<AutiToken>

[~ teminal_ig = <IEISm> or <UUDapp>,

target_teminal_id = <IElesim>,
token = <AutToken>
2000K -

. SubscrptionResult = 1CONTINUE TO WS
‘SubscrtionSeniceURL = <SubscrptionURL>
‘SubscrptionSenicelserData = <SubscrberDaa>

image35.emf
13

20

Get Profile

(ActCode)

Get Communication Profile

ES9+ exchange

200 OK –�

 SubscriptionResult=<DONE>

14

18

14

16

ES2+

exchange

Present Plans, Capture T&C,

Request Subscription

17

Profile Ready for Download

(download Info with

ActivationCode)

Finish Flow ()

15

19

GET / POST

 ap2009, operation = ManageSubscription &

 operation_type = 4-UPDATE,

 terminal_id = <IMEIsim> or <UUIDapp>,

 target_terminal_id = <IMEIesim>,

 target_terminal_iccid = <ICCIDesim>,

 token = <AuthToken> . . .

ODSA Device GW

Entitlement Config Server

Confirm Subscription

Answer

21

22

Activate

Service

26

ODSA Device GW

Entitlement Config Server

BSS / OSS SM-DP+

GET / POST

 app2009, operation = AcquireConfiguration &

 terminal_id = <IMEIsim> or <UUIDapp>,

 target_terminal_id = <IMEIesim>,

 token=<AuthToken> . . .

23

24

25

Optional

eSIM

ODSA

Client

Primary

Device

SIM

POST to <SubscriptionURL> w/ <SubscriberData>

Activate Subscription

(SubscriptionID,

EIDesim, PlanID)

Activate Subscription

Answer

(ICCIDesim)

Confirm Subscription

(SubscriptionID, ICCIDesim)

200 OK

PrimaryConfiguration =

 [ICCID = <ICCIDesim>

 ServiceStatus = 1-ACTIVATED

]

Subscription Status Query

(SubscriptionID, IMEIesim)

Subscription Status Answer

(SubscriptionStatus)

image36.emf
3

1

2

4

Send OTP to end-user identified with <MSISDNsubs>

End-User provides OTP to client

200 OK –�Cookie

Client App asks end-user to identity

current subscription (phone #)

Validate OTP

ODSA Device GW

Entitlement Config Server

GET / POST

 ap2009, terminal_id = <IMEIsim> or <UUIDapp>,

 & msisdn = <MSISDNsubs> . . . ! No <AuthToken>

GET / POST

 ap2009,

 OTP = <OTP from user>, <Cookie>

200 OK –�<AuthToken>

eSIM

ODSA

Client

Primary

Device

(new)

end-user device

image37.emf
ODSA Device GW

Entitlement Config Server

eSIM

ODSA

Client

Primary

Device

(new)

4

1

3

200 OK –�<AuthToken>

End-User Authentication

OAuth 2.0 / OpenID Authentication exchange

GET / POST

 ap2009, terminal_id = <IMEIesim> or <UUIDapp>, . . .

 ! <AuthToken> is absent

End-user invokes the

Primary ODSA Application

MNO OAuth

OIDC Server

Redirect to OAuth/OIDC

server with proper parameters

2

Microsoft_Visio_Drawing1.vsdx
ODSA Device GW
Entitlement Config Server
eSIM
ODSA
Client
Primary
Device
(new)
4
1
3
200 OK – <AuthToken>
End-User Authentication
OAuth 2.0 / OpenID Authentication exchange
GET / POST
 ap2009, terminal_id = <IMEIesim> or <UUIDapp>, . . .
 ! <AuthToken> is absent
End-user invokes the Primary ODSA Application
MNO OAuth OIDC Server
Redirect to OAuth/OIDC server with proper parameters
2

image38.png
operation_type = 3-TRANSFER,

8 terminal_id = <IMElesim> or <UUIDapp>, d
Check for MultiSIM

T
|
|
|
|
|
|
|
|
|
|
|
1 |
|
old_terminal_iccid = <ICCIDold>. 9 '_(Subscnpmonln, ICCIDold) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Client ODSA Device GW

T Entitlement Config Server Bss/oss SM-DP+

| GETIPOST ! T

51 ap2009, operation = CheckEligibility, |

terminal_id = <IMElsim> or <UUIDapp>, > Profile Query |

token = <AuthToken> 6 [(subscriptioniD) >

Profile Answer_|

(EntitiStatus) "1

2000K - |

A PrimaryDeviceStatus = ENABLED ™™™ I

| GETIPOST | !

| ap2009, operation = ManageSubscription & | :

|

|

token = <AuthToken>

{l
1
I((MultiSiMstatus)

0 obtain old termina iccid
(conditional)

11| Reserve profile based on current

[
1
1
1
1
1
1
1
1
1
1
1
| subscription
1 T
1 | Activate Subscription
| —(SubscriptionlD, IMElesim——— £y
i | PlaniD) 26 exchange ™
1 eennennnn. Acivate Subscripion |
1 f ‘Answer (ICCIDesim) ™" |
1
I |
| 13 Cancel old subscription | |
| I
1 T
I |
1 |_Deactivate Subscription
| ™ (SubscriptionID, ICCIDold)’ ’(_ ES2+ !
| | 148 exchange™ |
! 2000K— i Deadtvate Subserpton, | |
I3 Downloadinfo=<Activation Code> —-=-l15 newer ! !
Get Profile % ‘SubscriptionResult=<2-DOWNLOAD PROFILE> | ! !
*—(ActCode) 1 ! | |
17 1 Get Commurication Profile 1 ! N
T ES9+ exchange T | q
l | GET/POST 1 | |
I | ap2009, operation = ManageSubscription & 1 | |
| T8 operation_type = 4-UPDATE, { | |
! ™ terminal_id = <IMIBlesim> or <UUIDapp>, — =2 Confirm Subscription |
! | terminal_iccid = <ICClDesim>, 19 (SubscriptionID, ICCI Des\m)_)l 1
! ! token = <AuthToken> |
| I Confitm Subscription__| |
| | o
I I 2000K - | |
| S ‘SubscriptionResult=<DONE | |
| —— e Optional ~ —— ——— |
| | | |
GET/POST 1 |
} I |21 app2009, operation = AcquireConfiguration & %' | [
| | | terminal_id= <IMElesim> or <UUIDapp>, ‘Subscription Status Query | |
| : | token=<AuinToken> 22| (subscriptioniD, |ME|eswn)_,I P
I 1 1
I o 2000K [Subscription Status Answer__| : !
| | PrimaryConfiguration = 1S (SubscriptionStatus)) |
| | D [1CCID = <ICCIDesim> 23 |
| | foororsesrsesoscscccccncncnens ServiceStatus = 1-ACTIVATED" =~~~ : | }
| 1 1 1
i vt e b [
I vate, 1
1 senice 124 | I I
[] L] L] * ‘

image39.png
1 |—— operation_type = 3-TRANSFER,

GET/POST
ap2009, operation = ManageSubscription &

‘ODSA Device GW
Entitlement Config Server

terminal_id = <IMElesim> or <UUIDapp>,
token = <AuthToken>

2000K —

‘SubscriptionResult = 1-ReturnToWebsheet

- SubscriptionServiceURL = <URL>,

‘SubscriptionServiceUserData = <Data>

‘ODSA User GW
Portal Web Server
GET/POSTto |
3l SubscriptionServiceURL _—
| (SubsrictionServiceUserData, ...) |
| h
| Present SIM profiles || 4
: PR Selecion Completed s
| ‘(old_terminal_id and/or old_terminal_iccid) |
| I
| 1
| GETIPOST |
| ap2009, operation = ManageSubscription & °
H operation_type = 3-TRANSFER,
terminal_id = <IMElesim> or <UUIDapp>,

old_terminal_iccid = <ICCIDold> and/or (
old_terminal_id = <IMElold> or <UUI Dapp>)
token = <AuthToken>

I
|
|
|
|
|
|
|
|
|
|
|
I
I
I
I
I
I
I
I
I
|
I
I
|
|
i
'Y

image40.emf
Entitlement

Config Server

5G-capable

Device

3GPP

AAA

SIM /

eSIM

EAP-AKA Auth

Telco Back-End

Subscriptions

& Plans

Back

-

End APIs

Production

Service Platforms

3G

4G-LTE

5GNR

Based on

access

Service Apps

Telco Engagement

Management

Notification of Change

(Data Plan Info)

TS.43 App

Data Plan Info

TS.43 –�Protocol

 Request (Device, SIM info)

 Response (Data Plan Info)

image41.emf
Telco

Back-End

Entitlement Config

Server

GET / POST ?

 terminal_id=<TERMID> &

 app=ap2010 &

 token=<AUTH_TOK> & . . .

200 OK

 [{ Access Type : <RAT1> ,

 Access Plan : <PLAN_TYPE1> } ,

 { Access Type : <RAT2> ,

 Access Plan : <PLAN_TYPE2> } ,

 . . .

 { Access Type : <RATn> ,

 Access Plan : <PLAN_TYPEn> }]

3

1

2

4

Plan Status Query

(SUBS_ID)

Status Answer

(PLAN_STATUS)

App makes Data Plan

Info Request

Device applies data plan

info to services

5G-capable

Device

SIM /

eSIM

TS.43 App

Data Plan Info

image42.emf
Telco

Back-End

Entitlement Config

Server

GET / POST ?

 terminal_id=<TERMID> &

 app=ap2010 &

 token=<AUTH_TOK> & . . .

200 OK

 [{ Access Type : <RAT1> ,

 Access Plan : <PLAN_TYPE1> } ,

 { Access Type : <RAT2> ,

 Access Plan : <PLAN_TYPE2> } ,

 . . .

 { Access Type : <RATn> ,

 Access Plan : <PLAN_TYPEn> }]

9

7

8

10

5

6

Plan Status Query

(SUBS_ID)

Status Answer

(PLAN_STATUS)

Change in Status that

impacts data plan info

Device applies data plan

info to services

Plan Status

Notification Change

Notif (FCM, GCM, SMS)

 app=ap2010

 . . .

Device refreshes the Data Plan

Info making a new request

5G-capable

Device

SIM /

eSIM

TS.43 App

Data Plan Info

image43.emf
ODSA GW

Entitlement

Config Server

ODSA

Client

TS.43 –�ODSA Server Initiated

 Protocol

Entreprise Devices

Telco Engagement

Management

Telco Back-End

Party

Back

-

End APIs

(

e

.

g

.

TMF APIs

)

Commerce

Production

SM-DP+ ES9+

Operator

OAuth2.0

Server

Server to

Server

OAuth2.0 with

JWT

Connectors

Requesting Server

eSIM

Enterpise A

image44.emf
Activation

Request

(DEVIDenterp,

EIDenterp)

ODSA Device GW

Entitlement Config Server

BSS / OSS

GET / POST

 ap2011, operation = CheckEligibility,

 terminal_id = <DUMMY_value or UUIDclient>,

 requestor_id = <UUIDclient>,

 enterprise_id = <AccountID>,

 access_token = <ACC_TOKEN>,

 . . .

GET / POST

 ap2011, operation = ManageSubscription &

 terminal_id = <DUMMY_value or UUIDclient>,

 requestor_id = <UUIDclient>,

 operation_type = 0-SUBSCRIBE,

 plan_id = <PlanID>,

 enterprise_terminal_id = <DEVIDenterp>,

 enterprise_terminal_eid = <EIDenterp>,

 token=<AUTH_TOKEN> . . .

200 OK -

 SubscriptionResult = 2-DOWNLOAD PROFILE

 DownloadInfo = <ActivationCode>

Profile Query

(AccountID, DEVIDenterp)

Profile Answer

(none)

Subscription Answer

(ICCIDenterp)

Activate Subscription Request

(AccountID, PlanID,

 DEVIDenterp, EIDenterp)

200 OK

 -- no enterprise configuration

SM-DP+

ES2+

exchange

Get Communication Profile

ES9+ Exchange

DownLd Profile

(ActivationCode)

ODSA

Client

Requesting Server

GET / POST

 ap2011, operation = AcquirePlan,

 terminal_id = <DUMMY_value or UUIDclient>,

 requestor_id = <UUIDclient>,

 token = <AUTH_TOKEN>,

 operation_type = 20-GET PLANS

 . . .

200 OK

 <AUTH_TOKEN>

 EnterpriseAppEligbility = ENABLED

200 OK -

PlanOffers =

 [PlanOffer =

 [planId = <PlanID>

 planName = <PlanName>

 planDescription = <PlanDesc>]

 . . .

]

Plan Query

(AccountID)

Plan Answer

(PLAN_DATA)

GET / POST

 app2011, operation = AcquireConfiguration &

 terminal_id = <DUMMY_value or UUIDclient>,

 requestor_id = <UUIDclient>,

 enterprise_terminal_id = <DEVIDenterp>,

 token=<AUTH_TOKEN> . . .

OAuth 2.0

Server

Validate Token

(ACC_TOKEN)

Validate Enterprise

 (UUIDclient, AccountID)

Enterprise Device

eSIM

AT ENTERPRISE LEVEL

for MULTIPLE devices

AT ENTERPRISE LEVEL

for EACH device

4

2

3

5

9

10

12

6

7

8

11

14

15

13

16

17

18

Requesting the Access Token –�Client AuthN (server to server OAuth2.0 with JWT)

AT MNO LEVEL

for MULTIPLE enterprises

1

