
GSM Association Non-conf idential

Of f icial Document IG.15 - Best practises for 5G App Developers

V0.1 Page 1 of 20

C2 General

Best practises for 5G App Developers

Version 1.0

23 November 2022

This is a White Paper of the GSMA

Security Classification: Non-confidential

Access to and distribution of this document is restricted to the persons permitted by the security classification. This document is subject to

copyright protection. This document is to be used only for the purposes for which it has been supplied and inform ation contained in it must not be

disclosed or in any other way made available, in whole or in part, to persons other than those permitted under the security classification without

the prior written approval of the Association.

Copyright Notice

Copyright © 2022 GSM Association.

This whitepaper is maintained by GSMA and it can be referenced with the provisions set out in GSMA AA.32 - GSM Association Intellectual

Property Rights Regulations.

Disclaimer

The GSM Association (“Association”) makes no representation, warranty or undertaking (express or implied) with respect to and does not accept

any responsibility for, and hereby disclaims liability for the accuracy or completeness or timeliness of the information contained in this document.

The information contained in this document may be subject to change without prior notice.

Compliance Notice

The information contain herein is in full compliance with the GSM Association’s antitrust compliance policy.

GSM Association Non-conf idential

Of f icial Document IG.15 - Best practises for 5G App Developers

V1.0 Page 2 of 20

Table of Contents

1. Introduction 4

1.1. Overview 4

1.2. Document Purpose 4

1.3. Scope 5

1.4. Abbreviations 5

1.5. References 6

2. Best Practices for Application Developers 6

2.1. Best Practices Summary 6

2.2. BEST PRACTICE - Know Thy Network 7

2.2.1. Introduction 7

2.2.2. Background Context and Rationale 7

2.2.3. Issue Details 7

2.2.4. Recommendations 8

2.2.5. Pseudo-Code/Implementation 8

2.3. BEST PRACTICE – Know Thy Application 9

2.3.1. Introduction 9

2.3.2. Background Context and Rationale 9

2.3.3. Issue Details 9

2.3.4. Recommendations 9

2.3.5. Pseudo-Code/Implementation 9

2.4. BEST PRACTICE – Expect Latency Gaps 10

2.4.1. Introduction 10

2.4.2. Background Context and Rationale 10

2.4.3. Issue Details 10

2.4.4. Recommendation 10

2.4.5. Pseudo-Code/Implementation 11

2.5. BEST PRACTICE – Expect Throughtput Fluctuations 11

2.5.1. Introduction 11

2.5.2. Background Context and Rationale 11

2.5.3. Issue Details 11

2.5.4. Recommendation 11

2.5.5. Pseudo-Code/Implementation 11

2.6. BEST PRACTICE – Let the User Opt-In to Advanced Experiences 12

2.6.1. Introduction 12

2.6.2. Background Context and Rationale 12

2.6.3. Issue Details 12

2.6.4. Recommendation 12

2.6.5. Pseudo-Code/Implementation 12

2.7. BEST PRACTICE - Look out for Upstream congestion 12

2.7.1. Introduction 12

2.7.2. Background Context and Rationale 12

2.7.3. Issue details 13

2.7.4. Recommendations 13

GSM Association Non-conf idential

Of f icial Document IG.15 - Best practises for 5G App Developers

V1.0 Page 3 of 20

2.8. BEST PRACTICE - Push, Don’t Poll! 13

2.8.1. Introduction 13

2.8.2. Background Context and Rationale 13

2.8.3. Issue Details 14

2.8.4. Recommendations 14

2.8.5. Pseudo-Code/Implementation 14

2.9. BEST PRACTICE – Have a good fallback source of data 14

2.9.1. Introduction 14

2.9.2. Background Context and Rationale 14

2.9.3. Issue Details 15

2.9.4. Recommendations 15

2.10. BEST PRACTICE – Keep Cool – Avoid Thermal Mitigation 15

2.10.1. Introduction 15

2.10.2. Background Context and Rationale 16

2.10.3. Issue Details 16

2.10.4. Recommendation 16

2.10.5. Pseudo-Code/Implementation 16

2.11. BEST PRACTICE - Application portability and deployment 16

2.11.1. Introduction 16

2.11.2. Background Context and Rationale 16

2.11.3. Issue details 17

2.11.4. Recommendations 17

2.12. BEST PRACTICE – Plan revenue technologies from the outset 18

2.12.1. Introduction 18

2.12.2. Background Context and Rationale 18

2.12.3. Issue Details 18

2.12.4. Recommendation 18

2.13. BEST PRACTICE - Crash Gently 18

2.13.1. Introduction 18

2.13.2. Background Context and Rationale 19

2.13.3. Issue Details 19

2.13.4. Recommendation 19

Annex A Document Management 20

Annex A.1 Document History 20

Other Information 20

GSM Association Non-conf idential

Of f icial Document IG.15 - Best practises for 5G App Developers

V1.0 Page 4 of 20

1. Introduction

1.1. Overview

Prior generations of mobile networks have been limited by network elements and designs

that added dozens or even hundreds of milliseconds to each transaction, making delivery of

‘real-time’ wireless applications impossible. Emerging 5G networks, combined with Edge

Computing, are poised to enable entirely new types of apps for users. These will take

advantage of extremely low latency and high throughput to deliver experiences that feel

‘human-time’ – so responsive that they feel as natural as a human response. These may

include: real-time language translation, AR-assisted guidance, intra-vehicle traffic safety,

cloud-rendered gaming, and other yet-to-be-envisioned experiences that may one day

become essential to daily life.

When the first wireless applications became part of daily life, developers (assisted by

Operators and Platform providers) learned that a mobile network has different capabilities

and requirements than a wired network. They implicitly or explicitly learned a set of ‘Best

Practices’ for mobile development. However, just as application developers had to learn how

to create for mobile networks in the early days of 4G, developers now need to learn a

different bag of tricks to make the most of 5G networks.

Security guidance is not covered within this document, however developers are

recommended to use best practice security measures in all their work, for which there are a

number of freely available resources available from a range of organisations. There is an

increasing need to ensure the security of networks and future work is intended to be

published in order to support developers to take adequate measures to prevent security

issues.

1.2. Document Purpose

The purpose of this document is to provide concise and specific tips to developers building

latency sensitive applications for emerging 5G Networks. This document tries to provide

guidance to get around some of the pitfalls that developers may encounter. The main target

audience for this document is application developers, but also may be useful for Mobile

Network Operators and Device Manufacturers.

The Best Practices that follow are not simply ‘academic’. These guidelines were derived by

GSMA member operators based on detailed interviews with actual developers. These early-

phase developers described successes and challenges they faced and what they ‘wished

they had known’ at the outset of their project. The GSMA is making this living document

available to developers in order to remove barriers to development and accelerate the

growth of a new generation of applications that take advantage of emerging 5G and Edge

Compute capabilities.

By following these guidelines and recommendations, developers will be better equipped to

create network-efficient mobile applications, benefiting all players:

Developers can be aware of and avoid common problems, saving valuable iteration cycles.

Customers will see a more responsive user experience and better battery life.

GSM Association Non-conf idential

Of f icial Document IG.15 - Best practises for 5G App Developers

V1.0 Page 5 of 20

Mobile Operators will see a reduced strain on network resources, lowering congestion and

increasing reliability and cost effectiveness.

This document is intended to be a ‘living’ document, and GSMA members and partners will

provide updated suggestions and learnings based on real world experiences. Any readers

with additional suggestions for the document can contact the GSMA at prd@gsma.com.

The document is for information and feedback to the GSMA or the Editor is very welcome.

1.3. Scope

This document is designed to provide guidance to all developers to encourage a better

approach to creating mobile apps. Whilst it is recognised that security is a key concern when

it comes to interaction with the mobile network, it is considered beyond the scope of this

document.

The scope of these developer guidelines is limited to:

• General guidelines for native apps that require mobile network connectivity

• Specific guidelines for iOS and Android.

There are no plans for testing or certification based on this document.

1.4. Definitions

Term Description

API

Application Programming Interface is a source code based specification

intended to be used as an interface by software components to communicate

with each other. An API may include specifications for routines, data

structures, object classes, and variables

1.5. Abbreviations

Term Description

API Application Programming Interface

APN Access Point Name

AR Augmented Reality

CDNs Content distribution Networks

CI/CD Continuous Integration and Continuous Delivery/Continuous Deployment

GSMA
Global System for Mobile Communications, originally Group Special Mobile

Association

MEC Multi-access edge computing

MNO Mobile Network Operator

PRD Permanent Reference Document

RAT Radio access technology

RNC Radio Network Controller

SDK Sof tware Development Kit

mailto:prd@gsma.com

GSM Association Non-conf idential

Of f icial Document IG.15 - Best practises for 5G App Developers

V1.0 Page 6 of 20

1.6. References

Ref Doc Number Title

[1] GSMA TS.09
Battery Life Measurement and Current Consumption

Technique

[2] GSMA AA.32 GSM Association Intellectual Property Rights Regulations

2. Best Practices for Application Developers

The following set of Best Practices is offered as an initial draft. We expect that as new

applications are launched taking advantage of these new capabilities, new Best Practices

will be discovered, and ideally become part of this open and collaborative body of work.

2.1. Best Practices Summary

The following table summarizes and categorizes the Best Practices that follow in order show

how these best practices can help developers achieve key goals:

Application Resilience: Best practices to facilitate an application to react to changing

conditions while providing the best possible experience.

User Experience: Best practices for designing application behaviors to best fit human

needs.

Optimize Resources: Best practice to facilitate an application to use network and energy

resources in the most efficient manner.

Data Resilience: Best practice to ensure data continuity in varied conditions.

(Future versions of this document posted online may include keyword tags associated with

each Best Practice to make indexing and cross-referencing easier in the future.)

Best Practice

Category

Application

Resiliency
User Experience

Optimize

Resources

Data

Resilience

Know the Network X X

Know The

Application
X X

Expect Latency

Gaps
X X

Expect throughput

f luctuations
X X

Look out for

Upstream

congestion

X X

Push, Don’t Poll! X

GSM Association Non-conf idential

Of f icial Document IG.15 - Best practises for 5G App Developers

V1.0 Page 7 of 20

Keep Cool – Avoid

Thermal Mitigation
 X

Have a good

fallback source of

data

X X

Plan revenue

technologies f rom

the outset

 X X

Crash Gently X X X

Application

portability and

deployment

 X X

2.2. BEST PRACTICE - Know Thy Network

2.2.1. Introduction

Each generation of mobile network has material differences in capabilities. For your app to

behave optimally, a key starting point is knowing the network Radio Access Technology

(RAT) the device is connected to and its capabilities at any given moment. For example, if

your user is in an extremely remote area, or even on an older network such as 3G,

attempting to deliver an experience requiring a robust network may frustrate the user.

Other aspects like ultra low latency or very high throughput are features of a 5G network,

and will by far exceed other RATs like 4G or 3G. Thus, if your app needs any of those

features, you must be sure your device is under 5G coverage with sufficient available

resources.

2.2.2. Background Context and Rationale

As a developer, it is critical to keep in mind the physical realities of the mobile network

delivery chain. In addition to the radio connection between your user’s device and the base

station, there are a number of network segments that packets will need to traverse to

communicate with your application servers. This includes the Radio Access Network,

Backhaul Transport, Mobility Cores, Internet Links and Application Servers (and back again).

While traffic usually navigates these segments along a ‘happy path’, there are corner cases

where certain segments may experience unexpected delays.

Additionally, because the Radio Access Network is just one of the segments, users may see

fantastic coverage (5 bars, etc), but have a poor experience due to problems in an

underlying segment.This means that as a developer, you should expect that your application

may have a very different set of conditions over time, and that this may be confusing to your

users in the field.

2.2.3. Issue Details

This variability is simply a reality of even the best mobile networks. Regardless of how

technologies advance, physical realities (eg walls, trees, user’s distance from mast, etc) will

always prevent you as a developer from assuming perfect coverage.

GSM Association Non-conf idential

Of f icial Document IG.15 - Best practises for 5G App Developers

V1.0 Page 8 of 20

It is critical that your applications be constantly measuring the network and modifying the

application experience accordingly. Adaptive Bitrate Streaming is a common technology that

addresses this issue on video applications, and a core component of these applications is

the measurement logic that estimates throughput during use.

2.2.4. Recommendations

For emerging applications on 5G networks, at the current time, it will likely be a best practice

to build similar logic into your application. While it is possible to determine the network (4G

vs 5G) via an API call on the device, even with that knowledge, there may be wide variations

that could impact your application.

Therefore, we suggest building in measurement logic that can actively calculate the

bandwidth your users are getting as they use the app, as well as latency calculations for

apps that require low latency.

NOTE – be cautious to not perform arbitrary speed tests that generate excess traffic for

minimal value – it is better to test using files that are required to support the user experience.

If your user is not in an area that supports your required bandwidth or latency, modify your

app behavior rather than default to that experience. As mentioned in another Best Practice,

consider offering the advanced experience as a ‘Bonus’ option or ‘Beta’, and continually

monitor for the desired levels.

A key point is that this requires that as a developer you clearly have tested your application

under varying levels and understand exactly what is required (see next Best Practice).

2.2.5. Pseudo-Code/Implementation

There are a few practical steps here:

• Check RAT (Android):

o Android 11 and higher:

▪ https://developer.android.com/about/versions/11/features/5g

o iOS:

▪ https://developer.apple.com/documentation/coretelephony/cttelephonynetworki

nfo/3024510-servicecurrentradioaccesstechnol

▪ https://developer.apple.com/documentation/coretelephony/cttelephonynetworki

nfo/radio_access_technology_constants

• Psuedo-code to Build a Throughput Calculator

o As part of app, designate a particular file of known size to act as a reference

object.

o Record time stamps each time this file is requested, when download starts, and

when download is completed.

o Divide download time by object size to estimate throughput speed. This can

provide a general idea of the throughput available to your application over time

https://developer.android.com/about/versions/11/features/5g
https://developer.apple.com/documentation/coretelephony/cttelephonynetworkinfo/3024510-servicecurrentradioaccesstechnol
https://developer.apple.com/documentation/coretelephony/cttelephonynetworkinfo/3024510-servicecurrentradioaccesstechnol
https://developer.apple.com/documentation/coretelephony/cttelephonynetworkinfo/radio_access_technology_constants
https://developer.apple.com/documentation/coretelephony/cttelephonynetworkinfo/radio_access_technology_constants

GSM Association Non-conf idential

Of f icial Document IG.15 - Best practises for 5G App Developers

V1.0 Page 9 of 20

• Psuedo-code to Build a Latency Calculator

o Use the same reference object as above.

o In addition to recording time stamps of file request, download start, and download

completed, record the time the server receives the request.

o Compare server download start time to Time to First Byte for the object on the

client.

o This can provide a general idea of the latency available to your application over

time. Note that this latency includes the Internet latency as well as any mobile

network latency.

• NOTE – in certain cases (rapid user mobility, congested urban environments) the

available bandwidth over the RAT can vary by an order of magnitude within a second.

Consider re-checking throughput and latency periodically for longer application

sessions (videos, games etc.)

2.3. BEST PRACTICE – Know Thy Application

2.3.1. Introduction

As mentioned above, it is critical to understand the capabilities of the network your

application is running on. However, it is just as important to understand exactly what your

application demands from the network.

2.3.2. Background Context and Rationale

Understanding in detail the proper operating range for your application is essential to make

sure that customers consistently have a satisfactory experience. Much like the idea behind

Adaptive Bit Rate Video, in most cases it is better to offer a limited experience than an

experience that appears broken to the user. However, if your application truly requires very

high throughput and ultra low latency to deliver any value to the user, it is critical that you

know these functional limits and design the user experience accordingly.

2.3.3. Issue Details

Given that most developers are typically working in areas with good mobile coverage, the

key issue here is creating an appropriate test bed to allow easy testing across a wider range

of conditions.

2.3.4. Recommendations

As part of setting up your CI/CD process, be sure to plan to build out a mechanism to test

your application across a variety of network conditions. As early as possible in your project

design and development cycle, design an approach to how your application will respond to

varying network conditions – do you automatically adapt and offer a ‘low-res’ version of your

application when network resources are limited? Do you only enable access to the

experience when the network is at a certain level? It is critical to understand the functional

breakpoints of your app, and create an ongoing test plan that exercises these limits at each

test iteraton throughout your product lifecycle.

2.3.5. Pseudo-Code/Implementation

Test your application under varying conditions to understand requirements:

GSM Association Non-conf idential

Of f icial Document IG.15 - Best practises for 5G App Developers

V1.0 Page 10 of 20

• Use a Network Attenuation mechanism to vary throughput and/or latency. These tools

include:

o Apple Network Link Conditioner

o PCAPDroid

o Charles Proxy

o AT&T Video Optimizer (Network Attenuator feature)

o ns-3 5G Network Simulators

• Conduct tests to determine the required range for your application performance.

• Implement as part of the CI/CD process

2.4. BEST PRACTICE – Expect Latency Gaps

2.4.1. Introduction

Ultra-low latency mobile networking is a key characteristic of 5G networks, and this

capability is likely to enable previously unimaginable mobile applications.

However, as these networks rollout and mature, developers should expect and plan for

inconsistent conditions – both jitter and packet loss.

2.4.2. Background Context and Rationale

As 5G networks roll out, coverage may not be ubiquitous, so you can expect that users may

move between 4G and 5G networks – even while using your application. Additionally, for

various reasons related to routing and location of your edge servers, network latency and

throughput may vary or experience gaps.

2.4.3. Issue Details

The specific behaviour that developers should expect is both wide variation in latency that

could vary by 10’s or even 100’s of milliseconds periodically. It is CRITICAL to design and

test your application to function appropriately across these varying conditions.

2.4.4. Recommendation

This Best Practice has two specific recommendations:

2.4.4.1. Have Realistic Expectations for Your Application

From the initial concept of your application, design with the understanding that latency may

vary. Do not design a self-driving car application that will be unable to spot an obstacle and

stop safely if network latency unexpectedly increases.

Build a resilient and intuitive experience into the core of your application for users. Your

application WILL fail – it is up to you to design it to fail elegantly.

2.4.4.2. Test Your Application Against Varying Conditions

Simply testing your application at your workstation is not sufficient. It is critical to use a

network emulation tool that can simulate varying network conditions – both variable

throughput and varying latency. Your application must be hardened and tolerant of a world

that is still under construction. Be sure by implementing a highly rigorous testing regime.

https://developer.apple.com/download/all/?q=Additional%20Tools
https://play.google.com/store/apps/details?id=com.emanuelef.remote_capture&hl=en_US&gl=US
https://www.charlesproxy.com/
https://developer.att.com/video-optimizer
https://ns3simulation.com/5g-network-projects/
https://ns3simulation.com/5g-network-projects/

GSM Association Non-conf idential

Of f icial Document IG.15 - Best practises for 5G App Developers

V1.0 Page 11 of 20

2.4.5. Pseudo-Code/Implementation

In order to implement this Best Practice, it is critical to set up a test bed for your application

that allows you to observe your application over time as latency varies. Ideally, you should

use a tool that enables you to configure a profile that sets latency at specific levels over time.

Regardless of which tool you use, it is critical to at least document the specific latency-over-

time patterns that you have used so that you can go back and repeat the same tests over

time as you tune your app.

 Tools that offer latency variability include:

• AT&T Video Optimizer (Network Attenuation Feature w/variable latency profile)

• Apple’s Network Link Conditioner

2.5. BEST PRACTICE – Expect Throughtput Fluctuations

2.5.1. Introduction

Higher throughput is another key characteristic of 5G networks, and opens the door to a

wide range of new or improved services and applications.

However, just as in the Latency variation described above, available throughput for an

application might vary significantly during use due to the complexity of these many

segments.

2.5.2. Background Context and Rationale

Network throughput is the amount of data that can be transferred from a server to the device

that is executing the application in a given time frame. The throughput can be affected by

different factors described above, such as the number of network elements the information

has to cross or other physical factors, components’ available, processing power in that

specific moment, or user and application behaviour. Thus, the maximum throughput can

suffer fluctuations.

2.5.3. Issue Details

The specific behaviour that developers should expect is that throughput can vary in a

determined range, although it should not typically fail under an established limit or overpass

the higher one. It is critical to design and test your application to function appropriately

across these varying conditions.

2.5.4. Recommendation

Design your app so that it is robust to bandwidth variations and can work well over a range

of real world network bandwidths.

2.5.5. Pseudo-Code/Implementation

Testing the application against different limits will help to stablish the thresholds or the ranks

in which you can ensure the application will run optimized. It is strongly recommended to

test against test harneses that can vary the available throughput to the devices.

Tools that offer throughput variability include:

https://developer.att.com/video-optimizer
https://developer.apple.com/download/all/?q=Additional%20Tools

GSM Association Non-conf idential

Of f icial Document IG.15 - Best practises for 5G App Developers

V1.0 Page 12 of 20

• AT&T Video Optimizer (Network Attenuation Feature w/variable latency profile)

• Charles Proxy

• Apple’s Network Link Conditioner

2.6. BEST PRACTICE – Let the User Opt-In to Advanced Experiences

2.6.1. Introduction

Given that the laws of physics will always introduce some variability into the network

capabilities available to a user at any given moment, developers have the power to design

their applications to provide the best experience for these conditions.

2.6.2. Background Context and Rationale

Human emotions are not straightforward. Game theorists understand that most people have

a much more negative emotional reaction to losing something that they possess than to the

idea of gaining something they do not have.

2.6.3. Issue Details

If an application assumes the best possible network conditions from the outset, it can set

certain expectations to users for an ‘advanced’ experience. If the application then falls back

to a more standard experience, the user will be much more negatively impacted emotionally.

2.6.4. Recommendation

When designing an application that can take advantage of advanced network features, it is

much better to begin with a standard experience and position these advanced features as an

optional or even ‘trial’ experience. This will make users receiving the experience feel that

they have something ‘extra’, without severely disappointing users that may not be in an area

with adequate network resources.

2.6.5. Pseudo-Code/Implementation

By following the guidance in the Best Practices above and actively monitoring the resources

available to the application, you should offer these advanced experiences as an option when

it looks like the network can support those features.

If the network conditions do not support the features, either hide the feature entirely, or ‘grey

out’ the feature so that the user knows they can attempt again when they have moved to

different location.

2.7. BEST PRACTICE - Look out for Upstream congestion

2.7.1. Introduction

Most mobile networks have historically been designed to allocate more resources to carry

download vs upload traffic. As a result, uploads may be more unpredictable, so be sure that

your application can provide an acceptable experience with a range of upload speeds.

2.7.2. Background Context and Rationale

Especially when applications are used to the performance of fixed networks the experience

of mobile networks can be quite challenging. While upload/download speeds improve with

https://developer.att.com/video-optimizer
https://www.charlesproxy.com/
https://developer.apple.com/download/all/?q=Additional%20Tools

GSM Association Non-conf idential

Of f icial Document IG.15 - Best practises for 5G App Developers

V1.0 Page 13 of 20

every generation, in rural locations or within buildings, coverage can be poor and cellular

speed vary massively or even break up regularly.

An application with constant synchronization should consider these obstacles and find

strategies to adjust network usage based on those variables.

2.7.3. Issue details

Historically Networks and User Equipment were always based on improving download

speeds for the UEs. Development concentrated on factors like Antenna-Design, Receivers

and Baseband functionalitites, download speed was always more important. Ratios for

mobile systems are often split DL:UL = 4:1 which clearly show the historic value distribution.

Private Networks and Network Slicing might offer solutions in the future but that may not

offer an immediate solution.

2.7.4. Recommendations

If your application does not rely on constant upload, e.g. for live streaming or live multiplayer

games, consider delaying uploads until the user is back in Wi-Fi or their Home-Network.

This could also reduce costs for users, since an upload over cellular that could be done at a

later state could save money based on the users data contract.

Note that at no point should an application constantly ping/probe a network or bombard a

network with requests in order to force an upload.

2.8. BEST PRACTICE - Push, Don’t Poll!

2.8.1. Introduction

Most users have many applications installed, and many of them may be performing activities

periodically in the background. If we consider two identical Android devices, one without

applications (factory configuration) and other loaded with the most successful applications

from the market, after one hour without end user interaction (Standby mode), the

measurements show very different effect on signalling and byte consumption. The device

with normal apps (Facebook, Twitter, Whatsapp, Weather, News, Traffic, etc.) generates

5500% more RNC signalling and 2800% more IP data than a terminal just restored from

factory values and a Google account configured.

As a developer, it is important to keep in mind this level of activity, and try to manage

background communications efficiently.

2.8.2. Background Context and Rationale

A feature that could help with your network optimisation is limiting the signalling or

information exchanged to establish and manage your connections. Some of the most

popular smartphone applications are also some of the greatest generators of signalling

traffic, including social media, music streaming and e-mail. Extra signalling traffic or frequent

“keep alive” messages overwhelm the resources of central network elements, and this is not

good for your application either, as large numbers of your application users may be in a

concentrated area and unwittingly create a negative experience for everyone.

GSM Association Non-conf idential

Of f icial Document IG.15 - Best practises for 5G App Developers

V1.0 Page 14 of 20

Finally, because the radio is often the biggest power drain on a device, all of this constant

polling can have a material impact on the expected life of the device battery.

2.8.3. Issue Details

The root of the problem is that sometimes your device needs to know when some state may

change that is stored on the server, from another user, or that is coming from somewere

other than the device.

The practice of ‘long-polling’ was common for many years as a way to periodically keep the

device updated. (A metaphor here is a child in the backseat constantly asking ‘Are we there

yet?’ for a long drive.) For both mobile networks and your application server infrastructure,

this is generally no longer the best solution.

2.8.4. Recommendations

Instead of long-polling, we recommend that where possible you push to mobile applications

using common practices such as Publish-Subscribe (or pub-sub). This general practice will

allow your application to register for a pertinent update and get updates only if and when

needed.

2.8.5. Pseudo-Code/Implementation

Many resources and implementations for pub sub exist, but here are a few general places to

get started:

• https://cloud.google.com/pubsub/docs/overview#:~:text=Pub%2FSub%20enables%2

0you%20to,remote%20procedure%20calls%20(RPCs).

2.9. BEST PRACTICE – Have a good fallback source of data

2.9.1. Introduction

Caching is a common technique that aims to improve the performance and scalability of a

system. It does this by temporarily copying frequently used data to a fast storage that is

located near the application. If this fast data storage is located closer to the application than

the original source (e.g. in MEC servers), caching can significantly improve the response

times of client applications by serving data faster.

In the world of cloud computing, the original data typically resides on the public cloud, and

the devices or edge servers can have a copy of that data. Maintaining data consistency

across such distributed data stores can be a significant challenge.

2.9.2. Background Context and Rationale

As a developer, it is critical to design carefully which pieces of your application data should

be stored in MEC servers and which should be stored instead in a public cloud or devices.

The most basic type of cache is an in-memory store. This type of cache is quick to access,

and it can store modest amounts of static data, since the size of a cache is typically

constrained by the amount of memory available on the machine hosting the application. If

your application needs to cache more information than is physically possible in memory, the

https://cloud.google.com/pubsub/docs/overview#:~:text=Pub%2FSub%20enables%20you%20to,remote%20procedure%20calls%20(RPCs)
https://cloud.google.com/pubsub/docs/overview#:~:text=Pub%2FSub%20enables%20you%20to,remote%20procedure%20calls%20(RPCs)

GSM Association Non-conf idential

Of f icial Document IG.15 - Best practises for 5G App Developers

V1.0 Page 15 of 20

application can write cached data to the local file system. This will be slower to access than

data held in memory but should still be faster than retrieving data from public cloud servers.

Caching can dramatically improve your application performance, scalability, and availability.

The more information your application has in cache and the more users need to access that

data, the greater the benefit of caching. This is because caching reduces the latency and

conflict associated with processing large concurrent requests in the original data storage.

2.9.3. Issue Details

2.9.4. Recommendations

While specific recommendations vary depending on the tech stack that you use for your

application, this Best Practice has a few general recommendations:

2.9.4.1. Use cache for low latency or high-bandwidth scenarios

As a developer, you should use edge computing architecture to exploit the speed of 5G and

unlock key low-latency and high-throughput scenarios. Hosting storage or application logic at

the edge servers or devices can make your application more responsive and ease network

bandwidth requirements. Edge computing architecture avoids the latency that would result

from application traffic traversing multiple hops across the Internet to reach its destination,

and that allows end users to take full advantage of the latency and bandwidth benefits

offered by modern 5G networks.

2.9.4.2. Be prepared that the edge cache is not always available

Be careful not to introduce strong critical dependencies on the availability of an edge cache

service into your solutions. An application should be able to continue functioning if the MEC

servers that provides the cache service have changed or are unavailable. The application

should not become unresponsive or fail while waiting for the cache service to resume.

In a distributed environment, the inability to complete an operation is often due to some type

of temporary error. If such a failure occurs, an application might assume that the situation is

temporary and simply attempt to repeat the step that failed. If, despite repetition, access to

the function or cache on the edge server is not successful, the application should try to

connect to nearby edge servers or public cloud, thus reducing or eliminating any outage.

2.9.4.3. Tell the User if the data is not up to date

The only thing worse than stale data is when a user is not aware they are looking at stale

data. If the data source that is rendering data from the user is not as current as desired,

consider adding an icon or some communication to your application. For example, if the data

has not been synchronized, consider adding an sync icon with a strikethough so that users

are aware that the data may not be current.

2.10. BEST PRACTICE – Keep Cool – Avoid Thermal Mitigation

2.10.1. Introduction

5G radios and applications can generate significant heat when running intensive processes.

Testing your application under stress conditions, while monitoring in the field can prevent

thermal mitigation and application failures.

GSM Association Non-conf idential

Of f icial Document IG.15 - Best practises for 5G App Developers

V1.0 Page 16 of 20

2.10.2. Background Context and Rationale

5G radios have been reported to generate heat in some device models. Additionally,

computationally intensive tasks, such as running AR Toolkit, can create high temperatures

and send a device into ‘Thermal Mitigation’ and interrupt normal device functioning.

2.10.3. Issue Details

Running complex applications on some devices connected to 5G networks has proven

challenging to operate because of the devices regularly going into thermal mitigation after

10-15 minutes of continued use.

2.10.4. Recommendation

In order to prevent this issue, developers should test their application in challenging

circumstances while connected to tools that actively monitor the CPU temperature of the

device.

If there are specific functions in the application that generate heat spikes, developers should

use this process to iteratively modify their code or the application functionality until these

spikes have been removed from the test runs.

2.10.5. Pseudo-Code/Implementation

There are APIs within Android that can provide the CPU temperature, and one method to

test would be to instrument a call to that API and display on the screen for a test build of

their application.

Additionally, there are other tools, such as AT&T Video Optimizer, that record application

traffic and key device metrics along with a screen recording of user behaviour over the

course of the application test. This can make it easier to go back and analyze the specific

conditions leading up to the heat spike or thermal mitigation.

2.11. BEST PRACTICE - Application portability and deployment

2.11.1. Introduction

Modern application development frameworks allow building complex mobile applications with

extensive flexibility both in functionality and deployment. More recently the industry started

adopting DevOps practices such as CI/CD (Continuous integration/Continuous

Delivery&Deployment). The delivery pipeline allows for automating the workflow and takes

advantage of application containerization for packaging and runtime environment

deployment.

While, server-side component topology can be backed into the application or inferred by the

logic in the app, this coupling comes with scalability and reliability limitations. This is more

relevant when the app is expected to take advantage of Edge Computing.

2.11.2. Background Context and Rationale

In the last decade, the use of the Internet, cloud and the ubiquity of the web as an

application platform created an unprecedented increase in traffic due in part to the

development of new web standards and innovations in the mobile technologies. In addition

to that we see a tremendous growth in IoT applications, particularly in the automotive space.

https://developer.att.com/video-optimizer

GSM Association Non-conf idential

Of f icial Document IG.15 - Best practises for 5G App Developers

V1.0 Page 17 of 20

With this growth in use, there’s an increased amount of data being sent over multi-hop public

links. The industry has been using a client-server model for applications in which the client

resides typically on an end-user device and the server is hosted in a large data center using

either private or public cloud infrastructure.

Modern distributed architectures involve sophisticated caching schemes that require fetching

various objects (images, libraries, etc.) from various locations in the path to avoid latency

and improve the overall user experience while reducing bandwidth use.

More recently, application developers started taking advantage of enhanced, more

distributed architectures pushing the server-side components closer to the user. Edge

Computing extends the client server architecture by introducing an optimally-located server

endpoint with its own deployment characteristics. These concepts are not new and they

have taken different shapes in the past. Split browser architectures have pushed some of the

processing from the client to the cloud and CDNs (Content distribution Networks) are

caching content on behalf of content owners.

Edge Computing is also both an architectural and a deployment paradigm shift as

applications are edge-aware and edge-location agnostic. On one hand, from a deployment

perspective it is strictly tied to the network and data center topology. From an application

developer perspective, edge is a client and/or a server.

2.11.3. Issue details

A client-side application residing on a mobile device will almost always have a server-side

component dealing with user management, persistent application data repository and

business logic.

When the user launches the app on the device, the app will attempt to connect to the server-

side module. The application developer has many options in how to convey the network

information for that server including DNS or proprietary registries.

If the application does not provide flexibility in the way the server-side app is discovered,

there are multiple risks:

The preconfigured server address could be unreachable due to faults on the network path or

failures in the specific data center.

If the app assumed a certain topology such as an edge deployment based on the user

location, the closest geographic node might not always be the best from a performance point

of view.

The client-side application being on a mobile device, will most likely have unpredictable

connectivity conditions as it transitions from one network technology to another (4G to 5G,

WiFi to 4G, 5G to WiFi, etc.) As a result, the app unaware of the network routing policies

could provide limited optimization for user experience.

2.11.4. Recommendations

Developers, especially when expected to take advantage of the edge architecture, should

design the app so it is edge-aware but location or network topology agnostic.

GSM Association Non-conf idential

Of f icial Document IG.15 - Best practises for 5G App Developers

V1.0 Page 18 of 20

In practice it is recommended that:

• The client-side uses flexible discovery mechanisms for the server-side component

• The selection criteria for the match should be built on application’s own non-functional

requirements for bandwidth, latency, and resources.

• The server-side application should be developed with data replication/synchronization

in mind

• The server-side application is packaged and configured to be deployed in a portable

manner irrespective of the data-center location of the network node.

2.12. BEST PRACTICE – Plan revenue strategy from the outset

2.12.1. Introduction

Sometimes even the best application ideas can leave out a critical component – how does

the developer get paid?. Thinking about how revenue strategies in advance can prevent a

poor user experience down the road.

2.12.2. Background Context and Rationale

Early stage applications are often launched as free to the user. This can be especially

common for emerging areas that do not yet have widescale adoption, such as AR, VR,

Cloud Gaming, etc. However, if the revenue strategy is not well thought out from the very

outset, the eventual implementation can be clunky and lead to rejection by users.

Additionally, some revenue strategies may require a completely different technical approach,

so it is critical to have a clear and realistic technical plan for future revenue streams from the

outset.

2.12.3. Issue Details

The specific sorts of problems that can creep up are things like requiring that users create an

account after a long period of simple and easy access with no login, or inserting a complex

handoff to a paywall service that introduces a major obstacle to the user flow.

2.12.4. Recommendation

In order to avoid this issue, developers should pre-plan and build in elements of the eventual

revenue framework from the outset. This may include creating a user account, and providing

some incremental value to the user with that feature, such as storing user history or

personalization, etc. Adding a subscription to this user account will be a simpler and

smoother transition than suddenly forcing the user to create an account AND provide

payment.

2.13. BEST PRACTICE - Crash Gently

2.13.1. Introduction

Despite your best efforts, applications can crash. When it does, be certain that it happens as

gracefully as possible. This involves both user experience, such as showing a friendly

message to users, and connection management, so the app does not continuously retry to

connect to the network and cause a bigger problem impacting multiple users.

GSM Association Non-conf idential

Of f icial Document IG.15 - Best practises for 5G App Developers

V1.0 Page 19 of 20

2.13.2. Background Context and Rationale

A specific situation like a network registration rejection, a network or a device failure, a

sudden lost of signal, an unexpected bug, sudden loss of data, etc., could be the reason for

an application to crash. In any case, it is important to manage user expectations and to

ensure that your application recovers as gracefully as possible.

2.13.3. Issue Details

What it is important in this situation is to warn the user and to implement a good “retry

policy”. This can ensure that all the devices affected by the same app crash are not going to

reattempt to connect to the network without control and all together at the same time, which

can create issues for the network they are trying to reattach to. If your application is installed

in many devices that happen to be in the same area (this possibility increases with the

success of your app) and they crash at the same time, they will try to reconnect also at the

same time. If the retry policy is not a controlled one, the network servers might not be able to

process all the devices’ requests at the same time, and this might generate a bigger network

failure in that area(this has happened historically).

2.13.4. Recommendation

There are two recommendations here:

• One, for the final customer: to be aware of your app crash, might a friendly pop-up

message like “Something went wrong. Please try again” or something similar, could

help. Or even requesting the customer to allow a message with the failure to be sent

to you, “to improve the app”.

• The second is to prevent the network from failing in an area, by implementing a good

retry policy, like for example, “only 3 retries, being one at T0+30”, the second at

T0+1’15” and the third at T0+2’15””. This example is a good policy, that controls both

when the reattemps happen, and the total number of reattempts allowed.

GSM Association Non-conf idential

Of f icial Document IG.15 - Best practises for 5G App Developers

V1.0 Page 20 of 20

Annex A Document Management

Annex A.1 Document History

Version Date Brief Description of Change Approval

Authority

Editor /

Company

1.0 23/11/2022 New version of GSMA Best

Practice for 5G App Developers

TG Ed Lambert,

AT&T

Other Information

Type Description

Document Owner Internet Group

Editors / Company Ed Lambert, AT&T

Dan Druta, AT&T

Esther Arellano, Telefonica

Tomi Sarajisto, Telia

Kay Fritz, Vodafone

It is our intention to provide a quality product for your use. If you find any errors or omissions,

please contact us with your comments. You may notify us at prd@gsma.com

Your comments or suggestions & questions are always welcome.

mailto:prd@gsma.com

	1. Introduction
	1.1. Overview
	1.2. Document Purpose
	1.3. Scope
	1.4. Definitions
	1.5. Abbreviations
	1.6. References

	2. Best Practices for Application Developers
	2.1. Best Practices Summary
	2.2. BEST PRACTICE - Know Thy Network
	2.2.1. Introduction
	2.2.2. Background Context and Rationale
	2.2.3. Issue Details
	2.2.4. Recommendations
	2.2.5. Pseudo-Code/Implementation

	2.3. BEST PRACTICE – Know Thy Application
	2.3.1. Introduction
	2.3.2. Background Context and Rationale
	2.3.3. Issue Details
	2.3.4. Recommendations
	2.3.5. Pseudo-Code/Implementation

	2.4. BEST PRACTICE – Expect Latency Gaps
	2.4.1. Introduction
	2.4.2. Background Context and Rationale
	2.4.3. Issue Details
	2.4.4. Recommendation
	2.4.4.1. Have Realistic Expectations for Your Application
	2.4.4.2. Test Your Application Against Varying Conditions

	2.4.5. Pseudo-Code/Implementation

	2.5. BEST PRACTICE – Expect Throughtput Fluctuations
	2.5.1. Introduction
	2.5.2. Background Context and Rationale
	2.5.3. Issue Details
	2.5.4. Recommendation
	2.5.5. Pseudo-Code/Implementation

	2.6. BEST PRACTICE – Let the User Opt-In to Advanced Experiences
	2.6.1. Introduction
	2.6.2. Background Context and Rationale
	2.6.3. Issue Details
	2.6.4. Recommendation
	2.6.5. Pseudo-Code/Implementation

	2.7. BEST PRACTICE - Look out for Upstream congestion
	2.7.1. Introduction
	2.7.2. Background Context and Rationale
	2.7.3. Issue details
	2.7.4. Recommendations

	2.8. BEST PRACTICE - Push, Don’t Poll!
	2.8.1. Introduction
	2.8.2. Background Context and Rationale
	2.8.3. Issue Details
	2.8.4. Recommendations
	2.8.5. Pseudo-Code/Implementation

	2.9. BEST PRACTICE – Have a good fallback source of data
	2.9.1. Introduction
	2.9.2. Background Context and Rationale
	2.9.3. Issue Details
	2.9.4. Recommendations
	2.9.4.1. Use cache for low latency or high-bandwidth scenarios
	2.9.4.2. Be prepared that the edge cache is not always available
	2.9.4.3. Tell the User if the data is not up to date

	2.10. BEST PRACTICE – Keep Cool – Avoid Thermal Mitigation
	2.10.1. Introduction
	2.10.2. Background Context and Rationale
	2.10.3. Issue Details
	2.10.4. Recommendation
	2.10.5. Pseudo-Code/Implementation

	2.11. BEST PRACTICE - Application portability and deployment
	2.11.1. Introduction
	2.11.2. Background Context and Rationale
	2.11.3. Issue details
	2.11.4. Recommendations

	2.12. BEST PRACTICE – Plan revenue strategy from the outset
	2.12.1. Introduction
	2.12.2. Background Context and Rationale
	2.12.3. Issue Details
	2.12.4. Recommendation

	2.13. BEST PRACTICE - Crash Gently
	2.13.1. Introduction
	2.13.2. Background Context and Rationale
	2.13.3. Issue Details
	2.13.4. Recommendation

	Annex A Document Management
	Annex A.1 Document History
	Other Information

