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1. Introduction 

1.1. Overview 

Prior generations of mobile networks have been limited by network elements and designs 

that added dozens or even hundreds of milliseconds to each transaction, making delivery of 

‘real-time’ wireless applications impossible. Emerging 5G networks, combined with Edge 

Computing, are poised to enable entirely new types of apps for users. These will take 

advantage of extremely low latency and high throughput to deliver experiences that feel 

‘human-time’ – so responsive that they feel as natural as a human response. These may 

include: real-time language translation, AR-assisted guidance, intra-vehicle traffic safety, 

cloud-rendered gaming, and other yet-to-be-envisioned experiences that may one day 

become essential to daily life. 

When the first wireless applications became part of daily life, developers (assisted by 

Operators and Platform providers) learned that a mobile network has different capabilities 

and requirements than a wired network. They implicitly or explicitly learned a set of ‘Best 

Practices’ for mobile development. However, just as application developers had to learn how 

to create for mobile networks in the early days of 4G, developers now need to learn a 

different bag of tricks to make the most of 5G networks. 

Security guidance is not covered within this document, however developers are 

recommended to use best practice security measures in all their work, for which there are a 

number of freely available resources available from a range of organisations. There is an 

increasing need to ensure the security of networks and future work is intended to be 

published in order to support developers to take adequate measures to prevent security 

issues. 

1.2. Document Purpose 

The purpose of this document is to provide concise and specific tips to developers building 

latency sensitive applications for emerging 5G Networks. This document tries to provide 

guidance to get around some of the pitfalls that developers may encounter. The main target 

audience for this document is application developers, but also may be useful for Mobile 

Network Operators and Device Manufacturers. 

The Best Practices that follow are not simply ‘academic’. These guidelines were derived by 

GSMA member operators based on detailed interviews with actual developers. These early-

phase developers described successes and challenges they faced and what they ‘wished 

they had known’ at the outset of their project. The GSMA is making this living document 

available to developers in order to remove barriers to development and accelerate the 

growth of a new generation of applications that take advantage of emerging 5G and Edge 

Compute capabilities. 

By following these guidelines and recommendations, developers will be better equipped to 

create network-efficient mobile applications, benefiting all players:  

Developers can be aware of and avoid common problems, saving valuable iteration cycles. 

Customers will see a more responsive user experience and better battery life. 
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Mobile Operators will see a reduced strain on network resources, lowering congestion and 

increasing reliability and cost effectiveness.  

This document is intended to be a ‘living’ document, and GSMA members and partners will 

provide updated suggestions and learnings based on real world experiences. Any readers 

with additional suggestions for the document can contact the GSMA at prd@gsma.com. 

The document is for information and feedback to the GSMA or the Editor is very welcome.  

1.3. Scope 

This document is designed to provide guidance to all developers to encourage a better 

approach to creating mobile apps. Whilst it is recognised that security is a key concern when 

it comes to interaction with the mobile network, it is considered beyond the scope of this 

document. 

The scope of these developer guidelines is limited to:  

• General guidelines for native apps that require mobile network connectivity  

• Specific guidelines for iOS and Android. 

There are no plans for testing or certification based on this document. 

1.4. Definitions 

Term  Description 

API 

Application Programming Interface is a source code based specification 

intended to be used as an interface by software components to communicate 

with each other. An API may include specifications for routines, data 

structures, object classes, and variables 

 

1.5. Abbreviations 

Term  Description 

API Application Programming Interface 

APN Access Point Name 

AR Augmented Reality 

CDNs Content distribution Networks 

CI/CD Continuous Integration and Continuous Delivery/Continuous Deployment  

GSMA 
Global System for Mobile Communications, originally Group Special Mobile 

Association 

MEC Multi-access edge computing 

MNO Mobile Network Operator 

PRD Permanent Reference Document 

RAT Radio access technology 

RNC Radio Network Controller 

SDK Sof tware Development Kit 

mailto:prd@gsma.com
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1.6. References  

Ref Doc Number Title 

[1] GSMA TS.09 
Battery Life Measurement and Current Consumption 

Technique 

[2] GSMA AA.32 GSM Association Intellectual Property Rights Regulations 

2. Best Practices for Application Developers  

The following set of Best Practices is offered as an initial draft. We expect that as new 

applications are launched taking advantage of these new capabilities, new Best Practices 

will be discovered, and ideally become part of this open and collaborative body of work. 

2.1. Best Practices Summary  

The following table summarizes and categorizes the Best Practices that follow in order show 

how these best practices can help developers achieve key goals:  

Application Resilience: Best practices to facilitate an application to react to changing 

conditions while providing the best possible experience. 

User Experience: Best practices for designing application behaviors to best fit human 

needs.  

Optimize Resources: Best practice to facilitate an application to use network and energy 

resources in the most efficient manner.  

Data Resilience: Best practice to ensure data continuity in varied conditions.  

(Future versions of this document posted online may include keyword tags associated with 

each Best Practice to make indexing and cross-referencing easier in the future.) 

  

Best Practice 

Category 

Application 

Resiliency 
User Experience 

Optimize 

Resources 

Data 

Resilience 

Know the Network X   X   

Know The 

Application 
X X   

Expect Latency 

Gaps 
X X      

Expect throughput 

f luctuations 
X X      

Look out for 

Upstream 

congestion 

X X      

Push, Don’t Poll!     X   
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Keep Cool – Avoid 

Thermal Mitigation 
    X   

Have a good 

fallback source of  

data  

X     X 

Plan revenue 

technologies f rom 

the outset 

   X X   

Crash Gently X X X    

Application 

portability and 

deployment 

    X X 

 

2.2. BEST PRACTICE - Know Thy Network  

2.2.1.  Introduction 

Each generation of mobile network has material differences in capabilities. For your app to 

behave optimally, a key starting point is knowing the network Radio Access Technology 

(RAT) the device is connected to and its capabilities at any given moment. For example, if 

your user is in an extremely remote area, or even on an older network such as 3G, 

attempting to deliver an experience requiring a robust network may frustrate the user. 

Other aspects like ultra low latency or very high throughput are features of a 5G network, 

and will by far exceed other RATs like 4G or 3G. Thus, if your app needs any of those 

features, you must be sure your device is under 5G coverage with sufficient available 

resources. 

2.2.2. Background Context and Rationale 

As a developer, it is critical to keep in mind the physical realities of the mobile network 

delivery chain. In addition to the radio connection between your user’s device and the base 

station, there are a number of network segments that packets will need to traverse to 

communicate with your application servers. This includes the Radio Access Network, 

Backhaul Transport, Mobility Cores, Internet Links and Application Servers (and back again). 

While traffic usually navigates these segments along a ‘happy path’, there are corner cases 

where certain segments may experience unexpected delays.  

Additionally, because the Radio Access Network is just one of the segments, users may see 

fantastic coverage (5 bars, etc), but have a poor experience due to problems in an 

underlying segment.This means that as a developer, you should expect that your application 

may have a very different set of conditions over time, and that this may be confusing to your 

users in the field. 

2.2.3. Issue Details 

This variability is simply a reality of even the best mobile networks. Regardless of how 

technologies advance, physical realities (eg walls, trees, user’s distance from mast, etc) will 

always prevent you as a developer from assuming perfect coverage.  
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It is critical that your applications be constantly measuring the network and modifying the 

application experience accordingly. Adaptive Bitrate Streaming is a common technology that 

addresses this issue on video applications, and a core component of these applications is 

the measurement logic that estimates throughput during use.  

2.2.4. Recommendations 

For emerging applications on 5G networks, at the current time, it will likely be a best practice 

to build similar logic into your application. While it is possible to determine the network (4G 

vs 5G) via an API call on the device, even with that knowledge, there may be wide variations 

that could impact your application. 

Therefore, we suggest building in measurement logic that can actively calculate the 

bandwidth your users are getting as they use the app, as well as latency calculations for 

apps that require low latency.  

NOTE – be cautious to not perform arbitrary speed tests that generate excess traffic for 

minimal value – it is better to test using files that are required to support the user experience. 

If your user is not in an area that supports your required bandwidth or latency, modify your 

app behavior rather than default to that experience.  As mentioned in another Best Practice, 

consider offering the advanced experience as a ‘Bonus’ option or ‘Beta’, and continually 

monitor for the desired levels. 

A key point is that this requires that as a developer you clearly have tested your application 

under varying levels and understand exactly what is required (see next Best Practice). 

2.2.5. Pseudo-Code/Implementation 

There are a few practical steps here: 

• Check RAT (Android): 

o Android 11 and higher: 

▪ https://developer.android.com/about/versions/11/features/5g 

o iOS: 

▪ https://developer.apple.com/documentation/coretelephony/cttelephonynetworki

nfo/3024510-servicecurrentradioaccesstechnol 

▪ https://developer.apple.com/documentation/coretelephony/cttelephonynetworki

nfo/radio_access_technology_constants 

• Psuedo-code to Build a Throughput Calculator  

o As part of app, designate a particular file of known size to act as a reference 

object.  

o Record time stamps each time this file is requested, when download starts, and 

when download is completed. 

o Divide download time by object size to estimate throughput speed. This can 

provide a general idea of the throughput available to your application over time 

https://developer.android.com/about/versions/11/features/5g
https://developer.apple.com/documentation/coretelephony/cttelephonynetworkinfo/3024510-servicecurrentradioaccesstechnol
https://developer.apple.com/documentation/coretelephony/cttelephonynetworkinfo/3024510-servicecurrentradioaccesstechnol
https://developer.apple.com/documentation/coretelephony/cttelephonynetworkinfo/radio_access_technology_constants
https://developer.apple.com/documentation/coretelephony/cttelephonynetworkinfo/radio_access_technology_constants
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• Psuedo-code to Build a Latency Calculator 

o Use the same reference object as above. 

o In addition to recording time stamps of file request, download start, and download 

completed, record the time the server receives the request. 

o Compare server download start time to Time to First Byte for the object on the 

client. 

o This can provide a general idea of the latency available to your application over 

time. Note that this latency includes the Internet latency as well as any mobile 

network latency. 

• NOTE – in certain cases (rapid user mobility, congested urban environments) the 

available bandwidth over the RAT can vary by an order of magnitude within a second. 

Consider re-checking throughput and latency periodically for longer application 

sessions (videos, games etc.) 

2.3. BEST PRACTICE – Know Thy Application 

2.3.1. Introduction 

As mentioned above, it is critical to understand the capabilities of the network your 

application is running on. However, it is just as important to understand exactly what your 

application demands from the network. 

2.3.2. Background Context and Rationale 

Understanding in detail the proper operating range for your application is essential to make 

sure that customers consistently have a satisfactory experience.  Much like the idea behind 

Adaptive Bit Rate Video, in most cases it is better to offer a limited experience than an 

experience that appears broken to the user. However, if your application truly requires very 

high throughput and ultra low latency to deliver any value to the user, it is critical that you 

know these functional limits and design the user experience accordingly. 

2.3.3. Issue Details 

Given that most developers are typically working in areas with good mobile coverage, the 

key issue here is creating an appropriate test bed to allow easy testing across a wider range 

of conditions.   

2.3.4. Recommendations 

As part of setting up your CI/CD process, be sure to plan to build out a mechanism to test 

your application across a variety of network conditions. As early as possible in your project 

design and development cycle, design an approach to how your application will respond to 

varying network conditions – do you automatically adapt and offer a ‘low-res’ version of your 

application when network resources are limited? Do you only enable access to the 

experience when the network is at a certain level? It is critical to understand the functional 

breakpoints of your app, and create an ongoing test plan that exercises these limits at each 

test iteraton throughout your product lifecycle. 

2.3.5. Pseudo-Code/Implementation 

Test your application under varying conditions to understand requirements: 
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• Use a Network Attenuation mechanism to vary throughput and/or latency. These tools 

include: 

o Apple Network Link Conditioner 

o PCAPDroid 

o Charles Proxy 

o AT&T Video Optimizer (Network Attenuator feature) 

o ns-3 5G Network Simulators 

• Conduct tests to determine the required range for your application performance. 

• Implement as part of the CI/CD process 

2.4. BEST PRACTICE – Expect Latency Gaps 

2.4.1. Introduction 

Ultra-low latency mobile networking is a key characteristic of 5G networks, and this 

capability is likely to enable previously unimaginable mobile applications. 

However, as these networks rollout and mature, developers should expect and plan for 

inconsistent conditions – both jitter and packet loss. 

2.4.2. Background Context and Rationale 

As 5G networks roll out, coverage may not be ubiquitous, so you can expect that users may 

move between 4G and 5G networks – even while using your application. Additionally, for 

various reasons related to routing and location of your edge servers, network latency and 

throughput may vary or experience gaps.  

2.4.3. Issue Details 

The specific behaviour that developers should expect is both wide variation in latency that 

could vary by 10’s or even 100’s of milliseconds periodically.  It is CRITICAL to design and 

test your application to function appropriately across these varying conditions.  

2.4.4. Recommendation 

This Best Practice has two specific recommendations: 

2.4.4.1. Have Realistic Expectations for Your Application 

From the initial concept of your application, design with the understanding that latency may 

vary. Do not design a self-driving car application that will be unable to spot an obstacle and 

stop safely if network latency unexpectedly increases.  

Build a resilient and intuitive experience into the core of your application for users. Your 

application WILL fail – it is up to you to design it to fail elegantly. 

2.4.4.2. Test Your Application Against Varying Conditions 

Simply testing your application at your workstation is not sufficient. It is critical to use a 

network emulation tool that can simulate varying network conditions – both variable 

throughput and varying latency. Your application must be hardened and tolerant of a world 

that is still under construction. Be sure by implementing a highly rigorous testing regime. 

https://developer.apple.com/download/all/?q=Additional%20Tools
https://play.google.com/store/apps/details?id=com.emanuelef.remote_capture&hl=en_US&gl=US
https://www.charlesproxy.com/
https://developer.att.com/video-optimizer
https://ns3simulation.com/5g-network-projects/
https://ns3simulation.com/5g-network-projects/
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2.4.5. Pseudo-Code/Implementation 

In order to implement this Best Practice, it is critical to set up a test bed for your application 

that allows you to observe your application over time as latency varies. Ideally, you should 

use a tool that enables you to configure a profile that sets latency at specific levels over time.  

Regardless of which tool you use, it is critical to at least document the specific latency-over-

time patterns that you have used so that you can go back and repeat the same tests over 

time as you tune your app. 

 Tools that offer latency variability include: 

• AT&T Video Optimizer (Network Attenuation Feature w/variable latency profile) 

• Apple’s Network Link Conditioner 

2.5. BEST PRACTICE  – Expect Throughtput Fluctuations 

2.5.1. Introduction 

Higher throughput is another key characteristic of 5G networks, and opens the door to a 

wide range of new or improved services and applications. 

However, just as in the Latency variation described above, available throughput for an 

application might vary significantly during use due to the complexity of these many 

segments. 

2.5.2. Background Context and Rationale 

Network throughput is the amount of data that can be transferred from a server to the device 

that is executing the application in a given time frame. The throughput can be affected by 

different factors described above, such as the number of network elements the information 

has to cross or other physical factors, components’ available, processing power in that 

specific moment, or user and application behaviour. Thus, the maximum throughput can 

suffer fluctuations. 

2.5.3. Issue Details 

The specific behaviour that developers should expect is that throughput can vary in a 

determined range, although it should not typically fail under an established limit or overpass 

the higher one. It is critical to design and test your application to function appropriately 

across these varying conditions.  

2.5.4. Recommendation 

Design your app so that it is robust to bandwidth variations and can work well over a range 

of real world network bandwidths.  

2.5.5. Pseudo-Code/Implementation 

Testing the application against different limits will help to stablish the thresholds or the ranks 

in which you can ensure the application will run optimized.  It is strongly recommended to 

test against test harneses that can vary the available throughput to the devices. 

Tools that offer throughput variability include: 

https://developer.att.com/video-optimizer
https://developer.apple.com/download/all/?q=Additional%20Tools
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• AT&T Video Optimizer (Network Attenuation Feature w/variable latency profile)  

• Charles Proxy  

• Apple’s Network Link Conditioner 

2.6. BEST PRACTICE – Let the User Opt-In to Advanced Experiences 

2.6.1. Introduction 

Given that the laws of physics will always introduce some variability into the network 

capabilities available to a user at any given moment, developers have the power to design 

their applications to provide the best experience for these conditions. 

2.6.2. Background Context and Rationale 

Human emotions are not straightforward.  Game theorists understand that most people have 

a much more negative emotional reaction to losing something that they possess than to the 

idea of gaining something they do not have.  

2.6.3. Issue Details 

If an application assumes the best possible network conditions from the outset, it can set 

certain expectations to users for an ‘advanced’ experience.  If the application then falls back 

to a more standard experience, the user will be much more negatively impacted emotionally. 

2.6.4. Recommendation 

When designing an application that can take advantage of advanced network features, it is 

much better to begin with a standard experience and position these advanced features as an 

optional or even ‘trial’ experience.  This will make users receiving the experience feel that 

they have something ‘extra’, without severely disappointing users that may not be in an area 

with adequate network resources. 

2.6.5. Pseudo-Code/Implementation 

By following the guidance in the Best Practices above and actively monitoring the resources 

available to the application, you should offer these advanced experiences as an option when 

it looks like the network can support those features. 

If the network conditions do not support the features, either hide the feature entirely, or ‘grey 

out’ the feature so that the user knows they can attempt again when they have moved to 

different location. 

2.7. BEST PRACTICE - Look out for Upstream congestion 

2.7.1. Introduction 

Most mobile networks have historically been designed to allocate more resources to carry 

download vs upload traffic. As a result, uploads may be more unpredictable, so be sure that 

your application can provide an acceptable experience with a range of upload speeds. 

2.7.2. Background Context and Rationale  

Especially when applications are used to the performance of fixed networks the experience 

of mobile networks can be quite challenging. While upload/download speeds improve with 

https://developer.att.com/video-optimizer
https://www.charlesproxy.com/
https://developer.apple.com/download/all/?q=Additional%20Tools
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every generation, in rural locations or within buildings, coverage can be poor and cellular 

speed vary massively or even break up regularly. 

An application with constant synchronization should consider these obstacles and find 

strategies to adjust network usage based on those variables. 

2.7.3. Issue details 

Historically Networks and User Equipment were always based on improving download 

speeds for the UEs. Development concentrated on factors like Antenna-Design, Receivers 

and Baseband functionalitites, download speed was always more important. Ratios for 

mobile systems are often split DL:UL = 4:1 which clearly show the historic value distribution.  

Private Networks and Network Slicing might offer solutions in the future but that may not 

offer an immediate solution.  

2.7.4. Recommendations 

If your application does not rely on constant upload, e.g. for live streaming or live multiplayer 

games, consider delaying uploads until the user is back in Wi-Fi or their Home-Network. 

This could also reduce costs for users, since an upload over cellular that could be done at a 

later state could save money based on the users data contract. 

Note that at no point should an application constantly ping/probe a network or bombard a 

network with requests in order to force an upload. 

2.8. BEST PRACTICE - Push, Don’t Poll!  

2.8.1.  Introduction 

Most users have many applications installed, and many of them may be performing activities 

periodically in the background. If we consider two identical Android devices, one without 

applications (factory configuration) and other loaded with the most successful applications 

from the market, after one hour without end user interaction (Standby mode), the 

measurements show very different effect on signalling and byte consumption. The device 

with normal apps (Facebook, Twitter, Whatsapp, Weather, News, Traffic, etc.) generates 

5500% more RNC signalling and 2800% more IP data than a terminal just restored from 

factory values and a Google account configured.    

As a developer, it is important to keep in mind this level of activity, and try to manage 

background communications efficiently. 

2.8.2. Background Context and Rationale 

A feature that could help with your network optimisation is limiting the signalling or 

information exchanged to establish and manage your connections. Some of the most 

popular smartphone applications are also some of the greatest generators of signalling 

traffic, including social media, music streaming and e-mail. Extra signalling traffic or frequent 

“keep alive” messages overwhelm the resources of central network elements, and this is not 

good for your application either, as large numbers of your application users may be in a 

concentrated area and unwittingly create a negative experience for everyone. 
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Finally, because the radio is often the biggest power drain on a device, all of this constant 

polling can have a material impact on the expected life of the device battery.   

2.8.3. Issue Details 

The root of the problem is that sometimes your device needs to know when some state may 

change that is stored on the server, from another user, or that is coming from somewere 

other than the device.   

The practice of ‘long-polling’ was common for many years as a way to periodically keep the 

device updated. (A metaphor here is a child in the backseat constantly asking ‘Are we there 

yet?’ for a long drive.) For both mobile networks and your application server infrastructure, 

this is generally no longer the best solution.   

2.8.4. Recommendations 

Instead of long-polling, we recommend that where possible you push to mobile applications 

using common practices such as Publish-Subscribe (or pub-sub). This general practice will 

allow your application to register for a pertinent update and get updates only if and when 

needed. 

2.8.5. Pseudo-Code/Implementation 

Many resources and implementations for pub sub exist, but here are a few general places to 

get started: 

• https://cloud.google.com/pubsub/docs/overview#:~:text=Pub%2FSub%20enables%2

0you%20to,remote%20procedure%20calls%20(RPCs). 

2.9. BEST PRACTICE – Have a good fallback source of data 

2.9.1. Introduction 

Caching is a common technique that aims to improve the performance and scalability of a 

system. It does this by temporarily copying frequently used data to a fast storage that is 

located near the application. If this fast data storage is located closer to the application than 

the original source (e.g. in MEC servers), caching can significantly improve the response 

times of client applications by serving data faster.  

In the world of cloud computing, the original data typically resides on the public cloud, and 

the devices or edge servers can have a copy of that data. Maintaining data consistency 

across such distributed data stores can be a significant challenge. 

2.9.2. Background Context and Rationale 

As a developer, it is critical to design carefully which pieces of your application data should 

be stored in MEC servers and which should be stored instead in a public cloud or devices.  

The most basic type of cache is an in-memory store. This type of cache is quick to access, 

and it can store modest amounts of static data, since the size of a cache is typically 

constrained by the amount of memory available on the machine hosting the application. If 

your application needs to cache more information than is physically possible in memory, the 

https://cloud.google.com/pubsub/docs/overview#:~:text=Pub%2FSub%20enables%20you%20to,remote%20procedure%20calls%20(RPCs)
https://cloud.google.com/pubsub/docs/overview#:~:text=Pub%2FSub%20enables%20you%20to,remote%20procedure%20calls%20(RPCs)
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application can write cached data to the local file system. This will be slower to access than 

data held in memory but should still be faster than retrieving data from public cloud servers. 

Caching can dramatically improve your application performance, scalability, and availability. 

The more information your application has in cache and the more users need to access that 

data, the greater the benefit of caching. This is because caching reduces the latency and 

conflict associated with processing large concurrent requests in the original data storage. 

2.9.3. Issue Details 

2.9.4. Recommendations 

While specific recommendations vary depending on the tech stack that you use for your 

application, this Best Practice has a few general recommendations: 

2.9.4.1. Use cache for low latency or high-bandwidth scenarios 

As a developer, you should use edge computing architecture to exploit the speed of 5G and 

unlock key low-latency and high-throughput scenarios. Hosting storage or application logic at 

the edge servers or devices can make your application more responsive and ease network 

bandwidth requirements. Edge computing architecture avoids the latency that would result 

from application traffic traversing multiple hops across the Internet to reach its destination, 

and that allows end users to take full advantage of the latency and bandwidth benefits 

offered by modern 5G networks. 

2.9.4.2. Be prepared that the edge cache is not always available 

Be careful not to introduce strong critical dependencies on the availability of an edge cache 

service into your solutions. An application should be able to continue functioning if the MEC 

servers that provides the cache service have changed or are unavailable. The application 

should not become unresponsive or fail while waiting for the cache service to resume. 

In a distributed environment, the inability to complete an operation is often due to some type 

of temporary error. If such a failure occurs, an application might assume that the situation is 

temporary and simply attempt to repeat the step that failed. If, despite repetition, access to 

the function or cache on the edge server is not successful, the application should try to 

connect to nearby edge servers or public cloud, thus reducing or eliminating any outage. 

2.9.4.3. Tell the User if the data is not up to date 

The only thing worse than stale data is when a user is not aware they are looking at stale 

data. If the data source that is rendering data from the user is not as current as desired, 

consider adding an icon or some communication to your application. For example, if the data 

has not been synchronized, consider adding an sync icon with a strikethough so that users 

are aware that the data may not be current. 

2.10. BEST PRACTICE – Keep Cool – Avoid Thermal Mitigation 

2.10.1. Introduction 

5G radios and applications can generate significant heat when running intensive processes.  

Testing your application under stress conditions, while monitoring in the field can prevent 

thermal mitigation and application failures. 
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2.10.2. Background Context and Rationale 

5G radios have been reported to generate heat in some device models. Additionally, 

computationally intensive tasks, such as running AR Toolkit, can create high temperatures 

and send a device into ‘Thermal Mitigation’ and interrupt normal device functioning. 

2.10.3. Issue Details 

Running complex applications on some devices connected to 5G networks has proven 

challenging to operate because of the devices regularly going into thermal mitigation after 

10-15 minutes of continued use.  

2.10.4. Recommendation 

In order to prevent this issue, developers should test their application in challenging 

circumstances while connected to tools that actively monitor the CPU temperature of the 

device.   

If there are specific functions in the application that generate heat spikes, developers should 

use this process to iteratively modify their code or the application functionality until these 

spikes have been removed from the test runs. 

2.10.5. Pseudo-Code/Implementation 

There are APIs within Android that can provide the CPU temperature, and one method to 

test would be to instrument a call to that API and display on the screen for a test build of 

their application.   

Additionally, there are other tools, such as AT&T Video Optimizer, that record application 

traffic and key device metrics along with a screen recording of user behaviour over the 

course of the application test. This can make it easier to go back and analyze the specific 

conditions leading up to the heat spike or thermal mitigation. 

2.11. BEST PRACTICE - Application portability and deployment 

2.11.1. Introduction 

Modern application development frameworks allow building complex mobile applications with 

extensive flexibility both in functionality and deployment. More recently the industry started 

adopting DevOps practices such as CI/CD (Continuous integration/Continuous 

Delivery&Deployment). The delivery pipeline allows for automating the workflow and takes 

advantage of application containerization for packaging and runtime environment 

deployment. 

While, server-side component topology can be backed into the application or inferred by the 

logic in the app, this coupling comes with scalability and reliability limitations. This is more 

relevant when the app is expected to take advantage of Edge Computing. 

2.11.2. Background Context and Rationale 

In the last decade, the use of the Internet, cloud and the ubiquity of the web as an 

application platform created an unprecedented increase in traffic due in part to the 

development of new web standards and innovations in the mobile technologies. In addition 

to that we see a tremendous growth in IoT applications, particularly in the automotive space. 

https://developer.att.com/video-optimizer
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With this growth in use, there’s an increased amount of data being sent over multi-hop public 

links. The industry has been using a client-server model for applications in which the client 

resides typically on an end-user device and the server is hosted in a large data center using 

either private or public cloud infrastructure. 

Modern distributed architectures involve sophisticated caching schemes that require fetching 

various objects (images, libraries, etc.) from various locations in the path to avoid latency 

and improve the overall user experience while reducing bandwidth use.  

More recently, application developers started taking advantage of enhanced, more 

distributed architectures pushing the server-side components closer to the user. Edge 

Computing extends the client server architecture by introducing an  optimally-located server 

endpoint with its own deployment characteristics. These concepts are not new and they 

have taken different shapes in the past. Split browser architectures have pushed some of the 

processing from the client to the cloud and CDNs (Content distribution Networks) are 

caching content on behalf of content owners. 

Edge Computing is also both an architectural and a deployment paradigm shift as 

applications are edge-aware and edge-location agnostic. On one hand, from a deployment 

perspective it is strictly tied to the network and data center topology. From an application 

developer perspective, edge is a client and/or a server. 

2.11.3. Issue details 

A client-side application residing on a mobile device will almost always have a server-side 

component dealing with user management, persistent application data repository and 

business logic. 

When the user launches the app on the device, the app will attempt to connect to the server-

side module. The application developer has many options in how to convey the network 

information for that server including DNS or proprietary registries. 

If the application does not provide flexibility in the way the server-side app is discovered, 

there are multiple risks: 

The preconfigured server address could be unreachable due to faults on the network path or 

failures in the specific data center. 

If the app assumed a certain topology such as an edge deployment based on the user 

location, the closest geographic node might not always be the best from a performance point 

of view. 

The client-side application being on a mobile device, will most likely have unpredictable 

connectivity conditions as it transitions from one network technology to another (4G to 5G, 

WiFi to 4G, 5G to WiFi, etc.) As a result, the app unaware of the network routing policies 

could provide limited optimization for user experience. 

2.11.4. Recommendations 

Developers, especially when expected to take advantage of the edge architecture, should 

design the app so it is edge-aware but location or network topology agnostic. 
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In practice it is recommended that: 

• The client-side uses flexible discovery mechanisms for the server-side component 

• The selection criteria for the match should be built on application’s own non-functional 

requirements for bandwidth, latency, and resources. 

• The server-side application should be developed with data replication/synchronization 

in mind 

• The server-side application is packaged and configured to be deployed in a portable 

manner irrespective of the data-center location of the network node. 

2.12. BEST PRACTICE – Plan revenue strategy from the outset 

2.12.1. Introduction 

Sometimes even the best application ideas can leave out a critical component – how does 

the developer get paid?. Thinking about how revenue strategies in advance can prevent a 

poor user experience down the road. 

2.12.2. Background Context and Rationale 

Early stage applications are often launched as free to the user. This can be especially 

common for emerging areas that do not yet have widescale adoption, such as AR, VR, 

Cloud Gaming, etc. However, if the revenue strategy is not well thought out from the very 

outset, the eventual implementation can be clunky and lead to rejection by users. 

Additionally, some revenue strategies may require a completely different technical approach, 

so it is critical to have a clear and realistic technical plan for future revenue streams from the 

outset. 

2.12.3. Issue Details 

The specific sorts of problems that can creep up are things like requiring that users create an 

account after a long period of simple and easy access with no login, or inserting a complex 

handoff to a paywall service that introduces a major obstacle to the user flow. 

2.12.4. Recommendation 

In order to avoid this issue, developers should pre-plan and build in elements of the eventual 

revenue framework from the outset. This may include creating a user account, and providing 

some incremental value to the user with that feature, such as storing user history or 

personalization, etc. Adding a subscription to this user account will be a simpler and 

smoother transition than suddenly forcing the user to create an account AND provide 

payment.  

2.13. BEST PRACTICE - Crash Gently 

2.13.1. Introduction 

Despite your best efforts, applications can crash. When it does, be certain that it happens as 

gracefully as possible. This involves both user experience, such as showing a friendly 

message to users, and connection management, so the app does not continuously retry to 

connect to the network and cause a bigger problem impacting multiple users. 
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2.13.2. Background Context and Rationale 

A specific situation like a network registration rejection, a network or a device failure, a 

sudden lost of signal, an unexpected bug, sudden loss of data, etc., could be the reason for 

an application to crash. In any case, it is important to manage user  expectations and to 

ensure that your application recovers as gracefully as possible.  

2.13.3. Issue Details 

What it is important in this situation is to warn the user and to implement a good “retry 

policy”. This can ensure that all the devices affected by the same app crash are not going to 

reattempt to connect to the network without control and all together at the same time, which 

can create issues for the network they are trying to reattach to. If your application is installed 

in many devices that happen to be in the same area (this possibility increases with the 

success of your app) and they crash at the same time, they will try to reconnect also at the 

same time. If the retry policy is not a controlled one, the network servers might not be able to 

process all the devices’ requests at the same time, and this might generate a bigger network 

failure in that area(this has happened historically). 

2.13.4. Recommendation 

There are two recommendations here: 

• One, for the final customer: to be aware of your app crash, might a friendly pop-up 

message like “Something went wrong. Please try again” or something similar, could 

help. Or even requesting the customer to allow a message with the failure to be sent 

to you, “to improve the app”. 

• The second is to prevent the network from failing in an area, by implementing a good 

retry policy, like for example, “only 3 retries, being one at T0+30”, the second at 

T0+1’15” and the third at T0+2’15””. This example is a good policy, that controls both 

when the reattemps happen, and the total number of reattempts allowed. 
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