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PREFACE 

This specification has been prepared by the 3GPP Task Force, and gives a detailed 
specification of the 3GPP confidentiality algorithm UEA2 and the 3GPP integrity algorithm 
UIA2. 

This document is the first of four, which between them form the entire specification of 3GPP 
Confidentiality and Integrity Algorithms: 

• Specification of the 3GPP Confidentiality and Integrity Algorithms UEA2 &  
UIA2.  
Document 1: UEA2 and UIA2 Algorithm Specifications. 

• Specification of the 3GPP Confidentiality and Integrity Algorithms UEA2 &  
UIA2.  
Document 2: SNOW 3G Algorithm Specification. 

• Specification of the 3GPP Encryption and Confidentiality Algorithms UEA2 &  
UIA2. 
Document 3: Implementors’ Test Data.  

• Specification of the 3GPP Encryption and Confidentiality Algorithms UEA2 &  
UIA2. 
Document 4: Design Conformance Test Data. 

The normative part of the specification of the UEA2 (confidentiality) and UIA2 (integrity) 
algorithms is in the main body of this document. The annexes to this document are purely 
informative. 

The informative section of this document includes four informative annexes: Annex 1 
contains remarks about the mathematical background of some functions of UIA2. Annex 2 
contains implementation options for some functions of UIA2. Annex 3 contains illustrations 
of functional elements of the algorithms, while Annex 4 contains an implementation program 
listing of the cryptographic algorithm specified in the main body of this document, written in 
the programming language C. 

The normative section of the specification of the stream cipher (SNOW 3G) on which they 
are based is in the main body of Document 2. The annexes to that document, and Documents 
3 and 4 above, are purely informative. 
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NORMATIVE SECTION 

This part of the document contains the normative specification of the Confidentiality and 
Integrity algorithms. 
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1. OUTLINE OF THE NORMATIVE PART 

Section 2 introduces the algorithm and describes the notation used in the subsequent sections. 

Section 3 specifies the confidentiality algorithm UEA2. 

Section 4 specifies the integrity algorithm UIA2. 

 

2. INTRODUCTORY INFORMATION  

2.1. Introduction 

Within the security architecture of the 3GPP system there are standardised algorithms for 
confidentiality (f8) and integrity (f9). A first set of algorithms for f8 and f9 (UEA1 and UIA1) 
has already been specified [3]. A second set of algorithms for f8 and f9 (UEA2 and UIA2) are 
fully specified here: The second set of these algorithms is based on the SNOW 3G algorithm 
that is specified in a companion document [5]. 

The confidentiality algorithm UEA2 is a stream cipher that is used to encrypt/decrypt blocks 
of data under a confidentiality key CK . The block of data may be between 1 and 232bits long. 
The algorithm uses SNOW 3G as a keystream generator 

The integrity algorithm UIA2 computes a 32-bit MAC (Message Authentication Code) of a 
given input message using an integrity key IK . The message may be between 1 and 232 bits 
long. The approach adopted uses SNOW 3G. 

Note: for both UEA2 and UIA2, the length limit of 232 bits is intended to be a safe value: 
comfortably lower than any point at which security of the algorithms starts to fail, but 
comfortably enough for any anticipated application. 

2.2. Notation  

2.2.1. Radix 

We use the prefix 0x to indicate hexadecimal numbers. 

2.2.2. Conventions 

We use the assignment operator ‘=’, as used in several programming languages. When we 
write  

<variable> = <expression> 

we mean that <variable> assumes the value that <expression> had before the assignment took 
place.  For instance, 

x = x + y + 3 

means  
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(new value of x) becomes (old value of x) + (old value of y) + 3. 

2.2.3. Bit/Byte ordering 

All data variables in this specification are presented with the most significant bit (or byte) on 
the left hand side and the least significant bit (or byte) on the right hand side.  Where a 
variable is broken down into a number of sub-strings, the left most (most significant) sub-
string is numbered 0, the next most significant is numbered 1 and so on through to the least 
significant. 

For example an n-bit MESSAGE is subdivided into 64-bit substrings MB 0, MB1, MB2, …. 
So if we have a message: 

0x0123456789ABCDEFFEDCBA98765432108654381AB594FC28786404C50A37… 

we have: 

MB 0 = 0x0123456789ABCDEF 

MB 1 = 0xFEDCBA9876543210 

MB 2 = 0x86545381AB594FC2 

MB 3 = 0x8786404C50A37… 

In binary this would be: 

000000010010001101000101011001111000100110101011110011011110111111111110 

with MB 0 = 0000000100100011010001010110011110001001101010111100110111101111 

 MB 1 = 1111111011011100101110101001100001110110010101000011001000010000 

 MB 2 = 1000011001010100010100111000000110101011010110010100111111000010 

 MB 3 = 1000011110000110010000000100110001010000101000110111… 

2.2.4. List of Symbols 

= The assignment operator. 

⊕ The bitwise exclusive-OR operation 

|| The concatenation of the two operands. 

x The smallest integer greater than or equal to the real number x. 

& n The bitwise AND operation in an n-bit register. 

<<n t t-bit left shift in an n-bit register. 

>>n t t-bit right shift in an n-bit register 
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2.3. List of Variables 

BEARER the 5-bit input to the UEA2 function. 

CK the 128-bit confidentiality key. 

COUNT the 32-bit time variant input to the UEA2 and UIA2 functions (COUNT-
C for UEA2 and COUNT-I for UIA2) 

DIRECTION the 1-bit input to both the UEA2 and UIA2 functions indicating the 
direction of transmission (uplink or downlink). 

FRESH the 32-bit random input to the UIA2 function. 

IBS the input bit stream to the UEA2 function. 

IK the 128-bit integrity key. 

KS[i] the ith bit of keystream produced by the keystream generator. 

LENGTH the input to the UEA2 and UIA2 functions which specifies the number of 
bits in the input bitstream (1-232). 

MAC-I the 32-bit message authentication code (MAC) produced by the integrity 
function UIA2. 

MESSAGE the input bitstream of LENGTH bits that is to be processed by the UIA2 
function. 

OBS the output bit stream from the UEA2 function. 

z1, z2, … the 32-bit words forming the keystream sequence of SNOW 3G. The 
word produced first is z1, the next word z2 and so on. 
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3. CONFIDENTIALITY ALGORITHM UEA2   

3.1. Introduction 

The confidentiality algorithm UEA2 is a stream cipher that encrypts/decrypts blocks of data 
between 1 and 232 bits in length. 

3.2. Inputs and Outputs 

The inputs to the algorithm are given in Table 1, the output in Table 2: 

Parameter Size (bits) Comment 

COUNT-C 32 Frame dependent input COUNT-
C[0]…COUNT-C[31] 

BEARER 5 Bearer identity BEARER[0]…BEARER[4] 

DIRECTION 1 Direction of transmission DIRECTION[0] 

CK 128 Confidentiality key CK[0]….CK[127] 

LENGTH Unspecifie
d 

The number of bits to be encrypted/decrypted 

IBS LENGTH Input bit stream IBS[0]….IBS[LENGTH-1] 

Table 1. UEA2 inputs 

Parameter Size (bits) Comment 

OBS LENGTH Output bit stream  
OBS[0]….OBS[LENGTH-1] 

Table 2. UEA2 output 

 

3.3. Components and Architecture 

The keystream generator is based on SNOW 3G that is specified in [5]. SNOW 3G is a word 
oriented stream cipher and generates a keystream in multiples of 32-bits. 

3.4. Initialisation 

In this section we define how the keystream generator is initialised with the key variables 
before the generation of keystream bits. 

All variables have length 32 and are presented with the most significant bit on the left hand 
side and the least significant bit on the right hand side. 
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K 3 = CK[0] || CK[1] || CK[2] || … || CK[31] 

K 2 = CK[32] || CK[33] || CK[34] || … || CK[63] 

K 1 = CK[64] || CK[65] || CK[66] || … || CK[95] 

K 0 = CK[96] || CK[97] || CK[98] || … || CK[127] 

IV 3 = COUNT-C[0] || COUNT-C[1] || COUNT-C[2] || … || COUNT-C[31] 

IV 2 = BEARER[0] || BEARER[1] || … || BEARER[4] || DIRECTION[0] || 0 || … || 0 

IV 1 = COUNT-C[0] || COUNT-C[1] || COUNT-C[2] || … || COUNT-C[31] 

IV 0 = BEARER[0] || BEARER[1] || … || BEARER[4] || DIRECTION[0] || 0 || … || 0 

SNOW 3G is initialised as described in document [5]. 

3.5. Keystream Generation 

Set L  = LENGTH / 32. 

SNOW 3G is run as described in document [5] to produce the keystream consisting of the 32-
bit words z1 … zL. The word produced first is z1, the next word z2 and so on. 

The sequence of keystream bits is KS[0] … KS[LENGTH-1] , where KS[0] is the most 
significant bit and KS[31] is the least significant bit of z1, KS[32] is the most significant bit of 
z2 and so on. 

3.6. Encryption/Decryption 

Encryption/decryption operations are identical operations and are performed by the exclusive-
OR of the input data (IBS) with the generated keystream (KS). 

For each integer i with 0 ≤ i ≤ LENGTH -1 we define: 

OBS[i] = IBS[i] ⊕ KS[i]. 
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4. INTEGRITY ALGORITHM UIA2  

4.1.  Introduction 

The integrity algorithm UIA2 computes a Message Authentication Code (MAC) on an input 
message under an integrity key IK. The message may be between 1 and 232 bits in length. 

For ease of implementation the algorithm is based on the same stream cipher (SNOW 3G) as 
is used by the confidentiality algorithm UEA2. 

4.2. Inputs and Outputs 

The inputs to the algorithm are given in table 3, the output in table 4: 

Parameter Size (bits) Comment 

COUNT-I 32 Frame dependent input  COUNT-I[0]…COUNT-
I[31] 

FRESH 32 Random number FRESH[0]…FRESH[31] 

DIRECTION 1 Direction of transmission DIRECTION[0] 

IK 128 Integrity key  IK[0]…IK[127] 

LENGTH 64 The number of bits to be ‘MAC’d  

MESSAGE LENGTH Input bit stream 

Table 3. UIA2 inputs 

Parameter Size (bits) Comment 

MAC-I 32 Message authentication code MAC-I[0]…MAC-
I[31] 

Table 4. UIA2 output 

4.3. Components and Architecture 

4.3.1. SNOW 3G 

The integrity function uses SNOW 3G that is specified in [5]. SNOW 3G is a word oriented 
stream cipher and generates from the key and an initialisation variable five 32-bit-words z1, z2, 
z3, z4 and z5. 

4.3.2. MULx 

MULx maps 128 bits to 64 bits. Let V and c be 64-bit input values. Then MULx is defined: 
If the leftmost (i.e. the most significant) bit of V equals 1, then  
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 MULx(V, c) = (V <<64 1) ⊕ c, 
else  
 MULx(V, c) = V <<64 1. 

4.3.3. MULxPOW 

MULxPOW maps 128 bits and a positive integer i to 64 bit. Let V and c be 64-bit input 
values, then MULxPOW(V,  i, c) is recursively defined: 
If i equals 0, then  
 MULxPOW(V, i, c) = V, 
else 
 MULxPOW(V, i, c) = MULx(MULxPOW(V, i – 1, c), c). 

4.3.4. MUL 

MUL maps 192 bits to 64 bit. Let V, P and c be 64-bit input values. 

Then the 64-bit output result of MUL(V, P, c) is computed as follows: 

• result = 0. 

• for i = 0 to 63 inclusive  

o if (P >>64 i) &64 0x01 equals 0x01, then 
 result = result ⊕ MULxPOW(V, i, c). 

4.4. Initialisation 

In this section we define how the keystream generator is initialised with the key and 
initialisation variables before the generation of keystream bits. 

All variables have length 32 bits and are presented with the most significant bit on the left 
hand side and the least significant bit on the right hand side. 

K 3 = IK [0] || IK [1] || IK [2] || … || IK [31] 

K 2 = IK [32] || IK [33] || IK [34] || … || IK [63] 

K 1 = IK [64] || IK [65] || IK [66] || … || IK [95] 

K 0 = IK [96] || IK [97] || IK [98] || … || IK [127] 

IV 3 = COUNT-I [0] || COUNT-I [1] || COUNT-I [2] || … || COUNT-I [31] 

IV 2 = FRESH[0] || FRESH[1] || FRESH[2] || … || FRESH[31] 

IV 1 = DIRECTION [0] ⊕ COUNT-I [0] || COUNT-I [1] || COUNT-I [2] || … || COUNT-I [31] 

IV 0 = FRESH[0] || FRESH[1] || … || FRESH[15] || FRESH[16] ⊕ DIRECTION [0] || FRESH[17] || … || FRESH[31] 

 

SNOW 3G is initialised as described in document [5]. 
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4.5. Calculation 

Set D = LENGTH /  64 + 1. 

SNOW 3G is run as described in document [5] in order to produce 5 keystream words z1, z2, 
z3, z4, z5. 

Set P = z1 || z2 

and Q = z3 || z4. 

Let OTP[0], OTP[1], OTP[2], …, OTP[31] be bit-variables such that 

z5 = OTP[0] || OTP[1] ||… || OTP[31], 

i.e. OTP[0] is the most and OTP[31] the least significant bit of z5. 

For 0 ≤ i ≤ D - 3 set 

M i = MESSAGE[64i] || MESSAGE[64i+1] ||...|| MESSAGE[64i+63]. 

Set 

MD-2 = MESSAGE[64(D-2)] || … || MESSAGE[LENGTH -1] || 0…0. 

Let LENGTH [0], LENGTH [1], …, LENGTH [63] be the bits of the 64-bit representation of 
LENGTH , where LENGTH [0] is the most and LENGTH [63] is the least significant bit. 

Set M D-1 = LENGTH [0] || LENGTH [1] || … || LENGTH [63]. 

Compute the function Eval_M: 

• Set the 64-bit variable EVAL  = 0. 

• for i = 0 to D – 2 inclusive: 

o EVAL  = Mul(EVAL ⊕ M i, P, 0x000000000000001b ). 

Set EVAL  = EVAL  ⊕ M D - 1 

Now we multiply EVAL  by Q: 

EVAL  = Mul(EVAL , Q, 0x000000000000001b). 

Let EVAL  = e0 || e1 || … || e63 with e0 the most and e63 the least significant bit. 

For 0 ≤ i ≤ 31, set 

MAC-I[ i] = ei ⊕ OTP[i]. 

The bits e32, …, e63 are discarded. 
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INFORMATIVE SECTION 

This part of the document is purely informative and does not form part of the normative 
specification of the Confidentiality and Integrity algorithms. 
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ANNEX 1  
Remarks about the mathematical background of some operations of 

the UIA2  Algorithm 

1.1. The function EVAL_M 

The first part (the function EVAL_M) of the calculations for the UIA2 algorithm corresponds 
to the evaluation of a polynomial at a secret point: From the bits and the length of 
MESSAGE a polynomial M∈GF(264)[X] is defined. This polynomial is evaluated at the point 
P ∈ GF(264) defined by z1||z2. 

This can be seen as follows: 

Consider the Galois Field GF(264) where elements of the field are represented as polynomials 
over GF(2) modulo the irreducible polynomial x64 + x4 + x3 + x + 1. 

Variables consisting of 64 bits can be mapped to this field by interpreting the bits as the 
coefficients of the corresponding polynomial. 

For example for 0 ≤ i ≤ D-3 the variable  
M i = MESSAGE[64i] || MESSAGE[64i+1] ||...|| MESSAGE[64i+62] || MESSAGE[64i+63] 
is interpreted as  
MESSAGE[64i]x63+ MESSAGE[64i+1]x62 + ... + MESSAGE[64i+62]x + 
MESSAGE[64i+63]. 

Construct the polynomial M  of degree D-1 in GF(264)[X] as  
M(X) = M0X

D-1 + M1X
D-2+ … + MD-2X + MD-1. 

Evaluate the polynomial M  at the point P, i.e. compute 
M(P) = M 0P

D-1 + M1P
D-2 + … + MD-2P + MD-1= (…(M0P + M1)P + M2)P + … + MD-2)P + 

MD-1. 

This is done in the function Eval_M in 4.5.  

1.2. The function MUL(V, P, c) 

The function MUL(V, P, c) (see 4.3.4) corresponds to a multiplication of V by P in GF(264). 
Here GF(264) is described as GF(2)(β) where β is a root of the GF(2)[x] polynomial x64 + 
c0x

63+ … + c62x +c63 and c = c0 || c1 || … || c63. 
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ANNEX 2   
Implementation options for some operations of the UIA2 Algorithm  

The function MUL (see 4.3.4) can be implemented using table lookups. This might accelerate 
execution of the function EVAL_M, as for the evaluation of the polynomial only 
multiplication by a constant factor P is needed. 

There are different possible sizes for the tables. Here we use 8 tables with 256 entries, but for 
example it is also possible to use 16 tables with 16 entries. 

In order to execute MUL by table-lookups first Pre_Mul_P (see 2.1) is executed, which 
generates the tables. Then in MUL_P (see 2.2) the multiplication is performed by 8 table-
lookups and an xor of the results. 

Hence in 4.5 instead of EVAL  = Mul(EVAL ⊕ M i, P, 0x1b ) we can use EVAL  = 
Mul_P(EVAL  ⊕ M i). 

2.1. Procedure Pre_Mul_P 

In order to be able to compute Mul_P (see 2.2) the procedure Pre_Mul_P is executed once 
before the first call of Mul_P. 
Pre_Mul_P computes from the 64-bit input P eight tables PM[0], PM[1], …, PM[7]. Each of 
these tables contains 256 entries PM[j][0], PM[j][1], …, PM[j][255] with 64 bits. 

For 0 ≤ j ≤ 7 and 0 ≤ X ≤ 255 the value PM[j][X] corresponds to X P x8j. 

Let r be the 64-bit value 0x000000000000001b. 

• The tables are computed as follows: 
PM[0][0] = PM[1][0] = PM[2][0] = PM[3][0] = PM[4][0] = PM[5][0] = PM[6][0] = 
PM[7][0] = 0. 

• PM[0][1] = P. 

• for i = 1 to 63 inclusive: 

o PM[i >>8 3][1 <<8 (i &8 0x07)] = PM[(i – 1) >>8 3][1 <<8 ((i – 1) &8 0x07)] <<64 1. 

o if the leftmost bit of PM[(i – 1) >>8 3][1 << ((i – 1) &8 0x07)] equals 1, then 
 PM[i >>8 3][1 <<8 (i &8 0x07)] = PM[i >>8 3][1 << (i &8 0x07)] ⊕ r. 

• for i = 0 to 7 inclusive 

o for j = 1 to 7 inclusive 

� for k = 1 to (1 <<8 j) – 1 inclusive 

• PM[i][(1 <<8 j) + k] = PM[i][1 <<8 j] ⊕ PM[i][k]. 

2.2. Function Mul_P 

The function Mul_P maps a 64-bit input X to a 64-bit output. 
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Let X = X0 || X1 || X2 || X3 || X4|| X5 || X6|| X7, with X0 the most and X7 the least significant byte. 

Compute Mul_P(X) as 

Mul_P(X) = PM[0][X7] ⊕ PM[1][X6] ⊕ PM[2][X5] ⊕ PM[3][X4] ⊕ PM[4][X3] ⊕  
 PM[5][X2] ⊕ PM[6][X1] ⊕ PM[7][X 0]. 
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ANNEX 3  
Figures of the UEA2 and UIA2 Algorithms 

 

 

 

 

Figure 1: UEA2 Keystream Generator 
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z1 || z2 || ... || zL 

KS[0] ... KS[31] || KS[32] ... KS[63] || ... || KS[32L-32] ... KS[32L-1] 

 

COUNT-C || BEARER || DIRECTION || 0 ... 0 || COUNT-C || BEARER || DIRECTION || 0 ... 0 

IV 3 || IV2 || IV1  || IV0 
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Figure 2: UIA2 Integrity function, part 1  
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Figure 3: UIA2 Integrity function, part 2  
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ANNEX 4  
Simulation Program Listing 

4.1. UEAII 

4.1.1 Header File 

/*------------------------------------------------- -------- 
 *     f8.h 
 *------------------------------------------------- --------*/ 
#ifndef F8_H_ 
#define F8_H_ 
 
#include "SNOW_3G.h" 
 
/* f8. 
 * Input key: 128 bit Confidentiality Key. 
 * Input count:32-bit Count, Frame dependent input.  
 * Input bearer: 5-bit Bearer identity (in the LSB side). 
 * Input dir:1 bit, direction of transmission. 
 * Input data: length number of bits, input bit str eam. 
 * Input length: 32 bit Length, i.e., the number of  bits to be encrypted or  
 *               decrypted. 
 * Output data: Output bit stream. Assumes data is suitably memory  
 * allocated. 
 * Encrypts/decrypts blocks of data between 1 and 2 ^32 bits in length as  
 * defined in Section 3. 
 */ 
 
void f8( u8 *key, u32 count, u32 bearer, u32 dir, u 8 *data, u32 length ); 
 
#endif 

4.1.2 Code 

/*------------------------------------------------- -------- 
 *     f8.c 
 *------------------------------------------------- --------*/ 
#include "f8.h" 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
 
 
/* f8. 
 * Input key: 128 bit Confidentiality Key. 
 * Input count:32-bit Count, Frame dependent input.  
 * Input bearer: 5-bit Bearer identity (in the LSB side). 
 * Input dir:1 bit, direction of transmission. 
 * Input data: length number of bits, input bit str eam. 
 * Input length: 32 bit Length, i.e., the number of  bits to be encrypted or  
 *               decrypted. 
 * Output data: Output bit stream. Assumes data is suitably memory  
 * allocated. 
 * Encrypts/decrypts blocks of data between 1 and 2 ^32 bits in length as  
 * defined in Section 3. 
 */ 
 
void f8( u8 *key, u32 count, u32 bearer, u32 dir, u 8 *data, u32 length ) 
{ 
  u32 K[4],IV[4]; 
  int n = ( length + 31 ) / 32; 
  int i=0; 
  u32 *KS; 
 
  /*Initialisation*/ 
 
  /* Load the confidentiality key for SNOW 3G initi alization as in section 
3.4. */ 
  for (i=0; i<4; i++) 
    K[3-i] = (key[4*i] << 24) ^ (key[4*i+1] << 16) ^ (key[4*i+2] << 8) ^ 
(key[4*i+3]); 
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  /* Prepare the initialization vector (IV) for SNO W 3G initialization as in 
section 3.4. */ 
  IV[3] = count; 
  IV[2] = (bearer << 27) | ((dir & 0x1) << 26); 
 
  IV[1] = IV[3]; 
  IV[0] = IV[2]; 
 
  /* Run SNOW 3G algorithm to generate sequence of key stream bits KS*/ 
  Initialize(K,IV); 
 
  KS = (u32 *)malloc(4*n); 
  GenerateKeystream(n,(u32*)KS);  
 
  /* Exclusive-OR the input data with keystream to generate the output bit 
stream */ 
  for (i=0; i<n; i++) 
  { 
    data[4*i+0] ^= (u8) (KS[i] >> 24) & 0xff; 
    data[4*i+1] ^= (u8) (KS[i] >> 16) & 0xff; 
    data[4*i+2] ^= (u8) (KS[i] >>  8) & 0xff; 
    data[4*i+3] ^= (u8) (KS[i]      ) & 0xff; 
  } 
 
  free(KS); 
} 
 
/* End of f8.c */ 
 
 

4.2. UIAII 

4.2.1 Header File 

/*------------------------------------------------- -------- 
 *     f9.h 
 *------------------------------------------------- --------*/ 
#ifndef F9_H_ 
#define F9_H_ 
 
#include "SNOW_3G.h" 
 
/* f9. 
 * Input key: 128 bit Integrity Key. 
 * Input count:32-bit Count, Frame dependent input.  
 * Input fresh: 32-bit Random number. 
 * Input dir:1 bit, direction of transmission (in t he LSB). 
 * Input data: length number of bits, input bit str eam. 
 * Input length: 64 bit Length, i.e., the number of  bits to be MAC'd. 
 * Output  : 32 bit block used as MAC 
 * Generates 32-bit MAC using UIA2 algorithm as def ined in Section 4. 
 */ 
 
u8* f9( u8* key, u32 count, u32 fresh, u32 dir, u8 *data, u64 length); 
 
#endif 

4.2.2 Code 

/*------------------------------------------------- -------- 
 *     f9.c 
 *------------------------------------------------- --------*/ 
#include "f9.h" 
#include <stdio.h> 
#include <math.h> 
#include <string.h> 
 
 
/* MUL64x. 
 * Input V: a 64-bit input. 
 * Input c: a 64-bit input. 
 * Output : a 64-bit output. 
 * A 64-bit memory is allocated which is to be free d by the calling  
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 * function. 
 * See section 4.3.2 for details. 
 */ 
 
u64 MUL64x(u64 V, u64 c) 
{ 
   if ( V & 0x8000000000000000 ) 
 return (V << 1) ^ c; 
   else 
 return V << 1; 
 
} 
 
/* MUL64xPOW. 
 * Input V: a 64-bit input. 
 * Input i: a positive integer. 
 * Input c: a 64-bit input. 
 * Output : a 64-bit output. 
 * A 64-bit memory is allocated which is to be free d by the calling 
function. 
 * See section 4.3.3 for details. 
 */ 
 
u64 MUL64xPOW(u64 V, u8 i, u64 c) 
{ 
   if ( i == 0) 
 return V;  
   else 
 return MUL64x( MUL64xPOW(V,i-1,c) , c); 
} 
 
/* MUL64. 
 * Input V: a 64-bit input. 
 * Input P: a 64-bit input. 
 * Input c: a 64-bit input. 
 * Output : a 64-bit output. 
 * A 64-bit memory is allocated which is to be free d by the calling  
 * function. 
 * See section 4.3.4 for details. 
 */ 
 
u64 MUL64(u64 V, u64 P, u64 c) 
{ 
   u64 result = 0; 
   int i = 0; 
 
   for ( i=0; i<64; i++) 
   { 
 if( ( P>>i ) & 0x1 ) 
    result ^= MUL64xPOW(V,i,c); 
   } 
 
   return result; 
} 
 
/* mask8bit. 
 * Input n: an integer in 1-7. 
 * Output : an 8 bit mask. 
 * Prepares an 8 bit mask with required number of 1  bits on the MSB side. 
 */ 
u8 mask8bit(int n) 
{ 
  return 0xFF ^ ((1<<(8-n)) - 1); 
} 
 
/* f9. 
 * Input key: 128 bit Integrity Key. 
 * Input count:32-bit Count, Frame dependent input.  
 * Input fresh: 32-bit Random number. 
 * Input dir:1 bit, direction of transmission (in t he LSB). 
 * Input data: length number of bits, input bit str eam. 
 * Input length: 64 bit Length, i.e., the number of  bits to be MAC'd. 
 * Output  : 32 bit block used as MAC  
 * Generates 32-bit MAC using UIA2 algorithm as def ined in Section 4. 
 */ 
u8* f9( u8* key, u32 count, u32 fresh, u32 dir, u8 *data, u64 length) 
{ 
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  u32 K[4],IV[4], z[5]; 
  u32 i=0,D; 
  static u8 MAC_I[4] = {0,0,0,0}; /* static memory for the result */ 
  u64 EVAL; 
  u64 V; 
  u64 P; 
  u64 Q; 
  u64 c; 
 
  u64 M_D_2; 
  int rem_bits = 0; 
 
  /* Load the Integrity Key for SNOW3G initializati on as in section 4.4. */ 
  for (i=0; i<4; i++) 
    K[3-i] = (key[4*i] << 24) ^ (key[4*i+1] << 16) ^ (key[4*i+2] << 8) ^ 
(key[4*i+3]); 
 
  /* Prepare the Initialization Vector (IV) for SNO W3G initialization as in 
section 4.4. */ 
  IV[3] = count; 
  IV[2] = fresh; 
  IV[1] = count ^ ( dir << 31 ) ; 
  IV[0] = fresh ^ (dir << 15); 
 
  z[0] = z[1] = z[2] = z[3] = z[4] = 0; 
 
  /* Run SNOW 3G to produce 5 keystream words z_1, z_2, z_3, z_4 and z_5. */ 
  Initialize(K,IV); 
  GenerateKeystream(5,z); 
   
 
  P = (u64)z[0] << 32 | (u64)z[1]; 
  Q = (u64)z[2] << 32 | (u64)z[3]; 
 
  /* Calculation */ 
 
  if ((length % 64) == 0) 
    D = (length>>6) + 1; 
  else 
    D = (length>>6) + 2; 
  EVAL = 0; 
 
  c = 0x1b; 
 
   
  /* for 0 <= i <= D-3 */ 
  for (i=0;i<D-2;i++) 
  { 
     V = EVAL ^ ( (u64)data[8*i  ]<<56 | (u64)data[ 8*i+1]<<48 | 
(u64)data[8*i+2]<<40 | (u64)data[8*i+3]<<32 |  
                  (u64)data[8*i+4]<<24 | (u64)data[ 8*i+5]<<16 | 
(u64)data[8*i+6]<< 8 | (u64)data[8*i+7] ); 
     EVAL = MUL64(V,P,c); 
  } 
 
  /* for D-2 */ 
  rem_bits = length % 64; 
  if (rem_bits == 0) 
     rem_bits = 64; 
   
  M_D_2 = 0; 
  i = 0; 
  while (rem_bits > 7) 
  { 
    M_D_2 |= (u64)data[8*(D-2)+i] << (8*(7-i)); 
    rem_bits -= 8; 
    i++; 
  } 
  if (rem_bits > 0) 
    M_D_2 |= (u64)(data[8*(D-2)+i] & mask8bit(rem_b its)) << (8*(7-i)); 
 
  V = EVAL ^ M_D_2; 
  EVAL = MUL64(V,P,c); 
 
  /* for D-1 */ 
  EVAL ^= length;   
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  /* Multiply by Q */ 
  EVAL = MUL64(EVAL,Q,c); 
       
 
  for (i=0; i<4; i++) 
    MAC_I[i] = (mac32 >> (8*(3-i))) & 0xff; 
   
  return MAC_I; 
} 
 
/* End of f9.c */ 
 
/*------------------------------------------------- -----------------------*/ 
 


