

Welcome

Greater access to Mobile Broadband in SSA: Insights on Spectrum Needs and Pricing

Introduction

Kamal Tamawa Policy Director, SSA, GSMA

Q	Introduction	Kamal Tamawa Policy Director, SSA, GSMA
	IMT Spectrum Demand Estimating mid-band spectrum needs 2025-2030	Stefan Zehle , CEO Coleago Consulting
	The GSMA Insights	Luiz Felippe Zoghbi Spectrum Policy Manager, GSMA
	Spectrum Pricing in SSA	Pau Castells Head of Economic Analysis, GSMA
	Q&A and Closing Remarks	Kamal Tamawa Policy Director, SSA, GSMA

The importance of mid-band spectrum

Mid-bands can offer a good mixture of coverage and capacity Access to an over time increasing amount of mid-band spectrum is key to the 5G era

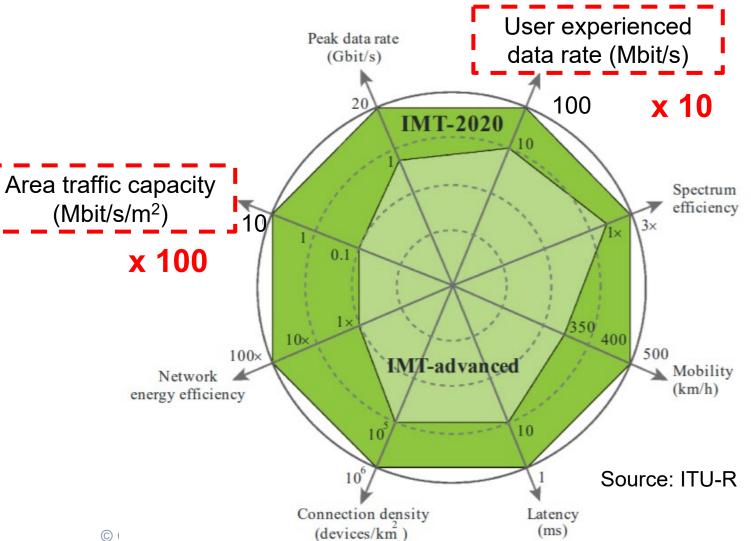
8 July 2021

IMT spectrum demand Estimating the mid-band spectrum needs in the 2025-2030 time frame

Stefan Zehle CEO, Coleago Consulting Ltd +44 7974 356258 stefan.zehle@coleago.com

David Tanner Managing Consultant, Coleago Consulting Ltd +44 7976 415250 david.tanner@coleago.com

IMT 2020 requirements drive the need for spectrum


Enhancement of capabilities from IMT-Advanced to IMT-2020

One of the pillars in the vision for 5G is to provide high-speed wireless mobile connectivity:

"IMT-2020 is expected to provide a user experience matching, as far as possible, that of fixed networks".

5G must deliver a user experienced mobile data rate of 100 Mbit/s in the downlink and 50 Mbit/s in the uplink and accommodate 1 million connections per km².

oleago consulting

Extremely high data rates, very high traffic volumes, high traffic density, rapid mobility, city wide coverage

Enhanced Mobile Broadband Smartphone, 8k 250fps video, AR/VR, cloud based gaming, venues, body cams

Very large number of devices, very low device cost, low energy, high density, country wide coverage

Massive Machine Type Communications Sensors, meters, tracking, fleet management

Fibre like data rates, extremely high traffic volumes

Fixed Wireless Access Home, business, retail, nomadic, cameras

Very low latency, very high availability and reliability

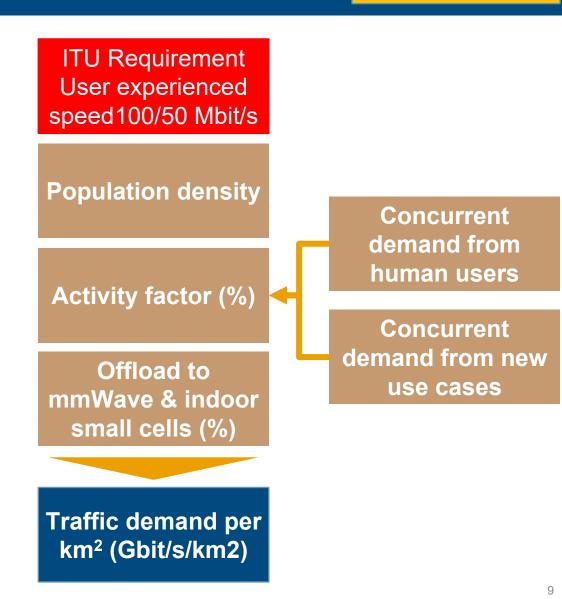
Critical Machine Type Communications Self-driving car, industrial applications, manufacturing

The 5G vision is for a fibrelike user experience and

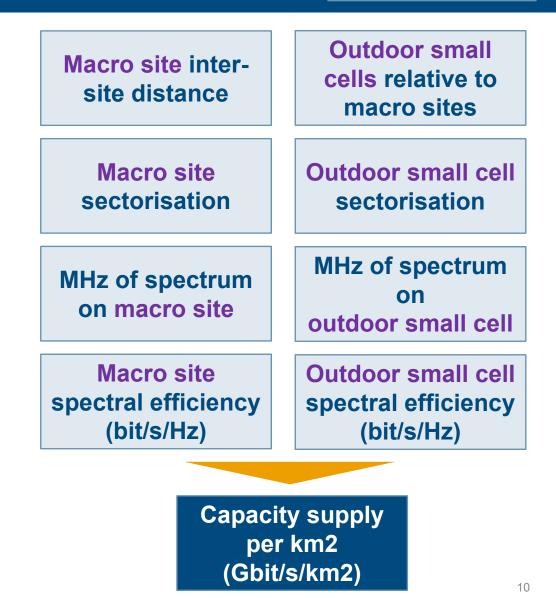
connectivity for a wide range of new uses coupled with new features, such as:

- an expectation of a near guaranteed data rate, seamless,
- low latency communication,
- smart city and other IoT,
- self-driving vehicles,
- network slicing

7


To deliver the 5G vision poses huge challenge in cities with a high traffic density and a substantial amount of mid-band spectrum is required

- We use the population density in cities as a proxy for mobile area traffic demand density that is triggered by both human and non-human users.
- Concurrent bandwidth demand from both human users and other use cases is presented in the form of an activity factor ranging from 10% to 25%. The activity factor is a proxy for the demand by both human users and non-human users.
- The mobile area traffic density demand is the net demand after deducting offloading traffic to high bands sites and indoor small cells.



We assume that in the 2025-2030 time frame all spectrum is used for 5G and there will be 3 outdoor mid-band small cells per macro site

- The "baseline spectrum" for each city includes spectrum already in use by mobile operators as well as expected future assignments in the period of 2021 to 2025.
- Depending on the specific city among the 36 cities addressed, the baseline spectrum varies from 725 MHz up to 1,420 MHz.
- We assume that within the 2025 to 2030 time frame, mobile operators will have made the investment to use all "baseline spectrum" for 5G.
- We assume that each operator will deploy 3 outdoor small cells per each of its macro sites, invest in MIMO upgrades, install indoor small cells, and deploy high-bands (mmWave) spectrum on outdoor and indoor sites.

We have modelled the 5G mobile area traffic demand and capacity supply in 36 cities around the world

We focus on cities with population densities of more than 8,000 per km²

We analysed 36 cities:

Tehran – Amsterdam – Bangkok – Munich – Marseille – Hamburg – Minsk – Baku – Makkah – Milan – Lyon – Rome – Berlin – Amman – Tashkent – Johannesburg – Bangkok – Riyadh – Barcelona – Madrid – Bogotá – Mexico City – Istanbul – Jakarta – Beijing – Paris – Nairobi – Cairo – Tokyo - Ho Chi Minh City - New York – Moscow – São Paulo – Mumbai – Hong Kong – Yangon – Lagos

- Our analysis covers a sample of cities with highdensity clusters of at least 40 km².
- Based on data provided in Demographia World Urban Areas, (Built Up Urban Areas or World Agglomerations), 16th annual edition, June 2020, we estimate that 626 urban areas have clusters of at least 40 km² with a population density of +8,000.
- These cities can be found in all six ITU Regional groups (APT, ASMG, ATU, CEPT, CITEL, RCC).
- Together these cities contain an estimated 1.64 billion people. This scale provides a good illustration that allocating additional upper mid-band spectrum to IMT is of significance for a large proportion of the world's population.

11

In the 36 cities we examined, substantial amounts of mid-band spectrum are found to be required to deliver the 5G vision in an economically feasible manner, taking different national income levels into consideration.

Category by income grouping *	Minimum estimate	Maximum estimate
High income cities	1,260 MHz	3,690 MHz
Upper middle income cities	1,020 MHz	2,870 MHz
Lower middle income cities	1,320 MHz	3,260 MHz

* World bank income classification GDP per capita

- Policymakers will, therefore, need to consider making more spectrum in mid-band and prepare national spectrum roadmaps that consider future 5G area traffic demand density.
- There is a concern in the mobile industry that regulators may not be fully aware of the scale of the 5G traffic density challenge in urban areas.
- Specifically, there is a concern that regulators may not be planning to clear and award enough mid-band licensed 5G spectrum between now and 2030.

12

Small cell densification beyond what we assumed in our model is not an economically feasible substitute for additional mid band spectrum

The small cell vs. spectrum trade off

- Our spectrum demand model assumes
 3 small cells per macro site.
- Beyond that, a city with a population density of 18,000 per km² and 7.2 macro sites per km², 177 additional outdoor small cells per km² are required to deliver the same capacity as an additional 1,250 MHz.
- Considering an urban area of 100 km², 17,700 additional small cells would be required (compared to 720 macro sites) in the absence of an additional 1,250 MHz of mid-band spectrum.

Not having additional mid bands spectrum is highly problematic

- The significant numbers of outdoor small cells with relatively small inter-site distances
 - will have a negative impact on the city environment from an aesthetics point of view,
 - will increase power consumption, and
 - would be very costly thus making 5G less affordable for lower income groups.
- Such small inter-site distances, over such large areas, may not be practically possible from an interference point of view. Operators would push against the technical limits of network densification.

We explored whether mmWave could be a substitute to additional mid band spectrum.

- Our model assumes mmWave deployment in traffic hotspots which alleviates some of the spectrum need for mid-band spectrum.
 - We assume that 20 to 35% of traffic is cities will be offloaded to mmWave.
- If no additional mid bands spectrum is made available, all options for further densification would require several thousands new mmWave macro sites and/or new mmWave small cells over large areas i.e. not only locally.

- The small inter-site distances for mmWave sites due to the need to provide consistent speed coverage across the entirety of the city area, this would involve several thousands of mmWave sites to be built in each city.
- The mmWave densification approach would not represent a viable option, being
 - very costly and
 - undesirable from an environmental perspective due to the large number of sites

14

City average area traffic density

- The cities in our sample show results in area traffic density of 300 to 500 Gbit/s/km².
- Let's compare this to the ITU-R IMT-2020 area traffic requirement of 10 Mbit/s/m² translating it into Gbit/s/km².
 - Multiply by 1,000,000 to get from m² to km² and divide by 1,000 to get from Mbit/s to Gbit/s gives 10,000 Gbit/s/km².
- 300-500 Gbit/s/km² on average across the whole city is only 3% to 5% of the local peak which demonstrates that our numbers are modest.

Peak area traffic density – mobile users

London Route Master Bus

- Area 2.5x10 m (m²) 25
- Capacity (passengers)
 80
- % using video 10%
- 4K video speed (Mbit/s) 20
- Area traffic demand Mbit/s/m² 6.4

© Copyright Coleago Consulting 2021

Additional upper mid-band spectrum provides a sustainable path to bring fibre-like speeds to additional areas

Additional spectrum would provide sufficient bandwidth to ensure that FWA will be a cost effective solution, able to address the needs for 100 Mbit/s connectivity as a long-term solution for small towns and villages.

- There are 1.1 to 1.2 billion households worldwide without broadband access and FWA is the fastest growing method of bringing fixed broadband.
- Upper mid-band spectrum has a key role to play in providing fibre-like access via 5G at an affordable price.
- The ITU and UNESCO Broadband Commission for Sustainable Development 2025 Targets make this explicit: "By 2025, entry-level broadband services should be made affordable in developing countries, at less than 2% of monthly gross national income per capita."
- Alternative rural connectivity solutions based on satellite or fibre typically have higher costs and, therefore, outside the affordability of households and business in villages and rural small towns, particularly in lower-middle and low income countries.

Conclusion: Demand drivers for mid-band spectrum is driven by both cities, as well as small towns and villages

	Urban areas with high population density	Villages and rural small towns
Country with extensive FTTH	City-wide speed coverage	FWA
Country with sparce	City-wide speed coverage	
fixed infrastructure	FWA	FWA

Without 1.2 to 3 GHz of additional mid-band spectrum the urban - rural digital divide my widen rather than narrow.

17

Luiz Felippe Zoghbi Spectrum Policy Manager, GSMA

The GSMA Insights

© GSMA 2021

GSMA Insights

Densely populated cities need, on average, a total of 2 GHz of mid-band

spectrum. Precise spectrum demands vary depending on population density, fibre availability and other factors. This means there is no simple correlation between a country's income level and its spectrum demand. However, additional spectrum is required beyond existing ITU, regional or national plans in all cases.

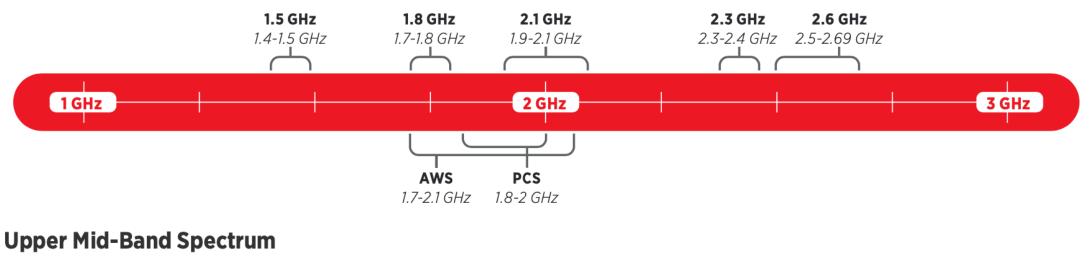
IMT-2020 requirements will be at risk with less spectrum, and significantly more base stations would be needed without sufficient assignments. Where densification is possible, the total cost of

networks would be 3-5x higher over a tenyear period if there is a deficit of 800-1000 MHz. This equates to \$782mn-\$5.8bn in extra investment in each city.

Additional base stations will generate a carbon footprint 1.8-2.9x higher without sufficient spectrum. The additional

network densification mentioned above would increase mobile network energy consumption in the cities by 1.8-2.9x, as well as in the manufacturing process. Importantly, such a high level of densification may not even be feasible for other reasons (such as too much interference, site availability, restrictive electromagnetic field rules). This can be avoided through the timely availability of the right spectrum.

Affordable fixed wireless access will raise demand. The additional spectrum in mid-bands will allow each cell site to support 3.5-6x more homes with 5G


FWA. This would create significant costsavings in network roll-out and drive affordable connectivity in areas where other broadband solutions are not economically viable (e.g., where fibre is not widely available or remains limited to bigger cities).

With WRC-23 approaching, positive engagement on mid-band solutions for IMT will provide vital support to the harmonisation of spectrum and give clear technical guidance for regulators. Coordinated regional decisions will lead to a WRC which enables the future of 5G and supports wider broadband take-up by increasing capacity and reducing costs.

Meeting the mid-band spectrum needs

Lower Mid-Band Spectrum

The GSMA recommends that governments and regulators:

- Plan to make 2 GHz of mid-band spectrum available in the 2025-2030 time frame. This is the average value needed to guarantee the IMT-2020 requirements for 5G;
- Carefully consider 5G spectrum demands when 5G usage will be reaching its peak, and advanced use cases will carry additional needs;
- Base spectrum decisions on real-world factors including population density and extent of fibre rollout; and
- Support harmonised mid-band 5G spectrum (e.g., within the 3.5 GHz, 4.8 GHz and 6 GHz ranges) and facilitate technology upgrades in existing bands

Download the report and GSMA Insights

https://www.gsma.com/spectrum/wp-content/uploads/2021/07/5G-Mid-Band-Spectrum-Needs-Vision-2030.pdf

<u>https://www.gsma.com/spectrum/wp-</u> content/uploads/2021/07/Estimating-Mid-Band-Spectrum-Needs.pdf

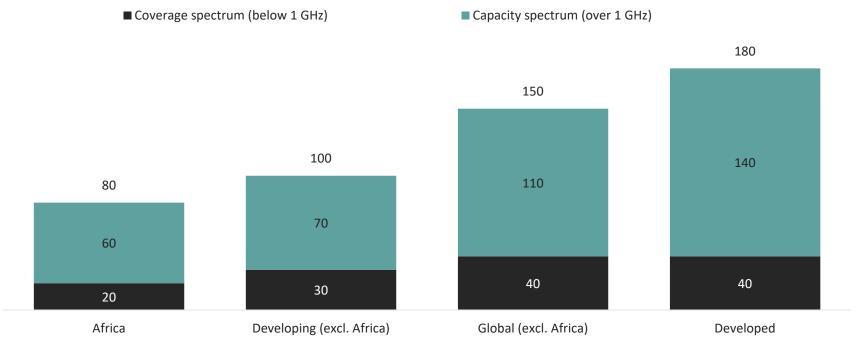
Spectrum Pricing in SSA

Pau Castells Head of Economic Analysis, GSMA

This study leverages a unique spectrum awards database

- Historical analysis of spectrum licencing allows to study spectrum holdings trends 2010-2019
- Spectrum pricing for 93 licences in Africa, and for 405 assignments globally

Benchmarks developed across three areas


Amounts of spectrum	Timings of release	Spectrum pricing
49 African markets79 global markets	 49 African markets 79 global markets 	 29 African markets 87 global markets

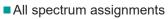
- Evaluate impact of indicators for amounts, timings and pricing of spectrum on:
 - mobile broadband coverage
 - network speeds
 - mobile broadband adoption

Governments in Africa have assigned half of mobile spectrum, compared to the global average...

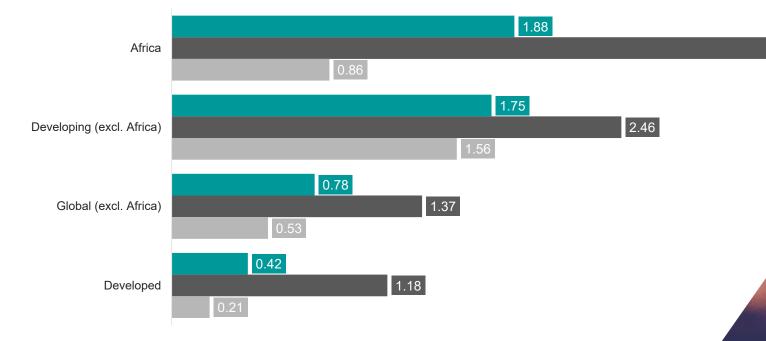
Average spectrum holdings per operator (2019)

...the notable gap in spectrum assignments versus the rest of the world emerged and expanded over the last decade

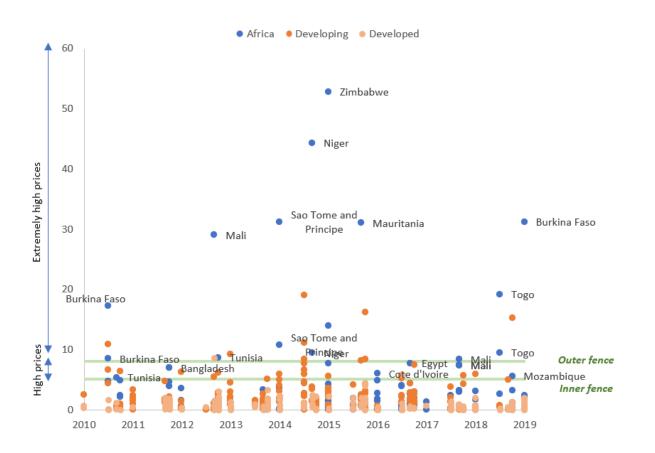
Average spectrum per operator in Africa and a sample of countries globally



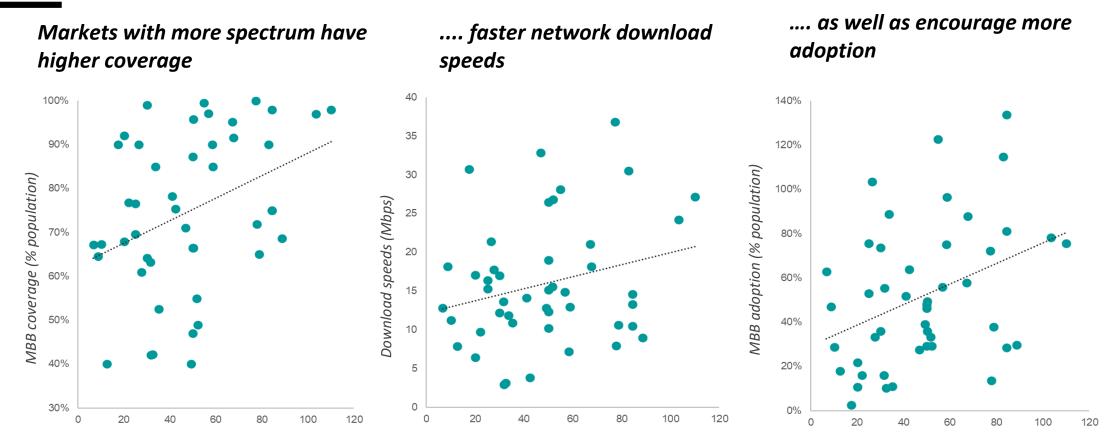
...and at higher prices – accounting for income, spectrum price is higher than elsewhere in the world


3.44

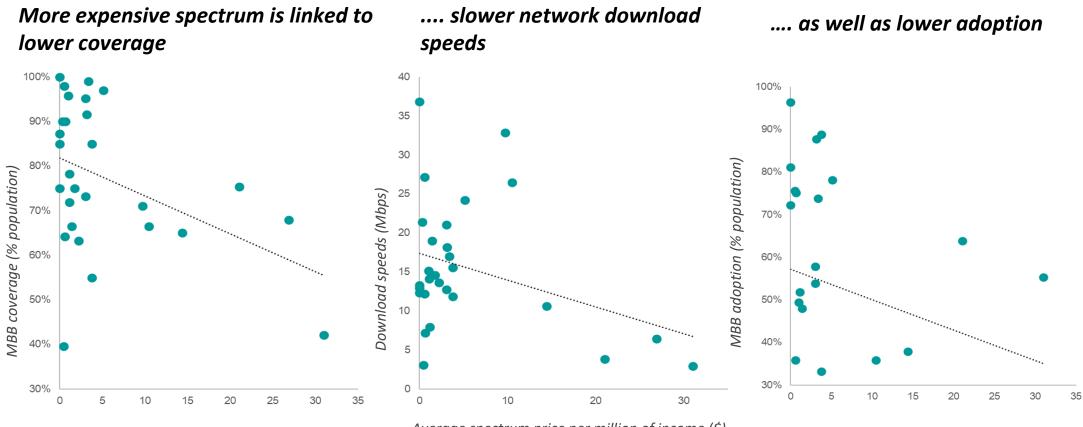
Median unit price of spectrum 2010-2019, \$ per million of income


Coverage spectrum assignments (below 1 GHz)

Capacity spectrum assignments (over 1 GHz)



Half of all assignments globally that can be qualified as having extreme prices are in Africa


Impacts of lower amount of spectrum

Average MBB spectrum per operator (MHz)

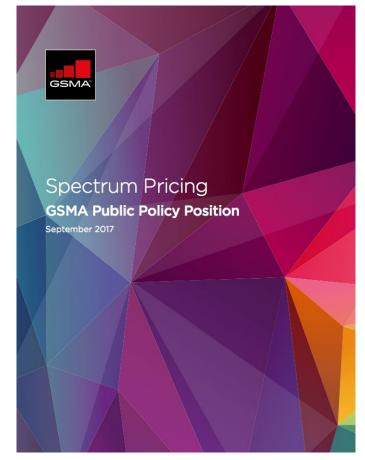
Impacts of high prices

Average spectrum price per million of income (\$)

Key Policy messages

Amount of Spectrum	 African governments should release more spectrum, in order to expand coverage, improve network speeds and encourage mobile adoption Both coverage and capacity 900/1800/2100 leftover, 700/800/2300/2600, then 3500 and mmWave
Timing	To realise the full potential of mobile services, authorities should license spectrum timely, provide certainty and allow for technological neutrality • Predictable roadmaps, long licence duration; guaranteed renewal; • Technological neutrality
Price	 Expensive spectrum is detrimental for consumers – governments should ensure policies that support affordable spectrum pricing Modest reserve prices and annual fees Avoid artificial scarcity; and ensure appropriate auction formats

Download the Report and GSMA Position Paper



Effective Spectrum Pricing in Africa How successful awards can help drive mobile connectivity

GSMA

https://www.gsma.com/spectrum/resources/effective-spectrumpricing-africa/

https://www.gsma.com/spectrum/resources/spectru m-pricing-positions/

Q&A and Closing Remarks

Kamal Tamawa Policy Director, SSA, GSMA

