

Spectrum: the Climate Connection

Spectrum policy and carbon emissions

Appendix

GSMA

The GSMA is a global organisation unifying the mobile ecosystem to discover, develop and deliver innovation foundational to positive business environments and societal change. Our vision is to unlock the full power of connectivity so that people, industry, and society thrive. Representing mobile operators and organisations across the mobile ecosystem and adjacent industries, the GSMA delivers for its members across three broad pillars: Connectivity for Good, Industry Services and Solutions, and Outreach. This activity includes advancing policy, tackling today's biggest societal challenges, underpinning the technology and interoperability that make mobile work, and providing the world's largest platform to convene the mobile ecosystem at the MWC and M360 series of events.

We invite you to find out more at <u>www.gsma.com</u> Follow the GSMA on Twitter: <u>@GSMA</u>

For spectrum information, please visit www.gsma.com/spectrum/

Contact the Spectrum Team at www.gsma.com/spectrum/contact-us/

GSMA Intelligence

GSMA Intelligence is the definitive source of global mobile operator data, analysis and forecasts, and publisher of authoritative industry reports and research. Our data covers every operator group, network and MVNO in every country worldwide — from Afghanistan to Zimbabwe. It is the most accurate and complete set of industry metrics available, comprising tens of millions of individual data points, updated daily.

GSMA Intelligence is relied on by leading operators, vendors, regulators, financial institutions and thirdparty industry players, to support strategic decisionmaking and long-term investment planning. The data is used as an industry reference point and is frequently cited by the media and by the industry itself.

Our team of analysts and experts produce regular thought-leading research reports across a range of industry topics.

www.gsmaintelligence.com info@gsmaintelligence.com

Authors: Jakub Zagdanski, Senior Economist Pau Castells, Head of Economic Analysis Contributors: Carol Sosa Leguizamón Ross Bateson

Contents

Appendix A1: Quantitative modelling	2
Introduction	2
Scenarios and countries considered in the quantitative assessment	3
Scenario-related and other assumptions	5
Impact on network throughput	6
Cost and data traffic calculations	9
Emissions calculations	11
Emissions of the mobile sector	12
Emissions impact through the mobile enablement effect	14

Appendix A2: Detailed modelling results

20

Appendix A1: Quantitative modelling

Introduction

To assess the carbon impact of different spectrum policies, we developed a parameterised calculator tool. The tool relies on a number of equations that characterise the key relationships governing the sector's behaviour, such as those between spectrum availability and network topology; network topology and its energy consumption and operator costs; operator costs and consumer prices; and consumer prices and demand for mobile data and smartphones/IoT devices.

Figure 1

Logic of the model used to estimate the impact on the mobile sector's emissions

Source: GSMA Intelligence

As shown in Figure 1, the calculation comprises four steps. First, we enter into the model the assumptions of the baseline spectrum policy, as well as four alternative scenarios with different, sub-optimal spectrum policy choices. Each set of spectrum assumptions represents the impact of a particular spectrum policy aspect. In this step, we also populate the model with other key parameters and assumptions that do not vary across the scenarios, such as the projected baseline demand for mobile data, and the technical parameters on the energy efficiency of different mobile network generations.

Second, we use the parameters and various equations to calculate the impact on network throughput, given the available spectrum. The key element in this calculation is the maximum throughput per base station, which depends on the availability of spectrum for different network generations (from 2G to 5G).

Third, we rely on the previous intermediate outputs to calculate how the number of base stations and energy consumption of the network are affected by spectrum policy. We estimate the number of base stations needed to meet the peak-hour throughput associated with baseline demand. In turn, the impact on the number of base stations and their energy consumption has secondary effects on network operator costs, which in our calculations impact consumer prices. We use further equations to model how a change in consumer prices impacts consumer demand for mobile data. Closing the cycle of calculations in the third stage, the newly estimated consumer demand is used to estimate the updated number of base stations needed and their energy consumption. Performing these calculations in the cycle iteratively, we obtain a convergent solution in terms of the mobile traffic demand in GB per annum, along with variables describing the network (number of base stations, RAN energy consumption and others). In the final step, we apply various carbon intensity factors to convert these impacts into emissions impact.

Scenarios and countries considered in the quantitative assessment

The assessment covers the 10 years between 2022 and 2031, corresponding to the main period of 5G rollout. The assumptions for each of the modelled policy scenarios are shown in Figure 2. The reference scenario (Baseline) is used as a comparator versus four different scenarios, each highlighting a separate aspect of spectrum policy.

- Scenario 1 illustrates the impact of a two-year delay to 5G spectrum assignment.
- Scenario 2 illustrates the impact of a constrained amount of spectrum assigned, with a representative example of 100 MHz less 5G spectrum than in the baseline.

- Scenario 3 illustrates the impact of fragmented 5G spectrum, divided into 40 MHz bands (versus 100 MHz bands in the baseline).
- Scenario 4 is designed to showcase the impact of restrictions to spectrum refarming. In contrast to the baseline, it assumes that the operators will not have the flexibility to use existing 3G/4G spectrum assignments for 5G networks.

Figure 2

Spectrum policy assumptions used in the modelled scenarios

		5G assignment	Spectrum refarming	Spectrum fragmentation		
Baseline scenario		Scenario representing a reference spectrum policy case, with assignment of 5G spectrum in 2023 (low- income country) or 2021 (high-income country)	From 2026, gradual refarming of parts of 3G and 4G spectrum to 5G network use (about 300 MHz total refarmed by 2031)	Contiguous 100 MHz channels of 5G spectrum		
1	Delayed 5G assignments	Assignment of 5G delayed by two years to 2025 (low- income country) or 2023 (high-income country)	Refarming delayed by two years compared to baseline	Same as baseline		
2	Restricted 5G assignments	Assignment timing as in the baseline, but 5G spectrum assignment lower by 100 MHz of spectrum in upper mid- band (3.5 GHz to 6 GHz)	Same as baseline	Same as baseline		
3	Fragmented 5G	Same as baseline	Same as baseline	5G spectrum fragmented into 40 MHz channels. Requires carrier aggregation		
4	No refarming to 5G	Same as baseline	No refarming of existing 3G and 4G spectrum	Same as baseline		

Source: GSMA Intelligence

We consider the effects of these different spectrum policy choices on two hypothetical countries. As shown in Figure 3 (with data for 2021), the two hypothetical countries have the same populations but differ in their level of economic development and adoption of mobile technologies.

Another important difference between the countries is the share of renewables in energy purchased by the mobile operators from the grid. In line with real-world differences, we assume that mobile operators in the high-income country primarily purchase renewable energy.¹ This translates into a lower carbon footprint and impacts from the operation of the radio network in the high-income country. As a reference point to the emissions impacts, we estimate the current total carbon emissions of the low-income country at about 160 megatonnes of CO2 equivalent (MtCO2e) versus 750 MtCO2e for the high-income country. However, by 2030, the emissions of the low-income country are expected to almost double, primarily as a result of rapid economic growth and some growth in population. In contrast, the high-income country aims to reduce its emissions by about a half.

Figure 3 Comparison of hypothetical countries used in modelling

	Low-income country	High-income country
Population	80 million	80 million
GDP per capita	\$6,000	\$60,000
Smartphone connections	40 million	100 million
Mobile data per subscriber, per month	6 GB	15 GB
Share of renewables-only energy purchased by the operators	5%	71%
Carbon emissions (country total)	162 megatonnes CO2e 2030 target: 300	750 megatonnes CO2e 2030 target: 440

Notes: All figures are approximate. Targets are based on Paris Climate Agreement targets for benchmark countries. GDP per capita quoted in purchasing power parity terms (2021 international USD). Source: GSMA Intelligence

¹ GSMA (2022) "Mobile Industry position paper Access to renewable electricity". https://www.gsma.com/betterfuture/wp-content/uploads/2022/11/Mobile_Industry_Position_Paper_ Access_to_Renewable_Electricity_Nov22.pdf

Scenario-related and other assumptions

The model performs calculations based on a range of assumptions, which can be divided into two types:

- 1. Spectrum policy assumptions for the baseline and alternative scenarios.
- 2. Technical parameters that do not change across scenarios. These include assumptions on baseline demand for mobile data and number of subscribers, technical parameters on the spectral efficiency and energy efficiency of mobile networks, assumptions on operator costs, and others.

Spectrum policy assumptions (vary across scenarios)

The spectrum policy assumptions include two aspects of spectrum assignments:

- The amount of spectrum assigned to mobile operators and its use by generation for each year of calculation. In the model, we aggregate spectrum holdings at a country level to estimate overall capacity across all mobile networks.
- The level of fragmentation of 5G spectrum.
 The fragmentation assumption is simplified to two options: either the spectrum channels are fragmented into 40 MHz channels (scenario 3) or wider 100 MHz channels (scenarios 1, 2 and 4).

Baseline demand and throughput requirement assumptions

We develop calculations to estimate the baseline country-level demand for mobile data. Using additional calculations, we estimate the network throughput required to meet demand for mobile data (Figure 4).

Figure 4

Estimating total demand for data and required peak-hour network throughput

These demand assumptions are used to form a view of the future demand for mobile data in the baseline scenario. The baseline projections of the number of smartphones are based on representative GSMA Intelligence projections for benchmark, realworld low-income and high-income countries. The projected number of smartphone subscribers is multiplied by the assumed demand for mobile data per subscriber. The assumptions are based on current and projected growth in consumption of mobile data for regions corresponding to our representative countries: Southeast Asia for the low-income country and Western Europe for the high-income country.² The two assumptions are used in an intermediate calculation to obtain the annual amount of mobile traffic in gigabytes.

In the last step, additional intermediate calculations and assumptions are used to convert the annual mobile traffic (GB/year) into the throughput (bytes per second) that a network needs to provide to serve the traffic. This calculation includes an additional assumption on the peak-hour throughput. This assumption is used to adjust the required throughput, given that the network load varies in a daily cycle. The peak-hour throughput is assumed at 8%, meaning that in the single busy hour the network needs to be able to serve 8% of the daily volume of data (rather than 1/24th of it).³ Hence the required peak-hour throughput to serve the given annual demand is calculated as follows:

Peak hour throughput (bytes per second) =

Annual data traffic

* Peak hour rate

365

Impact on network throughput

We use additional calculations to estimate the maximum throughput per base station, given the spectrum available to operators. To do this, we multiply the amount of spectrum available to all operators (MHz) for all network generations and in each band by the spectral efficiency parameters sourced from the literature (Figure 5).

We develop estimates of maximum throughput per base station for two sizes of base station:

- macro base station, with three sectors of operation permitting higher throughput
- micro base station, with a single sector of operation.

Among these, we distinguish between 5G-enabled and legacy sites. 5G-enabled sites can utilise all 5G spectrum holdings, boosting their throughput. In contrast, legacy site throughput is limited to throughput offered by spectrum assigned to 2G, 3G and 4G networks. Maximum throughput for each type of base station is calculated using the following formula:

Maximum throughput per base station

- = Allocated spectrum × (Spectral efficiency DL * DL ratio
- + Spectral efficiency $UL * (1-DL ratio)) \times Sectors$

Downlink (DL) ratio is the assumed share of downlink data in the total mobile traffic, at 75%. Using the calculated maximum throughput per base station and additional assumptions on the share of each type of site allows us to calculate the share of each generation in the total traffic handled by each type of base station. This is assumed to be proportional to the throughput offered by each network generation, given the spectrum allocated to it.

2 Ericsson (2022) "Mobile data traffic outlook". https://www.ericsson.com/en/reports-and-papers/mobility-report/dataforecasts/mobile-traffic-forecast

3 Adapted by GSMA from Nokia Siemens Networks (2010) "Mobile broadband with HSPA and LTE - capacity and cost aspects". <u>https://fcc.report/ELS/Nokia-House/0249-EX-ML-2011/121259.pdf</u>

Figure 5 Spectral efficiency parameters used in modelling

Downlink/uplink	Generation	Spectral efficiency (bit/s/MHz)	Source	Notes
	2G	0.30	<u>Rysavy Research,</u> 2014	Based on EDGE
	3G	0.90	<u>Rysavy Research,</u> 2014	Based on HSDPA
Downlink	4G	1.70	<u>Rysavy Research,</u> 2014	Based on MIMO 4×2
	5G	Between 1.80 (low bands) and 6.00 (high bands)	<u>Coleago (2021)</u>	
	2G	0.09	<u>Rysavy Research,</u> 2014	Based on 1/3 of HSUPA, as for DL
Uplink	3G	0.26	<u>Rysavy Research,</u> 2014	Based on HSUPA
	4G	1.30	<u>Rysavy Research,</u> 2014	Based on MU- MIMO 4×2
	5G	Between 1.80 (low bands) and 4.10 (high bands)	<u>Coleago (2021)</u>	

In the same step, we calculate the average energy consumption per unit of data, given the available spectrum. The energy efficiency of networks is measured in Watt hours per megabyte of transmitted data (Wh/MB). According to the surveyed estimates (Figure 6), the energy efficiency of networks varies significantly across different generations. In addition, it is expected that the energy efficiency of 5G networks will continuously improve. To estimate combined network energy efficiency, we weight the energy efficiencies of different network generations by their share in network throughput.

Figure 6 Energy efficiency of networks – assumptions on energy use per unit of data

Generation	Band	Downlink/uplink	Energy use (Wh/MB)	Source	Notes
2G			37.00	<u> Malmodin (2018)</u>	
3G	All	Same for both	2.90	<u>Malmodin (2018)</u>	
4G	bands	downlink traffic	0.10	<u>Pihkola et al. (2018)</u>	Based on the projected efficiency for 2020
5G			Linearly decreasing from 0.05 in 2022 to 0.005 in 2031	Adapted by GSMA from <u>Orange</u> (2020)	Assuming initially twice as efficient as 4G in 2021, later improving efficiency in line with Orange (2020) projections.

Cost and data traffic calculations

In the next steps, we calculate the baseline network costs for each year (2022-2031).

Baseline costs and network variables

We use a stock-flow model to estimate the composition of types of base station and their number required to meet the data traffic. For the baseline scenario, we calculate this according to the following steps:

- 1. We estimate the throughput of existing base stations based on the spectrum holdings in a given year. Based on a 10-year lifespan of a base station, we assume that 10% of the existing stock of base stations needs to be replaced with new equipment each year. If 5G spectrum has been available to the operators in that year, the operators replace them with 5G-enabled base stations. Otherwise, these will be replaced with legacy-type base stations (unable to use 5G spectrum). This step allows us to calculate the network throughput gap for the existing stock of base stations, after any upgrades. The throughput gap is calculated as the difference between the throughput required to serve demand and the throughput offered by existing base stations.
- Using the estimated network throughput gap, we calculate the number of additional base stations needed to meet the throughput gap. In a similar way to the previous step, we assume that the newly added base stations will be 5G-enabled if 5G spectrum is available to operators, or legacytype if 5G spectrum has not yet been assigned.

In steps 1 and 2, to accurately represent multiple network operators, we multiply the estimated number of base stations by three, assuming that the sites and equipment need to be set up separately for each operator. We effectively assume three operators, which is the typical number of large operators in medium-sized countries. We use additional assumptions to account for imperfect utilisation of base stations in the peak hour. To account for this, we further scale the estimated number of base stations three-fold. This adjustment is supported by evidence showing that, even in busy networks, resources are not utilised 75-90% of the time.⁴

Steps 1 and 2 provide us with the number of base stations and their type. Combined with the throughput per base station parameters, these figures allow us to estimate the share of each network generation in total network traffic.

In further steps, we focus calculations on costs. For the baseline scenario:

- we use additional parameters on the setup and annual running cost per base station (these assumptions are outlined in Figure 7)
- we estimate the energy cost as a component of total network cost based on assumptions in Figure 7.

In the last step, we sum the costs to estimate the baseline network cost and network cost per unit of data.

Figure 7

Cost calculation parameters used in modelling

Parameter	Value	Source
Capex per base station	Macro: \$135,000 Micro: \$17,000	Illustrative assumptions based on 5G NORMA
Opex per base station, per annum	Macro: \$45,000 Micro: \$5,667	Assumed at approximately 30% of capex, based on the evidence on 5G networks ⁵
Share of energy costs in opex	21%	Based on the evidence on 5G networks. ⁶ In the baseline scenario is assumed constant throughout the modelled period

⁴ RCRWIrelessNews (2022) "The green credentials of 5G and IoT". <u>https://f.hubspotusercontent40.net/hubfs/8928696/20220208%20Green%20Credentials%20IoT%20</u> Editorial%20Report.pdf

6 Ibid.

⁵ Analysys Mason (2019) "What are key considerations for 5G sites?". https://www.analysysmason.com/globalassets/x_migrated-media/media/analysys_mason_5g_key_considerations white_paper_oct20192.pdf

Alternative scenario costs and network variables

In the calculation of alternative scenarios, we dynamically model the relationship between the key network variables (number of base stations, throughput, costs), prices and demand for data.

The first two steps of the calculation are analogous to the calculation of the baseline scenario. For each year, we use the alternative spectrum assignment assumptions to estimate the throughput of existing base stations, and the throughput gap to meet demand for data.

As with the baseline, this allows us to estimate the alternative capital costs, based on the stock of base stations, which determines the number of base stations to be replaced (at 10% of the stock, in line with the depreciation rate) and the number of new base stations to be added.

Similarly, we calculate operational costs, including the energy cost component. The energy cost component is estimated by adjusting the baseline energy cost according to the change in the combined network's energy efficiency per unit of data estimated in the earlier steps. For example, if the energy consumption of the network decreased from 0.1 Wh/MB to 0.11 Wh/MB (a 10% increase in consumption of energy per unit of data), we scale up the energy cost by 10%. Other operational costs are assumed to be fixed in per-base-station terms.

In the next step, we sum all the costs to obtain the total network cost in the alternative scenario. We compare this estimate to the baseline scenario data traffic and costs to obtain the percentage difference in network cost per unit of data. This estimate is used in a further equation to calculate how the prices of data will change. To do this, we use further assumptions on the share of network costs in total operator costs and cost pass-through ratio. We use the following formula to estimate the impact on consumer prices:

% change in price per unit of data

- = % change in network cost per unit of data × RAN cost as a share of total MNO costs
- × Cost pass-through ratio

Figure 8 Cost calculation parameters used in modelling

Parameter	Value	Source
Cost pass-through ratio	80%	Illustrative assumptions based on pass- through of mobile taxation ⁷
RAN cost as a share of total MNO costs	29%	Baseline scenario assumption based on European network data ⁸
Price elasticity of demand	-0.9	Based on the estimate of ownership elasticity with respect to the cost of services for low-income countries ⁹

To translate the impact on data prices into an impact on demand, we multiply it by the price elasticity of demand. This results in an estimate of the impact on demand for mobile data as a percentage difference from the baseline, which we subsequently apply to the baseline demand projection.

The previous step results in new, updated demand for data in the alternative scenario. This step marks the end of one iteration in the process of dynamic estimation of demand and costs for a single year of estimation. The estimation steps are repeated until the calculations converge on an iterative solution for demand and costs for a given year of estimation of the alternative scenario. Once a convergent solution is obtained for the year, the calculations begin for the next year of analysis in the same fashion.

As a result of modelling the demand for mobile services as responsive to costs and prices, our modelling accounts for rebound effects.¹⁰ In our modelling, lower energy efficiency of the network and higher number of base stations translate into a cost impact, which is partly passed onto consumers, who adjust their demand for mobile services.

An additional important feature of model design is that the past outcomes can have an impact on future outcomes.

8 GSMA (2012) "Comparison of fixed and mobile cost structures". <u>https://www.gsma.com/publicpolicy/wp-content/uploads/2012/09/Tax-Comparison-of-fixed-and-mobile-cost-structures.pdf</u>

Methodology_documentation.pdf 10 Gillingham et al. (2015) "The Rebound Effect and Energy Efficiency Policy". <u>https://resources.environment.yale.edu/gillingham/GillinghamRapsonWagner_Rebound.pdf</u>

⁷ GSMA (2020) "Mobile taxation studies Methodology documentation". <u>https://www.gsma.com/publicpolicy/wp-content/uploads/2020/04/Mobile_taxation_studies_Methodology_documentation.pdf</u>

 ⁹ GSMA (2020) "Mobile taxation studies: Methodology documentation". <u>https://www.gsma.com/publicpolicy/wp-content/uploads/2020/04/Mobile_taxation_studies_</u>

In the last step of calculations, we translate the impacts calculated earlier into emissions impact estimates for the mobile sector and the impacts on emissions of other sectors and households through the enablement effect. The emissions within scope of our calculations are shown in Figure 9.

Figure 9 Emissions within and out of scope of modelling

Source: GSMA Intelligence

Calculations include the impact on operator emissions, including emissions from operators' own production of electricity, emissions linked to purchased electricity and operations of offices and data centres, as well as emissions generated through the supply chain (emissions linked to the manufacture and construction of base stations).

In addition, we calculate the emissions impact through user equipment. The calculations cover emissions embodied in manufacturing of smartphones and IoT devices relying on mobile connectivity, as well as emissions linked to the electricity consumption of smartphones.

The calculations of impact exclude the impact on emissions as a result of data traffic generated by IoT devices, as the vast majority of IoT devices consume less than a few megabytes of data per month.¹¹ We also exclude from the calculation emissions linked to the operation of the backbone internet network (outside of an MNO's operations) as they are relatively Iow.¹²

¹² Ficher et al. (2021) "Assessing the carbon footprint of the data transmission on a backbone network". https://hal.science/hal-03196527/document_

¹¹ James Brehm & Associates (n.d.) "State of the Network: An Introduction to the Sunset". <u>https://www.business.att.com/content/dam/attbusiness/briefs/state-of-the-network-whitepaper.pdf</u>

In the calculations, we use various emissions intensity parameters to convert the activity of the mobile sector (such as energy consumption and purchases through the supply chain) into carbon impacts (in tonnes of CO2e), as outlined in Figure 10.

For example, to calculate emissions embodied in base stations each year, we multiply the number of refurbished and newly added base stations by their respective emissions intensities.

Similarly, we calculate the emissions as a result of electricity consumed by the radio network by multiplying the annual data traffic (in MB) by the weighted average electricity consumption per unit of data (Wh/MB) and the emissions intensity of electricity powering the network (gCO2e/kWh). The emissions intensity of electricity powering the network is a weighted average of the carbon emissions intensity of electricity purchased by network operators from the grid as well as the emissions intensity of electricity generated by network operators. The weights are based on assumptions on the share of diesel and solar-powered off-grid base stations, as outlined in Figure 10.

To estimate the impact on emissions in any given spectrum policy alternative, the combined emissions of the mobile sector are simply subtracted from the baseline emissions.

Figure 10

Parameters used in calculation of carbon impacts

Parameter	Low-income country	High-income country			
Electricity supply mix of the network	Macro base stations: Purchased electricity: 94% Own diesel generation: 3% Own solar: 3% Small sites: Purchased electricity: 100%	Purchased electricity: 100%			
Share of purchased grid electricity by type	Regular grid electricity: 95% Renewables-only electricity: 5% ¹³	Regular grid electricity: 29% Renewables-only electricity: 71% ¹⁴			
Emissions intensity of regular grid electricity	2022: 425 gCO2e/kWh 2031: 333 gCO2e/kWh Linearly interpolated between the years	2022: 322 gCO2e/kWh 2031: 197 gCO2e/kWh Linearly interpolated between the years			
Grid share of renewables	25%	36%			

¹³ Based on South-East Asia estimates from GSMA (2022) "Mobile Industry position paper Access to renewable electricity" <u>https://www.gsma.com/betterfuture/wp-content/uploads/2022/11/Mobile_Industry_Position_Paper_Access_to_Renewable_Electricity_Nov22.pdf</u>

¹⁴ Based on Europe estimates from GSMA (2022) "Mobile Industry position paper Access to renewable electricity" <u>https://www.gsma.com/betterfuture/wp-content/uploads/2022/11/Mobile_Industry_Position_Paper_Access_to_Renewable_Electricity_Nov22.pdf</u>

Parameter	Low-income country	High-income country					
Emissions intensity of renewables-only grid electricity	53	gCO2e/kWh ¹⁵					
Carbon intensity of operators'	Diesel:	987 gCO2e/kWh ¹⁶					
own electricity generation	Solar: 53 gCO2e/kWh ¹⁷						
Share of offices and data centres in total operator emissions	43%, based on a	a representative operator ¹⁸					
Carbon embodied in base	Figures adapted from est	imates for 5G networks in China ¹⁹ , at:					
stations	128 tCO2e per macro base station						
	42 tCO2e p	per micro base station					
Emissions embodied in smartphone devices	Figures ²⁰ adapted and annu 15.2 kgCO2e in 2022, 8.7 k betv	Jalised assuming a three-year lifespan: (gCO2e in 2031. Linearly interpolated ween the years.					
Emissions as a result of energy consumption of smartphones	Excluding network us	age: 0.46 kgCO2e/device/year ²¹					
Smartphone network module energy consumption	GSMA Intelligence calcul consumption in carrier aggre use cas	ations based on evidence on power egation scenarios ²² and a representative se of video calling					
	Without 2022: 2031: (carrier aggregation: 0.0010 kWh/GB 0.00015 kWh/GB					
	With ca 2022 2031: 0	arrier aggregation: : 0.0011 kWh/GB 0.00017 kWh/GB					

²² Adopted from Santos et al (n.d.) "LTE-A UE Power Consumption for Carrier Aggregation Scenario" <u>https://www.sbrt.org.br/sbrt2020/papers/1570661121.pdf</u> and Yan et al. (2019) "Modelling the Total Energy Consumption of Mobile Network Services and Applications" <u>https://www.mdpi.com/1996-1073/12/1/184/htm</u>

¹⁵ Based on the mid-point of estimates for of Poly-SI PV, roof mounted from UNECE (2021) "Life Cycle Assessment of Electricity Generation Options" <u>https://unece.org/</u> sites/default/files/2021-10/LCA-2.pdf

 ¹⁶ GSMA calculations based on carbon emissions per one litre of diesel from UK Department for Business, Energy & Industrial Strategy (2022). "Green Book supplementary guidance: valuation of energy use and greenhouse gas emissions for appraisal" https://www.govuk/government/publications/valuation-of-energy-use-and-greenhouse-gas-emissions-for-appraisal and diesel generators specific fuel consumption (L/kWh) from Shakya et al. (2022) "Estimation of air pollutant emissions from captive diesel generators and its mitigation potential through microgrid and solar energy" https://www.sciencedirect.com/science/article/pii/S2352484722003316
 17 Based on the mid-point of estimates for of Poly-SI PV, roof mounted from UNECE (2021) "Life Cycle Assessment of Electricity Generation Options" https://unece.org/

sites/default/files/2021-10/LCA-2.pdf

¹⁸ Elisa (2014) "Annual Report 2014". <u>https://corporate.elisa.com/attachment/content/Elisa_Annual_Report_2014.pdf</u>

⁹ Figures assuming 10-year life span per base station and including emissions embodied in manufacturing, construction and transport of base stations. Adapted by GSMA Intelligence from Ding et al. (2022) "Carbon emissions and mitigation potentials of 5G base station in China". <u>https://www.sciencedirect.com/science/article/abs/pii/S092134492200177X?via%3Dihub</u>

²⁰ Ericsson (n.d.) "Life cycle environmental impacts of a smartphone". <u>https://www.ericsson.com/en/reports-and-papers/research-papers/life-cycle-assessment-of-assessment</u>

²¹ Based on a representative grid intensity of 0.6kg/kWh. Assumed constant: while grid electricity intensity will decrease, it is possible that due to denser energy capacity of batteries and more data use, the energy consumption could increase. Adapted from Ericsson (n.d.) "Life cycle environmental impacts of a smartphone". https://www.ericsson.com/en/reports-and-papers/research-papers/life-cycle-assessment-of-a-smartphone

Emissions impact through the mobile enablement effect

Baseline projection

To estimate the impact through mobile enablement, we rely on previous GSMA analysis on the size of the enablement effect.^{23 24}

Figure 11

Approach to modelling the impact of spectrum policy through the enablement effect

Abatement factors	 For each use case, we rely on abatement factors: estimates of avoided emissions per connection per year. We adjust these estimates for the projected changes in emissions intensity – for example, to reflect that in the future electricity production or transport will become greener.
Baseline projection of connections	 We develop baseline projections of the number of connections of each type (smartphones and IoT) for each modelled country. These projections are adapted from previous studies estimating future global IoT connections.
Alternative projection of connections	 For each scenario, we adjust the baseline projections of the number of connections to obtain a counterfactual projection. This adjustment is based on the estimated change in prices and the demand for mobile data under a given spectrum policy variant.
Emissions impact	 For each scenario, we multiply the projected number of connections by the abatement factors to obtain the estimate of the mobile enablement effect. To obtain the estimate of the impact of spectrum policy, we compare the size of the enablement effect with the baseline spectrum policy scenario.

Source: GSMA Intelligence

To estimate the size of the mobile enablement effect, we develop baseline estimates of the number of smartphones and IoT connections (Figures 12 and 13). The baseline projections of the number of IoT connections are regional projections developed by GSMA Intelligence that were scaled down at country level based on each country's implied GDP share of the corresponding region's GDP. To obtain the estimates of the mobile enablement effect, we multiply the projected number of connections by the corresponding carbon abatement factors (avoided emissions per smartphone or IoT connection per year – for example, avoided kg/CO2 per connection). These estimates are presented in Figure 14 and Figure 15.²⁵ We adapted the figures for the corresponding regions (Asia for the low-income country and Europe for the high-income country) and

²⁵ Ibid.

²³ GSMA (2019) "The Enablement Effect" https://www.gsma.com/betterfuture/wp-content/uploads/2019/12/GSMA_Enablement_Effect.pdf

²⁴ GSMA (2021) "The Enablement Effect 2021 Mobile Net Zero How can mobile tech help us reach Net Zero faster, easier, and cheaper?" <u>https://www.gsma.com/</u> betterfuture/wp-content/uploads/2022/04/The-Enablement-Effect-2021.pdf

performed additional scaling of abatement factors to account for differences in GDP per capita between our representative countries and their regions. For example, given that our low-income country's GDP per capita is lower than the average for Asia, we scaled down the abatement factors. To account for the changing carbon intensity throughout the economy, we project the abatement factors to decline at the same rate as the grid carbon intensity in each country.

In our assessment, the estimated impacts through the enablement effect are generally less reliable than the estimates on the sector's own emissions. This is for the following reasons:

- There is a large degree of uncertainty about avoided emissions per use case, especially for later years of projection when carbon intensity of the economy might evolve differently compared to our assumptions.
- Other emission-saving use cases exist that we did not include in the modelling due to lack of data.
 Moreover, new emission-saving use cases may emerge in the near future.
- Rebound effects could affect the abatement factors because improved usability or economic growth generated by the mobile connectivity can increase the demand for certain emission-saving activities.²⁶
- There is a large degree of uncertainty about the number of IoT devices supporting emission-saving use cases and how responsive the demand for these is with respect to the cost of mobile data. At least some of these use cases could also be supported by alternative networks, mitigating some of the emissions impacts.

We therefore advise caution and careful consideration of assumptions underpinning the calculated size of the impacts through the mobile enablement effect.

Alternative scenario estimate

To estimate the size of the mobile enablement effect under alternative spectrum policy scenarios, we adjust the baseline effect according to the estimated change in uptake of emission-saving use cases in response to changing prices of mobile data. We use the following assumptions:

- Uptake of smartphone emission-saving use cases reduces proportionally to changes in demand for mobile data.
- For IoT connection use cases, we assume a very low elasticity of uptake with respect to data prices, at -0.2. This means that a 1% increase in prices of data results in the uptake of IoT use cases declining by only 0.2%. This assumption reflects that a vast majority of IoT connections typically use less than a few megabytes of data per month, so uptake is likely to respond to price of data only very modestly.

To estimate the impact on emissions through the enablement effect, we calculate the difference in the size of the enablement effect between the alternative and the baseline scenario.

²⁶ GSMA (2019) "The Enablement Effect". https://www.gsma.com/betterfuture/wp-content/uploads/2019/12/GSMA_Enablement_Effect.pdf

Smartphone and IoT connections relying on mobile networks (millions) – baseline assumption in low-income country

	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
Smartphones	46	50	55	59	63	68	72	77	82	87
Crop management	0.015	0.018	0.022	0.027	0.030	0.033	0.035	0.038	0.041	0.044
Building energy management systems (electricity commercial)	0.185	0.228	0.282	0.349	0.382	0.415	0.449	0.482	0.516	0.552
Building energy management systems (gas commercial)	0.016	0.020	0.025	0.031	0.034	0.037	0.040	0.043	0.046	0.049
HVAC control - commercial buildings	0.069	0.085	0.105	0.130	0.142	0.155	0.167	0.180	0.192	0.206
Smart meters (electricity residential)	4.649	5.736	7.090	8.774	9.617	10.459	11.301	12.144	12.986	13.887
Electric vehicle connection	0.001	0.002	0.002	0.003	0.003	0.003	0.003	0.003	0.004	0.004
Micro generation (solar)	0.003	0.003	0.004	0.005	0.006	0.006	0.007	0.007	0.008	0.008
Micro generation (wind business)	0.002	0.003	0.003	0.004	0.004	0.005	0.005	0.006	0.006	0.006
Smart grids - electric network management	0.082	0.102	0.126	0.155	0.170	0.185	0.200	0.215	0.230	0.246
Inventory management	0.052	0.065	0.080	0.099	0.108	0.118	0.127	0.137	0.146	0.157
Car sharing (car clubs)	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Fleet vehicle driver behaviour improvement	0.566	0.698	0.863	1.068	1.170	1.273	1.375	1.478	1.580	1.690
Sea fleet - efficient routing	0.001	0.002	0.002	0.002	0.003	0.003	0.003	0.003	0.003	0.004
Smart logistics – efficient routing and fleet management	0.567	0.699	0.864	1.069	1.172	1.274	1.377	1.480	1.582	1.692
Smart logistics - loading optimisation	0.566	0.699	0.864	1.069	1.172	1.274	1.377	1.479	1.582	1.692
Traffic congestion management	0.001	0.001	0.001	0.002	0.002	0.002	0.002	0.002	0.003	0.003
Traffic congestion monitoring (road signs and traffic lights)	0.002	0.002	0.003	0.003	0.004	0.004	0.004	0.005	0.005	0.006
Usage-based car insurance	0.326	0.372	0.422	0.475	0.501	0.527	0.554	0.580	0.606	0.634

Smartphone and IoT connections relying on mobile networks (millions) – baseline assumption in high-income country

	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
Smartphones	98	101	102	104	106	108	111	114	116	119
Crop management	0.085	0.100	0.118	0.138	0.148	0.158	0.168	0.178	0.188	0.199
Building energy management systems (electricity commercial)	1.189	1.403	1.649	1.929	2.068	2.208	2.348	2.487	2.627	2.774
Building energy management systems (gas commercial)	0.105	0.124	0.146	0.171	0.183	0.196	0.208	0.220	0.233	0.246
HVAC control - commercial buildings	0.446	0.526	0.619	0.724	0.776	0.828	0.881	0.933	0.986	1.041
Smart meters (electricity residential)	25.304	29.865	35.106	41.053	44.026	46.999	49.972	52.945	55.918	59.058
Electric vehicle connection	0.010	0.011	0.013	0.015	0.017	0.018	0.019	0.020	0.021	0.022
Micro generation (solar)	0.014	0.016	0.019	0.022	0.024	0.026	0.027	0.029	0.031	0.032
Micro generation (wind business)	0.020	0.023	0.027	0.032	0.034	0.037	0.039	0.041	0.044	0.046
Smart grids - electric network management	0.459	0.541	0.637	0.744	0.798	0.852	0.906	0.960	1.014	1.071
Inventory management	0.319	0.376	0.442	0.517	0.554	0.592	0.629	0.667	0.704	0.744
Car sharing (car clubs)	0.005	0.005	0.006	0.006	0.006	0.006	0.006	0.007	0.007	0.007
Fleet vehicle driver behaviour improvement	3.310	3.906	4.592	5.370	5.759	6.148	6.537	6.925	7.314	7.725
Sea fleet - efficient routing	0.007	0.009	0.010	0.012	0.013	0.013	0.014	0.015	0.016	0.017
Smart logistics – efficient routing and fleet management	3.308	3.905	4.590	5.367	5.756	6.145	6.534	6.922	7.311	7.722
Smart logistics - loading optimisation	3.309	3.905	4.590	5.368	5.757	6.145	6.534	6.923	7.312	7.722
Traffic congestion management	0.005	0.006	0.007	0.008	0.009	0.009	0.010	0.010	0.011	0.012
Traffic congestion monitoring (road signs and traffic lights)	0.010	0.012	0.014	0.016	0.017	0.018	0.020	0.021	0.022	0.023
Usage-based car insurance	2.799	2.988	3.172	3.351	3.441	3.531	3.621	3.711	3.801	3.893

Carbon abatement factors in low-income country (kgCO2e of avoided emissions per connection per annum)

Connection	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
Smartphone	117	115	113	111	108	104	101	98	95	92
Crop management	306	301	296	291	281	273	264	256	248	240
Building energy management systems (electricity commercial)	284	279	274	269	261	253	245	237	230	222
Building energy management systems (gas commercial)	1,571	1,544	1,517	1,491	1,444	1,399	1,355	1,312	1,271	1,231
HVAC control - commercial buildings	2,131	2,094	2,058	2,023	1,960	1,898	1,838	1,780	1,725	1,670
Smart meters (electricity residential)	18	18	18	18	17	16	16	15	15	14
Electric vehicle connection	278	274	269	264	256	248	240	233	225	218
Micro generation (solar)	126,097	123,933	121,807	119,716	115,953	112,308	108,777	105,358	102,046	98,838
Micro generation (wind business)	23,825	23,416	23,014	22,619	21,908	21,220	20,553	19,906	19,281	18,675
Smart grids - electric network management	208	204	200	197	191	185	179	173	168	163
Inventory management	8,546	8,400	8,256	8,114	7,859	7,612	7,373	7,141	6,916	6,699
Car sharing (car clubs)	941	925	909	893	865	838	812	786	761	737
Fleet vehicle driver behaviour improvement	292	287	282	277	268	260	252	244	236	229
Sea fleet - efficient routing	141,790	139,357	136,966	134,615	130,383	126,285	122,315	118,470	114,746	111,139
Smart logistics – efficient routing and fleet management	207	203	200	196	190	184	178	173	167	162
Smart logistics - loading optimisation	83	81	80	78	76	74	71	69	67	65
Traffic congestion management	8,149	8,009	7,872	7,736	7,493	7,258	7,030	6,809	6,595	6,387
Traffic congestion monitoring (road signs and traffic lights)	10,063	9,891	9,721	9,554	9,254	8,963	8,681	8,408	8,144	7,888
Usage-based car insurance	86	85	84	82	80	77	75	72	70	68

Carbon abatement factors in high-income country (kgCO2e of avoided emissions per connection per annum)

Connection	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
Smartphone	278	265	252	240	228	218	207	197	188	179
Crop management	728	693	660	628	598	569	542	516	491	468
Building energy management systems (electricity commercial)	674	642	611	582	554	528	502	478	455	434
Building energy management systems (gas commercial)	3,735	3,556	3,386	3,224	3,070	2,923	2,783	2,649	2,523	2,402
HVAC control - commercial buildings	5,067	4,825	4,593	4,374	4,164	3,965	3,775	3,594	3,422	3,258
Smart meters (electricity residential)	44	42	40	38	36	34	33	31	30	28
Electric vehicle connection	662	630	600	572	544	518	493	470	447	426
Micro generation (solar)	299,845	285,486	271,816	258,800	246,407	234,608	223,373	212,677	202,493	192,796
Micro generation (wind business)	56,653	53,940	51,357	48,898	46,556	44,327	42,204	40,183	38,259	36,427
Smart grids – electric network management	493	470	447	426	406	386	368	350	333	317
Inventory management	20,322	19,349	18,423	17,540	16,701	15,901	15,139	14,414	13,724	13,067
Car sharing (car clubs)	2,237	2,130	2,028	1,931	1,838	1,750	1,667	1,587	1,511	1,438
Fleet vehicle driver behaviour improvement	693	660	629	598	570	542	517	492	468	446
Sea fleet - efficient routing	337,161	321,015	305,644	291,008	277,073	263,805	251,172	239,145	227,693	216,790
Smart logistics - efficient routing and fleet management	491	468	445	424	404	384	366	348	332	316
Smart logistics - loading optimisation	197	187	178	170	161	154	146	139	133	126
Traffic congestion management	19,377	18,449	17,566	16,724	15,924	15,161	14,435	13,744	13,086	12,459
Traffic congestion monitoring (road signs and traffic lights)	23,929	22,783	21,692	20,654	19,665	18,723	17,826	16,973	16,160	15,386
Usage-based car insurance	206	196	186	178	169	161	153	146	139	132

Appendix A2: Detailed modelling results

Figure 16

Emissions impacts in low-income country: detailed estimates

MtCO2e

2: Limited 5G assignments

3: Fragmented 5G spectrum

4: No refarming to 5G spectrum

User equipment

Enablement

Figure 17 Emissions impacts in high-income country: detailed estimates

MtCO2e

2: Limited 5G assignments

3: Fragmented 5G spectrum

4: No refarming to 5G spectrum

erators 👘 🛑 User equipment

Enablement

GSMA Head Office

1 Angel Lane London EC4R 3AB United Kingdom Tel: +44 (0)20 7356 0600 Fax: +44 (0)20 7356 0601

