

RSP Test Certificates Version 1.5 30 June 2021

This Industry Specification is a Non-Binding Permanent Document of the GSMA

Security Classification: Non-confidential

Access to and distribution of this document is restricted to the persons permitted by the security classification. This document is subject to copyright protection. This document is to be used only for the purposes for which it has been supplied and information contained in it must not be disclosed or in any other way made available, in whole or in part, to persons other than those permitted under the security classification without the prior written approval of the Association.

Copyright Notice

Copyright © 2021 GSM Association

Disclaimer

The GSM Association ("Association") makes no representation, warranty or undertaking (express or implied) with respect to and does not accept any responsibility for, and hereby disclaims liability for the accuracy or completeness or timeliness of the information contained in this document. The information contained in this document may be subject to change without prior notice.

Compliance Notice

The information contain herein is in full compliance with the GSM Association's antitrust compliance policy.

This Permanent Reference Document is classified by GSMA as an Industry Specification, as such it has been developed and is maintained by GSMA in accordance with the provisions set out in GSMA AA.35 - Procedures for Industry Specifications.

Table of Contents

1	Intro	duction	3
	1.1	Scope	3
	1.2	References	3
2	Tool	chain for generation of the keys and certificates	4
	2.1	OpenSSL	4
	2.2	Keys generation	4
	2.3	CI Certificate Generation	5
	2.4	Non-Root Certificate generation	5
	2.5	Certificate display	7
3	Test	Certificates and keys – Valid test cases	7
	3.1	Certificate Issuer	7
	3.1.1	CI Certificate: definition of data to be signed	7
	3.1.2	CI Keys and Certificate	8
	3.1.3	Input data for generation	8
	3.2	eUICC	9
	3.2.1	eUICC Certificate: definition of data to be signed	9
	3.2.2	eUICC Keys and Certificate	9
	3.2.3	Input data for generation	10
	3.3	EUM	10
	3.3.1	EUM Certificate: definition of data to be signed	10
	3.3.2	EUM Keys and Certificate	11
	3.3.3	Input data for generation	12
	3.4	SM-DP+	12
	3.4.1	DPauth	12
	3.4.2	DPpb	16
	3.4.3	TLS	19
	3.5	SM-DS	26
	3.5.1	DSauth	26
	3.5.2	TLS	27
4	Test	Certificates and keys – Invalid test cases	30
	4.1	eUICC	30
	4.2	SM-DP+	31
	4.2.1	DPauth	31
	4.2.2	DPpb	33
	4.2.3	TLS	36
	4.3	SM-DS	45
	4.3.1	DSauth	45
	4.3.2	TLS	48
An	nex A	RSP Certificates and Keys Files (Normative)	58
An	nex B	Alternative to Certificate Generation	59
An	nex C	Generation of self-signed Test CI Certificates	60
An	nex D	Process to submit support of Test CI Certificates	62

Annex E Document Management

E.1 Document History

64 64

1 Introduction

1.1 Scope

This document's scope is to define the Test Certificates that will be used in the tests specified in SGP.23 [1] based on SGP.22 [2].

These Test Certificates are based on NIST P-256 and/or BrainpoolP256r1 curves.

The Test Certificates MAY chain up to the GSMA CI Certificate defined in this document (see section 3.1.1), or a self-signed CI Certificate (see annex D). In any case, the Test Certificates SHALL NOT be present in any commercial RSP products in their operational lifecycle.

The certificates to be created for nominal test cases, along with the relevant key pairs, are the following:

- One Test CI Certificate (CERT.CI.ECDSA) per curve
- One EUM Certificate (CERT.EUM.ECDSA) per curve
- For each SM-DP+, two Certificates (CERT.DPauth.ECDSA and CERT.DPpb.ECDSA) per curve
- Two SM-DP+ TLS Certificate (CERT.DP.TLS) per curve
- One eUICC Certificate (CERT.EUICC.ECDSA) per curve
- One SM-DS Certificate (CERT.DSauth.ECDSA) per curve
- Two SM-DS TLS Certificate (CERT.DS.TLS) per curve

The certificates to be created for error cases are the following:

- Two SM-DP+ Certificates (CERT.DPauth.ECDSA and CERT.DPpb.ECDSA) per curve with invalid signature
- One SM-DS Certificate (CERT.DSauth.ECDSA) per curve with invalid signature
- Two SM-DP+ Certificates (CERT.DPauth.ECDSA and CERT.DPpb.ECDSA) with invalid curve
- One SM-DS Certificate (CERT.DSauth.ECDSA) with invalid curve

1.2 References

Ref	Document Number	Title
[1]	SGP.22	GSMA "RSP Technical specification" (latest version in v2.x series)
[2]	SGP.23	GSMA "RSP Test Specification" (latest version in v1.x series)
[3]	RFC5280	Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile

[4]	GSMA PRD	Procedures for Industry Specifications	
1.1	AA.35		

2 Tool chain for generation of the keys and certificates

This section describes the tools and the environment that have been used to generate the keys and the certificates described in this document.

2.1 OpenSSL

OpenSSL is an open source project that also provides a general-purpose cryptography library.

Information and documentation can be found here: https://www.openssl.org/.

Binaries can be downloaded here: https://wiki.openssl.org/index.php/Binaries.

The next section assumes that the tool has been installed and correctly configured in your environment.

The OpenSSL version used to generate the certificates in this document is 1.1.0e

2.2 Keys generation

The following command lines generate (randomly) a private key

• For NIST P-256 curve:

openssl ecparam -name prime256v1 -genkey -out <sk_file_name>

• For brainpoolP256r1 curve:

openssl ecparam -name brainpoolP256r1 -genkey -out <sk_file_name>

<sk_file_name> specifies the file name that will contain the generated private key (not encrypted) in the PEM form.

NOTE: The PEM form is the default format: it consists of the ASN.1 DER format base64 encoded with additional header and footer lines.

The complete description of the Openssl ecparam command can be found here: https://www.openssl.org/docs/man1.1.0/apps/ecparam.html

The following command line generates the related public key.

openssl ec -in <sk_file_name> -pubout -out <pk_file_name>

<sk_file_name> specifies the file name that contains the private key generated with the previous command line.

<pk_file_name> specifies the file name that will contain the generated public key in the PEM form.

The complete description of the Openssl ec command can be found here: https://www.openssl.org/docs/man1.1.0/apps/ec.html

2.3 CI Certificate Generation

The following command lines generate a root certificate like for the Test CI. The first command line generates the certificate in PEM format (Base64 encoded) and the second command line converts the same certificate from PEM format into DER (i.e. binary DER) encoded format.

```
openssl req -config <ca_configuration_file> -key <ca_sk_file_name> -new -x509 -days
<days> -sha256 -set_serial <serial> -extensions extend -out <cert_pem_file_name>
```

openssl x509 -in <cert_pem_file_name> -outform DER -out <cert_der_file_name>

<ca_configuration_file> is the configuration file that contains the attributes and extensions values of the CI certificate.

<ca_sk_file_name> specifies the file name that contains the CA private key in PEM format.

<serial> specifies the serial number to set in the certificate, the serial number can be decimal or hex (if preceded by 0x).

<days> specifies the number of days of validity to set in the certificate.

<cert_pem_file_name> specifies the file name that will contain the certificate in PEM format.

<cert_der_file_name> specifies the file name that will contain the certificate in DER format

The complete description of the Openssl req command can be found here: https://www.openssl.org/docs/man1.1.0/apps/req.html

The complete description of the input data file format for <ca_configuration_file> specifying certificate extension can be found here:

https://www.openssl.org/docs/man1.1.0/apps/x509v3_config.html

2.4 Non-Root Certificate generation

The generation of a certificate starts with the generation of a Certificate Signing Request (CSR). The following command line generates this CSR.

```
openssl req -new -nodes -sha256 -config <input_csr_file_name> -key <sk_file_name> -
out <csr_file_name>
```

<input_csr_file_name> specifies the file name that contains the input data for CSR.

<sk_file_name> specifies the file name that contains the private key generated with the command described in section 2.2.

<csr_file_name> specifies the file name that will contain the generated CSR.

The complete description of the Openssl req command can be found here: https://www.openssl.org/docs/man1.1.0/apps/req.html

The complete description of the input data file format for CSR can be found here: <u>https://www.openssl.org/docs/man1.1.0/apps/x509v3_config.html</u>

The following command lines generate the certificate corresponding to a CSR. The first command line generates the certificate in PEM format (Base64 encoded) and the second command line converts the same certificate from PEM format into DER (i.e. binary DER) encoded format.

```
openssl x509 -req -in <csr_file_name> -CA <ca_cert_file_name> -CAkey
<ca_sk_file_name> -set_serial <serial> -days <days> -extfile <cert_ext_file_name> -
out <cert_pem_file_name>
openssl x509 -in <cert pem_file_name> -outform DER -out <cert der file_name>
```

<csr_file_name> specifies the file name that contains the CSR generated with the previous command line.

<ca_cert_file_name> specifies the file name that contains the CA Certificate in PEM format.

<ca_sk_file_name> specifies the file name that contains the CA private key in PEM format related to the certificate indicated by <ca_cert_file_name>.

<serial> specifies the serial number to set in the certificate, the serial number can be decimal or hex (if preceded by 0x)

<days> specifies the number of days of validity to set in the certificate.

<cert_ext_file_name> specifies the file name that contains certificate extensions to set in the certificate.

<cert_pem_file_name> specifies the file name that will contain the certificate in PEM format.

<cert_der_file_name> specifies the file name that will contain the certificate in DER format

NOTE: As defined, the input CA certificate to generate the Non-Root Certificates SHALL be in PEM format, the following command will be used to convert from DER format to PEM format (whether the PEM format is not provided)

openssl x509 -inform der -in <cert_der_file_name> -out <cert_pem_file_name>

The complete description of the Opensel x509 command can be found here: https://www.opensel.org/docs/man1.1.0/apps/x509.html

The complete description of the file format for specifying certificate extension can be found here: https://www.openssl.org/docs/man1.1.0/apps/x509v3 config.html

2.5 Certificate display

A certificate can be displayed with the following command lines.

```
openssl x509 -in <cert pem file name> -text -noout
openssl x509 -in <cert der file name> -inform der -text -noout
```

<cert_pem_file_name> specifies the file name that contains the certificate in PEM format.

<cert_der_file_name> specifies the file name that contains the certificate in DER format.

3 Test Certificates and keys – Valid test cases

Please note that currently no CRLs are provided. It needs to be confirmed that the value contained in extension crlDistributionPoint will not lead to a problem with LPA/SM-DP+/SM-DS implementations.

3.1 Certificate Issuer

Field Value 2 version serialNumber '00 B8 74 F3 AB FA 6C 44 D3' signature sha256ECDSA See 'subject' Issuer Validity 12783 days (35 years) Subject cn = Test CI ou = TESTCERT o = RSPTEST c = ITsubjectPublicKeyInfo algorithm.algorithm='1.2.840.10045.2.1' (id-ecPublicKey) algorithm.parameters '1.2.840.10045.3.1.7' (prime256v1) or '1.3.36.3.3.2.8.1.1.7' (brainpoolP256r1) subjectPublicKey=[CI public key value] Extension (Sequence) subjectKeyIdentifier NIST: extension 'F5 41 72 BD F9 8A 95 D6 5C BE B8 8A 38 A1 C1 1D 80 0A 85 C3' Brainpool: 'C0 BC 70 BA 36 92 9D 43 B4 67 FF 57 57 05 30 E5 7A B8 FC D8' keyUsage Extension Certificate Signing, Off-line CRL Signing, CRL Signing (06)

CI Certificate: definition of data to be signed 3.1.1

GSM Association Official Document SGP.26 - Test Certificates

Field	Value
certificatePolicies Extension	'2.23.146.1.2.1.0' (id-rspRole-ci)
basicConstraints Extension	CA = true
subjectAltName Extension	'2.999.1'
crlDistributionPoints Extension	 [1]CRL Distribution Point Distribution Point Name: Full Name: URL=http://ci.test.example.com/CRL-A.crl [2]CRL Distribution Point Distribution Point Name:
	Full Name: URL=http://ci.test.example.com/CRL-B.crl

Table 1: CERT.CI.ECDSA

3.1.2 CI Keys and Certificate

Hereafter the generated CI keys and certificates as defined in Annex A.

File name	Description
SK_CI_ECDSA_NIST.pem	NIST P-256 Private Key of the CI
CERT_CI_ECDSA_NIST.der CERT_CI_ECDSA_NIST.pem	Certificate of the CI for its NIST P-256 Public Key in DER and PEM formats
SK_CI_ECDSA_BRP.pem	Brainpool P256r1 Private Key of the CI
CERT_CI_ECDSA_BRP.der CERT_CI_ECDSA_BRP.pem	Certificate of the CI for its Brainpool P256r1 Public Key in DER and PEM formats

Table 2: CI Keys and Certificates

3.1.3 Input data for generation

The SK.CI.ECDSA and PK.CI.ECDSA are generated using the command lines as described in section 2.2.

The CERT.CI.ECDSA is generated using the command lines described in section 2.3 with the following input data:

<ca_configuration_file>: CI-csr.cnf as defined in Annex A.

<serial> set with value defined in section 3.1.1 for serialNumber data field.

<days> set with value defined in section 3.1.1 for validity data field.

3.2 eUICC

3.2.1 eUICC Certificate: definition of data to be signed

Field	Value	
Version	2	
serialNumber	'02 00 00 00 00 00 00 01'	
signature	sha256ECDSA	
Issuer	cn = EUM Test	
	o = RSP Test EUM	
	c = ES	
Validity	2000000 days	
Subject	cn = Test eUICC	
	serialNumber = '89049032123451234512345678901235' (EID)	
	o = RSP Test EUM	
	c = DE	
subjectPublicKeyInfo	algorithm.algorithm='1.2.840.10045.2.1' (id-ecPublicKey)	
	algorithm.parameters	
	'1.2.840.10045.3.1.7' (prime256v1) or	
	'1.3.36.3.3.2.8.1.1.7' (brainpoolP256r1)	
	subjectPublicKey=[EUICC public key value] (see section 3.2.2)	
Extension (Sequence)		
authorityKeyIdentifier	<value cert.eum.ecdsa."subjectkeyidentifier"="" field="" of=""> for</value>	
Extension	prime256v1 or brainpoolP256r1	
subjectKeyIdentifier	NIST:	
Extension	A5 24 76 AF 5D 50 AA 37 64 37 CC B1 DA 21 72 EF 45 F4 84	
	F0Brainpool:	
	C8 A6 4F 34 3B 85 B7 B0 57 8D C5 7F 8F 13 58 6D C8 04 ED 84	
keyUsage Extension	Critical	
	digitalSignature ('80')	
certificatePolicies	Critical	
Extension	'2.23.146.1.2.1.1' (id-rspRole-euicc)	

Table 3: CERT.EUICC.ECDSA

NOTE: OpenSSL tool does not allow the generation of Infinite duration certificates. For this reason, the eUICC certificate generated herein, only intended for test purposes, is not aligned with the SGP.14 specification. An eUICC certificate generated with another tool supporting this capability SHALL have the duration set to Infinite.

3.2.2 eUICC Keys and Certificate

Here are the generated eUICC keys and certificates as defined in Annex A.

File name	Description
SK_EUICC_ECDSA_NIST.pem	NIST P-256 Private key of the eUICC for creating signatures
PK_EUICC_ECDSA_NIST.pem	NIST P-256 Public Key of the eUICC
	(part of the CERT_EUICC_ECDSA_NIST.der)
CERT_EUICC_ECDSA_NIST.der	Certificate of the eUICC for its NIST P-256 Public key
SK_EUICC_ECDSA_BRP.pem	Brainpool P256r1 Private key of the eUICC for creating signatures
PK_EUICC_ECDSA_BRP.pem	Brainpool P256r1 Public Key of the eUICC
	(part of the CERT_EUICC_ECDSA_BRP.der)
CERT_EUICC_ECDSA_BRP.der	Certificate of the eUICC for its Brainpool P256r1 Public key

Table 4: eUICC Keys and Certificates

3.2.3 Input data for generation

The SK.EUICC.ECDSA and PK.EUICC.ECDSA are generated using the command lines as described in section 2.2.

The CERT.EUICC.ECDSA is generated using the command lines described in section 2.4 with the following input data:

<input_csr_file_name>: eUICC-csr.cnf as defined in Annex A.

<ca_cert_file_name> and <ca_sk_file_name>: files generated in section 3.3.2 (file containing the CERT.EUM.ECDSA and SK.EUM.ECDSA respectively).

<serial> set with value defined in section 3.2.1 for serialNumber data field.

<days> set with value defined in section 3.2.1 for validity data field.

<cert_ext_file_name>: eUICC-ext.cnf as defined in Annex A.

3.3 EUM

3.3.1 EUM Certificate: definition of data to be signed

Field	Value
version	2
serialNumber	'12 34 56 78'
signature	algorithm = '1.2.840.10045.4.3.2' (sha256ECDSA)
Issuer	<value cert.ci.ecdsa."subject"="" field="" of=""></value>
validity	12410 days (34 years)
subject	cn = EUM Test
	o = RSP Test EUM
	c = ES

Field	Value
subjectPublicKeyInfo	algorithm.algorithm='1.2.840.10045.2.1' (id-ecPublicKey)
	algorithm.parameters=
	'1.2.840.10045.3.1.7' (prime256v1) or
	'1.3.36.3.3.2.8.1.1.7' (brainpoolP256r1)
	subjectPublicKey=[EUM public key value] (see section 3.3.2)
authorityKeyIdentifier Extension	<value cert.ci.ecdsa."subjectkeyidentifier"="" field="" of=""> for prime256v1 or brainpooIP256r1</value>
subjectKeyIdentifier	NIST (prime256v1):
Extension	DD:3D:A2:4D:35:0C:1C:C5:D0:AF:09:65:F4:0E:C3:4C:5E:E4:09:F1
	Brainpool (brainpoolP256r1):
	6F A1 E5 21 73 63 A8 22 BD ED 98 8A 1A 0D 0F F5 D7 62 0D B7
keyUsage Extension	Critical
	Certificate Sign ('04')
Certificate Policies	Critical
	'2.23.146.1.2.1.2' (id-rspRole-eum)
subjectAltName Extension	'2.999.5'
basicConstraints	Critical
	CA = true
	pathLenConstraint = 0
crlDistributionPoints	[1]CRL Distribution Point
Extension	Distribution Point Name:
	Full Name: URL=http://ci.test.example.com/CRL-B.crl
nameConstraints	Critical
	permittedSubtrees:
	id-at-organizationName: '2.5.4.10'
	organization name: "RSP Test EUM" UTF8String
	id-at-serialNumber: '2.5.4.5'
	iin: "89049032" PrintableString

Table 5: CERT.EUM.ECDSA

3.3.2 EUM Keys and Certificate

Hereafter the generated EUM keys and certificates as defined in Annex A.

File name	Description
SK_EUM_ECDSA_NIST.pem	NIST P-256 Private key of the EUM for creating signatures
PK_EUM_ECDSA_NIST.pem	NIST P-256Public Key of the EUM (part of the CERT_EUM_ECDSA_NIST der)
CERT_EUM_ECDSA_NIST.der	Certificate of the EUM for its Public NIST P-256 key

File name	Description
SK_EUM_ECDSA_BRP.pem	Brainpool P256r1 Private key of the EUM for creating signatures
PK_EUM_ECDSA_BRP.pem	Brainpool P256r1 Public Key of the EUM
	(part of the CERT_EUM_ECDSA_BRP.der)
CERT_EUM_ECDSA_BRP.der	Certificate of the EUM for its Public Brainpool P256r1 key

Table 6: EUM Keys and Certificates

3.3.3 Input data for generation

The SK.EUM.ECDSA and PK.EUM.ECDSA are generated using the command lines as described in section 2.2.

The CERT.EUM.ECDSA is generated using the command lines described in section 2.4 with the following input data:

<input_csr_file_name>: EUM-csr.cnf as defined in Annex A.

<ca_cert_file_name> and <ca_sk_file_name>: files generated in section 3.1.2 (file containing the CERT.CI.ECDSA and SK.CI.ECDSA respectively).

<serial> set with value defined in section 3.3.1 for serialNumber data field.

<days> set with value defined in section 3.3.1 for validity data field.

<cert_ext_file_name>: EUM-ext.cnf as defined in Annex A.

3.4 SM-DP+

3.4.1 DPauth

3.4.1.1 SM-DP+ n°1 Certificate for Authentication: definition of data to be signed

Field	Value
Version	'2'
serialNumber	'100'
signature	algorithm = '1.2.840.10045.4.3.2' (sha256ECDSA)
Issuer	<value cert.ci.ecdsa."subject"="" field="" of=""></value>
Validity	1095 days (3 years)
Subject	o = 'ACME'
	cn = 'TEST SM-DP+'

Field	Value
subjectPublicKeyInfo	algorithm.algorithm='1.2.840.10045.2.1' (id-ecPublicKey) algorithm.parameters= '1.2.840.10045.3.1.7' (prime256v1) or '1.3.36.3.3.2.8.1.1.7' (brainpoolP256r1) subjectPublicKey= corresponding <pk.dpauth.ecdsa value=""> (see 3.4.1.2)</pk.dpauth.ecdsa>
Extensions	(Sequence)
Extension for authorityKeyIdentifier	<value cert.ci.ecdsa."subjectkeyidentifier"="" field="" of=""> for prime256v1 or brainpoolP256r1</value>
Extension for subjectKeyIdentifier	NIST: 'BD 5A 82 CC 1A 96 60 21 18 BA 75 60 A1 FF 83 A7 8B 21 0B E5' Brainpool: '79 A4 BD 4D 78 FF 47 34 BC 60 45 CF 91 96 24 4A 1F B8 4B EB'
Extension for keyUsage	Digital Signature ('80')
Extension for certificatePolicies	'2.23.146.1.2.1.4' (id-rspRole-dp-auth)
Extension for subjectAltName	'2.999.10'
Extension for crlDistributionPoints	<value cert.ci.ecdsa."crldistributionpoints"="" field="" of=""></value>

3.4.1.2 SM-DP+ n°1 Keys and Certificate

Hereafter the generated keys and certificates of SM-DP+ $n^{\circ}1$ for Authentication as defined in Annex A.

File name	Description
SK_S_SM_DPauth_ECDSA_NIST.pem	NIST P-256 Private Key of the SM-DP+ n°1 for creating signatures for SM-DP+ authentication
PK_S_SM_DPauth_ECDSA_NIST.pem	NIST P-256 Public Key of the SM-DP+ n°1 (part of the CERT_S_SM_DPauth_ECDSA_NIST.der)
CERT_S_SM_DPauth_ECDSA_NIST.der	Certificate of the SM-DP+ n°1for its Public NIST P- 256 key used for SM-DP+ authentication
SK S SM DPauth ECDSA BRP pem	Brainpool P256r1 Private Key of the SM-DP+ n°1for
	creating signatures for SM-DP+ authentication
PK_S_SM_DPauth_ECDSA_BRP.pem	Brainpool P256r1 Public Key of the SM-DP+ n°1 (part of the CERT_S_SM_DPauth_ECDSA_BRP.der)

File name	Description
CERT_S_SM_DPauth_ECDSA_BRP.der	Certificate of the SM-DP+ n°1for its Public Brainpool P256r1 key used for SM-DP+ authentication

Table 8: DPAuth Keys and Certificates of SM-DP+ n°1

3.4.1.3 Input data for generation

The SK.DPauth.ECDSA and PK.DPauth.ECDSA of the SM-DP+ n°1 are generated using the command lines as described in section 2.2.

The related CERT.DPauth.ECDSA is generated using the command lines described in section 2.4 with the following input data:

<input_csr_file_name>: DP-csr.cnf as defined in Annex A.

<ca_cert_file_name> and <ca_sk_file_name>: files generated in section 3.1.2 (file containing the CERT.CI.ECDSA and SK.CI.ECDSA respectively).

<serial> set with value defined in section 3.4.1.1 for serialNumber data field.

<days> set with value defined in section 3.4.1.1 for validity data field.

<cert_ext_file_name>: DPauth-ext.cnf as defined in Annex A.

3.4.1.4 SM-DP+ n°2 Certificate for Authentication: definition of data to be signed

Field	Value
Version	Same as in section 3.4.1.1
serialNumber	'200'
signature	Same as in section 3.4.1.1
Issuer	Same as in section 3.4.1.1
Validity	Same as in section 3.4.1.1
Subject	o = 'ACME'
	cn = 'TEST SM-DP+2'
subjectPublicKeyInfo	algorithm.algorithm='1.2.840.10045.2.1' (id-ecPublicKey)
	algorithm.parameters=
	'1.2.840.10045.3.1.7' (prime256v1) or
	'1.3.36.3.3.2.8.1.1.7' (brainpoolP256r1)
	subjectPublicKey= corresponding <pk.dpauth.ecdsa value=""></pk.dpauth.ecdsa>
	(see 3.4.1.5)
Extensions	Same as in section 3.4.1.1
Extension for	Same as in section 3.4.1.1
authorityKeyIdentifier	

Field	Value
Extension for	NIST:
subjectKeyIdentifier	'95 9E F7 E6 50 C1 BE 21 6A 39 19 74 27 6D 26 B8 A9 35 61 71'
	Brainpool:
	'D7 0E FD 05 7B AC 1F 7C 55 EA 5D 8C 26 BE 16 02 92 84 5B AF'
Extension for keyUsage	Same as in section 3.4.1.1
Extension for	Same as in section 3.4.1.1
certificatePolicies	
Extension for	'2.999.12'
subjectAltName	
Extension for	Same as in section 3.4.1.1
crlDistributionPoints	

3.4.1.5 SM-DP+ n°2 Keys and Certificate

Hereafter the generated keys and certificates of SM-DP+ $n^{\circ}2$ for Authentication as defined in Annex A.

File name	Description
SK_S_SM_DP2auth_ECDSA_NIST.pem	NIST P-256 Private Key of the SM-DP+ n°2 for creating signatures for SM-DP+ authentication
PK_S_SM_DP2auth_ECDSA_NIST.pem	NIST P-256 Public Key of the SM-DP+ n°2 (part of the CERT_S_SM_DP2auth_ECDSA_NIST.der)
CERT_S_SM_DP2auth_ECDSA_NIST.d er	Certificate of the SM-DP+ n°2 for its Public NIST P- 256 key used for SM-DP+ authentication
SK_S_SM_DP2auth_ECDSA_BRP.pem	Brainpool P256r1 Private Key of the SM-DP+ n°2 for creating signatures for SM-DP+ authentication
PK_S_SM_DP2auth_ECDSA_BRP.pem	Brainpool P256r1 Public Key of the SM-DP+ n°2 (part of the CERT_S_SM_DP2auth_ECDSA_BRP.der)
CERT_S_SM_DP2auth_ECDSA_BRP.de r	Certificate of the SM-DP+ n°2 for its Public Brainpool P256r1 key used for SM-DP+ authentication

Table 10: DPAuth Keys and Certificates of SM-DP+ n°2

3.4.1.6 Input data for generation

The SK.DPauth.ECDSA and PK.DPauth.ECDSA of the SM-DP+ n°2 are generated using the command lines as described in section 2.2.

The related CERT.DPauth.ECDSA is generated using the command lines described in section 2.4 with the following input data:

GSM Association Official Document SGP.26 - Test Certificates

<input_csr_file_name>: DP2-csr.cnf as defined in Annex A.

<ca_cert_file_name> and <ca_sk_file_name>: files generated in section 3.1.2 (file containing the CERT.CI.ECDSA and SK.CI.ECDSA respectively).

<serial> set with value defined in section 3.4.1.4 for serialNumber data field.

<days> set with value defined in section 3.4.1.4 for validity data field.

<cert_ext_file_name>: DPauth2-ext.cnf as defined in Annex A.

3.4.2 DPpb

3.4.2.1	SM-DP+ n°1	Certificate for	r Profile Bind	ing: definition	of data to be signed
---------	------------	-----------------	----------------	-----------------	----------------------

Field	Value
Version	'2'
serialNumber	'101'
Signature	algorithm = '1.2.840.10045.4.3.2' (sha256ECDSA)
Issuer	<value cert.ci.ecdsa."subject"="" field="" of=""></value>
Validity	1095 days (3 years)
Subject	o = 'ACME'
	cn = 'TEST SM-DP+'
subjectPublicKeyInfo	algorithm.algorithm='1.2.840.10045.2.1' (id-ecPublicKey)
	algorithm.parameters=
	'1.2.840.10045.3.1.7' (prime256v1) or
	'1.3.36.3.3.2.8.1.1.7' (brainpoolP256r1)
	subjectPublicKey= corresponding <pk.dppb.ecdsa value=""></pk.dppb.ecdsa>
	(see 3.4.2.2)
Extensions	(Sequence)
Extension for	< Value of CERT.CI.ECDSA."subjectKeyIdentifier" field> for
authorityKeyIdentifier	prime256v1 or brainpoolP256r1
Extension for	NIST (prime256v1):
subjectKeyldentifier	'E6 EA F7 1E E0 FB 94 30 EC CD 1E BB 42 1F 88 14 37 C1 32 63'
	Brainpool (brainpoolP256r1):
	'A8 C6 8D F4 49 EB 71 EC 72 3E AC 13 2E 40 E4 B6 F5 46 44
	FE'
Extension for	Digital Signature ('80')
keyUsage	
Extension for	'2.23.146.1.2.1.5' (id-rspRole-dp-pb)
certificatePolicies	

Field	Value
Extension for subjectAltName	'2.999.10'
Extension for crlDistributionPoints	<value cert.ci.ecdsa."crldistributionpoints"="" field="" of=""></value>

Table 11: CERT.DPpb.ECDSA of SM-DP+ n°1

3.4.2.2 SM-DP+ n°1 Keys and Certificate

Hereafter the generated keys and certificates of the SM-DP+ n°1 for Profile Package Binding as defined in Annex A.

File name	Description
SK_S_SM_DPpb_ECDSA_NIST.pem	NIST P-256 Private Key of the SM-DP+ n°1 for creating signatures for Profile Package Binding
PK_S_SM_DPpb_ECDSA_NIST.pem	NIST P-256 Public Key of the SM-DP+ n°1 (part of the CERT_S_SM_DPpb_ECDSA_NIST.der)
CERT_S_SM_DPpb_ECDSA_NIST.der	Certificate of the SM-DP+ n°1 for its Public NIST P- 256 key used for Profile Package Binding
SK_S_SM_DPpb_ECDSA_BRP.pem	Brainpool P256r1 Private Key of the SM-DP+ n°1 for creating signatures for Profile Package Binding
PK_S_SM_DPpb_ECDSA_BRP.pem	Brainpool P256r1 Public Key of the SM-DP+ n°1 (part of the CERT_S_SM_DPpb_ECDSA_BRP.der)
CERT_S_SM_DPpb_ECDSA_BRP.der	Certificate of the SM-DP+ n°1 for its Public Brainpool P256r1 key used for Profile Package Binding

Table 12: DPpb Keys and Certificates of SM-DP+ n°1

3.4.2.3 Input data for generation

The SK.DPpb.ECDSA and PK.DPpb.ECDSA of the SM-DP+ n°1 are generated using the command lines as described in section 2.2.

The related CERT.DPpb.ECDSA is generated using the command lines described in section 2.4 with the following input data:

<input_csr_file_name>: DP-csr.cnf as defined in Annex A.

<ca_cert_file_name> and <ca_sk_file_name>: files generated in section 3.1.2 (file containing the CERT.CI.ECDSA and SK.CI.ECDSA respectively).

<serial> set with value defined in section 3.4.2.1 for serialNumber data field.

<days> set with value defined in section 3.4.2.1 for validity data field.

<cert_ext_file_name>: DPpb-ext.cnf as defined in Annex A.

Field	Value
Version	Same as in section 3.4.2.1
serialNumber	'201'
Signature	Same as in section 3.4.2.1
Issuer	Same as in section 3.4.2.1
Validity	Same as in section 3.4.2.1
Subject	o = 'ACME'
subjectPublicKeyInfo	algorithm.algorithm='1.2.840.10045.2.1' (id-ecPublicKey) algorithm.parameters= '1.2.840.10045.3.1.7' (prime256v1) or '1.3.36.3.3.2.8.1.1.7' (brainpoolP256r1) subjectPublicKey= corresponding <pk.dppb.ecdsa value=""> (see 3.4.2.5)</pk.dppb.ecdsa>
Extensions	Same as in section 3.4.2.1
Extension for authorityKeyIdentifier	Same as in section 3.4.2.1
Extension for subjectKeyIdentifier	NIST (prime256v1): '20 A3 A8 30 E9 2E E7 A4 68 C5 EB 27 BA 8D F1 84 59 AD FD D7' Brainpool (brainpoolP256r1): '31 03 8A 55 B6 BE CF 6C EA 59 DE 2F DA 14 F4 32 7F B8 B6 A9'
Extension for keyUsage	Same as in section 3.4.2.1
Extension for certificatePolicies	Same as in section 3.4.2.1
Extension for subjectAltName	'2.999.12'
Extension for crlDistributionPoints	Same as in section 3.4.2.1

3.4.2.4 SM-DP+ n°2 Certificate for Profile Binding: definition of data to be signed

3.4.2.5 SM-DP+ n°2 Keys and Certificate

Hereafter the generated keys and certificates of the SM-DP+ n°2 for Profile Package Binding as defined in Annex A.

File name	Description
SK_S_SM_DP2pb_ECDSA_NIST.pem	NIST P-256 Private Key of the SM-DP+ n°2 for creating signatures for Profile Package Binding
PK_S_SM_DP2pb_ECDSA_NIST.pem	NIST P-256 Public Key of the SM-DP+ n°2 (part of the CERT_S_SM_DP2pb_ECDSA_NIST.der)

File name	Description
CERT_S_SM_DP2pb_ECDSA_NIST.der	Certificate of the SM-DP+ n°2 for its Public NIST P- 256 key used for Profile Package Binding
SK_S_SM_DP2pb_ECDSA_BRP.pem	Brainpool P256r1 Private Key of the SM-DP+ n°2 for creating signatures for Profile Package Binding
PK_S_SM_DP2pb_ECDSA_BRP.pem	Brainpool P256r1 Public Key of the SM-DP+ n°2
	(part of the CERT_S_SM_DP2pb_ECDSA_BRP.der)
CERT_S_SM_DP2pb_ECDSA_BRP.der	Certificate of the SM-DP+ n°2 for its Public Brainpool P256r1 key used for Profile Package Binding

Table 14: DPpb Keys and Certificates of SM-DP+ n°2

3.4.2.6 Input data for generation

The SK.DPpb.ECDSA and PK.DPpb.ECDSA of the SM-DP+ n°2 are generated using the command lines as described in section 2.2.

The related CERT.DPpb.ECDSA is generated using the command lines described in section 2.4 with the following input data:

<input_csr_file_name>: DP2-csr.cnf as defined in Annex A.

<ca_cert_file_name> and <ca_sk_file_name>: files generated in section 3.1.2 (file containing the CERT.CI.ECDSA and SK.CI.ECDSA respectively).

<serial> set with value defined in section 3.4.2.4 for serialNumber data field.

<days> set with value defined in section 3.4.2.4 for validity data field.

<cert_ext_file_name>: DPpb2-ext.cnf as defined in Annex A.

3.4.3 TLS

3.4.3.1 SM-DP+ n°1 TLS Certificate: definition of data to be signed

Field	Value
Version	2
serialNumber	'9'
signature	algorithm = '1.2.840.10045.4.3.2' (sha256ECDSA)
Issuer	<value cert.ci.ecdsa."subject"="" field="" of=""></value>
validity	398 days
subject	o = 'ACME'
	cn = 'testsmdpplus1.example.com'
subjectPublicKeyInfo	algorithm.algorithm= '1.2.840.10045.2.1' (id-ecPublicKey)
	algorithm.parameters=

Field	Value			
	'1.2.840.10045.3.1.7' (Prime256v1) or			
	'1.3.36.3.3.2.8.1.1.7' (brainpoolP256r1)			
	subjectPublicKey = < PK.DP.TLS value> (see 3.4.3.2)			
Extensions	(Sequence)			
Extension for	<value cert.ci.ecdsa."subjectkeyidentifier"="" field="" of=""> for</value>			
authorityKeyIdentifier	prime256v1 or brainpoolP256r1			
Extension for	NIST (prime256v1):			
subjectKeyIdentifier	'27 FE F1 F2 29 18 7E C7 83 ED F6 E0 29 64 A4 51 8D 57 D4 A9'			
	Brainpool (brainpoolP256r1):			
	'3D 33 09 83 F3 9F CC 5B D2 E4 AD 68 A6 19 A7 47 48 AE 8B 9D'			
Extension for keyUsage	Critical			
	digitalSignature ('80')			
Extension fo certificatePolicies	'2.23.146.1.2.1.3' (id-rspRole-dp-tls)			
Extension for	Critical			
extendedKeyUsage	TLS Web Server Authentication			
	TLS Client Authentication			
Extension for subjectAltName	DNS= testsmdpplus1.example.com			
	SM-DP+OID = '2.999.10'			
Extension for	<value cert.ci.ecdsa."crldistributionpoints"="" field="" of=""></value>			
crlDistributionPoints				

Table 15: CERT.DP.TLS for SM-DP+ n°1

3.4.3.2 SM-DP+ n°1 TLS Keys and Certificate

Hereafter the generated SM-DP+ keys and certificates for TLS as defined in Annex A.

File name	Description
SK_S_SM_DP_TLS_NIST.pem	NIST P-256 Private key of the SM-DP+ n°1 for securing TLS connection
PK_S_SM_DP_TLS_NIST.pem	NIST P-256 Public Key of the SM-DP+ n°1 (part of the CERT_S_SM_DP_TLS_NIST.der)
CERT_S_SM_DP_TLS_NIST.der	Certificate of the SM-DP+ n°1 based on NIST P-256 for securing TLS
SK_S_SM_DP_TLS_BRP.pem	Brainpool P256r1 Private key of the SM-DP+ n°1 for securing TLS connection
PK_S_SM_DP_TLS_BRP.pem	Brainpool P256r1 Public Key of the SM-DP+ n°1 (part of the CERT_S_SM_DP_TLS_BRP.der)

File name	Description
CERT_S_SM_DP_TLS_BRP.der	Certificate of the SM-DP+ n°1 based on Brainpool P256r1 for securing TLS

Table 16: DP_TLS Keys and Certificates of SM-DP+ n°1

3.4.3.3 Input data for generation

The SK.DP.TLS and PK.DP.TLS are generated using the command lines as described in section 2.2.

The CERT.DP.TLS is generated using the command lines described in section 2.4 with the following input data:

<input_csr_file_name>: CERT_SM_DP_TLS.csr.cnf as defined in Annex A.

<ca_cert_file_name> and <ca_sk_file_name>: files generated in section 3.1.2 (file containing the CERT.CI.ECDSA and SK.CI.ECDSA respectively).

<days> set with value defined in section 3.4.3.1 for validity data field.

<cert_ext_file_name>: CERT_SM_DP_TLS.ext.cnf as defined in Annex A.

3.4.3.4 SM-DP+ n°2 TLS Certificate: definition of data to be signed

Field	Value		
Version	2		
serialNumber	'99'		
Signature	algorithm = '1.2.840.10045.4.3.2' (sha256ECDSA)		
Issuer	<value cert.ci.ecdsa."subject"="" field="" of=""></value>		
Validity	398 days		
Subject	o = 'ACME'		
	cn = 'testsmdpplus2.example.com'		
subjectPublickeyInfo	algorithm.algorithm= '1.2.840.10045.2.1' (id-ecPublicKey)		
	algorithm.parameters= '1.2.840.10045.3.1.7' (Prime256v1)		
	subjectPublicKey = < PK.DP.TLS value> (see Section 3.4.3.2)		
Extensions	(Sequence)		
Extension for	<value cert.ci.ecdsa."subjectkeyidentifier"="" field="" of=""> fc</value>		
authorityKeyIdentifier	prime256v1		
Extension for	NIST (prime256v1):		
subjectKeyIdentifier	'9f 5f 6b 0c e7 00 32 25 2d ce 10 d3 49 a6 55 18 1b 85 3e ce'		
Extension for keyUsage	Critical		
	digitalSignature ('80')		

Page 21 of 64

GSM Association Official Document SGP.26 - Test Certificates

Field		Value
Extension certificatePolicies	for	'2.23.146.1.2.1.3' (id-rspRole-dp-tls)
Extension for		Critical
extendedKeyUsage		TLS Web Server Authentication
		TLS Client Authentication
Extension for subjectAltName	for	DNS= testsmdpplus2.example.com
		SM-DP+OID = '2.999.12'
Extension for		<value cert.ci.ecdsa."crldistributionpoints"="" field="" of=""></value>
crlDistributionPoints		

Table 17: CERT.DP2.TLS

3.4.3.5 SM-DP+ n°2 TLS Keys and Certificate

Hereafter the generated SM-DP+ n°2 keys and certificates for TLS as defined in Annex A.

File name	Description
SK_S_SM_DP2_TLS_NIST.pem	NIST P-256 Private key of the SM-DP+ n°2 for securing TLS connection
PK_S_SM_DP2_TLS_NIST.pem	NIST P-256 Public Key of the SM-DP+ n°2 (part of the CERT_S_SM_DP2_TLS_NIST.der)
CERT_S_SM_DP2_TLS	CERT.DP.TLS certificate of the S_SM-DP+ n°2, based on NIST P-256

Table 18: DP_TLS Keys and Certificates of SM-DP+ n°2

3.4.3.6 Input data for generation

The Private and Public Keys are generated using the command lines as described in section 2.2.

The CERT.DP.TLS is generated using the command lines described in section 2.4 with the following input data:

<input_csr_file_name>: CERT S SM DP2 TLS.csr.cnf as defined in Annex A.

<ca_cert_file_name> and <ca_sk_file_name>: files generated in section 3.1.2 (file containing the CERT.CI.ECDSA and SK.CI.ECDSA respectively).

<days> set with value defined in section 3.4.3.1 for validity data field.

<cert_ext_file_name>: CERT_S_SM_DP2_TLS.ext.cnf as defined in Annex A.

3.4.3.7	SM-DP+ n°3 1	LS Certificate:	definition o	of data to	be signed
---------	--------------	-----------------	--------------	------------	-----------

Field		Value	
Version		2	
serialNumber		'994'	
Signature		algorithm = '1.2.840.10045.4.3.2' (sha256ECDSA)	
Issuer		<value cert.ci.ecdsa."subject"="" field="" of=""></value>	
Validity		398 days	
Subject		o = 'ACME'	
		cn = 'testsmdpplus4.example.com'	
subjectPublicKeyInfo		algorithm.algorithm= '1.2.840.10045.2.1' (id-ecPublicKey)	
		algorithm.parameters=	
		'1.2.840.10045.3.1.7' (Prime256v1)	
		subjectPublicKey = < PK.DP.TLS value> (see Section 3.4.3.2)	
Extensions		(Sequence)	
Extension for		<value cert.ci.ecdsa."subjectkeyidentifier"="" field="" of=""> for</value>	
authorityKeyIdentifier		prime256v1	
Extension for		NIST (prime256v1):	
subjectKeyIdentifier		'13 0f 3d 7b b3 b0 65 ad 3c 58 78 76 bc bb 6b 84 fd 49 7a ab'	
Extension for keyUsage		Critical	
		digitalSignature ('80')	
Extension certificatePolicies	for	'2.23.146.1.2.1.3' (id-rspRole-dp-tls)	
Extension for		Critical	
extendedKeyUsage		TLS Web Server Authentication	
		TLS Client Authentication	
Extension for		DNS= testsmdpplus4.example.com	
subjectAltName		SM-DP+OID = '2.999.14'	
Extension for		<value cert.ci.ecdsa."crldistributionpoints"="" field="" of=""></value>	
crlDistributionPoints			

Table 19: CERT.DP4.TLS

3.4.3.8 SM-DP+ n°3 TLS Keys and Certificate

Hereafter the generated SM-DP+ n°3 keys and certificates for TLS as defined in Annex A.

File name	Description
SK_S_SM_DP4_TLS.pem	NIST P-256 Private key of the SM-DP+ n°3 for securing TLS connection

File name	Description
PK_S_SM_DP4_TLS.pem	NIST P-256 Public Key of the SM-DP+ n°3 (part of the CERT_S_SM_DP4_TLS.der)
CERT_S_SM_DP4_TLS.der	CERT.DP.TLS certificate of the S_SM-DP+ n°3, based on NIST P-256

Table 20: DP_TLS Keys and Certificates of SM-DP+ n°3

3.4.3.9 Input data for generation

The Private and Public Keys are generated using the command lines as described in section 2.2.

The CERT.DP.TLS is generated using the command lines described in section 2.4 with the following input data:

<input_csr_file_name>: CERT_S_SM_DP4_TLS.csr.cnf as defined in Annex A.

<ca_cert_file_name> and <ca_sk_file_name>: files generated in section 3.1.2 (file containing the CERT.CI.ECDSA and SK.CI.ECDSA respectively).

<days> set with value defined in section 3.4.3.1 for validity data field.

<cert_ext_file_name>: CERT_S_SM_DP4_TLS.ext.cnf as defined in Annex A.

Field	Value
Version	2
serialNumber	'998'
Signature	algorithm = '1.2.840.10045.4.3.2' (sha256ECDSA)
Issuer	<value cert.ci.ecdsa."subject"="" field="" of=""></value>
Validity	398 days
Subject	o = 'ACME'
	cn = 'testsmdpplus8.example.com'
subjectPublickeyInfo	algorithm.algorithm= '1.2.840.10045.2.1' (id-ecPublicKey)
	algorithm.parameters= '1.2.840.10045.3.1.7' (Prime256v1) subjectPublicKey = < PK.DP.TLS value> (see Section 3.4.3.2)
Extensions	(Sequence)
Extension for authorityKeyIdentifier	<value cert.ci.ecdsa."subjectkeyidentifier"="" field="" of=""> for prime256v1</value>
Extension for	NIST (prime256v1):
subiectKevIdentifier	

3.4.3.10 SM-DP+ n°4 TLS Certificate: definition of data to be signed

Field		Value
		'b8 7e 0a 73 f2 44 d5 99 4c 28 61 e6 ea 6e 30 70 d6 34 2a 53'
Extension for keyUsage		Critical
		digitalSignature ('80')
Extension certificatePolicies	for	'2.23.146.1.2.1.3' (id-rspRole-dp-tls)
Extension for		Critical
extendedKeyUsage		TLS Web Server Authentication
		TLS Client Authentication
Extension	for	DNS= testsmdpplus8.example.com
subjectAltName		SM-DP+OID = '2.999.18'
Extension for		<value cert.ci.ecdsa."crldistributionpoints"="" field="" of=""></value>
crlDistributionPoints		

Table 21: CERT.DP8.TLS

3.4.3.11 SM-DP+ n°4 TLS Keys and Certificate

Hereafter the generated SM-DP+ n°4 keys and certificates for TLS as defined in Annex A.

File name	Description
SK_S_SM_DP8_TLS.pem	NIST P-256 Private key of the SM-DP+ n°4 for securing TLS connection
PK_S_SM_DP8_TLS.pem	NIST P-256 Public Key of the SM-DP+ n°4 (part of the CERT_S_SM_DP8_TLS.der)
CERT_S_SM_DP8_TLS.der	CERT.DP.TLS certificate of the S_SM-DP+ n°4, based on NIST P-256

Table 22: DP_TLS Keys and Certificates of SM-DP+ n°4

3.4.3.12 Input data for generation

The Private and Public Keys are generated using the command lines as described in section 2.2.

The CERT.DP.TLS is generated using the command lines described in section 2.4 with the following input data:

<input_csr_file_name>: CERT_S_SM_DP8_TLS.csr.cnf as defined in Annex A.

<ca_cert_file_name> and <ca_sk_file_name>: files generated in section 3.1.2 (file containing the CERT.CI.ECDSA and SK.CI.ECDSA respectively).

<days> set with value defined in section 3.4.3.1 for validity data field.

<cert_ext_file_name>: CERT S SM DP8 TLS.ext.cnf as defined in Annex A.

3.5 SM-DS

3.5.1 DSauth

3.5.1.1 SM-DS Certificate for Authentication: definition of data to be signed

Field	Value
Version	2
serialNumber	'7495'
Signature	algorithm = '1.2.840.10045.4.3.2' (sha256ECDSA)
Issuer	<value cert.ci.ecdsa."subject"="" field="" of=""></value>
Validity	1095 days (3 years)
Subject	o = 'ACME'
	cn = 'TEST SM-DS'
subjectPublicKeyInfo	algorithm.algorithm= '1.2.840.10045.2.1' (id-ecPublicKey)
	algorithm.parameters=
	'1.2.840.10045.3.1.7' (Prime256v1) or
	'1.3.36.3.3.2.8.1.1.7' (brainpoolP256r1)
	subjectPublicKey = < PK.DSauth.ECDSA value> (see 3.5.1.2)
Extensions	(Sequence)
Extension for Authority	<value cert.ci.ecdsa."subjectkeyidentifier"="" field="" of=""> for</value>
Key Identifier	prime256v1 or brainpoolP256r1
Extension for	NIST (prime256v1):
subjectKeyIdentifier	'C1 F4 06 4B 3B 25 8A FB 61 38 8B 3F F2 EE 6A 61 E2 C4 4D 72'
	Brainpool (brainpoolP256r1):
	'F0 5F 0B 54 AE E8 AE 01 08 F0 1D EF 54 8E D9 85 97 14 DD 48'
KeyUsage Extension	Digital Signature ('80')
Extension for Certificate	'2.23.146.1.2.1.7' (id-rspRole-ds-auth)
Policy	
Extension for	SM-DS OID = '2.999.15'
subjectAltName	
Extension for CRL	<value cert.ci.ecdsa."crldistributionpoints"="" field="" of=""></value>
Distribution Points	

Table 23: CERT.DSauth.ECDSA

3.5.1.2 SM-DS Keys and Certificate

Hereafter the generated SM-DS keys and certificates for Authentication as defined in Annex A.

File name	Description
SK_S_SM_DSauth_ECDSA_NIST.pem	NIST P-256 Private Key of the SM-DS for creating signatures for SM-DS authentication
PK_S_SM_DSauth_ECDSA_NIST.pem	NIST P-256 Public Key of the SM-DS (part of the CERT_S_SM_DSauth_ECDSA_NIST.der)
CERT_S_SM_DSauth_ECDSA_NIST.der	Certificate of the SM-DS for its Public NIST P-256 key used for SM-DS authentication
SK_S_SM_DSauth_ECDSA_BRP.pem	Brainpool P256r1 Private Key of the SM-DS for creating signatures for SM-DS authentication
PK_S_SM_DSauth_ECDSA_BRP.pem	Brainpool P256r1 Public Key of the SM-DS (part of the CERT_S_SM_DSauth_ECDSA_BRP.der)
CERT_S_SM_DSauth_ECDSA_BRP.der	Certificate of the SM-DS for its Public Brainpool P256r1 key used for SM-DS authentication

Table 24: DSauth Keys and Certificates

3.5.1.3 Input data for generation

The SK.DSauth.ECDSA and PK.DSauth.ECDSA are generated using the command lines as described in section 2.2.

The CERT.DSauth.ECDSA is generated using the command lines described in section 2.4 with the following input data:

<input_csr_file_name>: DSauth-csr.cnf as defined in Annex A.

<ca_cert_file_name> and <ca_sk_file_name>: files generated in section 3.1.2 (file containing the CERT.CI.ECDSA and SK.CI.ECDSA respectively).

<serial> set with value defined in section 3.5.1.1 for serialNumber data field.

<days> set with value defined in section 3.5.1.1 for validity data field.

<cert_ext_file_name>: DSauth-ext.cnf as defined in Annex A.

3.5.2 TLS

3.5.2.1 SM-DS n°1 TLS Certificate: definition of data to be signed

Field	Value
Version	2
serialNumber	'1223334444'
Signature	SHA256ECDSA
Issuer	<value cert.ci.ecdsa."subject"="" field="" of=""></value>
Validity	398 days
Subject	o = 'RSPTEST'
	cn = 'testrootsmds.example.com'

Field	Value
subjectPublicKeyInfo	algorithm.algorithm= '1.2.840.10045.2.1' (id-ecPublicKey)
	algorithm.parameters=
	'1.2.840.10045.3.1.7' (Prime256v1) or
	'1.3.36.3.3.2.8.1.1.7' (BrainpoolP256r1)
	subjectPublicKey = < PK.DS.TLS value>
Extensions	(Sequence)
Extension for Authority Key Identifier	<value cert.ci.ecdsa."subjectkeyidentifier"="" field="" of=""> for Prime256v1 or BrainpoolP256r1</value>
Extension for Subject	NIST:
Key Identifier	'A0 36 C1 62 75 35 1E C7 B0 15 53 A1 3F 83 E2 8D 44 00 BD 0A'
	Brainpool:
	'73 99 CA C7 B1 5F AB 2F F9 33 CF 2D 22 15 E4 84 4A DE F8 05'
Extension for Key	Critical
usage	digitalSignature ('80')
Extension for	'2.23.146.1.2.1.6' (id-rspRole-ds-tls)
Certificate Policies	
Extension for	Critical
Extended Key usage	TLS Web Server Authentication, TLS Web Client Authentication
Extension for	DNS= testrootsmds.example.com
subjectAltName	SM-DS OID = '2.999.15'
Extension for CRL Distribution Points	<value cert.ci.ecdsa."crldistributionpoints"="" field="" of=""></value>

Table 25: CERT.DS.TLS for SM-DS n°1

3.5.2.2 SM-DS n°1 TLS Keys and Certificate

Hereafter the generated SM-DS keys and certificates for TLS as defined in Annex A.

File name	Description
SK_SM_DS_TLS_NIST.pem	NIST P-256 Private key of the SM-DS n°1 for securing TLS connection
PK_SM_DS_TLS_NIST.pem	NIST P-256 Public Key of the SM-DS n°1 (part of the CERT_S_SM_DS_TLS_NIST.der)
CERT_SM_DS_TLS_NIST.der	Certificate of the SM-DS n°1 based on NIST P-256 for securing TLS
SK_SM_DS_TLS_BRP.pem	Brainpool P256r1 Private key of the SM-DS n°1 for securing TLS connection
PK_SM_DS_TLS_BRP.pem	Brainpool P256r1 Public Key of the SM-DS n°1 (part of the CERT_S_SM_DP_TLS_BRP.der)
CERT_SM_DS_TLS_BRP.der	Certificate of the SM-DS n°1 based on Brainpool P256r1 for securing TLS

Table 26: DS_TLS Keys and Certificates for SM-DS n°1

3.5.2.3 Input data for generation

The SK.DS.TLS and PK.DS.TLS are generated using the command lines as described in section 2.2.

The CERT.DS.TLS is generated using the command lines described in section 2.4 with the following input data:

<input_csr_file_name>: CERT_SM_DS_TLS.csr.cnf as defined in Annex A.

<ca_cert_file_name> and <ca_sk_file_name>: files generated in section 3.1.2 (file containing the CERT.CI.ECDSA and SK.CI.ECDSA respectively).

<serial> set with value defined in section 3.5.2.1 for serialNumber data field.

<days> set with value defined in section 3.5.2.1 for validity data field.

<cert_ext_file_name>: CERT_SM_DS_TLS.ext.cnf as defined in Annex A.

3.5.2.4	SM-DS n°2 TLS Certificate:	definition of data to be signed
---------	----------------------------	---------------------------------

Field	Value
Version	2
serialNumber	'122333444455555'
Signature	SHA256ECDSA
lssuer	<value cert.ci.ecdsa."subject"="" field="" of=""></value>
Validity	398 days
Subject	o = 'RSPTEST'
	cn = 'testsmds1.example.com'
subjectPublicKeyInfo	algorithm.algorithm= '1.2.840.10045.2.1' (id-ecPublicKey)
	algorithm.parameters=
	'1.2.840.10045.3.1.7' (Prime256v1)
	subjectPublicKey = < PK.DS.TLS value> (see Section 3.5.2.2)
Extensions	(Sequence)
Extension for Authority Key Identifier	<value cert.ci.ecdsa."subjectkeyidentifier"="" field="" of=""> for Prime256v1</value>
Extension for Subject	NIST:
Key Identifier	'53 82 04 27 91 71 ed 3d 0a 79 c0 ad 61 a5 35 31 2c 86 48 6c'
Extension for Key	Critical
usage	digitalSignature ('80')
Extension for	'2.23.146.1.2.1.6' (id-rspRole-ds-tls)
Certificate Policies	
Extension for	Critical
Extended Key usage	TLS Web Server Authentication, TLS Web Client Authentication

Field	Value
Extension for subjectAltName	DNS= testsmds1.example.com SM-DS OID = '2.999.15.2'
Extension for CRL Distribution Points	<value cert.ci.ecdsa."crldistributionpoints"="" field="" of=""></value>

Table 27: CERT.DS2.TLS

3.5.2.5 SM-DS n°2 TLS Keys and Certificate

Hereafter the generated SM-DS n°2 keys and certificates for TLS as defined in Annex A.

File name	Description
SK_S_SM_DS2_TLS_NIST.pem	NIST P-256 Private key of the SM-DS n°2 for securing TLS connection
PK_S_SM_DS2_TLS_NIST.pem	NIST P-256 Public Key of the SM-DS n°2 (part of the CERT_S_SM_DS2_TLS_NIST.der)
CERT_S_SM_DS2_TLS_NIST.der	CERT.DS.TLS certificate of the S_SM-DS n°2, based on NIST P-256

Table 28: DS_TLS Keys and Certificates for SM-DS n°2

3.5.2.6 Input data for generation

The Private and Public Keys are generated using the command lines as described in section 2.2.

The CERT.DS.TLS is generated using the command lines described in section 2.4 with the following input data:

<input_csr_file_name>: CERT_S_SM_DS2_TLS.csr.cnf as defined in Annex A.

<ca_cert_file_name> and <ca_sk_file_name>: files generated in section 3.1.2 (file containing the CERT.CI.ECDSA and SK.CI.ECDSA respectively).

<serial> set with value defined in section 3.4.3.1 for serialNumber data field.

<days> set with value defined in section 3.4.3.1 for validity data field.

<cert_ext_file_name>: CERT S SM DS2 TLS.ext.cnf as defined in Annex A.

4 Test Certificates and keys – Invalid test cases

The sections below describe

- The data structure and content of the certificates used for running the invalid test cases in SGP.23;
- how such certificates are derived: both the toolchain and the input data are described.

4.1 eUICC

Void

4.2 SM-DP+

4.2.1 DPauth

4.2.1.1 DPAuth – Invalid Signature

4.2.1.1.1 SM-DP+ Certificate for Authentication: definition of data to be signed

All the data to be signed are the same as the ones defined in 3.4.1.1.

4.2.1.1.2 SM-DP+ Certificate

Hereafter the SM-DP+ certificates for Authentication with invalid signature as defined in Annex A.

File name	Description
CERT_S_SM_DPauth_INV_SIGN_NIST.der	Certificate of the SM-DP+ with invalid signature for its Public NIST P-256 key used for SM-DP+ authentication
CERT_S_SM_DPauth_INV_SIGN_BRP.der	Certificate of the SM-DP+ with invalid signature for its Public Brainpool P256r1 key used for SM-DP+ authentication

Table 29: DPauth_INV_SIGN Certificates

4.2.1.1.3 Input data for generation

Few bytes of the generated signatures contained in the DER files have been manually changed as follow:

- NIST signature: 10 bytes are replaced by random values
- Brainpool signature: 8 bytes are replaced by random values

4.2.1.2 DPAuth – Invalid Curve

The Elliptic Curves NIST P-192 and Brainpool P192r1 are chosen for triggering the Authenticate and Download Error Code unsupportedCurve(3) as defined in SGP.22 [1].

4.2.1.2.1 SM-DP+ Certificate for Authentication: definition of data to be signed

Field	Value
Version	See section 3.4.1.1
serialNumber	900
Signature	See section 3.4.1.1
Issuer	See section 3.4.1.1
Validity	See section 3.4.1.1
Subject	See section 3.4.1.1

Official Document SGP.26 - Test Certificates

Field	Value
subjectPublicKeyInfo	algorithm.algorithm='1.2.840.10045.2.1' (id-ecPublicKey)
	algorithm.parameters=
	'1.2.840.10045.3.1.1' (prime192v1) or
	'1.3.36.3.3.2.8.1.1.3' (brainpoolP192r1)
	subjectPublicKey= corresponding <pk.dpauth.ecdsa value=""> (see 3.4.1.1)</pk.dpauth.ecdsa>
Extensions	(Sequence)
Extension for authorityKeyIdentifier	See section 3.4.1.1
Extension for	NIST (prime192v1):
subjectKeyldentifier	'9B 3A 9E 3D 46 E7 8F 19 27 29 A8 EF 4A 46 20 6A 2C CA B2 D2'
	Brainpool (brainpoolP192r1):
	'0F 80 D8 E3 DF 68 58 8D 6E AC 72 35 A6 8F 9° 59 E1 9A 3B E9'
Extension for	See section 3.4.1.1
keyUsage	
Extension for	See section 3.4.1.1
certificatePolicies	
Extension for	See section 3.4.1.1
subjectAltName	
Extension for	See section 3.4.1.1
crlDistributionPoints	

Table 30: CERT.DPauth.ECDSA with Invalid Curve

4.2.1.2.2 SM-DP+ Keys and Certificate

Hereafter the SM-DP+ certificates and keys for Authentication with invalid curve as defined in Annex A.

File name	Description
SK_S_SM_DPauth_ECDSA_NIST192.pem	NIST P-192 Private Key of the SM-DP+ for creating signatures for SM-DP+ authentication
PK_S_SM_DPauth_ECDSA_NIST192.pem	NIST P-192 Public Key of the SM-DP+ (part of the CERT_S_SM_DPauth_INV_CURVE_NIST192.der)
CERT_S_SM_DPauth_INV_CURVE_NIST 192.der	Certificate of the SM-DP+ for its Public NIST P-192 key used for SM-DP+ authentication
SK_S_SM_DPauth_ECDSA_BRP192.pem	Brainpool P-192 Private Key of the SM-DP+ for creating signatures for SM-DP+ authentication
PK_S_SM_DPauth_ECDSA_BRP192.pem	Brainpool P-192 Public Key of the SM-DP+ (part of the CERT_S_SM_DPauth_INV_CURVE_BRP192.der)

File name	Description
CERT_S_SM_DPauth_INV_CURVE_BRP	Certificate of the SM-DP+ for its Public Brainpool P-
192.der	192 key used for SM-DP+ authentication

Table 31: DPauth Keys and Certificates with invalid curve

4.2.1.2.3 Input data for generation

Command lines for the generation of the SK.DPauth.ECDSA and the corresponding PK.DPauth.ECDSA for NIST P-192 curve:

Command lines for the generation of the SK.DPauth.ECDSA and the corresponding PK.DPauth.ECDSA for Brainpool P192r1 curve:

The CERT.DPauth.ECDSA are generated using the command lines described in section 2.4 with the following input data:

<input_csr_file_name>: DP-csr.cnf as defined in Annex A.

<ca_cert_file_name> and <ca_sk_file_name>: files generated in section 3.1.2 (file containing the CERT.CI.ECDSA and SK.CI.ECDSA respectively).

<serial> set with value defined in section 4.2.1.2.1 for serialNumber data field.

<days> set with value defined in section 4.2.1.2.1 for validity data field.

<cert_ext_file_name>: DPauth-ext.cnf as defined in Annex A.

4.2.2 DPpb

4.2.2.1 DPpb – Invalid Signature

4.2.2.1.1 SM-DP+ Certificate for Profile Binding: definition of data to be signed

All the data to be signed are the same as the ones defined in 3.4.2.1.

4.2.2.1.2 SM-DP+ Certificate

Hereafter the SM-DP+ certificates for Profile Package Binding with invalid signature as defined in Annex A.

File name	Description
CERT_S_SM_DPpb_INV_SIGN_NIST.der	Certificate of the SM-DP+ with invalid signature for its Public NIST P-256 key used for Profile Package Binding
CERT_S_SM_DPpb_INV_SIGN_BRP.der	Certificate of the SM-DP+ with invalid signature for its Public Brainpool P256r1 key used for Profile Package Binding

Table 32: DPpb Certificates with invalid signature

4.2.2.1.3 Input data for generation

Few bytes of the generated signatures contained in the DER files have been manually changed as follow:

- NIST signature: 10 bytes are replaced by random values
- Brainpool signature: 8 bytes are replaced by random values

4.2.2.2 DPpb – Invalid Curve

4.2.2.2.1 SM-DP+ Certificate for Profile Binding: definition of data to be signed

Field	Value
Version	See section 3.4.2.1
serialNumber	901
Signature	See section 3.4.2.1
Issuer	See section 3.4.2.1
Validity	See section 3.4.2.1
Subject	See section 3.4.2.1
subjectPublicKeyInfo	algorithm.algorithm='1.2.840.10045.2.1' (id-ecPublicKey) algorithm.parameters= '1.2.840.10045.3.1.1' (prime192v1) '1.3.36.3.3.2.8.1.1.3' (brainpoolP192r1) subjectPublicKey= corresponding <pk.dppb.ecdsa value=""> (see 3.4.2.1)</pk.dppb.ecdsa>
Extensions	(Sequence)
Extension for authorityKeyIdentifier	See section 3.4.2.1
Extension for subjectKeyIdentifier	NIST (prime192v1): 'B5 49 B2 F1 2B FB 70 B8 BE 10 3E A5 6E D9 D8 21 1E 62 AB 89' Brainpool (brainpoolP192r1): 'E9 B4 02 A4 55 F7 CE A5 25 A1 56 5D 16 7D 94 A3 0C B1 A5 5E'
Extension for keyUsage	See section 3.4.2.1

Field	Value
Extension for certificatePolicies	See section 3.4.2.1
Extension for subjectAltName	See section 3.4.2.1
Extension for crlDistributionPoints	See section 3.4.2.1

Table 33: CERT.DPpb.ECDSA with invalid curve

4.2.2.2.2 SM-DP+ Keys and Certificate

Hereafter the SM-DP+ certificates and keys for Profile Binding with invalid curve as defined in Annex A.

File name	Description
SK_S_SM_DPpb_ECDSA_NIST192.pem	NIST P-192 Private Key of the SM-DP+ for creating signatures for Profile Package Binding
PK_S_SM_DPpb_ECDSA_NIST192.pem	NIST P-192 Public Key of the SM-DP+ (part of the CERT_S_SM_DPpb_INV_CURVE_NIST192.der)
CERT_S_SM_DPpb_INV_CURVE_NIST1 92.der	Certificate of the SM-DP+ for its Public NIST P-192 key used for Profile Package Binding
SK_S_SM_DPpb_ECDSA_BRP192.pem	Brainpool P-192 Private Key of the SM-DP+ for creating signatures for Profile Package Binding
PK_S_SM_DPpb_ECDSA_BRP192.pem	Brainpool P-192 Public Key of the SM-DP+ (part of the CERT_S_SM_DPpb_INV_CURVE_BRP192.der)
CERT_S_SM_DPpb_INV_CURVE_BRP19 2.der	Certificate of the SM-DP+ for its Public Brainpool P- 192 key used for Profile Package Binding

Table 34: DPpb Keys and Certificates with invalid curve

4.2.2.2.3 Input data for generation

Command lines for the generation of the SK.DPpb.ECDSA and the corresponding PK.DPpb.ECDSA for NIST P-192 curve:

```
openssl ecparam -name prime192v1 -genkey -out SK_S_SM_DPpb_ECDSA_NIST192.pem
openssl ec -in SK_S_SM_DPpb_ECDSA_NIST192.pem -pubout -out
    PK S SM DPpb ECDSA NIST192.pem
```

Command lines for the generation of the SK.DPpb.ECDSA and the corresponding PK.DPpb.ECDSA for Brainpool P192r1 curve:

openssl ecparam -name brainpoolP192r1 -genkey -out SK_S_SM_DPpb_ECDSA_BRP192.pem
openssl ec -in SK_S_SM_DPpb_ECDSA_BRP192.pem -pubout -out
 PK S SM DPpb ECDSA BRP192.pem

The CERT.DPpb.ECDSA are generated using the command lines described in section 2.4 with the following input data:

<input_csr_file_name>: DP-csr.cnf as defined in Annex A.

<ca_cert_file_name> and <ca_sk_file_name>: files generated in section 3.1.2 (file containing the CERT.CI.ECDSA and SK.CI.ECDSA respectively).

<serial> set with value defined in section 4.2.2.2.1 for serialNumber data field.

<days> set with value defined in section 4.2.2.2.1 for validity data field.

<cert_ext_file_name>: DPpb-ext.cnf as defined in Annex A.

4.2.3 TLS

4.2.3.1 TLS – Invalid Signature

4.2.3.1.1 SM-DP+ TLS Certificate: Definition of data to be signed

All the data to be signed are the same as the ones defined in 3.4.3.1.

4.2.3.1.2 SM-DP+ Certificate

Hereafter the SM-DP+ TLS certificates with invalid signature as defined in Annex A.

File name	Description
CERT_S_SM_DP_TLS_INV_SIGN_NIST.der	Certificate of the SM-DP+ with invalid signature for its Public NIST P-256 key
CERT_S_SM_DP_TLS_INV_SIGN_BRP.der	Certificate of the SM-DP+ with invalid signature for its Public Brainpool P256r1 key

Table 35: DP_TLS Certificates with invalid signature

4.2.3.1.3 Input data for generation

Few bytes of the generated signatures contained in the DER files have been manually changed as follow:

- Least significant byte of CERT_S_SM_DP_TLS_NIST.der signature increased by 1
- Least significant byte of CERT_S_SM_DP_TLS_BRP.der signature increased by 1

4.2.3.2 TLS – Invalid Curve

4.2.3.2.1	SM-DP+ TLS Certificate: definiti	ion of data to be signed
-----------	----------------------------------	--------------------------

Field	Value
Version	Same as in section 3.4.3
serialNumber	Same as in section 3.4.3
Signature	Same as in section 3.4.3
Issuer	Same as in section 3.4.3
Validity	Same as in section 3.4.3
Subject	Same as in section 3.4.3
subjectPublicKeyInfo	algorithm.algorithm = '1.2.840.10045.2.1' (id-ecPublicKey)
	algorithm.parameters = '1.3.132.0.34' (secp384r1) subjectPublicKey = < PK.DP.TLS value> (see 3.4.3.2)
Extensions	Same as in section 3.4.3
Extension for	<value cert.ci.ecdsa."subjectkeyidentifier"="" field="" of=""> for</value>
authorityKeyIdentifier	secp384r1
Extension for	NIST (secp384r1):
subjectKeyIdentifier	'0a 8f 46 e4 bd df e3 3f b0 1c 4b 0c c6 2f 14 0b 3b 11 91 c6'
Extension for keyUsage	Same as in section 3.4.3
Extension for certificatePolicies	Same as in section 3.4.3
Extension for	Same as in section 3.4.3
extendedKeyUsage	
Extension for subjectAltName	Same as in section 3.4.3
Extension for	Same as in section 3.4.3
crlDistributionPoints	

Table 36: CERT_S_SM_DP_TLS_INV_CURVE

4.2.3.2.2 SM-DP+ TLS Keys and Certificate

Hereafter the generated SM-DP+ keys and certificates for TLS as defined in Annex A.

File name	Description
SK_CERT_CI_S_SM_DP_NIST_P384.pem	NIST P-384 Private CI key of the SM-DP+ for securing TLS connection with
PK_CERT_CI_S_SM_DP_NIST_P384.pem	NIST P-384 Public CI Key of the SM-DP+
SK_CERT_S_SM_DP_TLS_INV_CURVE.pem	NIST P-384 Private key of the SM-DP+ for securing TLS connection with

File name	Description
PK_CERT_S_SM_DP_TLS_INV_CURVE.pem	NIST P-384 Public Key of the SM-DP+
	(part of the
	CERT_S_SM_DP_TLS_INV_CURVE.der)
CERT_S_SM_DP_TLS_INV_CURVE.der	CERT.DP.TLS certificate of the S_SM-DP+,
	based on NIST P-384 curve

Table 37: DP_TLS Keys and Certificates with invalid curve

4.2.3.2.3 Input data for generation

The Private Key is generated using the following command line:

```
openssl ecparam -name secp384r1 -genkey -out <sk_file_name>
```

The Public Key is generated as described in section 2.2.

The CERT.DP.TLS is generated using the command lines described in section 2.4 with the following input data:

<input_csr_file_name>: CERT_S_SM_DP_TLS.csr.cnf as defined in Annex A.

<ca_cert_file_name> and <ca_sk_file_name>: files generated in section 3.1.2 (file containing the CERT.CI.ECDSA and SK.CI.ECDSA respectively).

<serial> set with value defined in section 3.4.3.1 for serialNumber data field.

<days> set with value defined in section 3.4.3.1 for validity data field.

<cert_ext_file_name>: CERT S SM DP TLS.ext.cnf as defined in Annex A.

4.2.3.3 TLS – Invalid Certificate Policy

4.2.3.3.1 SM-DP+ TLS Certificate: definition of data to be signed

Field	Value
Version	Same as in section 3.4.3.1
serialNumber	Same as in section 3.4.3.1
Signature	Same as in section 3.4.3.1
Issuer	Same as in section 3.4.3.1
Validity	Same as in section 3.4.3.1
Subject	Same as in section 3.4.3.1
subjectPublicKeyInfo	Same as in section 3.4.3.1
Extensions	Same as in section 3.4.3.1
Extension for	Same as in section 3.4.3.1
authorityKeyIdentifier	

GSM Association Official Document SGP.26 - Test Certificates

Field		Value
Extension for		Same as in section 3.4.3.1
subjectKeyIdentifier		
Extension for keyUsage	or	Same as in section 3.4.3.1
Extension for certificatePolicies	or	'2.23.146.1.2.1.4' (id-rspRole-dp-auth)
Extension for		Same as in section 3.4.3.1
extendedKeyUsage		
Extension for subjectAltName	or	Same as in section 3.4.3.1
Extension for		Same as in section 3.4.3.1
crlDistributionPoints		

Table 38: CERT_S_SM_DP_TLS_INV_CERT_POL

4.2.3.3.2 SM-DP+ TLS Keys and Certificate

Hereafter the generated SM-DP+ keys and certificates for TLS as defined in Annex A.

File name	Description
SK_S_SM_DP_TLS_NIST.pem	NIST P-256 Private key of the SM-DP+ for securing TLS connection
PK_S_SM_DP_TLS_NIST.pem	NIST P-256 Public Key of the SM-DP+ (part of the CERT_S_SM_DP_TLS_NIST.der)
CERT_S_SM_DP_TLS_INV_CERT_POL .der	CERT.DP.TLS certificate of the S_SM-DP+ with invalid 'Certificate Policies' extension (OID set to 'id- rspRole-dp-auth'), formatted as X.509 certificate.

Table 39: DS_TLS Keys and Certificate with invalid certificatePolicies extension

4.2.3.3.3 Input data for generation

The Private and Public Keys are generated using the command lines as described in section 2.2.

The CERT.DP.TLS is generated using the command lines described in section 2.4 with the following input data:

<input_csr_file_name>: CERT_S_SM_DP_TLS.csr.cnf as defined in Annex A.

<ca_cert_file_name> and <ca_sk_file_name>: files generated in section 3.1.2 (file containing the CERT.CI.ECDSA and SK.CI.ECDSA respectively).

<serial> set with value defined in section 3.4.3.1 for serialNumber data field.

<days> set with value defined in section 3.4.3.1 for validity data field.

<cert_ext_file_name>: CERT_S_SM_DP_TLS_INV_CERT_POL.ext.cnf as defined in
Annex A.

4.2.3.4 TLS – Missing Critical Extension

4.2.3.4.1 SM-DP+ TLS Certificate: definition of data to be signed

Field	Value
Version	Same as in section 3.4.3.1
serialNumber	Same as in section 3.4.3.1
Signature	Same as in section 3.4.3.1
Issuer	Same as in section 3.4.3.1
Validity	Same as in section 3.4.3.1
Subject	Same as in section 3.4.3.1
subjectPublicKeyInfo	Same as in section 3.4.3.1
Extensions	Same as in section 3.4.3.1
Extension for	Same as in section 3.4.3.1
authorityKeyIdentifier	
Extension for	Same as in section 3.4.3.1
subjectKeyIdentifier	
Extension for keyUsage	Same as in section 3.4.3.1
Extension for certificatePolicies	Same as in section 3.4.3.1
Extension for	Absent
extendedKeyUsage	
Extension for subjectAltName	Same as in section 3.4.3.1
Extension for	Same as in section 3.4.3.1
crlDistributionPoints	

Table 40: CERT_S_SM_DP_TLS_INV_CRITICAL_EXT

4.2.3.4.2 SM-DP+ TLS Keys and Certificate

Hereafter the generated SM-DP+ keys and certificates for TLS as defined in Annex A.

File name	Description
SK_S_SM_DP_TLS_NIST.pem	NIST P-256 Private key of the SM-DP+ for securing TLS connection
PK_S_SM_DP_TLS_NIST.pem	NIST P-256 Public Key of the SM-DP+ (part of the CERT_S_SM_DP_TLS_NIST.der)
CERT_S_SM_DP_TLS_INV_CRITICAL_ EXT.der	CERT.DP.TLS certificate of the S_SM-DP+ with one of the critical extensions not present, formatted as X.509 certificate.

Table 41: DP_TLS Keys and Certificates with critical extension not present

4.2.3.4.3 Input data for generation

The Private and Public Keys are generated using the command lines as described in section 2.2.

The CERT.DP.TLS is generated using the command lines described in section 2.4 with the following input data:

<input_csr_file_name>: CERT S SM DP TLS.csr.cnf as defined in Annex A.

<ca_cert_file_name> and <ca_sk_file_name>: files generated in section 3.1.2 (file containing the CERT.CI.ECDSA and SK.CI.ECDSA respectively).

<serial> set with value defined in section 3.4.3.1 for serialNumber data field.

<days> set with value defined in section 3.4.3.1 for validity data field.

<cert_ext_file_name>: CERT_S_SM_DP_TLS_INV_CRITICAL_EXT.ext.cnf as defined
in Annex A.

4.2.3.5 TLS – Invalid Extended Key Usage

4.2.3.5.1 SM-DP+ TLS Certificate: definition of data to be signed

Field	Value
Version	Same as in section 3.4.3.1
serialNumber	Same as in section 3.4.3.1
Signature	Same as in section 3.4.3.1
Issuer	Same as in section 3.4.3.1
Validity	Same as in section 3.4.3.1
Subject	Same as in section 3.4.3.1
subjectPublicKeyInfo	Same as in section 3.4.3.1
Extensions	Same as in section 3.4.3.1
Extension for	Same as in section 3.4.3.1
authorityKeyIdentifier	
Extension for	Same as in section 3.4.3.1

Field	Value
subjectKeyIdentifier	
Extension for keyUsage	Same as in section 3.4.3.1
Extension for certificatePolicies	Same as in section 3.4.3.1
Extension for	Critical
extendedKeyUsage	TLS Client Authentication.1
Extension for subjectAltName	Same as in section 3.4.3.1
Extension for	Same as in section 3.4.3.1
crlDistributionPoints	

Table 42: CERT_S_SM_DP_TLS_INV_EXT_KEY_USAGE

4.2.3.5.2 SM-DP+ TLS Keys and Certificate

Hereafter the generated SM-DP+ keys and certificates for TLS as defined in Annex A.

File name	Description
SK_S_SM_DP_TLS_NIST.pem	NIST P-256 Private key of the SM-DP+ for securing TLS connection
PK_S_SM_DP_TLS_NIST.pem	NIST P-256 Public Key of the SM-DP+ (part of the CERT_S_SM_DP_TLS_NIST.der)
CERT_S_SM_DP_TLS_INV_EXT_KEY_ USAGE.der	CERT.DP.TLS certificate of the S_SM-DP+ with invalid 'extended key usage' extension (not set to 'id- kp-serverAuth'), formatted as X.509 certificate.

Table 43: DP+ TLS Certificates with invalid 'extended key usage'

4.2.3.5.3 Input data for generation

The Private and Public Keys are generated using the command lines as described in section 2.2.

The CERT.DP.TLS is generated using the command lines described in section 2.4 with the following input data:

<input_csr_file_name>: CERT_S_SM_DP_TLS.csr.cnf as defined in Annex A.

<ca_cert_file_name> and <ca_sk_file_name>: files generated in section 3.1.2 (file containing the CERT.CI.ECDSA and SK.CI.ECDSA respectively).

<serial> set with value defined in section 3.4.3.1 for serialNumber data field.

<days> set with value defined in section 3.4.3.1 for validity data field.

<cert_ext_file_name>: CERT_S_SM_DP_TLS_INV_EXT_KEY_USAGE.ext.cnf as defined
in Annex A.

4.2.3.6 TLS – Invalid Key Usage

4.2.3.6.1 SM-DP+ TLS Certificate: definition of data to be signed

Field		Value
Version		Same as in section 3.4.3.1
serialNumber		Same as in section 3.4.3.1
Signature		Same as in section 3.4.3.1
Issuer		Same as in section 3.4.3.1
Validity		Same as in section 3.4.3.1
Subject		Same as in section 3.4.3.1
subjectPublicKeyInfo		Same as in section 3.4.3.1
Extensions		Same as in section 3.4.3.1
Extension for		Same as in section 3.4.3.1
authorityKeyIdentifier		
Extension for		Same as in section 3.4.3.1
subjectKeyIdentifier		
Extension for keyUsage		Critical
		'keyAgreement' ('08')
Extension certificatePolicies	for	Same as in section 3.4.3.1
Extension for		Same as in section 3.4.3.1
extendedKeyUsage		
Extension subjectAltName	for	Same as in section 3.4.3.1
Extension for		Same as in section 3.4.3.1
crlDistributionPoints		

Table 44: CERT_S_SM_DP_TLS_INV_KEY_USAGE

4.2.3.6.2 SM-DP+ TLS Keys and Certificate

Hereafter the generated SM-DP+ keys and certificates for TLS as defined in Annex A.

File name	Description
SK_S_SM_DP_TLS_NIST.pem	NIST P-256 Private key of the SM-DP+ for securing TLS connection
PK_S_SM_DP_TLS_NIST.pem	NIST P-256 Public Key of the SM-DP+ (part of the CERT_S_SM_DP_TLS_NIST.der)
CERT_S_SM_DP_TLS_INV_KEY_USAG E.der	CERT.DP.TLS certificate of the S_SM-DP+ with invalid 'key usage' extension (not set to 'digitalSignature'), formatted as X.509 certificate.

Table 45: DP+ TLS Keys and Certificates with invalid 'key usage' extension

4.2.3.6.3 Input data for generation

The Private and Public Keys are generated using the command lines as described in section 2.2.

The CERT.DP.TLS is generated using the command lines described in section 2.4 with the following input data:

<input_csr_file_name>: CERT_S_SM_DP_TLS.csr.cnf as defined in Annex A.

<ca_cert_file_name> and <ca_sk_file_name>: files generated in section 3.1.2 (file containing the CERT.CI.ECDSA and SK.CI.ECDSA respectively).

<serial> set with value defined in section 3.4.3.1 for serialNumber data field.

<days> set with value defined in section 3.4.3.1 for validity data field.

<cert_ext_file_name>: CERT_S_SM_DP_TLS_INV_KEY_USAGE.ext.cnf as defined in
Annex A.

4.2.3.7 TLS – Expired Certificate

4.2.3.7.1 SM-DP+ TLS Certificate: definition of data to be signed

Field	Value	
version	Same as in section 3.4.3.1	
serialNumber	Same as in section 3.4.3.1	
signature	Same as in section 3.4.3.1	
Issuer	Same as in section 3.4.3.1	
Validity	expired on 2 nd April 2020	
Subject	Same as in section 3.4.3.1	
subjectPublicKeyInfo	Same as in section 3.4.3.1	
Extensions	Same as in section 3.4.3.1	
Extension for	Same as in section 3.4.3.1	
authorityKeyIdentifier		
Extension for	Same as in section 3.4.3.1	
subjectKeyIdentifier		
Extension for keyUsage	Same as in section 3.4.3.1	
Extension for certificatePolicies	Same as in section 3.4.3.1	
Extension for	Same as in section 3.4.3.1	
extendedKeyUsage		
Extension for subjectAltName	Same as in section 3.4.3.1	
Extension for	Same as in section 3.4.3.1	

Field	Value
crlDistributionPoints	

Table 46: CERT_S_SM_DP_TLS_EXPIRED

4.2.3.7.2 SM-DP+ TLS Keys and Certificate

Hereafter the generated SM-DP+ keys and certificates for TLS as defined in Annex A.

File name	Description
SK_S_SM_DP_TLS_NIST.pem	NIST P-256 Private key of the SM-DP+ for securing TLS connection
PK_S_SM_DP_TLS_NIST.pem	NIST P-256 Public Key of the SM-DP+ (part of the CERT_S_SM_DP_TLS_NIST.der)
CERT_S_SM_DP_TLS_EXPIRED.der	Expired CERT.DP.TLS certificate of the S_SM-DP+ with a valid signature, correctly formatted as X.509 certificate.

Table 47: DP+ TLS Keys and expired Certificates

4.2.3.7.3 Input data for generation

The Private and Public Keys are generated using the command lines as described in section 2.2.

The CERT.DP.TLS is generated using the command lines described in section 2.4 with the following changes:

<input_csr_file_name>: CERT S SM DP TLS.csr.cnf as defined in Annex A.

<ca_cert_file_name> and <ca_sk_file_name>: files generated in section 3.1.2 (file containing the CERT.CI.ECDSA and SK.CI.ECDSA respectively).

<serial> set with value defined in section 3.4.3.1 for serialNumber data field.

<days> set with value defined in section 4.2.7.1 for validity data field.

<cert_ext_file_name>: CERT_S_SM_DP_TLS.ext.cnf as defined in Annex A.

4.3 SM-DS

4.3.1 DSauth

4.3.1.1 DSauth – Invalid Signature

4.3.1.1.1 SM-DS Certificate for Authentication: definition of data to be signed

All the data to be signed are the same as the ones defined in 3.5.1.1.

4.3.1.1.2 SM-DS Certificate

Hereafter the SM-DS certificates for Authentication with invalid signature as defined in Annex A.

File name	Description
CERT_S_SM_DSauth_INV_SIGN_NIST.der	Certificate of the SM-DS with invalid signature for its Public NIST P-256 key used for SM-DP+ authentication
CERT_S_SM_DSauth_INV_SIGN_BRP.der	Certificate of the SM-DS with invalid signature for its Public Brainpool P256r1 key used for SM-DP+ authentication

Table 48: DS TLS Certificates with invalid signature

4.3.1.1.3 Input data for generation

Few bytes of the generated signatures contained in the DER files have been manually changed as follow:

- NIST signature: 10 bytes are replaced by random values
- Brainpool signature: 8 bytes are replaced by random values

4.3.1.2 DSauth - Invalid curve

The Elliptic Curve NIST P-192 and Brainpool P192r1 are chosen for triggering the Authenticate Error Code unsupportedCurve (3) as defined in SGP.22 [1].

4.3.1.2.1 SM-DS Certificate for Authentication: definition of data to be signed

Field	Value
Version	See section 3.5.1.1
serialNumber	903
Signature	See section 3.5.1.1
Issuer	See section 3.5.1.1
Validity	See section 3.5.1.1
Subject	See section 3.5.1.1
subjectPublicKeyInfo	algorithm.algorithm='1.2.840.10045.2.1' (id-ecPublicKey)
	algorithm.parameters=
	'1.2.840.10045.3.1.1' (prime192v1)
	'1.3.36.3.3.2.8.1.1.3' (brainpoolP192r1)
	subjectPublicKey= corresponding <pk.dpauth.ecdsa value=""></pk.dpauth.ecdsa>
	(see 3.5.1.2)
Extensions	(Sequence)
Extension for	See section 3.5.1.1
authorityKeyIdentifier	

Field	Value
Extension for	NIST (prime192v1):
subjectKeyIdentifier	'61 20 11 BC 54 84 9B EE AF 59 79 49 4E FC 56 2F FB 3E 0D 72'
	Brainpool (brainpoolP192r1):
	'58 E0 39 F8 09 8E 21 81 0C 66 9A F3 4A 2D E9 24 C3 D1 A0 7E'
Extension for	See section 3.5.1.1
keyUsage	
Extension for	See section 3.5.1.1
certificatePolicies	
Extension for	See section 3.5.1.1
subjectAltName	
Extension for	See section 3.5.1.1
crlDistributionPoints	

Table 49: CERT.DSauth.ECDSA with Invalid Curve

4.3.1.2.2 SM-DS Keys and Certificate

Hereafter the SM-DS certificates and keys for Authentication with invalid curve as defined in Annex A.

File name	Description
SK_S_SM_DSauth_ECDSA_NIST192.pem	NIST P-192 Private Key of the SM-DS for creating signatures for SM-DS authentication
PK_S_SM_DSauth_ECDSA_NIST192.pem	NIST P-192 Public Key of the SM-DS (part of the CERT_S_SM_DSauth_INV_CURVE_NIST192.der)
CERT_S_SM_DSauth_INV_CURVE_NIST 192.der	Certificate of the SM-DS for its Public NIST P-192 key used for SM-DS authentication
SK_S_SM_DSauth_ECDSA_BRP192.pem	Brainpool P-192 Private Key of the SM-DS for creating signatures for SM-DS authentication
PK_S_SM_DSauth_ECDSA_BRP192.pem	Brainpool P-192 Public Key of the SM-DS (part of the CERT_S_SM_DSauth_INV_CURVE_BRP192.der)
CERT_S_SM_DSauth_INV_CURVE_BRP 192.der	Certificate of the SM-DS for its Public Brainpool P- 192 key used for SM-DS authentication

Table 50: DS TLS Certificates with invalid curve

4.3.1.2.3 Input data for generation

Command lines for the generation of the SK.DSauth.ECDSA and the corresponding PK.DSauth.ECDSA for NIST P-192 curve:

openssl ecparam -name prime192v1 -genkey -out SK_S_SM_DSauth_ECDSA_NIST192.pem
openssl ec -in SK_S_SM_DSauth_ECDSA_NIST192.pem -pubout -out
 PK S_SM_DSauth_ECDSA_NIST192.pem

Command lines for the generation of the SK.DSauth.ECDSA and the corresponding PK.DSauth.ECDSA for Brainpool P-192 curve:

The CERT.DSauth.ECDSA are generated using the command lines described in section 2.4 with the following input data:

<input_csr_file_name>: DSauth-csr.cnf as defined in Annex A.

<ca_cert_file_name> and <ca_sk_file_name>: files generated in section 3.1.2 (file containing the CERT.CI.ECDSA and SK.CI.ECDSA respectively).

<serial> set with value defined in section 4.3.1.2.1 for serialNumber data field.

<days> set with value defined in section 4.3.1.2.1 for validity data field.

<cert_ext_file_name>: DSauth-ext.cnf as defined in Annex A.

4.3.2 TLS

4.3.2.1 TLS – Invalid Signature

4.3.2.1.1 SM-DS TLS Certificate: definition of data to be signed

All the data to be signed are the same as the ones defined in 3.5.2.1.

4.3.2.1.2 SM-DS Certificate

Hereafter the SM-DS TLS certificates with invalid signature as defined in Annex A.

File name	Description
CERT_S_SM_DS_TLS_INV_SIGN_NIST.der	Certificate of the SM-DS with invalid signature for its Public NIST P-256 key
CERT_S_SM_DS_TLS_INV_SIGN_BRP.der	Certificate of the SM-DS with invalid signature for its Public Brainpool P256r1 key

Table 51: DS TLS Certificates with invalid signature

4.3.2.1.3 Input data for generation

Few bytes of the generated signatures contained in the DER files have been manually changed as follow:

- Least significant byte of CERT_S_SM_DS_TLS_NIST.der signature increased by 1
- Least significant byte of CERT_S_SM_DS_TLS_BRP.der signature increased by 1

4.3.2.2 TLS – Invalid Curve

4.3.2.2.1 SM-DS TLS Certificate: definition of data to be signed

Field		Value
version		Same as in section 3.5.2.1
serialNumber		Same as in section 3.5.2.1
signature		Same as in section 3.5.2.1
issuer		Same as in section 3.5.2.1
validity		Same as in section 3.5.2.1
subject		Same as in section 3.5.2.1
subjectPublicKeyInfo		algorithm.algorithm = '1.2.840.10045.2.1' (id-ecPublicKey)
		algorithm.parameters = '1.3.132.0.34' (secp384r1) subjectPublicKey = < PK.DS.TLS value> (see 3.5.2.1)
Extensions		Same as in section 3.5.2.1
Extension for		<value cert.ci.ecdsa."subjectkeyidentifier"="" field="" of=""> for</value>
authorityKeyIdentifier		secp384r1
Extension for		NIST (secp384r1):
subjectKeyIdentifier		'0a 8f 46 e4 bd df e3 3f b0 1c 4b 0c c6 2f 14 0b 3b 11 91 c6'
Extension for keyUsage		Same as in section 3.5.2.1
Extension f certificatePolicies	or	Same as in section 3.5.2.1
Extension for		Same as in section 3.5.2.1
extendedKeyUsage		
Extension f subjectAltName	or	Same as in section 3.5.2.1
Extension for		Same as in section 3.5.2.1
crlDistributionPoints		

Table 52: CERT_S_SM_DS_TLS_INV_CURVE

4.3.2.2.2 SM-DS TLS Keys and Certificate

Hereafter the generated SM-DS keys and certificates for TLS as defined in Annex A.

File name	Description
SK_CERT_CI_S_SM_DP_NIST_P384.pem	NIST P-384 Private CI key of the SM-DP+ for securing TLS connection with
PK_CERT_CI_S_SM_DP_NIST_P384.pem	NIST P-384 Public CI Key of the SM-DP+
SK_CERT_S_SM_DP_TLS_INV_CURVE.pem	NIST P-384 Private key of the SM-DP+ for securing TLS connection with
PK_CERT_S_SM_DP_TLS_INV_CURVE.pem	NIST P-384 Public Key of the SM-DP+ (part of the CERT_S_SM_DS_TLS_INV_CURVE.der)
CERT_S_SM_DS_TLS_INV_CURVE.der	CERT.DS.TLS certificate of the S_SM-DS, based on NIST P-384 curve

Table 53: DS TLS Certificates with invalid curve

4.3.2.2.3 Input data for generation

The Private and Public Keys are the same as for CERT_S_SM_DP_TLS_INV_CURVE.der.

The CERT.DS.TLS is generated using the command lines described in section 2.4 with the following input data:

<input_csr_file_name>: CERT_S_SM_DS_TLS.csr.cnf as defined in Annex A.

<ca_cert_file_name> and <ca_sk_file_name>: files generated in section 3.1.2 (file containing the CERT.CI.ECDSA and SK.CI.ECDSA respectively).

<serial> set with value defined in section 3.4.3.1 for serialNumber data field.

<days> set with value defined in section 3.4.3.1 for validity data field.

<cert_ext_file_name>: CERT_S_SM_DS_TLS.ext.cnf as defined in Annex A.

4.3.2.3 TLS – Invalid Certificate Policy

4.3.2.3.1 SM-DS TLS Certificate: definition of data to be signed

Field	Value
Version	Same as in section 3.5.2.1
serialNumber	Same as in section 3.5.2.1
Signature	Same as in section 3.5.2.1
Issuer	Same as in section 3.5.2.1
validity	Same as in section 3.5.2.1
subject	Same as in section 3.5.2.1
subjectPublickeyInfo	Same as in section 3.5.2.1
Extensions	Same as in section 3.5.2.1
Extension for	Same as in section 3.5.2.1

Field	Value
authorityKeyIdentifier	
Extension for	Same as in section 3.5.2.1
subjectKeyIdentifier	
Extension for keyUsage	Same as in section 3.5.2.1
Extension for certificatePolicies	'2.23.146.1.2.1.4' (id-rspRole-dp-auth)
Extension for	Same as in section 3.5.2.1
extendedKeyUsage	
Extension for subjectAltName	Same as in section 3.5.2.1
Extension for	Same as in section 3.5.2.1
crlDistributionPoints	

Table 54: CERT_S_SM_DS_TLS_INV_CERT_POL

4.3.2.3.2 SM-DS TLS Keys and Certificate

Hereafter the generated SM-DS keys and certificates for TLS as defined in Annex A.

File name	Description
SK_S_SM_DS_TLS_NIST.pem	NIST P-256 Private key of the SM-DS for securing TLS connection
PK_S_SM_DS_TLS_NIST.pem	NIST P-256 Public Key of the SM-DS (part of the CERT_S_SM_DS_TLS_NIST.der)
CERT_S_SM_DS_TLS_INV_CERT_POL .der	CERT.DS.TLS certificate of the S_SM-DS with invalid 'Certificate Policies' extension (OID set to 'id-rspRole- dp-auth'), formatted as X.509 certificate.

Table 55: DS TLS Certificates with invalid 'certificate policies'

4.3.2.3.3 Input data for generation

The Private and Public Keys are generated using the command lines as described in section 2.2.

The CERT.DS.TLS is generated using the command lines described in section 2.4 with the following input data:

<input_csr_file_name>: CERT_S_SM_DS_TLS.csr.cnf as defined in Annex A.

<ca_cert_file_name> and <ca_sk_file_name>: files generated in section 3.1.2 (file containing the CERT.CI.ECDSA and SK.CI.ECDSA respectively).

<serial> set with value defined in section 3.4.3.1 for serialNumber data field.

<days> set with value defined in section 3.4.3.1 for validity data field.

<cert_ext_file_name>: CERT_S_SM_DS_TLS_INV_CERT_POL.ext.cnf as defined in
Annex A.

4.3.2.4 TLS – Missing Critical Extension

4.3.2.4.1 SM-DS TLS Certificate: definition of data to be signed

Field	Value
version	Same as in section 3.5.2.1
serialNumber	Same as in section 3.5.2.1
signature	Same as in section 3.5.2.1
issuer	Same as in section 3.5.2.1
validity	Same as in section 3.5.2.1
subject	Same as in section 3.5.2.1
subjectPublicKeyInfo	Same as in section 3.5.2.1
Extensions	Same as in section 3.5.2.1
Extension for	Same as in section 3.5.2.1
authorityKeyIdentifier	
Extension for	Same as in section 3.5.2.1
subjectKeyIdentifier	
Extension for keyUsage	Same as in section 3.5.2.1
Extension for certificatePolicies	Same as in section 3.5.2.1
Extension for	Absent
extendedKeyUsage	
Extension for subjectAltName	Same as in section 3.5.2.1
Extension for	Same as in section 3.5.2.1
CrlDistributionPoints	

Table 56: CERT_S_SM_DS_TLS_INV_CRITICAL_EXT

4.3.2.4.2 SM-DS TLS Keys and Certificate

Hereafter the generated SM-DS keys and certificates for TLS as defined in Annex A.

File name	Description
SK_S_SM_DS_TLS_NIST.pem	NIST P-256 Private key of the SM-DS for securing TLS connection
PK_S_SM_DS_TLS_NIST.pem	NIST P-256 Public Key of the SM-DS (part of the CERT_S_SM_DS_TLS_NIST.der)

File name	Description
CERT_S_SM_DS_TLS_INV_CRITICAL_ EXT.der	CERT.DS.TLS certificate of the S_SM-DS with one of the critical extensions not present, formatted as X.509 certificate.

Table 57: DS TLS Certificate missing critical extension

4.3.2.4.3 Input data for generation

The Private and Public Keys are generated using the command lines as described in section 2.2.

The CERT.DS.TLS is generated using the command lines described in section 2.4 with the following input data:

<input_csr_file_name>: CERT_S_SM_DS_TLS.csr.cnf as defined in Annex A.

<ca_cert_file_name> and <ca_sk_file_name>: files generated in section 3.1.2 (file containing the CERT.CI.ECDSA and SK.CI.ECDSA respectively).

<serial> set with value defined in section 3.4.3.1 for serialNumber data field.

<days> set with value defined in section 3.4.3.1 for validity data field.

<cert_ext_file_name>: CERT_S_SM_DS_TLS_INV_CRITICAL_EXT.ext.cnf as defined
in Annex A.

4.3.2.5 TLS – Invalid Extended Key Usage

4.3.2.5.1 SM-DP+ TLS Certificate: definition of data to be signed

Field	Value
version	Same as in section 3.5.2.1
serialNumber	Same as in section 3.5.2.1
signature	Same as in section 3.5.2.1
issuer	Same as in section 3.5.2.1
validity	Same as in section 3.5.2.1
subject	Same as in section 3.5.2.1
subjectPublicKeyInfo	Same as in section 3.5.2.1
Extensions	Same as in section 3.5.2.1
Extension for	Same as in section 3.5.2.1
authorityKeyIdentifier	
Extension for	Same as in section 3.5.2.1
subjectKeyIdentifier	
Extension for keyUsage	Same as in section 3.5.2.1

Field	Value
Extension for certificatePolicies	Same as in section 3.5.2.1
Extension for	Critical
extendedKeyUsage	TLS Client Authentication
Extension for subjectAltName	Same as in section 3.5.2.1
Extension for	Same as in section 3.5.2.1
crlDistributionPoints	

Table 58: CERT_S_SM_DS_TLS_INV_EXT_KEY_USAGE

4.3.2.5.2 SM-DS TLS Keys and Certificate

Hereafter the generated SM-DS keys and certificates for TLS as defined in Annex A.

File name	Description
SK_S_SM_DS_TLS_NIST.pem	NIST P-256 Private key of the SM-DS for securing TLS connection
PK_S_SM_DS_TLS_NIST.pem	NIST P-256 Public Key of the SM-DS (part of the CERT_S_SM_DS_TLS_NIST.der)
CERT_S_SM_DS_TLS_INV_EXT_KEY_ USAGE.der	CERT.DS.TLS certificate of the S_SM-DS with invalid 'extended key usage' extension (not set to 'id-kp- serverAuth'), formatted as X.509 certificate.

Table 59: DS TLS Certificate with invalid 'extended key usage'

4.3.2.5.3 Input data for generation

The Private and Public Keys are generated using the command lines as described in section 2.2.

The CERT.DS.TLS is generated using the command lines described in section 2.4 with the following input data:

<input_csr_file_name>: CERT S SM DS TLS.csr.cnf as defined in Annex A.

<ca_cert_file_name> and <ca_sk_file_name>: files generated in section 3.1.2 (file containing the CERT.CI.ECDSA and SK.CI.ECDSA respectively).

<serial> set with value defined in section 3.4.3.1 for serialNumber data field.

<days> set with value defined in section 3.4.3.1 for validity data field.

<cert_ext_file_name>: CERT_S_SM_DS_TLS_INV_EXT_KEY_USAGE.ext.cnf as defined
in Annex A.

4.3.2.6 TLS – Invalid Key Usage

4.3.2.6.1 SM-DS TLS Certificate: definition of data to be signed

Field		Value
version		Same as in section 3.5.2.1
serialNumber		Same as in section 3.5.2.1
signature		Same as in section 3.5.2.1
lssuer		Same as in section 3.5.2.1
Validity		Same as in section 3.5.2.1
Subject		Same as in section 3.5.2.1
subjectPublicKeyInfo		Same as in section 3.5.2.1
Extensions		Same as in section 3.5.2.1
Extension for		Same as in section 3.5.2.1
authorityKeyIdentifier		
Extension for		Same as in section 3.5.2.1
subjectKeyIdentifier		
Extension for keyUsage		Critical
		'keyAgreement' ('08')
Extension certificatePolicies	for	Same as in section 3.5.2.1
Extension for		Same as in section 3.5.2.1
extendedKeyUsage		
Extension subjectAltName	for	Same as in section 3.5.2.1
Extension for		Same as in section 3.5.2.1
crlDistributionPoints		

Table 60: CERT_S_SM_DS_TLS_INV_KEY_USAGE

4.3.2.6.2 SM-DS TLS Keys and Certificate

Hereafter the generated SM-DS keys and certificates for TLS as defined in Annex A.

File name	Description
SK_S_SM_DS_TLS_NIST.pem	NIST P-256 Private key of the SM-DS for securing TLS connection
PK_S_SM_DS_TLS_NIST.pem	NIST P-256 Public Key of the SM-DS (part of the CERT_S_SM_DS_TLS_NIST.der)
CERT_S_SM_DS_TLS_INV_KEY_USAG E.der	CERT.DS.TLS certificate of the S_SM-DS with invalid 'key usage' extension (not set to 'digitalSignature'), formatted as X.509 certificate.

Table 61: DS TLS Certificate with invalid 'key usage'

4.3.2.6.3 Input data for generation

The Private and Public Keys are generated using the command lines as described in section 2.2.

The CERT.DP.TLS is generated using the command lines described in section 2.4 with the following input data:

<input_csr_file_name>: CERT_S_SM_DS_TLS.csr.cnf as defined in Annex A.

<ca_cert_file_name> and <ca_sk_file_name>: files generated in section 3.1.2 (file containing the CERT.CI.ECDSA and SK.CI.ECDSA respectively).

<serial> set with value defined in section 3.4.3.1 for serialNumber data field.

<days> set with value defined in section 3.4.3.1 for validity data field.

<cert_ext_file_name>: CERT_S_SM_DS_TLS_INV_KEY_USAGE.ext.cnf as defined in
Annex A.

4.3.2.7 TLS – Expired Certificate

4.3.2.7.1 SM-DS TLS Certificate: definition of data to be signed

Field	Value	
version	Same as in section 3.5.2.1	
serialNumber	Same as in section 3.5.2.1	
signature	Same as in section 3.5.2.1	
issuer	Same as in section 3.5.2.1	
validity	expired on 2 nd April 2020	
subject	Same as in section 3.5.2.1	
subjectPublicKeyInfo	Same as in section 3.5.2.1	
Extensions	Same as in section 3.5.2.1	
Extension for	Same as in section 3.5.2.1	
authorityKeyIdentifier		
Extension for	Same as in section 3.5.2.1	
subjectKeyIdentifier		
Extension for keyUsage	Same as in section 3.5.2.1	
Extension for certificatePolicies	Same as in section 3.5.2.1	
Extension for extendedKeyUsage	Same as in section 3.5.2.1	

Field	Value
Extension for subjectAltName	Same as in section 3.5.2.1
Extension for	Same as in section 3.5.2.1
crlDistributionPoints	

Table 62: CERT_S_SM_DS_TLS_EXPIRED

4.3.2.7.2 SM-DS TLS Keys and Certificate

Hereafter the generated SM-DS keys and certificates for TLS as defined in Annex A.

File name	Description
SK_S_SM_DS_TLS_NIST.pem	NIST P-256 Private key of the SM-DS for securing TLS connection
PK_S_SM_DS_TLS_NIST.pem	NIST P-256 Public Key of the SM-DS (part of the CERT_S_SM_DS_TLS_NIST.der)
CERT_S_SM_DS_TLS_EXPIRED.der	Expired CERT.DS.TLS certificate of the S_SM-DS with a valid signature, correctly formatted as X.509 certificate.

Table 63: DS TLS keys and expired Certificate

4.3.2.7.3 Input data for generation

The Private and Public Keys are generated using the command lines as described in section 2.2.

The CERT.DS.TLS is generated using the command lines described in section 2.4 with the following changes:

<input_csr_file_name>: CERT_S_SM_DS_TLS.csr.cnf as defined in Annex A.

<ca_cert_file_name> and <ca_sk_file_name>: files generated in section 3.1.2 (file containing the CERT.CI.ECDSA and SK.CI.ECDSA respectively).

<serial> set with value defined in section 3.5.2.1 for serialNumber data field.

<days> set with value defined in section 4.3.2.7.1 for validity data field.

<cert_ext_file_name>: CERT_S_SM_DS_TLS.ext.cnf as defined in Annex A.

Annex A RSP Certificates and Keys Files (Normative)

All certificates, keys and configuration files are provided within the SGP.26_v1.x-YYYY_Files.ZIP package which accompanies the present document. The latest published version of the ZIP package SHALL be used.

NOTE:

- "x" means the minor version of the present document.
- "YYYY" means the year when the file is updated.

Annex B Alternative to Certificate Generation

Additionally to the command described in section 2.4, the certificates can be generated using the next command:

```
openssl ca -batch -config <config_file> -in <csr_file_name> -extensions
<ext_section_name> -cert <ca_cert_file_name> -keyfile <ca_sk_file_name> -notext -
out <cert_pem_file_name> -startdate <validity_start_date> -enddate
<validity end date>
```

Preconditions:

...

Following entries are present in the indicated <config_file> under the default CA section:

database = \$ENV::OPENSSL_HOME/indexXXCert.txt serial = \$ENV::OPENSSL_HOME/serialXXCert

- Following files are present in OpenSSL home folder and are empty:
 - indexXXCert.txt
 - indexXXCert.txt.attr
- The text file 'serialTIsCert' is present in OpenSSL home folder and contains the desired serial number as hex string.
- Following extension to be referenced by <ext_section_name> sections are present in the indicated <config_file> for the appropriate:
 - [extensions] keyUsage extendedKeyUsage certificatePolicies subjectKeyIdentifier authorityKeyIdentifier subjectAltName
 - crlDistributionPoints
- <validity_start_date> and <validity_end_date> are formatted YYMMDDHHMMSSZ, e.g. '170301154500Z' for 'Mar 1 15:45:00 2017 GMT'.

Annex C Generation of self-signed Test CI Certificates

This section describes the mechanism whereby RSP actors (e.g. SM-DP+ providers, eUICC Manufacturers) can generate and share their own self-signed Root Test CI Certificate (CERT.CI.ECDSA) with eSIM Device testers and SM-DP+ providers to enable the easy and repeatable download of the Test Profile described in [TS.48 reference] or any other non-operational test profile from a Test SM-DP+ (in other word a Staging SM-DP+ Platform) onto a Test eUICC.

The RSP actor generates the key pair and the self-signed Test CI Certificate (using the relevant SK.CI.ECDSA) as described in clause 3.1 of the present document.

Alternately, the RSP actor may use a key pair whose private key value is one of the private keys values specified in section 3.1.2.

The private key would be used to sign:

- The Test CERT.DPauth.ECDSA and Test CERT.DPpb.ECDSA to be provisioned onto a Test SM-DP+ platform,
- The Test CERT.DP.TLS to be provisioned onto a Test SM-DP+ platform,
- The Test CERT.EUM.ECDSA and CERT.EUICC.ECDSA certificates to be provisioned onto the Test eUICCs.

The below table comprises the recommended minimum certificate definitions for a self-signed certificate. The cells marked "vendor-specific" in the "Value" column can be personalised by the RSP Actor:

Field	Value
version	2
serialNumber	Vendor-specific
signature	sha256ECDSA
Issuer	See 'subject'
Validity	Vendor-specific
Subject	Vendor-specific
subjectPublicKeyInfo	algorithm.algorithm='1.2.840.10045.2.1' (id-ecPublicKey)
	algorithm.parameters
	'1.2.840.10045.3.1.7' (prime256v1) or
	'1.3.36.3.3.2.8.1.1.7' (brainpoolP256r1)
	subjectPublicKey=[CI public key value]
Extension	(Sequence)
subjectKeyIdentifier extension	NIST:
	Vendor-specific
	Brainpool:
	Vendor-specific
keyUsage Extension	Certificate Signing, Off-line CRL Signing, CRL Signing (06)
certificatePolicies Extension	'2.23.146.1.2.1.0' (id-rspRole-ci)
basicConstraints Extension	CA = true

Field	Value
subjectAltName Extension	Vendor-specific
crlDistributionPoints Extension	Vendor-specific

Table 64: Self-Signed CERT.CI.ECDSA

The RSP actor may then publish the self-signed test CI as described in Annex D

Annex D Process to submit support of Test CI Certificates

GSMA maintains a page <u>https://www.gsma.com/esim/gsma-root-ci/</u>which publishes:

- A list of providers which support the test root certificate operated by GSMA CI, along with a list of the services they support using the test root certificate issuer
- A list of alternate self-signed root test certificate issuers, along with SM-DP+ servers that support them.

To enable public access of their test SM-DP+ to the broader eSIM test community, the RSP actor provider may submit the following items defined in D.1 and/or D.2 (using the Test Certificate Submission Form) to the e-mail <u>testCICertificates@gsma.com</u>.

Once submitted, the information will be published on https://www.gsma.com/esim/gsma-root-ci/

D.1 List of RSP actors supporting test certificates signed by a test root certificate operated by GSMA CI

A GSMA CI, in addition to GSMA CI RootCA certificates, may operate test root certificates and key pairs, used to sign test certificates which allow to perform interoperability testing (see Note 1).

NOTE 1 The test certificates defined above will not be recognized and accepted by a production system that trusts only live GSMA CI Root CAs

- Company name
- Confirmation of support of Test Profile as defined in SGP.22 [1]
- List (see Note 2) of test root certificates operated by any GSMA CI(s) that the provider uses as an EUM
- List (see Note 2) of the test root certificate(s) operated by any GSMA CI(s) that the provider uses as an SM-DP+ provider
- List (see Note 2) of the test root certificate(s) operated by any GSMA CI(s) that the provider uses as an SM-DS provider
- The URL to an application that enables the tester to trigger the release of a profile by the SM-DP+, to allow the download of the test profile using at least one of the options defined by SGP.22 [1].

NOTE 2 Each test root certificate in the list is uniquely identified by its Subject Key Identifier as defined in RFC 5280 [3]

D.2 List of RSP Actor-specific self-signed root test certificate issuers

- Company Name
- Confirmation of support of Test Profile as defined in SGP.22 [1]
- Confirmation of support of the self-signed root test CI(s) by the Test SM-DP+,

- The URL(see Note) hosting their test root CI Certificate (.pem file format) generated by following the instructions defined in clause 2.3 and 3.1 of the present document,
- Optionally, the URL (see Note) of the associated test CI private key generated by following the instructions defined in clause 2.3 and 3.1 of the present document,
- Optionally, the URL (see Note) of the signed client test EUM certificate and signed Test SM-DP+ server certificates,
- The URL to an application that enables the tester to trigger the release of a profile by the SM-DP+, to allow the download of the test profile using at least one of the options defined by SGP.22 [1].
- Once submitted, the information will be published https://www.gsma.com/esim/gsma-root-ci/ with a date of publication and a date of expiry of the certificate. Any renewal or change needs to be submitted using the process above.

NOTE: The test RSP Actor shall publicly host the files and the application necessary for testing.

Annex E Document Management

E.1 Document History

Version	Date	CR	Brief Description of Change	Approval Authority	Editor / Company
v1.0	9 June 2017		New PRD Publication	PSMC	Yolanda Sanz GSMA
V1.1	28 Sept 2017		The first minor version of SGP.26	RSPPLEN	Yolanda Sanz GSMA
V1.2	3th January		The second minor version of SGP.26	RSPPLEN	Yolanda Sanz GSMA
V1.3	07 July 2020		The third version of SGP.26	eSIMG	Yolanda, Sanz GSMA
V1.4	31 July 2020		The fourth version of SGP.26	ISAG	Yolanda Sanz, GSMA
V1.5	30 June 2021	CR0021R01	Validity period of TLS Certificates	ISAG	Alejandro Pulido, VALID

Other Information

Туре	Description
Document Owner	eSIMG
Editor / Company	Alejandro Pulido / VALID

It is our intention to provide a quality product for your use. If you find any errors or omissions, please contact us with your comments. You may notify us at prd@gsma.com

Your comments or suggestions & questions are always welcome.