Minimum Requirements for Mobile Networks and Terminals for the usage of the ‘HD voice’ logo with CDMA2000
(Annex D)
Version 2.0
12 November 2013

This is a Non-binding Permanent Reference Document of the GSMA

Security Classification: Non-confidential

Access to and distribution of this document is restricted to the persons permitted by the security classification. This document is confidential to the Association and is subject to copyright protection. This document is to be used only for the purposes for which it has been supplied and information contained in it must not be disclosed or in any other way made available, in whole or in part, to persons other than those permitted under the security classification without the prior written approval of the Association.

Copyright Notice
Copyright © 2013 GSM Association

Disclaimer
The GSM Association ("Association") makes no representation, warranty or undertaking (express or implied) with respect to and does not accept any responsibility for, and hereby disclaims liability for the accuracy or completeness or timeliness of the information contained in this document. The information contained in this document may be subject to change without prior notice.

Antitrust Notice
The information contain herein is in full compliance with the GSM Association’s antitrust compliance policy.
1 Introduction
2 Annex D: Minimum Requirements for Mobile Networks and Terminals for the usage of the 'HD voice' logo with CDMA2000
3 Annex D1 Minimum Network Requirements for HD Voice with CDMA2000
3.1 D1.0 HD voice enabled mobile networks
3.2 D1.1 EVRC-NW codec rates
3.3 D1.2 Codec selection
3.4 D1.3 TFO / TrFO
3.5 D1.4 Transcoding
3.6 D1.5 Impact on KPI values
3.7 D1.6 Use Cases for HD Voice
3.8 D1.7 Access to Services
4 Annex D2: Minimum Requirements for CDMA 2000 Mobile HD Voice devices
4.1 D2.1 EVRC-NW support
4.2 D2.2 Wide Band Audio chain
4.3 D2.3 Handset Mode – Frequency Response
4.4 D2.4 Handset Mode - Loudness
4.5 D2.5 Handset Mode - Echo Loss
4.6 D2.6 Handset Mode - Distortion
4.7 D2.7 Handset Mode - Idle Noise
4.8 D2.8 Handheld hands-free mode - Acoustical Performance
4.9 D2.9 Wired Headset mode - Acoustical Performance
4.10 D2.10 - Noise Reduction – General Requirement
4.11 D2.11 Speech path Delay of mobile HD Voice devices
4.12 D2.12 Sidetone characteristics
4.13 D2.13 Template for reporting test results
5 Reference Documents
6 Annex D Document Management
7 Other Information
1 Introduction

This document holds ANNEX D to the GSMA HD Voice Logo Licence Agreement.

The GSMA HD Voice Logo Licence Agreement and further relevant information and contact details can be found on http://www.gsma.com/hd-voice.

2 Annex D: Minimum Requirements for Mobile Networks and Terminals for the usage of the ‘HD voice’ logo with CDMA2000

This Annex defines the minimum requirements for the usage of the ‘HD voice’ logo by CDMA2000 mobile network operators and device vendors.

Terms:

HD Voice (High Definition Voice) for mobile CDMA2000 terminals and networks comprises of EVRC-NW codec and the enhancements to terminals and networks according to the requirements defined in this Annex.

EVRC-NW is the Enhanced Variable Rate Codec corresponding to service option 73 defined in 3GPP2 C.S0014-D.

This Annex is split into two sections:

1. ANNEX D1: Minimum Requirements to be fulfilled by mobile network operators in order to use the ‘HD voice’ logo for the marketing of EVRC-NW functionality in CDMA2000 networks.

2. ANNEX D2: Minimum Requirements to be fulfilled by mobile device vendors in order to use the ‘HD voice’ logo for CDMA2000 mobile devices.

3 Annex D1 Minimum Network Requirements for HD Voice with CDMA2000

3.1 D1.0 HD voice enabled mobile networks

To support HD Voice, the operator shall support EVRC-NW in CDMA2000 networks as described in the rest of Annex D1.

The voice service shall be compliant with 3GPP2 specifications related to 2G/3G Circuit Switched Telephony or packet switched telephony (C.S0050, C.S0055-0v1.0, C.S0085 and all other related specifications).

It should be noted that the operator does not need to enable EVRC-NW on all its networks.

3.2 D1.1 EVRC-NW codec rates

For CDMA2000 networks, at a minimum, the EVRC-NW codec service option 73 with capacity operating point 0 “COP 0” must be supported.

3.3 D1.2 Codec selection

When end-to-end EVRC-NW is possible, it shall be selected with the highest priority by the network(s). If EVRC-NW is supported only in a part of the voice path, but wideband voice is
feasible end-to-end by transcoding, then this configuration must be preferred over a narrowband voice configuration.

3.3.1 D1.2.1 Usage of lower bit rate codecs in CDMA2000 networks

If due to any reason like loaded cell a lower capacity operating point has to be used in the network, then the network might select EVRC-NW COP 1 to 7. This can be done preferably at the call setup phase or if necessary, during the call.

3.4 D1.3 TFO / TrFO

EVRC-NW should be transparently transmitted between both ends. TFO and/or TrFO must be used within an operator's network and should be used between operator's networks according to the network architecture (TDM, ATM or IP interfaces and transport).

3.4.1 D1.3.1 Support of TFO / TrFO of 3rd party equipment

If there is a 3rd party equipment in the end-to-end chain, e.g. a Voice Quality Enhancement system, this system must be transparent to TFO/TrFO signalling.

3.5 D1.4 Transcoding

If transcoding is necessary between two systems providing a wideband voice codec (e.g. G.722 on the one side and EVRC-NW on the other side) then the transcoding shall keep the extended frequency range, i.e. no fallback to G.711 or another narrowband codec must happen within the transcoding processes.

If transcoding is necessary the speech level must not be changed more than ±/- 3 dB to avoid big loudness differences. This is especially important in case of (undesirable, but sometimes unavoidable) handover from WB to NB.

3.6 D1.5 Impact on KPI values

The introduction of EVRC-NW in the network shall have no negative impact on any user related KPI values, i.e. Call Setup Success Rate, Hand Over failure rate, Call drop rate, etc. shall be at least as good as before the activation of EVRC-NW.

3.7 D1.6 Use Cases for HD Voice

3.7.1 D1.6.1 Setup of a voice call between two EVRC-NW enabled devices

EVRC-NW call setup shall be performed

- If both devices are EVRC-NW COP 0 enabled
- If both devices are in a EVRC-NW COP 0 enabled area
- If the HLR entry does allow the user to use EVRC-NW COP 0 (note that an HLR entry is optional).
- If radio and other resources allow HD Voice end to end

3.7.2 D1.6.2 Setup of a voice call between two HD Voice devices, one being in EVRC-NW enabled area, the other one is not

This scenario does not allow HD Voice communication between the devices
The used end to end codec shall be selected by the network(s) in an automatic way, i.e. without user interaction.

3.7.3 D1.6.3 Setup of a voice call between a HD Voice and non HD Voice device

This scenario does not allow HD Voice communication between the devices. The used codec shall be selected by the network in an automatic way, i.e. without user interaction.

3.7.4 D1.6.4 Hand Over within EVRC-NW coverage

Mobility within EVRC-NW coverage shall be supported without any audio defects (for example without higher call drop rates, without extended interruption times compared to EVRC, EVRC-B). This mobility shall include at least:

- Intra- and Inter-BSC mobility
- Intra and Inter RNC mobility
- Intra and Inter MSC mobility
- Inter RAT mobility (BSC ↔ RNC)

3.7.5 D1.6.5 Hand Over between EVRC-NW enabled area and non EVRC-NW enabled area

A Hand Over of a HD Voice device during an ongoing WB call to the non EVRC-NW enabled area shall be possible without call drop and user interaction. Since EVRC-NW cannot any longer be supported after the Hand Over, the next lower voice codec combination or capacity operating point (i.e. the voice codec providing the highest possible narrowband call quality) shall be selected in an automatic way.

3.8 D1.7 Access to Services

HD Voice should be supported onto supplementary services like “Announcements”, “Personal Ring-back Tones”, “Voice Mail”, “Multi Party calls”, and so on. The access to these supplementary services for EVRC-NW shall be guaranteed at least in narrow band quality.

4 Annex D2: Minimum Requirements for CDMA 2000 Mobile HD Voice devices

A CDMA 2000 mobile HD Voice device is characterised by:

- Supporting the EVRC-NW codec,
- Providing improved wide band and narrow band speech quality, acoustical characteristics and speech processing.

The requirements for a CDMA 2000 mobile terminal carrying the GSMA HD Voice Logo are translated into technical requirements described in the rest of Annex D2.

As far as possible these requirements are based on the 3GPP2 Technical Specifications C.S0056-A v1.0.

Where a topic is not correctly covered by 3GPP2 TS, an alternative solution is used based on other standards.
In all cases where the requirements allow flexibility for positioning the terminal, the position used for the tuning and for the measurement shall be reported. This is valid for all modes (handset, handheld hands-free and headset).

4.1 D2.1 EVRC-NW support

The CDMA 2000 mobile HD Voice device shall support the EVRC-NW codec as defined in 3GPP2 in C.S0014-D with minimum performance specifications defined in 3GPP2 C.S0018-D when operating in CDMA2000 networks.

4.2 D2.2 Wide Band Audio chain

The entire audio chain within the CDMA 2000 mobile HD Voice device must be wide band compliant. When the call is established with EVRC-NW as selected codec, then the complete audio chain of the mobile HD Voice device must operate at 16 kHz sampling rate, or higher.

4.3 D2.3 Handset Mode – Frequency Response

4.3.1 D2.3.1 Handset Mode – Frequency Response Sending Side

In handset mode, the HD Voice device frequency response for sending shall be compliant with the masks described in 3GPP2 C.S0056-A clause for wide band calls and for narrow band calls.

4.3.2 D2.3.2 Handset Mode – Frequency Response Receiving Side

In handset mode, the HD Voice device frequency response for receiving shall be compliant with the masks described in 3GPP2 C.S0056-A clause 2.2.1 for wide band calls and for narrow band calls.

4.4 D2.4 Handset Mode - Loudness

In handset mode, for narrow band calls and for wide band calls, loudness rating for sending (SLR) shall be compliant with 3GPP2 C.S0056-A clause 2.2.2.

In handset mode, for narrow band calls and for wide band calls, loudness rating for receiving (RLR) shall be compliant with 3GPP2 C.S0056-A clause 2.1.2.

The contrast in send and receive loudness ratings between wideband and narrowband modes shall be compliant with 3GPP2 C.S0056-A clause 2.4.

When the control is set to its maximum, the RLR value (RLR_MAX) shall not be lower than or equal to -13 dB and shall not be higher than or equal to -3 dB.

4.5 D2.5 Handset Mode - Echo Loss

In handset mode, for narrow band calls and for wide band calls, the echo loss shall be compliant with 3GPP2 C.S0056-A clause 2.2.3.

4.6 D2.6 Handset Mode - Distortion

EVRC is designed to work with true speech. Testing EVRC devices with tone based test signals can result in unexpected results.

In handset mode, for narrow band calls, the distortion levels for sending and for receiving are for further study.
In handset mode, for wide band calls, the distortion levels for sending and for receiving are for further study.

4.7 D2.7 Handset Mode - Idle Noise

In handset mode, for narrow band calls and for wide band calls, the idle noise in the sending direction shall be compliant with 3GPP2 C.S0056-A clause 2.2.4.

In handset mode, for narrow band calls and for wide band calls, the idle noise for receiving shall be compliant with 3GPP2 C.S0056-A clause 2.1.3.

4.8 D2.8 Handheld hands-free mode - Acoustical Performance

In handheld hands-free mode, the HD Voice device Frequency response, loudness and echo loss shall comply with 3GPP specification.

For narrow band calls:
- The nominal loudness ratings shall be compliant with 3GPP TS 26.131 clause 5.2.4.
- The frequency response shall be compliant with 3GPP TS 26.131 clause 5.4.5 for sending and clause 5.4.6 for receiving.
- The echo loss shall be compliant with 3GPP TS 26.131 clause 5.7.3.

For wide band calls:
- The nominal loudness ratings shall be compliant with 3GPP TS 26.131 clause 6.2.4.
- The frequency response shall be compliant with 3GPP TS 26.131 clause 6.4.5 for sending and clause 6.4.6 for receiving.
- The echo loss shall be compliant with 3GPP TS 26.131 clause 6.7.3.

4.9 D2.9 Wired Headset mode - Acoustical Performance

In wired headset mode, the HD Voice device shall be compliant with 3GPP headset related specifications.

For narrow band calls:
- The loudness ratings shall be compliant with 3GPP TS 26.131 clause 5.2.5.
- The frequency response shall be compliant with 3GPP TS 26.131 clause 5.4.1 for sending and clause 5.4.2 for receiving.
- The idle noise for sending and for receiving shall be compliant respectively to 3GPP TS 26.131 clause 5.3.1 and clause 5.3.2.

For wide band calls:
- The loudness ratings shall be compliant with 3GPP TS 26.131 clause 6.2.5.
- The frequency response shall be compliant with 3GPP TS 26.131 clause 6.4.1 for sending and clause 6.4.2 for receiving.
- The idle noise for sending and for receiving shall be compliant respectively to 3GPP TS 26.131 clause 6.3.1 and clause 6.3.2.

The headset shall be tested with identified HD Voice devices. The list of HD Voice devices a headset is compliant with will be made available.
4.10 D2.10 - Noise Reduction – General Requirement

For sending, in handset mode, the HD Voice device shall reduce the ambient noise picked up by the microphone without degrading the quality of the speech signal.

The noise reduction performance shall be measured in wide band mode. It shall be tested through the objective method as described in section D2.10.1. In case of doubt on the results of the objective method, the subjective methodology, as described in section D2.10.2 can be used.

4.10.1 D2.10.1 - Noise Reduction - Objective evaluation

In handset mode, for wide band calls, the S-MOS-LQO and N-MOS-LQO scores shall be compliant with 3GPP2 C.S0056-A clause 2.2.4 performance objective. Namely:

- The average of the S-MOS-LQO scores across all test conditions shall be \(\geq 3.5 \).
- The average of the N-MOS-LQO scores across all test conditions shall be \(\geq 3.0 \).

Individual scores as well as the average across all test conditions shall be reported.

4.10.2 D2.10.2 - Noise Reduction – Subjective evaluation

The subjective evaluation may be applied as an optional procedure, only in cases where there is evidence that the objective method significantly underestimates one of the scores. In such cases the subjective result will supersede the objective result for each of the individual and averaged scores.

The objective measurement results should be made available with any subjective results. Note: The results of the objective method and the subjective method generally are not directly comparable. Due to the limited types of impairments covered in the subjective test and the variability which might be seen in different test labs, for different languages and also in different cultures, different scores may be obtained.

Test method

The subjective test method is according to ITU-T P.835 and the ITU-T Handbook of subjective testing practical procedures, with the following observations:

- The speech material (near end signal) shall consist of 32 sentences of speech (2 male and 2 female talkers, 8 sentences each). The speech database shall conform to the guidelines specified in ITU-T handbook of subjective testing practical procedures, section 5, and section B.3 of ITU-T P.501. Each sentence shall be normalized to an active speech level of \(-26\)dBov.

The background noise shall be setup and equalized according to ETSI EG 202 396-1. Noise types shall be reproduced at their realistic levels according to EG 202 396-1 clause 8. The test conditions are specified in Table D2.
Reference Conditions

<table>
<thead>
<tr>
<th>File</th>
<th>SNR</th>
<th>Noise Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>i01</td>
<td>No Noise</td>
<td>-</td>
</tr>
<tr>
<td>i02</td>
<td>0dB</td>
<td>Fullsize_Car1_130Kmh_binaural</td>
</tr>
<tr>
<td>i03</td>
<td>12dB</td>
<td>Fullsize_Car1_130Kmh_binaural</td>
</tr>
<tr>
<td>i04</td>
<td>24dB</td>
<td>Fullsize_Car1_130Kmh_binaural</td>
</tr>
<tr>
<td>i05</td>
<td>36dB</td>
<td>Fullsize_Car1_130Kmh_binaural</td>
</tr>
<tr>
<td>i06</td>
<td>0dB</td>
<td>No Noise</td>
</tr>
<tr>
<td>i07</td>
<td>12dB</td>
<td>No Noise</td>
</tr>
<tr>
<td>i08</td>
<td>24dB</td>
<td>No Noise</td>
</tr>
<tr>
<td>i09</td>
<td>36dB</td>
<td>No Noise</td>
</tr>
<tr>
<td>i10</td>
<td>24dB</td>
<td>Fullsize_Car1_130Kmh_binaural</td>
</tr>
<tr>
<td>i11</td>
<td>12dB</td>
<td>Fullsize_Car1_130Kmh_binaural</td>
</tr>
<tr>
<td>i12</td>
<td>0dB</td>
<td>Fullsize_Car1_130Kmh_binaural</td>
</tr>
</tbody>
</table>

Test Conditions

<table>
<thead>
<tr>
<th>File</th>
<th>Speech level @ MRP</th>
<th>Noise level @ HATS ear simulators</th>
<th>Noise Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>i13</td>
<td>-1.7dBPa</td>
<td>L: 75.0 dB(A) R: 73.0 dB(A)</td>
<td>Pub_Noise_binaural_V2</td>
</tr>
<tr>
<td>i14</td>
<td>-1.7dBPa</td>
<td>L: 74.9 dB(A) R: 73.9 dB(A)</td>
<td>Outside_Traffic_Road_binaural</td>
</tr>
<tr>
<td>i15</td>
<td>-1.7dBPa</td>
<td>L: 69.1 dB(A) R: 69.6 dB(A)</td>
<td>Outside_Traffic_Crossroads_binaural</td>
</tr>
<tr>
<td>i16</td>
<td>-1.7dBPa</td>
<td>L: 68.2 dB(A) R: 69.8 dB(A)</td>
<td>Train_Station_binaural</td>
</tr>
<tr>
<td>i17</td>
<td>-1.7dBPa</td>
<td>L: 69.1 dB(A) R: 68.1 dB(A)</td>
<td>Fullsize_Car1_130Kmh_binaural</td>
</tr>
<tr>
<td>i18</td>
<td>-1.7dBPa</td>
<td>L: 68.4 dB(A) R: 67.3 dB(A)</td>
<td>Cafeteria_Noise_binaural</td>
</tr>
<tr>
<td>i19</td>
<td>-1.7dBPa</td>
<td>L: 63.4 dB(A) R: 61.9 dB(A)</td>
<td>Mensa_binaural</td>
</tr>
<tr>
<td>i20</td>
<td>-1.7dBPa</td>
<td>L: 56.6 dB(A) R: 57.8 dB(A)</td>
<td>Work_Noise_Office_Callcenter_binaural</td>
</tr>
</tbody>
</table>

Table D2: Test and Reference conditions for subjective evaluation of Noise Reduction

- The handset terminal shall be set-up on HATS and the handset mounting position documented as described in 3GPP TS 26.132 clause 6.1.1.
- For reproduction of the near-end signal, a HATS conforming to ITU-T P.58 is used. The mouth simulator shall be equalized according to 3GPP TS 26.132 guidelines and the gain adjusted to produce an active speech level of -1.7 dBPa at the MRP.
The send signal is recorded at the electrical reference point of a network simulator to generate the processed (noise suppressed) speech materials for the subjective test. The network simulator shall be set to a CDMA2000 call with EVRC-NW (SO73) COP0 speech codec.

The recordings of processed speech materials and reference conditions shall be normalized for use in the subjective test.

For the test conditions, the normalization gain is the gain necessary to obtain an active speech level of -26dBov with a clean speech condition (no noise applied in the room). This normalization gain shall then be applied to all other test conditions (noise suppressed speech signals).

For the reference conditions, the clean speech and noise signals shall be filtered with the MSIN and LP7 filters available from ITU-T G.191. LP7 filter will be used in combination with the HQ3 up-sampling (1:3) and down-sampling (3:1) as defined in G.191 as well. Prior to mixing, the speech shall be normalized to an active speech level of -26 dB. The mixing shall be performed to obtain the SNRs described in Table D2. The SNR is defined as the ratio between active speech levels to unweighted noise level.

The headphones used are calibrated and equalized using a HATS conforming to ITU-T Recommendation P.58 and an artificial ear type 3.3 according to ITU-T Recommendation P.57. The HATS is diffuse field equalized. The resulting frequency response characteristic of the headphones used in the subjective experiments shall be within the mask given in TS 26.131, clause 6.4.2.

The presentation of the test and reference conditions to listeners shall be diotic, and the system gain adjusted so that a speech segment of -26 dB corresponds to a presentation level of 73 dB SPL measured at the DRP with diffuse-field equalization of the HATS active.

The experimental design shall include the 12 reference and 8 test conditions described in Table D2.

The test and reference conditions shall be presented to a total of 32 naive listeners. The listeners shall be native speakers of the language used for the test. The subjective test presentation sequence (i.e. “randomizations”) is provided in Table D3. Each of the eight presentation sequences in Table D3 shall be presented to four of the 32 listeners.

Table D3: Subjective test presentation sequence

Requirements

When testing through the subjective methodology, the HD Voice device shall comply with the following requirements:
- P.835 SIGw: Transmission quality of the speech
 - The average of P.835 SIGw scores across all 8 different ambient noise conditions from Table D2 shall be: $\geq 3,5$

- P.835 BAKw: Transmission quality of the background noise
 - The average of P.835 BAKw scores across all 8 different ambient noise conditions from Table D2 shall be $\geq 3,0$
Figure D2.10-1: Processing for generating the reference conditions of the subjective test.
4.11 D2.11 Speech path Delay of mobile HD Voice devices

In handset mode, for narrow band calls and for wide band calls, the speech path delay shall be compliant with 3GPP2 C.S0056-A clause 2.6.

In wired headset mode, for narrow band calls and for wide band calls, the speech path delay shall be compliant with 3GPP2 C.S0056-A clause 2.6.

\(T_{ss} \) is the delay introduced by the test equipment and the system simulator. Examples as provided by simulator manufacturers are given in Table D4.

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Equipment version number</th>
<th>Other manufacturer: data to be provided by GSMA ¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rohde & Schwarz CMU 200 with C2K EVRC-B (SO68)</td>
<td>CMU 200 SW 5.20</td>
<td></td>
</tr>
</tbody>
</table>

| \(T_{ss} \) | 0.04 - 5 s + 60 ms |

Table D4: System Delay of the network simulators

4.12 D2.12 Sidetone characteristics

In handset and wired headset mode, for narrow band calls and for wide band calls, the sidetone characteristics shall be compliant with 3GPP2 C.S0056-A clause 2.5.1.

4.13 D2.13 Template for reporting test results

Acoustic performance test results and handset positioning information for the UE may be reported using the template attached

(GSMA_HDVoice_Acoustic_Performance_Template_v2_0_AnnexD.xlsx)

Table D5: HD Voice Acoustic Performance

¹ Data will be compiled and given to GSMA to make it available
5 Reference Documents

<table>
<thead>
<tr>
<th>Tag</th>
<th>Title</th>
<th>Reference</th>
<th>Available at:</th>
</tr>
</thead>
<tbody>
<tr>
<td>3GPP TS 26.131</td>
<td>Terminal acoustic characteristics for telephony; Requirements</td>
<td>3GPP TS 26.131 Rel.10 or later</td>
<td>http://www.3gpp.org/ftp/Specs/html-info/26131.htm</td>
</tr>
<tr>
<td>ETSI EG 202 396-1</td>
<td>Speech quality performance in the presence of background noise; Part 1: Background noise simulation technique and background noise database</td>
<td>ETSI EG 202 396-1</td>
<td>http://www.etsi.org/deliver/etsi_eg/202300_202399/20239601/01.02.02_60/eg_20239601v010202p.pdf</td>
</tr>
<tr>
<td>3GPP2 C.S0050-0</td>
<td>3GPP2 File Formats for Multimedia Services</td>
<td>3GPP2 C.S0050-0 v1.0 or later</td>
<td>http://www.3gpp2.org/Public_html/specs/C.S0050-0_v1.0.pdf</td>
</tr>
</tbody>
</table>
It is our intention to provide a quality product for your use. If you find any errors or omissions, please contact us with your comments. You may notify us at prd@gsma.com.

Your comments or suggestions & questions are always welcome.