
GSM Association Non-confidential 

Official Document RCC.55 - RCS Extensibility, Terminal and Network API Security 

V2.0 Page 1 of 47 

 

RCS Extensibility, Terminal and Network API Security 

Version 2.0 

23 June 2015 

This is a Non-binding Permanent Reference Document of the GSMA 

Security Classification: Non-confidential 

Access to and distribution of this document is restricted to the persons permitted by the security classification. This document is confidential to the 

Association and is subject to copyright protection. This document is to be used only for the purposes for which it has been supplied and 

information contained in it must not be disclosed or in any other way made available, in whole or in part, to persons other than those permitted 

under the security classification without the prior written approval of the Association.  

Copyright Notice 

Copyright © 2015 GSM Association 

Disclaimer 

The GSM Association (“Association”) makes no representation, warranty or undertaking (express or implied) with respect to and does not accept 

any responsibility for, and hereby disclaims liability for the accuracy or completeness or timeliness of the information contained in this document. 

The information contained in this document may be subject to change without prior notice. 

Antitrust Notice 

The information contain herein is in full compliance with the GSM Association’s antitrust compliance policy. 

 



GSM Association Non-confidential 

Official Document RCC.55 - RCS Extensibility, Terminal and Network API Security 

V2.0  Page 2 of 47 

Table of Contents 

1 Introduction 4 

1.1 Overview 4 

1.2 Definitions 4 

1.3 References 4 

1.4 Conventions 5 

2 RCS Extensibility and API Security 5 

2.1 Context 5 

2.2 Contents 7 

2.3 Scope 7 

2.3.1 What is enabled by the proposed approach 7 

2.3.2 What is not enabled by this approach 8 

2.4 Supported Use Cases 9 

2.4.1 Terminal-API Use Cases 9 

2.4.2 Network-API Use Cases 10 

3 Application Identification and Operator Control 12 

3.1 Introduction 12 

3.2 IARI structure 13 

3.3 Self-signed IARIs 13 

3.4 Application identification at the SIP protocol level 14 

3.5 MNO models for application identification management 14 

3.6 Developer / Application Registration 17 

4 Covered API Access Use Cases 19 

4.1 Introduction 19 

4.2 Scenarios 19 

4.3 API sensitivity 19 

4.4 Extensions policy 19 

5 Terminal API 20 

5.1 Introduction 20 

5.2 Self-signed application identification on T-API 20 

5.3 Self-signed tag management 21 

5.3.1 Overview 21 

5.3.2 Tag owner creates tag 21 

5.3.3 Application Developer creates Developer Keys 22 

5.3.4 Tag owner authorises developer to use tag 23 

5.3.5 Application developer creates and releases an app using the tag 24 

5.3.6 Stack validates application 25 

5.3.7 Stack validates runtime invocation 27 

5.3.8 Tag validity: assurances provided to the user and developer 28 

5.3.9 Tag registration and developer identification 29 

5.3.10 Tag pre-registration 29 

5.3.11 Tag blocking 29 

6 Network API 30 



GSM Association Non-confidential 

Official Document RCC.55 - RCS Extensibility, Terminal and Network API Security 

V2.0  Page 3 of 47 

6.1 Introduction 30 

6.2 Network API application identification and access control 30 

6.3 Network API application identification management 31 

6.3.1 Overview 31 

6.3.2 Client ID generation 32 

6.3.3 Tag owner creates tag 32 

6.3.4 Tag owner authorises developer to use tag 32 

6.3.5 Application developer releases an app using the tag 32 

6.3.6 Developer/ Application Approval 33 

6.3.7 RCS network validates runtime invocation 33 

6.3.8 Tag blocking 34 

7 IARIAuthorisation Document Specification 34 

7.1 Introduction 34 

7.2 Standalone Authorisation Document 34 

7.3 Namespace 34 

7.4 iari-authorisation element 35 

7.5 iari element 35 

7.6 package-name element 35 

7.7 package-signer element 36 

7.8 client_id element 36 

7.9 Signature element 36 

7.9.1 Algorithms, key lengths, and certificate formats 37 

7.9.2 KeyInfo 37 

7.9.3 Signature properties 38 

7.9.4 References 38 

7.10 IARI Authorisation document processing 38 

8 Use of IARI Authorisation in N-API 40 

8.1 Introduction 40 

8.2 IARI Authorisation in N-API API access 40 

8.2.1 X-RCS-IARI 40 

8.2.2 X-RCS-IARIAuthorisation 41 

8.3 Error responses associated with IARI authorisation in N-API 41 

9 Device Provisioning for API 42 

9.1 Introduction 42 

9.2 Device Management parameters for API policy 42 

Annex A Document Management 47 

A.1 Document History 47 

A.2 Other Information 47 

 

 



GSM Association Non-confidential 

Official Document RCC.55 - RCS Extensibility, Terminal and Network API Security 

V2.0  Page 4 of 47 

1 Introduction 

1.1 Overview 

This note outlines a proposal to support extensible RCS, looking at security issues for the 

Terminal and Network APIs and the device stack, and how those extensions are managed. 

NOTE:  The approach set out in this document is in response to an IP 

Communications Leadership Team request for a “federated” security 

approach without a central approver of apps. A completely federated 

approach that meets all business requirements has not been achievable but 

a balance between MNO autonomy and interoperability with a minimum of 

central control is proposed.  

NOTE:  This document relates to the RCS 5.3 Specification and not any earlier 

versions of the RCS specification. 

NOTE:  This document identifies a proposed architecture for the security 

mechanisms and processes working for Terminal and Network APIs. The 

architecture identifies a requirement for a developer / application repository 

as a common capability which shares out information to operator systems to 

support the various provisioning and run-time processes1. 

1.2 Definitions 

Term  Description 

ICSI IMS Communication Service Identifier 

RCS Rich Communications Services 

RCS 

extensions 
Applications adding functionality to native devices utilising RCS APIs   

ISV Independent Software Vendor 

IARI IMS Application Reference Identifier (IARI) 

T-API Terminal RCS API 

N-API Network RCS API 

MSRP Message Session Relay Protocol 

1.3 References  

Ref Doc Number Title 

[1]  

[RCS 5.3] GSMA PRD RCC.07 - RCS 5.3 - Advanced Communications Services 
and Client Specification, Version 6.0, 28 Feb 2015 

 http://www.gsma.com/network2020/wp-

content/uploads/2015/03/RCS5.3_UNI.zip 

[2]  RFC 2119 “Key words for use in RFCs to Indicate Requirement Levels”, S. 

                                                
1 The suggested model for such a centralized repository is the GSMA API Exchange enhanced for 

RCS applications through the addition of information relating to Feature Tags/ IARIs.  

http://www.gsma.com/network2020/wp-content/uploads/2015/03/RCS5.3_UNI.zip
http://www.gsma.com/network2020/wp-content/uploads/2015/03/RCS5.3_UNI.zip


GSM Association Non-confidential 

Official Document RCC.55 - RCS Extensibility, Terminal and Network API Security 

V2.0  Page 5 of 47 

Ref Doc Number Title 

Bradner, March 1997. Available at http://www.ietf.org/rfc/rfc2119.txt   

1.4 Conventions 

 The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”, 

“recommended”, “may”, and “optional” in this document are to be interpreted as described in 

RFC2119 [2]. 

2 RCS Extensibility and API Security 

2.1 Context 

As part of the Network 2020 Programme, GSMA is supporting member operators in 

launching commercial deployments of Rich Communication Services (RCS), enabling 

applications and services running on devices with native RCS stacks to be delivered over 

the IP Multimedia Subsystem (IMS) infrastructure. The RCS 5.3 specification defines a 

range of services including enriched call, messaging, multimedia and other services, which 

are natively available on RCS enabled handsets.  

However, operators require additional services to be created and deployed without having to 

be synchronised with the cycle of new specifications and new devices. For RCS to compete 

as a platform, in the face of the multitude of new applications and services being delivered 

independently over IP, it is important to be able to create new services outside of the scope 

of pan-network standards. Such services might be experimental (targeting eventual 

standardisation), or MNO-specific (associated with an MNO’s own service offering), or might 

be entirely private to a single application.  

This approach is enabled by exposing RCS APIs, both Terminal APIs (T-API) available to 

applications on the handset and Network APIs (N-API) in the network and deploying 

applications, created by Terminal Device OEMs, MNOs and third party ISVs. As part of this 

approach, it is expected that there should be interworking between Terminal APIs and 

Network APIs including the use of the service extension framework and security model. 

http://www.ietf.org/rfc/rfc2119.txt


GSM Association Non-confidential 

Official Document RCC.55 - RCS Extensibility, Terminal and Network API Security 

V2.0  Page 6 of 47 

 

Figure 1:  General Terminal API Architecture Overview 

 
 

 

Figure 2: General Network API Architecture Overview 

RCS services are considered to be extensible in that new applications and services can be 

created on top of the fundamental RCS protocols (chat, file transfer etc.). Each existing 

application or service is assigned a unique name, formally an IMS Application Reference 

Identifier (IARI) but commonly referred to simply as a tag. New services can also be defined 

and once they are assigned a tag, their traffic can also be carried over the network. The tag, 

like an application specific “label” on all of an app’s network traffic, allows traffic to be 



GSM Association Non-confidential 

Official Document RCC.55 - RCS Extensibility, Terminal and Network API Security 

V2.0  Page 7 of 47 

handled appropriately in the network and also, routed correctly to the correct T-API or N-API 

client application. Tags are also the basis on which one device can discover which 

applications or services are available on peer devices. This extensibility feature means that 

later revisions of the RCS standards can incorporate new services as they are developed. 

The current generation of social messaging apps, shows the potential of this approach; for 

example, instead of seeking a single service proposition that meets all of the needs of the 

market, there can be multiple, different services, existing to satisfy the niche needs and 

interests of different groups. RCS should be able to act as the enabling infrastructure for 

such services instead of being a constraint by prescribing a single, frozen, feature set. 

The most significant challenges in enabling this extensibility in practice are: 

 Management of applications and their tags for discoverability and traffic routing, 

 Ensuring globally unique tags are reliably associated with the providers of associated 

applications, 

 Enablement of a future developer ecosystem, 

 Meeting security considerations in a minimally-intrusive way, 

 Ensuring the security framework requires no single controlling/administrative 

organisation.  

These issues and proposed solutions are the subject of this document. 

2.2 Contents 

 Section 2 contains context, use cases and details of what is and is not enabled by the 

proposed approach to API security, 

 Section 3 details the application identification, and its management by the operators 

so that applications gain access to RCS APIs, 

 Section 4  discusses three principal API access use cases and states their related 

high-level requirements, 

 Section 5 outlines the process for managing Terminal API access for applications, 

and for controlling their corresponding tags, 

 Section 6 outlines the process for managing Network APIs, and for controlling their 

corresponding tags and API credentials, 

 Sections 7 and 8 identify the concrete steps needed to implement the proposal, 

addressing additions to RCS specifications and terminal and infrastructure 

implementations, 

 Section 9 defines the device provisioning process dedicated to API. 

2.3 Scope  

2.3.1 What is enabled by the proposed approach 

T-API access: 

 Access by any app to all RCS T-APIs, 

 Enablement of apps using the T-APIs for core RCS services (i.e. chat, file, image and 

video share) and which interoperate with the native UI for core services on other 

RCS-enabled devices, 



GSM Association Non-confidential 

Official Document RCC.55 - RCS Extensibility, Terminal and Network API Security 

V2.0  Page 8 of 47 

 Revocation by the service provider (MNO) of access by specific applications 

(designated via IARI's) to RCS T-APIs. 

 

N-API access: 

 Creation of network apps which use “Open” APIs (chat, file transfer, etc.) delivered 

via HTTP RESTful API definitions relating to SIP addresses. These are considered to 

be non-sensitive, or of low sensitivity such that the user can authorise access. (see 

section 4.3.1), 

 Control by the service provider (MNO or MVNO) over which network applications can 

interact with terminal applications using controlled T-APIs including core service APIs 

on the devices subscribed to their network, 

 Revocation by the service provider (MNO) of access by specific applications 

(designated via IARI's) to RCS N-APIs. 

NOTE:  There may be different methods employed by MNOs for the way in which 

applications using Network APIs are verified against the associated IARI 

Authorisation document. This document does not prescribe any specific 

approach i.e. it could be a part of the IMS infrastructure, N-API gateway or 

provided by a third party organisation. The assumption is, this process can 

in future scale to support full 3rd party access to T-APIs and N-APIs. The 

workflow and processes supporting that are out of scope. 

RCS extensions: 

 Enablement of MNO and Third party T-API and N-API applications for which unique 

custom feature tags are created by the developer, 

 Identification of T-API applications on a device implementing RCS extensions during 

Capability Discovery, 

 Identification of the traffic pertaining to a specific RCS extension, for app-to-app traffic 

routing, 

 Prevention of apps from using the unique custom feature tag belonging to any other 

extension without getting prior approval from the creator of that tag, 

 Revocation by an individual service provider (MNO) of access by specific applications 

(designated by IARI) to RCS extension APIs for devices or network applications 

subscribed to that provider’s network, 

 Global revocation of access by specific applications (designated by IARI) to sensitive 

RCS extension APIs across all networks. 

2.3.2 What is not enabled by this approach 

 Preventing an app on a jail-broken or hacked device from using another app’s unique 

custom tag, 



GSM Association Non-confidential 

Official Document RCC.55 - RCS Extensibility, Terminal and Network API Security 

V2.0  Page 9 of 47 

 Preventing a rogue network API app from masquerading as a valid network API app 

in the case that the credentials of the valid network API app become known to an 

attacker2, 

 Revocation of apps in the sense of removing them from end users devices is not 

supported 

 Differentiated access to APIs; an application, if authorized to use core service APIs, 

can use all core service APIs, 

 Ability to retrospectively add a new core service to the stack. (NOTE: A proposed 

approach for may submitted as a CR for a possible maintenance release of RCS 5.3). 

2.4 Supported Use Cases 

NOTE:  That in all cases below 'application' (or 'app') is considered to be uniquely 

identified by permitted access to a specific IARI. 

2.4.1  Terminal-API Use Cases 

Case # Title Description 

T-1 Service Integration by Device 

OEM at manufacture 

The OEM will integrate the RCS stack and conforming T-

API implementation, as well as the app accessing the T-

API. The natively integrated apps, whether for core 

services or for any MNO-specific or other RCS extensions, 

are required to be able to access the T-API. 

T-2 Service Addition by end user User can install an app that offers an RCS-based 

communication service, using on-device RCS stack,  

coexisting with existing apps. 

App can send messages to the same app on other 

devices. 

MNO can block traffic on its own network from an app 

without affecting core services from native devices or other 

apps. 

T-3 Addition of app for core 

services by end user  

User can install an app that offers an RCS-based 

communication service, using on device RCS stack, co-

existing with existing apps. 

App can send messages to the native app for that traffic 

type on other devices. 

MNO can block traffic on its own network from such an app 

without affecting core services from native devices or other 

apps. 

T-4 Service Extension Entry points to installed RCS apps can appear to the end 

user directly in the screens in which they would naturally 

need them e.g. dialler, message composer, address-book, 

contact card (“headless apps”).  

T-5 Service discoverability [App Installed T-API apps are discoverable to the end users 

                                                
2 Additional security mechanisms should be employed by the MNO for example restricting network 

API requests to approved origins via IP address whitelisting, request throttling and the practice of 

initiating network API requests from secured servers rather than insecure clients e.g. web clients. 



GSM Association Non-confidential 

Official Document RCC.55 - RCS Extensibility, Terminal and Network API Security 

V2.0  Page 10 of 47 

Case # Title Description 

discoverability] contacts using the RCS capability discoverability method 

(such discoverability can be filtered by MNO). 

T-6 App to app traffic routing A message sent from an RCS-enabled app or service 

extension can be received directly in the B-party’s app (i.e. 

app to app) instead of being routed to the RCS inbox. 

Every app is identified by an IARI which is globally unique. 

Traffic can be blocked on network by IARI. 

Apps can be blocked from accessing T-API on device by 

IARI. 

ISVs can add discoverability and in-app communications to 

their own non-communications apps for viral distribution, 

recommendation-based distribution, social gaming and 

user-to-developer communications.  

T-7 T-API access control & 

revocation 

MNOs can verify at the network whether a specific IARI is 

associated with an app that has been flagged as malicious 

or blocked for some other reason. 

MNOs can revoke access to the APIs for a specific 

application for all devices. 

MNOs can block traffic by IARI (at IMS/application 

gateway). 

T-8 Download communications  

app, RCS as a bearer 

Third parties can develop their communications apps to 

use RCS as a transport mechanism. 

T-10 Controlled discoverability When the application is using application to application 

traffic, it will require discoverability process. 

For these applications, the end user: 

 Can see from within an app and the contact card 

which of his/her contacts have the same app, 

 Is prompted at app install to select whether the 

app should be discoverable or not, 

 Can opt to have an app not be discoverable, 

 Can only see the apps on the B party device that 

they have in common and are permitted by the B 

party to be discoverable, 

 Apps are no longer discoverable once deleted. 

T-11 Usage tracking The MNO shall be able to discover how many instances of 

each app are active on their network.  

T-12 Traffic measurement The MNO shall be able to deploy a network element to 

measure the IARI-specific traffic.  

Table 1: Supported T-API Use Cases 

2.4.2 Network-API Use Cases 

Case # Title Description 

N-1 Service Addition or 

Invocation by end user 

An app may offer an RCS-based communication service, 

accessing the RCS network via the N-API. 

App can send messages to the other instances of the 



GSM Association Non-confidential 

Official Document RCC.55 - RCS Extensibility, Terminal and Network API Security 

V2.0  Page 11 of 47 

Case # Title Description 

same app, accessing the network either by N-API or T-

API. 

MNO can block traffic on its own network from an app 

without affecting core services from native devices or other 

apps. 

N-2 Service discoverability [App 

discoverability] 

Known N-API apps should be discoverable based on IARI 

and the context of the OMA Network APIs. Work may be 

required with OMA to develop standard to support 

discoverability. Additional standard works are out of the 

scope of this document. 

N-3 App to app traffic routing A message sent from an RCS-enabled app or service 

extension can be received either in the RCS inbox OR 

directly in the B-party’s app. 

Every app is identified by an IARI which is globally unique. 

Traffic can be blocked on network by IARI. 

Apps can be blocked from accessing N-API by IARI. 

ISVs can add discoverability and in-app communications to 

their own non-communications apps for viral distribution, 

recommendation-based distribution, social gaming and 

user-to-developer communications.  

N-4 N-API access control & 

revocation 

MNOs can verify at  the network whether a specific IARI is 

associated with an approved app (e.g. one that has signed 

its terms and conditions) before supporting traffic from the 

app. 

The MNO can verify the app is presenting the correct 

authorisation/ identification credentials (client ID) 

associated with the IARI via an IARI authorisation 

document. 

MNOs can revoke access to the N-API for a specific 

application (designated by IARI) for all devices. 

MNOs can block traffic by IARI (at IMS/application 

gateway). 

N-5 Download communications  

app, RCS as a bearer or use 

for example a web app which 

uses RCS as a bearer (e.g. 

customer care) 

Third parties can develop their communications apps to 

run on RCS rather than OTT IP communications, subject 

to those apps being given permission to use necessary N-

APIs. 

Applications are identified by IARI using processes defined 

for creating IARI's as per for T-API applications. 

N-6 Adherence to Terms and 

conditions 

The MNO will normally require the 3rd party developer to 

sign up to terms and conditions as a pre-requirement 

before being granted access to N-APIs (procedural; means 

app will be blocked if not in adherence). 

The MNO can verify whether a specific IARI is associated 

with an approved app (e.g. one that has signed its terms 

and conditions) before permitting traffic from the app. 

N-7 Controlled discoverability The end user can see from within an app and the contact 

card which of his/her contacts have the same app subject 



GSM Association Non-confidential 

Official Document RCC.55 - RCS Extensibility, Terminal and Network API Security 

V2.0  Page 12 of 47 

Case # Title Description 

to the following: 

 Is prompted at app install or first run to select 

whether the app should be discoverable or not, 

 Can opt to have an RCS app not be discoverable,  

 Cannot see all the apps on the B parties device, 

just the ones they have in common and which are 

discoverable, 

 Sees apps which may only be installed on the B 

party’s secondary devices, 

 Apps are no longer discoverable once deleted. 

N-8 Usage tracking The MNO shall be able to discover how many instances of 

each app are active on their network.  

N-9 Traffic measurement The MNO shall be able to deploy a network element to 

measure the IARI-specific traffic.  

The MNO shall be able to deploy a network element to 

measure the N-API specific traffic for a given application 

(identified using client ID). 

The MNO shall be able to (if required) charge the 

developer/publisher for traffic usage by an application 

based on N-API specific traffic.  

Table 2: Supported N-API Use Cases 

3 Application Identification and Operator Control 

3.1 Introduction 

This section summarises the mechanisms for application identification and access control to 

RCS services, which underpin the other mechanisms described in the later sections. 

Application identifiers (IARIs) are used for four specific purposes. 

The first is to make apps discoverable. The IARIs of T-API applications on a device, or  N-

API applications known to the network are returned as part of Capability discovery, allowing 

peer apps to know that a contact has the same (or compatible) app.  

The second purpose is to identify traffic from a specific application to the RCS stack and to 

the network. For T-API, the application identifier is in the Contact header of all SIP network 

traffic generated by the application; this then allows usage (number of applications on the 

network, amount of traffic they generate) to be monitored. A third-party chat client, for 

example, can generate chat traffic, communicating with other chat clients, but its traffic is 

separately identifiable in the network and stack. For network based applications, the 

application identifier for requests passed over HTTP is based on client ID along with a 

permitted IARI relevant to the request. 

The third use of application identifiers is to enable peer apps to create private “virtual 

networks” in which RCS are used privately between two identical applications or peers, on 

different devices. Those peers, if they are each authorised to use a specific private IARI, can 



GSM Association Non-confidential 

Official Document RCC.55 - RCS Extensibility, Terminal and Network API Security 

V2.0  Page 13 of 47 

perform private application-to-application communication without interference from other 

apps. This can support in-game communications, the transfer of application traffic using 

RCS as a bearer, and/or communication between the app or game developers and users for 

maintenance or customer care.  

Such private app-app traffic can use a transparent peer-to-peer MSRP service or might 

reuse the functionality of an existing core service (such as group chat) but, using a custom 

identifier, operate distinctly and privately between peer extension instances. 

The final purpose of application identifiers is to allow, when circumstances demand, the 

traffic from that application to be blocked. This can be performed in the network and, in the 

case of T-API (RCS 5.3), the stack on the device can be notified of a blocked IARI which 

prevents the associated app from accessing the API. A block in the network may be 

enforced at the UNI or at the NNI (which applies in the case that a particular IARI is 

permitted in one network but blocked in an adjacent network). 

The processes for assigning and managing these identifiers (IARIs) are described below. 

3.2 IARI structure 

The IARI structure to be used for RCS service extensions is detailed in section 2.6.1.1.3 of 

[1]. 

3.3 Self-signed IARIs 

The access control mechanisms described in this document are based on a space of IARIs 

designated for use by “extensions”, i.e. applications or services that are not assigned IARIs 

within existing specifications. Such extension IARIs are supportable without the need for any 

central issuer of identities (i.e. of IARIs, or apps, or developers). This enables third-party and 

MNO developers to be free to create and distribute apps that use RCS with this identity to 

communicate, and be discoverable peer-to-peer, without any independent assurance of their 

identity or reliance on a central issuing authority. 

Self-signed IARIs are defined in that specification as a specific range in the IARI range for 

Third Party Extension (defined in section 2.6.1.1.3 of [1]) having the format: 

urn:urn-7:3gpp-application.ims.iari.rcs.ext.ss.<app-specific string> 

The application-specific string is independently generated and unique. Once a given 

application is authorized by a tag owner to use that tag, that authorization is captured as a 

digital signature; a Tag Authorisation document is generated that binds a specific app to that 

tag; this is performed using a cryptographic mechanism that assures that only the creator of 

the unique tag string (the “tag owner”) could have authorised the app. 

For T-API apps, this authorisation can be packaged as part of the application. Verification of 

that signature, confirming for T-API to the stack that the application is authorized to use that 

tag, is performed by validating the signature in the Tag Authorisation. The process related to 

an independent T-API app incorporating the IARI authorisation is detailed in section 5.  

The equivalent process for a Network API based application is detailed in section 6. 



GSM Association Non-confidential 

Official Document RCC.55 - RCS Extensibility, Terminal and Network API Security 

V2.0  Page 14 of 47 

3.4 Application identification at the SIP protocol level 

Each RCS session operating over SIP is identified by a combination of an IMS 

Communication Service Identifier (ICSI) which indicates what kind of traffic this is e.g. chat, 

and an IARI, which identifies the application generating the traffic. The IARI shall appear in 

the Contact header OR in both the Contact and Accept-Contact headers (see section 3.12.4 

of [1). These identifiers enable the network to handle sessions appropriately and ultimately 

route the traffic to the correct application. 

The IARI for an app shall be indicated in the Contact header for all sessions initiated by an 

app. This enables the network to identify any such session as being associated with that 

app.  

Traffic from an app shall either be routed to: 

 The native app for that traffic type, (e.g. native messaging inbox) known as app-to -

native messaging, [see 2.4, use case 3 ], 

Or, 

 To the same app (i.e. an app with the same IARI feature tag) known as app-to-app 

traffic [see 2.4 use case 2]. 

Network APIs use HTTPS (over TCP/IP) as a bearer for the requests, API calls use OMA 

defined RESTful interfaces. The Network API gateway ensures the conversion of application 

identifiers between HTTP headers to/from SIP Contact and Accept-Contact headers as 

required. This process, therefore, requires the Network API gateway to have access to 

application identifiers for Network API requests and IARI's for T-API requests. This process 

is detailed in Section 6. 

3.5 MNO models for application identification management 

In the following architecture and related description, these terms are used: 

 Federation – a loosely coupled group of operators who have established the 

framework for applications across the federation to be used by mobile users on any 

of the networks participating in the federation, 

 Serving Operator – this is the MNO who is processing an RCS API call for one of 

their end users, 

 Developer Operator – this is an MNO who operates a developer programme and 

introduces the developer/ application to the federation. Usually each Developer 

Operator is also functioning as a Serving Operator, though not every Serving 

Operator has to function as a Developer Operator, 

 Central Developer/Application Repository – this is a logical component which 

maintains key information about developers and applications and manages the 

replication of this information to federated operators (Local Cache), 

 Local Cache Repository – provided by Serving Operators, or on their behalf, to hold 

information on developers/applications (including IARI, tag authorisation document 

and client ID) and globally relevant status, 



GSM Association Non-confidential 

Official Document RCC.55 - RCS Extensibility, Terminal and Network API Security 

V2.0  Page 15 of 47 

 API Validator – provided by Serving Operators, or on their behalf, is the functional 

unit that decides if an RCS API call is valid for processing based on all appropriate 

factors considered by the operator. This at least considers the data from the 

developer/ application registry including IARI and tag authorisation document. In 

addition the API Validator can consider factors such as application approval state, 

Operator Terms & Conditions acceptance etc., 

 Authorisation Gateway – provided by Serving Operators, or on their behalf, is the 

functional unit that manages the authorisation procedures for RCS traffic: 

o IARI authorisation function: validate that the traffic identified by a specific IARI 

is authorised on the RCS network. The Authorisation Gateway will extract the 

IARI from either the SIP or HTTP signalling, depending on the location of the 

equipment that implements this function. It will normally refer to the ‘API 

Validator’ which has the responsibility for checking IARI/ IARI Authorisation 

and other factors, 

o Client ID authorisation function: in case of N-API application, validate that a 

specific application identified by its Client ID is authorised to generate RCS 

traffic for a specific IARI. The Authorisation Gateway will extract the Client ID 

and IARI from either the HTTP signalling. This function shall be implemented 

by the Operator’s RCS N-API Gateway equipment. 

 Client ID – used to identify Network API applications. Refer to section 6 for more 

information. 

Two models are considered for application identifier (Client ID/IARI) distribution, depending 

on MNOs business strategy: 

1- Independent MNO model:  

 Each MNO is responsible for the management of application identifiers to 

provide access to its own RCS network. There is no interaction between 

MNOs about identifier synchronization. 

 In N-API cases, the developer would register their application with each MNO 

they wish to work with, and be provided in return with a separate Client ID for 

each. 

 This approach is most typically adopted only for applications created by a 

MNO for its own customer base or a small number of local market enterprise 

customers 



GSM Association Non-confidential 

Official Document RCC.55 - RCS Extensibility, Terminal and Network API Security 

V2.0  Page 16 of 47 

 

Figure 3: Independent MNO Model 

2- Federated MNO model:  

 IARI white/black lists are distributed between MNOs for interoperability. 

 In N-API cases, the developer registers the application once and details are 

distributed between MNOs. Client IDs are either allocated according to a 

scheme to guarantee global uniqueness or otherwise synchronized between 

MNOs for interoperability, so that the same Client IDs can be used on various 

RCS networks. In such a case, the developer would register their application 

with a single MNO and be provided with a unique Client ID that could be used 

on various RCS networks, provided that the MNOs synchronize their Client ID 

namespaces or identifier allocations between each other. 

 The identifiers (IARI / Client ID) storage is centralized in a shared repository. 

Its content is replicated in each MNO local repository, so that there is no hard 

dependency with the centralized database. This approach is most likely to be 

adopted for third-party applications for regional customer base served by 

multiple MNOs. 

 



GSM Association Non-confidential 

Official Document RCC.55 - RCS Extensibility, Terminal and Network API Security 

V2.0  Page 17 of 47 

 

Figure 4: Federated MNO Model 

NOTE  This architecture supports both Terminal and Network API based 

applications, the respective infrastructure (IMS infrastructure or Network API 

gateway) uses the API Validator to check that API calls are permitted. 

3.6 Developer / Application Registration 

The mechanisms described in this document allow application developers to create custom 

tags and authorise apps to use those tags. These processes are decentralised; there does 

not need to be a central issuing authority to create tag strings or manage the allocation to 

avoid conflicts, or issue certificates for tags. 

However, it is expected that there will be business requirements relating to developer 

identification and there may be a requirement in certain circumstances for developers to 

enter into terms of service or commercial license agreements. This means that there would 

be some process that establishes a link between registered developer details and 

independently created tags. In practice, this could be in the form of a web-based portal that 

tag owners use to register their details plus metadata for the tag, the tag string itself, the 

purpose of the tag, certificate details, status, and perhaps also a list of all apps or developers 

that have been authorised to use it. 

It is expected that developer/application registration is decided individually by MNOs 

regarding whether this is required and if it is required exactly how this will work, e.g. does the 

MNO provide a developer portal. A typical process is outlined below: 



GSM Association Non-confidential 

Official Document RCC.55 - RCS Extensibility, Terminal and Network API Security 

V2.0  Page 18 of 47 

 

Figure 5: Developer/ Application Registration and IARI Upload 

It is expected that the processes implemented for developer/application registration include: 

 Accepting Terms & Conditions for the MNO(s) the developer wishes to partner; 

 Providing any required information about the application that will help the MNO 

decide if the application should be approved according to their policies; 

 Uploading the IARI Authorisation for the application which confirms the association 

between the application and the IARI used; 

 In case the application requires use of Network APIs, there would be a process for 

issuing client ID and secret to developers which are used for HTTP request 

authorisation. The client ID would be included in the IARI Authorisation for the 

application which confirms that a requesting client ID is correctly associated with 

IARI; 

 The developer confirming they want to release their application for production use. 



GSM Association Non-confidential 

Official Document RCC.55 - RCS Extensibility, Terminal and Network API Security 

V2.0  Page 19 of 47 

4 Covered API Access Use Cases 

4.1 Introduction 

This section sets out the proposed approach to access control for the terminal and network 

APIs. 

4.2 Scenarios 

The following API access scenarios are addressed in this access control proposal: 

Access to T-APIs for core services by “native” apps integrated at manufacture. The 

OEM will integrate the RCS stack and conforming T-API implementation. The natively 

integrated apps whether for core services or for any MNO-specific or other RCS extensions 

are required to be able to access the T-API. 

Access to APIs for core services by non-native apps. This use-case applies to those 

apps acting as an RCS client giving access to one or more core services, possibly as part of 

a broader service offering. These might be T-API apps (i.e. as a replacement for the native 

RCS client) or N-API apps (e.g. for desktop or Wi-Fi only tablet RCS access).These apps 

are preferably authorised once and distributed in a way that allows them to run on each 

manufacturer’s products without per-device modification or configuration. 

Access to APIs for RCS extensions by apps. This use-case applies to apps using RCS to 

establish private app-to-app communication using a custom IARI. 

4.3 API sensitivity 

RCS APIs expose the ability to initiate and consume sessions for various RCS core services. 

As with many platform APIs, these may be open to abuse, for example, exposing the user to 

risks of cost or privacy, if they are made freely available to third-party apps. For this reason, 

the T-APIs require install-time approval in the same way as for all Android permissions at the 

dangerous protection level. In the case of N-API apps there may not be an equivalent 

'install-time' procedure, so this means that the application must have an identity and 

associated credentials that are capable of revocation/blocking by a service provider (MNO). 

However, the potential risks of abusive apps extend beyond the user. For various reasons, 

such as the need to prevent systematic violations of terms of service, or to prevent the 

unsustainable demands being placed on the RCS stack and service, access by any app to 

the service may therefore be additionally mediated by the service provider (MNO), based on 

a validated IARI; this is a real time access check, made by the network both for T-API and N-

API access. As the check is online, and the check is made against a request validation 

service provided by the MNO, the MNO has ultimate control over whether or not any given 

API access request is permitted. 

4.4 Extensions policy 

The infrastructure access control mechanisms described above may not be universally 

deployed by all MNOs; this means that an MNO must be entitled to place a blanket 

restriction on running any non-native RCS applications on an attached device. 



GSM Association Non-confidential 

Official Document RCC.55 - RCS Extensibility, Terminal and Network API Security 

V2.0  Page 20 of 47 

A mechanism is therefore defined whereby a service provider can indicate, as part of the 

configuration data for the service provisioned to each terminal, whether or not non-native 

applications are permitted to access the T-API. The details of this extensions policy setting 

are set out in section 9. 

5 Terminal API 

5.1 Introduction 

This section sets out the proposed approach to access control for the terminal APIs, 

including the mechanisms proposed for independent authorisation of apps. 

5.2 Self-signed application identification on T-API 

This case covers the authorisation of applications using self-signed IARIs. Such applications 

are supportable without the need for any central issuer of identities (for developers or their 

apps) and without any prerequisite for independent application evaluation or scrutiny. Third-

party developers may then freely create and distribute apps that use RCS with this identity to 

communicate, and be discoverable peer-to-peer, without any independent assurance of their 

identity. 

Self-signed tags have the format: 

urn:urn-7:3gpp-application.ims.iari.rcs.ext.ss.<app-specific string> 

The application-specific string is independently generated and unique. A Tag Authorisation 

document is generated that binds a specific app to that tag; this is performed using a 

cryptographic mechanism that assures that only the creator of the unique tag string (the “tag 

owner”) could have authorized the app. 

The process (showing a T-API app incorporating the authorisation for the self-signed IARI) is 

illustrated in the following figure. 

 

Figure 6: Applications with self-signed IARI (T-API) 

 The tag owner generates the unique tag string and also a tag certificate. 



GSM Association Non-confidential 

Official Document RCC.55 - RCS Extensibility, Terminal and Network API Security 

V2.0  Page 21 of 47 

 The tag owner creates a signed Tag Authorisation associating that tag with that 

app. 

 The Tag Authorisation is packaged as part of the app by the application 

developer or publisher. 

 Upon installation, the RCS stack verifies that the app is authorised to use that tag. 

5.3 Self-signed tag management 

5.3.1 Overview 

Self-signed IARIs belong to a single “ext.ss” tag range for tags, and the tag generation 

process ensures that unique tag strings are generated. 

Each individual tag is associated with a keypair generated independently by a tag owner. 

The tag string itself is derived from the public key of that key pair. The owner keeps the 

private key private, but uses it to prove that they own the tag, and subsequently to prove that 

they have Authorised particular apps to use the tag. 

In order to publish an app that uses such a tag, a developer (who may be the same entity as 

the tag owner) must be granted authorization by the tag owner; this is captured in a signed 

IARI Authorisation document that references the application identity (developer’s release 

certificate and package name) and is signed by the tag owner using their private key. The 

developer writes his app in the normal way, presenting the IARI Authorisation document (in 

the application package), and uses standard procedures to publish the app. 

This means that it is possible for the RCS environment or anyone else to verify that the app 

was authorised by the owner to use that tag, without there ever having been any central 

authority either to issue the tag, or to issue the application identity and credentials. The 

integrity of the tag depends only on how carefully the owner manages his own tag private 

key, and the cost of creating and managing keys falls to the tag owner, in just the same way 

as happens already for any other developer credentials. 

Neither the tag owner or developer is identified by the signature; the chain of tag, IARI 

Authorisation and package signature only assures that the developer was authorised by the 

owner of the tag string to use that tag. 

It is possible that an application uses a custom tag to abuse the RCS service and that there 

is a need to disable that app or its interaction with the service. Since there is no central 

issuer, it is not possible simply to revoke the Tag certificate if a specific app or tag is judged 

to be malware. Instead, a combination of measures, including blocking of specific tags in the 

network, together with restrictions enforced by the T-API stack (applying a blacklist of tags) 

is specified. 

The individual steps explained in greater detail in the following sections. 

5.3.2 Tag owner creates tag 

A public/private key pair is generated locally by the tag owner as the basis for the tag; tools 

are provided for the tag owner to do this. The private key, referred to in the following as the 

Tag private key is kept secret by the tag owner, and used only to sign Tag authorisation 

documents (see below). 



GSM Association Non-confidential 

Official Document RCC.55 - RCS Extensibility, Terminal and Network API Security 

V2.0  Page 22 of 47 

The tag string itself is formed by hashing the corresponding public key, the Tag public key - 

and prepending the custom tag prefix: 

urn:urn-7:3gpp-application.ims.iari.rcs.ext.ss.<hashed tag public key> 

The hash function is a SHA-224 hash, encoded with URL-safe Base64 (RFC 4648), which 

has an encoded length of 38 bytes, is suggested. 

The tag owner creates a self-signed certificate using the tag key pair and containing the tag 

string as a Subject Alternative Name (SAN) entry. This certificate will be used in any 

signature based on the tag. 

The steps are illustrated below. 

 

 
Figure 7: Tag owner creates tag 

5.3.3 Application Developer creates Developer Keys 

This is the routine step for a developer of creating “release keys” to be used for application 

signing for public distribution. 

Tag public key

generate keypair
(tools provided)

Tag private key

Tag owner creates tag

create certfficate
(tools provided)

Tag certificate

Tag
urn%3Aurn-7%3A3gpp-application…..

generate tag
(tools provided)



GSM Association Non-confidential 

Official Document RCC.55 - RCS Extensibility, Terminal and Network API Security 

V2.0  Page 23 of 47 

An application developer who wishes to publish an application must create their “release 

key” which consists of a private key, the Developer private key and a corresponding 

Developer Certificate embedding the Developer public key. These are created locally by 

a developer using the standard Android toolchain. 

This step is routine for any application developer of Android applications for public 

distribution. 

The process is illustrated in the figure below. 

 

 

Figure 8： App developer creates release keys 

5.3.4 Tag owner authorises developer to use tag 

This is the step in which the owner of a Tag decides that a specific developer is granted 

authority to use the tag. Typically the Tag owner and the developer would be the same 

entity, but the process does not depend on this. 

The authority is represented by creating a signed document in which the Tag and the 

Developer Certificate are referenced, this time by the Tag private key. Only the Tag owner 

Developer public key

generate keypair
(Android tools)

Developer private key

create certfficate
(Android tools)

Developer certificate

Developer ID

App developer creates release keys



GSM Association Non-confidential 

Official Document RCC.55 - RCS Extensibility, Terminal and Network API Security 

V2.0  Page 24 of 47 

can do this, but anyone with access to the Tag certificate can verify the authenticity of such a 

document. This document is again referred to as the IARI Authorisation. 

The IARI Authorisation is an XML document in a GSMA-owned namespace that contains a 

detached XML Digital Signature that references the specific Tag, the application package 

certificate, and optionally the package ID. The signature itself is made using the Tag private 

key and the signature embeds the Tag Certificate. The detail of the IARI Authorisation 

document format is provided in section 7. 

This step must be performed by the tag owner, and they can use GSMA-provided RCS tools. 

Once the IARI Authorisation document exists, it can be passed to the Developer and may 

then be used to sign multiple application packages without further reliance on the Tag 

owner. 

The steps for creation of the Tag authorisation document are shown in the figure below. 

 

 

Figure 9： Tag owner authorises developer to use tag 

5.3.5 Application developer creates and releases an app using the tag 

By including the IARI Authorisation in the application package, the developer has bound the 

app to that tag, and the RCS stack can ensure that IARI is visible in sessions originated or 

terminated by that app. The tag may also need to be used explicitly in calls to the RCS API, 

for example when initiating a private app-to-app session using that tag. 

Tag certificate

sign authorisation
(tool provided)

Tag private key

Tag owner authorises developer to use tag

Developer certificate

IARI authorization

<?xml version="1.0" encoding="ISO-8859-1" ?>

<iari-authorization>

  <iari>urn%3Aurn-7%3A3gpp-application… </iari>

  <package-name>com.example.app.…</package-name>

  <package-signer>0D:25:2D:E7:A3:A7:…</package-signer>

  <ds:Signature>

  ..

  </ds:Signature>

</iari-authorization>



GSM Association Non-confidential 

Official Document RCC.55 - RCS Extensibility, Terminal and Network API Security 

V2.0  Page 25 of 47 

Now the application developer must add the IARI Authorisation to his application package. In 

the case of an Android application package, the IARI Authorisation is included as a 

standalone XML resource document (i.e. under res/xml/), with the resource ID being 

referenced by a well-known meta-data element in the manifest. In principle, multiple IARI 

Authorizations may exist within a single application package. 

Once the IARI Authorisation document is added, the developer signs and releases his app in 

the usual way. The steps are illustrated in the figure below. 

 

 
Figure 10: App developer creates and releases app using tag 

 

5.3.6 Stack validates application 

Once the app has been downloaded and installed by a user, the stack can perform certain 

processing to validate the RCS-related declarations made by the app. This might apply at 

package app
(Android tools)

IARI authorization

App developer creates and releases app using tag

Developer release
key

Application package

Application contents

Package manifest (references tag)

<?xml version="1.0" encoding="ISO-8859-1" ?>

<manifest xmlns:android="...

  <application .. >

    <intent-filter>

      <action rcs:tag id=rn%3Aurn-7%3A3gpp-application…/>

    </intent-filter>

  </application>

</manifest>

sign app
(Android tools)

Signed application package



GSM Association Non-confidential 

Official Document RCC.55 - RCS Extensibility, Terminal and Network API Security 

V2.0  Page 26 of 47 

installation time, or on the first occasion that the application makes a relevant call to the RCS 

stack. The result of this processing might be that the application is not valid, in which case it 

would not be permitted to use the RCS API, or that the application is valid, and information is 

generated that will later be used at runtime to validate stack operations performed by the 

app. 

Validation of the app by the stack consists of verifying each of the constituent elements of 

the tag-related information. These are as follows. 

1. Validate app tag usage. The stack must verify that an IARI Authorisation is present 

for each tag declared in the manifest. Each of the following steps must be performed 

for each Tag if there is more than one present. 

2. Verify package signature and ID correspond to IARI Authorisation. For each Tag 

authorization present, the stack must verify that the authorization relates to the signer 

of the present package and that the package ID matches the given ID if present. This 

is done by comparing the Developer certificate information in the Tag authorization 

with the package signer certificate available from the package manager. 

3. Validate IARI Authorisation. This step consists of the validation of the IARI 

Authorisation document and validation of the signature. Together, these checks 

confirm that the document was issued and signed for the app in question, and those 

details or the signature have not since been modified. 

4. Verify IARI Authorisation signature. This establishes that the signature is not only 

valid, but that it was created by a party that is trusted (either directly, or by the chain 

of trust in the certificate path). This relies on the IARI range certificates configured 

with the stack. 

5. Associate application package with tag. If all of the steps above prove that the 

package and IARI authorisation are valid, the package ID is associated with the 

Tag(s). This association is later used at runtime. 

If any of the steps above fail, the stack does not need to remove the app but it must decline 

any RCS operations attempted using the stack. 

The steps are illustrated below. 



GSM Association Non-confidential 

Official Document RCC.55 - RCS Extensibility, Terminal and Network API Security 

V2.0  Page 27 of 47 

 

 
Figure 11: Stack validates app 

 

5.3.7 Stack validates runtime invocation 

Each time an application invokes an operation on the stack that depends on the Tag, the 

stack must confirm that the calling package is authorised. This is performed by: 

 Obtain the package ID of the caller. Using the Binder, the stack can obtain the 

package identity of the caller of any AIDL methods. 

 Verify the package ID has been associated with the tag. This confirms the 

authorization to use the tag based on the previously determined association. 

This is illustrated below. 

Stack validates app

Validate app tag usage

Verify each tag referenced in manifest has an IARI 
authorization

Manifest

IARI
authorization

Verify app signature corresponds to IARI authorization

The IARI authorization document(s) authorise the signer of this 
app

Package
signature

IARI
authorization

Verify IARI authorization

Verify enveloped signature in IARI authorization
Verify Tag belongs to Tag range in IARI authorization

Tag

IARI
authorization

Associate app package with Tag

Maintain an association, for later runtime access control, 
between package ID and Tag

Tag

Package ID



GSM Association Non-confidential 

Official Document RCC.55 - RCS Extensibility, Terminal and Network API Security 

V2.0  Page 28 of 47 

 
Figure 12: Stack validates runtime invocation 

 

5.3.8 Tag validity: assurances provided to the user and developer 

A valid stack will ensure that only an app with a valid IARIAuthorisation can listen for, and 

initiate, sessions, and all such sessions are appropriately labelled with that an IARI 

associated with the app. Non-conforming stacks, or stacks running on rooted devices, 

cannot provide those assurances. 

A user that ensures their device is not rooted, and runs a valid stack, will know that: 

 malware cannot masquerade as validly supporting a tag, and will therefore not 

advertise that capability to other devices; 

 such malware cannot be invoked in response to inbound sessions for a tag that it 

does not own; 

 Such malware cannot intercept the messages sent and received between valid peers 

on a tag it does not own. 

Such a user cannot know that inbound sessions are not from malware, i.e. another party 

might have a non-confirming stack or rooted device that is running malware that 

masquerades as being authorized to use a tag. Such malware could initiate a session to a 

valid app. Developers of apps using custom tags must therefore be aware of the risk of 

unauthorised inbound sessions and protect themselves appropriately. In this sense, enabling 

inbound sessions on a tag is akin to opening a port on an internet-connected device; when 

there is a connection to that port, the listening application must implement measures 

commensurate with its own level of risk to establish the validity of those sessions. 

Similarly, a valid app discovering a remote peer and initiating a session to that peer cannot 

know that it is a legitimate app running on a valid stack. There is no means at the RCS level 

to authenticate the app itself if it might be on a compromised device or stack. Developers of 

apps using custom tags must therefore be aware of the risk of unauthorised peers and 

protect themselves appropriately. 

Stack validates runtime invocation

Obtain Package ID of caller

The Package ID of the caller is obtained from the Binder each 
time a an AIDL method depending on a Tag is made on the 
RCS stack

Manifest

IARI 
authorization

Verify Package ID has been associated with Tag

Confirm that the calling Package has previously been 
associated with that Tag

Package <-> Tag
association



GSM Association Non-confidential 

Official Document RCC.55 - RCS Extensibility, Terminal and Network API Security 

V2.0  Page 29 of 47 

5.3.9 Tag registration and developer identification 

As described above in section 3.6, it is expected there would be a method for developer/ 

application registration. 

Based on such a developer/application database, it would also be possible to expose that 

tag registry in searchable form. The information in such a database is not seen as being a 

runtime dependency of the RCS stack or the service, but may be useful in tracking apps and 

their distribution. The registry could include information for apps or tags that are blocked, or 

whose status is under review. 

A possible future requirement is for the registry to link to technical specifications and 

interoperability tests for tags associated with services that are intended to support 

independent implementations. 

5.3.10 Tag pre-registration 

A service provider (MNO) might have a requirement for more specific control over third-party 

apps, requiring explicit approval before granting any access to controlled RCS APIs. For 

example there might be a requirement for positive identification of the developer, or 

requirement that the developer is bound by a service agreement, before access is granted. 

The actual approvals/verifications/blocking processes implemented by any MNO are subject 

to individual organisational requirements. 

The 'federated' model as described in section 3.5, agreed for RCS services enables MNOs 

to share information about developers and applications with their peers. 

5.3.11 Tag blocking 

Even with tag pre-registration, it is possible that an app, after having been authorised, is 

found to behave in a way that abuses the network. This means that it is necessary to have a 

way to disable access to RCS for specific applications (tags). 

Since there is no central issuing authority, it is not possible to use a revocation mechanism 

based on the tag. However, since the tag is visible to the stack and the network, both for 

private app-to-app services and core services, it is possible to block access at either point. 

Network blocks may be implemented using the same underlying mechanism as for Tag pre-

registration. The RCS Application Gateway, with visibility of the IARI for any app, can check 

that IARI against a backlist of blocked apps. An MNO (as Serving Operator) may choose to 

block an app on that specific network, or a DO (Developer Operator) may propagate a 

blocked status for an app to all SOs, meaning that the blocked status would be considered 

when the RCS traffic is being handled. 

A mechanism is provided also, in the case of T-APIs, for a stack-enforced application 

blacklist. The RCS stack can enforce a restriction whereby apps belonging to a “blacklist” 

would be unable to perform RCS operations. The blacklist would be maintained centrally, 

with each MNO expected to hold a cached copy, using the same underlying services as 

described above for the network block. 



GSM Association Non-confidential 

Official Document RCC.55 - RCS Extensibility, Terminal and Network API Security 

V2.0  Page 30 of 47 

The advantage of a device-based block, in addition to the network block, is that a device can 

block applications that would otherwise flood the network with requests, placing 

unsustainable load on the application gateway and request validation infrastructure. 

However, there are limitations: 

 There is no assurance that the restriction would be enforced on rooted devices, or 

those with a non-approved RCS stack; 

 A mechanism is required to be implemented in the stack to maintain the blacklist; 

 As malware proliferates, the blacklist could grow significantly, and broadcast of 

updates could become a burden on the network and the stack. 

The supported mechanism is based on an End User Confirmation Request (EUCR) system 

requests is supported by the RCS stack (see section 3.12.4.3 of [1]).  A network can send a 

system request with type urn:gsma:rcs:extension:control to block a tag either temporarily or 

permanently. The stack is required to disable access to that specific tag for the specified 

period, for any apps installed that use that tag. 

6 Network API 

6.1 Introduction 

This section sets out the proposed approach to access control for the Network APIs, 

including the mechanisms proposed for independent authorisation of apps. 

6.2 Network API application identification and access control 

Network APIs will use HTTPS (over TCP/IP) as a bearer for the requests, API calls use OMA 

defined RESTful interfaces, e.g. for chat messaging.  

In the OMA RESTful interfaces, the expectation is that applications are identified and 

authorised either: 

 In the form of a client ID and optional client secret which are combined into an HTTP 

Basic Authorisation header (see IETF RFC 2617 - https://www.ietf.org/rfc/rfc2617.txt), 

or, 

 In the form of an OAuth 2 "Access Token" (see http://tools.ietf.org/html/rfc6749) which 

has been provided to the application via an external authorisation/ consent process. 

The OAuth2 Authorisation process utilises the client ID and optional client secret 

again in the form of an HTTP Authorisation header which includes the "Access 

Token" granted to the application as a "Bearer Token" to authorise access to the RCS 

APIs. The access token is obtained through processes that leverage HTTP Basic 

Authorisation (RFC 2617). 

Further details on OMA application identification/authorisation is defined within the OMA 

Autho4API Specification 

(http://technical.openmobilealliance.org//Technical/Release_Program/docs/Autho4API/V1_0-

20131120-C/OMA-ER-Autho4API-V1_0-20131120-C.pdf).  

In either case, therefore, the Network API gateway can first authorise and secondly, identify 

the application via the client ID associated with the application.  

https://www.ietf.org/rfc/rfc2617.txt
http://tools.ietf.org/html/rfc6749
http://technical.openmobilealliance.org/Technical/Release_Program/docs/Autho4API/V1_0-20131120-C/OMA-ER-Autho4API-V1_0-20131120-C.pdf
http://technical.openmobilealliance.org/Technical/Release_Program/docs/Autho4API/V1_0-20131120-C/OMA-ER-Autho4API-V1_0-20131120-C.pdf


GSM Association Non-confidential 

Official Document RCC.55 - RCS Extensibility, Terminal and Network API Security 

V2.0  Page 31 of 47 

Any Network API gateway receiving an API call must be able to uniquely identify the client 

application, this creates a requirement that client IDs must be unique as far as any API 

gateway is concerned. Two approaches are possible: 

 Developers obtain a client ID for their application from each operator they wish to 

work with, the operator ensures uniqueness of client ID but only on their own 

network. The developer application is then responsible for selecting the appropriate 

client ID for the Network API gateway it is working with; 

 Developers obtain a client ID from a single registration platform which ensures global 

uniqueness of client IDs. 

The format and length of a client ID is determined by the issuer and the application treats 

this simply as an opaque value which is used as part of the authorisation header for N-API 

requests. 

A IARI Authorisation document is generated that binds a specific app identified with its client 

ID(s) to that IARI; this is performed using a cryptographic mechanism that assures that only 

the creator of the unique tag string (the “tag owner”) could have authorised the app. The 

detail of the IARI Authorisation document format for N-API is provided in Section 7 and 8 of 

this document. As an extension to the OMA Network API mechanisms the application must 

add a custom HTTP header to the Network API Request 'X-RCS-IARI' to identify the routing 

between applications – whether the 'B party' is using a Network API or Terminal API based 

application. It is expected that the Network API gateway will use the ‘Authorisation Gateway’ 

and API Validator' services at the MNO to perform the relevant checks on the application 

including verification that the IARI matches with the IARI authorisation document which 

references the application's client ID.  

The Network API gateway will ensure that the HTTP X-RCS-IARI header is converted as 

needed to/ from SIP Contact and Accept-Contact headers as required. 

This can be used for application discovery, for the establishment of private app-to-app virtual 

communications, and also to mediate access to the service, or to specific sensitive APIs, 

depending on the access control policy of the service provider (MNO). 

6.3 Network API application identification management 

6.3.1 Overview 

The following application identification management has been decided for Network API 

applications: 

 Client IDs are issued to Network API applications as described above normally as 

part of application registration, 

 The process for generating IARI (application identifiers) to be used for Network API 

applications follows exactly the same process as is described for Terminal API 

applications in Sections 5.3.2., 

 The tag owner will follow the processes as described in section 5.3.4 above to create 

a tag authorisation document – the document including the application Client ID (or 

IDs) so that the signature validates the association of IARI and Client ID's, 



GSM Association Non-confidential 

Official Document RCC.55 - RCS Extensibility, Terminal and Network API Security 

V2.0  Page 32 of 47 

 The developer uploads the tag authorisation document to the central developer/ 

application database. MNOs then apply the information pushed to them within their 

API Validator' services along with any other factors relevant to approving the RCS 

API request e.g. 

 Global application (IARI) blocking, 

 Local application (IARI) blocking, 

 Developer acceptance of MNO Terms & Conditions, 

 Application approval. 

 Applications invokes N-API 

 

Please refer to Section 3.5 for implementation models. 

6.3.2 Client ID generation 

As described in section 6.2, a client ID and secret is created for the app for Network API 

request authorisation generally by the developer registering the app on a developer portal. 

This step may be repeated in case the developer must register the app separately for each 

operator they are working with (i.e. each independent operator, or each entry operator for 

each operator federation). Below information is stored in the operator’s repository to support 

Request Validation: 

 Developer information (name, contact details, company name, terms and conditions 

acceptance, etc.), 

 Application information (name, category, etc.). 

6.3.3 Tag owner creates tag 

Same process exists for T-APIs, refer to section 5.3.2. 

6.3.4 Tag owner authorises developer to use tag 

The IARI Authorisation is created and signed by the tag owner (as described in Section 5.3.5 

above), this includes the IARI and the client ID (or IDs) for the app. 

6.3.5 Application developer releases an app using the tag 

If the MNO is participating in an RCS API federation, as defined in section 3.5: 

a) The IARI Authorisation is 'uploaded' to the federation as part of the application 

provisioning process, the application is provisioned into the Central Developer/ 

Application Registry. The central platform should at this time validate the IARI 

Authorisation is valid for the app/client ID, 

b) The central platform distributes the registered developer/ application/ IARI 

authorisation document to each operator's Local Cache Repository to support 

Request Validation. 

 



GSM Association Non-confidential 

Official Document RCC.55 - RCS Extensibility, Terminal and Network API Security 

V2.0  Page 33 of 47 

6.3.6 Developer/ Application Approval 

A service provider (MNO) might have a requirement for more specific control over third-party 

apps, requiring explicit approval before granting any access to controlled RCS Network 

APIs. For example there might be a requirement for positive identification of the developer, 

or requirement that the developer is bound by a service agreement, before access is 

granted. 

It is possible for operators to implement a check in the network based on the IARI presented 

in a session when an application invokes a Network API. Such a check should be initiated in 

the RCS N-API authorisation gateway which is expected to delegate most functions to the 

API Validator' function supporting T-API and N-API applications. Since the check is online, 

and the check is made using a request validation service provided by or for the MNO, the 

provider has ultimate control over whether or not any given access request is permitted. 

6.3.7 RCS network validates runtime invocation 

The application will prepare an N-API request (e.g. chat, file transfer) as follows: 

1. The application will determine the relevant N-API endpoints and client ID/ secret to 

use. This might be based on an external discovery service (which is not part of the 

scope of this document); 

2. The application will form an HTTP Authorisation header as described in section 8. 

This is added to the N-API request; 

3. The application will add a custom HTTP header ('X-RCS-IARI') to the N-API request 

specifying the IARI which is being used for the 'B' party traffic; 

4. The application will then make the respective OMA RCS API call. 

 

When the API request is received at the Network API gateway the following process is 

expected to ensure a Network API based application has permitted access to an IARI.  

6. Extract the client ID and optional client secret from the HTTP Authorisation header of 

the Network API request. If a "Bearer Token" is provided in the Authorisation header 

resolve the original client ID used when the token was issued; 

7. Extract the IARI associated with the Network API request, from the custom HTTP 

header 'X-RCS-IARI'; 

8. Check the 'Local Cache Repository' that the client ID is known to be associated with a 

provisioned, active (i.e. not deleted by the developer) application and the client secret 

(if specified) matches the client ID; 

9. Check the application is 'approved' for use on the network (approval might be 

automatic or manual); 

10. Check that the developer organisation who registered the application is marked as 

having agreed the current (or relevant) Terms & Conditions for the operator; 

11. Check that there is a (validated) IARI Authorisation document uploaded or referenced 

by the X-RCS-IARI Authorisation header against the application which includes the 

IARI and client ID of the Network API request; 

12. Check that the IARI is not blocked at the global level (Local Cache Repository); 

13. Check that the IARI is not blocked at the local operator level. 

 



GSM Association Non-confidential 

Official Document RCC.55 - RCS Extensibility, Terminal and Network API Security 

V2.0  Page 34 of 47 

The Operator’s RCS N-API Gateway would conduct steps 1 and 2 of this process. 

The Authorisation Gateway (Client ID Authorisation function, as defined in section 3.5) would 

conduct steps 3 to 5, relying on Operator’s API Validator. 

The Authorisation Gateway (IARI Authorisation function, as defined in section 3.5) would 

conduct steps 6 and 7, relying on Operator’s API Validator. 

6.3.8 Tag blocking 

Even with application approval processes, it is possible that an app, after having been 

authorised, is found to behave in a way that abuses the network. This means that it is 

necessary to have a way to disable access to RCS for specific application tags. 

Individual operators are always able to block tags locally via a bespoke blacklist/whitelist 

mechanism which would normally be a part of the API Validator function for the MNO. The 

centralised database also offers a means of blocking tags 'network wide' for the case that 

the abusive application is operating across multiple networks of an operators federation. 

Centralised blocking should be under the authority of the 'Developer Operator' who 

registered the developer/application to the centralised database. In this case the application 

is blocked centrally and updates sent to all operator's local cache of the developer/ 

application database marking the application as blocked. 

It is also envisaged that tag blocking can be used as a temporary measure in some cases, 

e.g. whilst getting a developer to implement a new version of their application which is 

compliant with requirements. Therefore, there is also required to be an equivalent tag un-

blocking mechanism. 

7 IARI Authorisation Document Specification 

7.1 Introduction 

This section defines the content and required processing for an IARI Authorisation 

document.  

7.2 Standalone Authorisation Document  

This section covers the format and processing of a standalone IARI Authorisation which 

captures authorisation of an app to use a self-signed IARI. 

The document format is extensible in principle to support authorisation for other IARI types 

but this is beyond the scope of the current specification. 

7.3 Namespace 

The IARI Authorisation namespace URI for an IARI Authorisation document is: 

http://gsma.com/ns/iari-authorisation# 

No provision is made for an explicit version number in this specification. If a future version of 

this specification requires explicit versioning of the document format, a different namespace 

will be used. 

http://gsma.com/ns/iari-authorization


GSM Association Non-confidential 

Official Document RCC.55 - RCS Extensibility, Terminal and Network API Security 

V2.0  Page 35 of 47 

7.4 iari-authorisation element 

The iari-authorisation element serves as the container for the other elements of an 

IARI Authorisation document. 

Context in which this element 

is used 

The iari-authorisation element is the root element 

of the IARI Authorisation document. 

Occurrences Exactly one, at the root element of the XML document. 

Expected children iari: one 

package-name: zero or one 

package-signer: one 

Signature: one 

Attributes None 

7.5 iari element 

The iari element represents the IARI string to which this IARI Authorisation document 

applies. 

Context in which this element 

is used 

In the iari-authorisation element. 

Content model A valid IRI matching the IRI token of the [IRI] specification 

and satisfying the format requirements of an IARI string. 

Occurrences Exactly one. 

Expected children None 

Attributes Id: optional, type ID. 

7.6 package-name element 

The package-name element represents the T-API application package identifier to which 

this IARI Authorisation document applies. A given package-name value matches an 

Android application package if it matches the value of the package attribute of the 

manifest element of the application manifest. 

Context in which this element 

is used 

In the iari-authorisation element. 

Content model A string value, equalling the value of the package 

attribute in the <manifest> of an Android application. 

Occurrences Zero or one for IARI Authorisation documents applying to 

an Android T-API application package. 

Expected children None 

Attributes Id: optional, type ID. 

If an IARI Authorisation does not include a <package-name> element, the authorization 

applies to any application package whose package signer details match those specified in 

the document. 



GSM Association Non-confidential 

Official Document RCC.55 - RCS Extensibility, Terminal and Network API Security 

V2.0  Page 36 of 47 

7.7 package-signer element 

The package-signer element represents the T-API application package signer to which 

this IARI Authorisation document applies. A given package-signer value matches an 

application package if the entity certificate of one of the package signatures has a fingerprint 

matching the given package-signer value. 

The fingerprint format used is the SHA1 digest of the DER-encoded representation of the 

certificate, represented as colon-delimited, uppercase hex-encoded bytes. An example 

fingerprint is: 

0D:25:2D:E7:A3:A7:C7:47:16:41:39:93:84:7F:1A:F6:EF:94:84:91 

Context in which this element 

is used 

In the iari-authorisation element. 

Content model A string containing the SHA1 fingerprint of the package 

signature entity certificate. 

Occurrences Exactly one for IARI Authorisation documents applying to 

an Android T-API application package. 

Expected children None 

Attributes Id: optional, type ID. 

7.8 client_id element 

The client_id element represents an N-API Client Identifier to which this IARI 

Authorisation document applies. A given client_id value matches an N-API client 

application if it is equal to the Client Identifier associated with the Authorisation Grant used 

for N-API access. 

Context in which this element 

is used 

In the iari-authorisation element. 

Content model A string value, equalling the Client Identifier associated 

with the Authorisation Grant used for N-API access. 

Occurrences At least one for IARI Authorisation documents applying to 

an N-API client application. 

Expected children None 

Attributes Id: optional, type ID. 

7.9 Signature element 

The signature element represents contains a digital signature, binding the other elements 

of the IARI Authorisation document to a certificate. The signature represents the authority of 

the IARI or IARI range owner to the use of the IARI that is the subject of the document. 

The certificate is either trusted as belonging to the IARI Range owner (in the case of an IARI 

Range authorisation) or provably belongs to the IARI owner (in the case of a standalone 

IARI Authorisation). 



GSM Association Non-confidential 

Official Document RCC.55 - RCS Extensibility, Terminal and Network API Security 

V2.0  Page 37 of 47 

The <Signature> element must belong to the XML Digital Signature namespace: 

http://www.w3.org/2000/09/xmldsig# 

Context in which this element 

is used 

In the iari-authorisation element. 

Content model A detached XML Digital Signature conforming to the XML 

Signature Syntax and Processing Version 1.1 

specification ([XMLDSIG]) and conforming to the 

additional requirements below. 

Occurrences Exactly one. 

Expected children As required by ([XMLDSIG]) and conforming to the 

additional requirements below. 

Attributes Id: optional, type ID. 

7.9.1 Algorithms, key lengths, and certificate formats 

This specification relies on a user agent's conformance to [XMLDSIG] for support of 

signature algorithms, certificate formats, canonicalization algorithms, and digest methods. As 

this specification is a profile of [XMLDSIG], it makes a number of recommendations as to 

what signature algorithms should be used when signing a widget package to achieve 

optimum interoperability. See Signature Algorithms of [XMLDSIG] for the list of required 

algorithms. 

The recommended signature algorithm is RSA using the RSAwithSHA256 signature 

identifier: http://www.w3.org/2001/04/xmldsig-more#rsa-sha256. 

The recommended key length for RSA is 2048 bits or greater. 

The recommended digest method is SHA-256. 

The recommended canonicalization algorithm is Canonical XML Version 1.1 (omits 

comments) as defined in [C14N11]. The identifier for the algorithm 

ishttp://www.w3.org/2006/12/xml-c14n11. 

The recommended certificate format is X.509 version 3 as specified in [RFC5280]. 

7.9.2 KeyInfo 

A ds:Signature element must include a ds:KeyInfo element in the manner described 

in [XMLDSIG] (see The KeyInfo Element for how to do this). The element can include CRL 

and/or OCSP information. 

The signature must include a child ds:X509Data element within the ds:KeyInfo, as 

specified by the [XMLDSIG] specification, containing at least the entity certificate (as a 

ds:X509Certiifcate) plus, in the case of a IARI Range Authorisation, such other 

certificates as are needed to construct a chain up to, but not necessarily including, the IARI 

Range owner’s root certificate. The ds:X509Data element may additionally include 

CRLand/or OCSP response information that, if included, are conveyed according to 

the [XMLDSIG] specification.  

http://www.w3.org/TR/widgets-digsig/#xmldsig
http://www.w3.org/TR/widgets-digsig/#xmldsig
http://www.w3.org/TR/widgets-digsig/#xmldsig
http://www.w3.org/TR/widgets-digsig/#xmldsig
http://www.w3.org/TR/xmldsig-core/#sec-SignatureAlg
http://www.w3.org/TR/widgets-digsig/#xmldsig
http://www.w3.org/TR/xmldsig-core/#sec-PKCS1
http://www.ietf.org/rfc/rfc4051.txt
http://www.w3.org/TR/xmldsig-core/#sec-PKCS1
http://www.w3.org/TR/xmldsig-core1/#sec-SHA-256
http://www.w3.org/TR/widgets-digsig/#c14n11
http://www.w3.org/2006/12/xml-c14n11
http://www.w3.org/TR/widgets-digsig/#rfc5280
http://www.w3.org/TR/widgets-digsig/#xmldsig
http://www.w3.org/TR/xmldsig-core/#sec-KeyInfo
http://www.w3.org/TR/widgets-digsig/#xmldsig
http://www.w3.org/TR/widgets-digsig/#xmldsig


GSM Association Non-confidential 

Official Document RCC.55 - RCS Extensibility, Terminal and Network API Security 

V2.0  Page 38 of 47 

7.9.3 Signature properties 

The Signature must include container elements for [Signature Properties] in accordance with 

the Signature Properties Placement section of [Signature Properties]. 

The ds:SignatureProperties must include a Role property whose URI attribute has 

value: 

 http://gsma.com/ns/iari-authorisation-role-standalone. 

The ds:SignatureProperties must include an Identifier property in the manner 

specified in [Signature Properties]. 

The ds:SignatureProperties must include a Profile property whose URI attribute 

has value: 

 http://gsma.com/ns/iari-authorisation-profile. 

The ds:SignatureProperties should include a Created property whose element body 

is a date/time in http://www.w3.org/TR/NOTE-datetime format, signifying the creation time of 

the signature. 

7.9.4 References 

A Signature element must contain a same-document reference to each of the iari, 

range, package-name, package-signer elements, where present, referencing each 

using a fragment URI reference to its ID. 

A signature must contain a same-document reference to the ds:Object that contains the 

signature properties identified above. 

7.10 IARI Authorisation document processing 

An RCS stack or the 'API Validator' function invoked by an authorisation gateway processes 

an IARI Authorisation document associated with an application package in order to verify the 

right for that package to use the IARI in question. 

Processing may occur on application installation, or on the first attempt to use the service, 

and on any subsequent attempt if processing results are not cached. 

The steps for processing a document are defined below. 

1. Parse the IARI Authorisation document with an XML parser that is namespace-aware. 

If the document is not a well-formed XML then the processor must terminate these 

steps and treat the IARI Authorisation as invalid. 

2. If the document element is not an iari-authorisation element in the iari-

authorisation namespace then the processor must terminate these steps and 

treat the IARI Authorisation as invalid. 

3. For each child of the document element: 

a) If the element is the first encountered iari element, let iari be the text content of 

this element. Check the syntactic validity of iari. If the element is not the first iari 

element, it must be ignored, 

http://www.w3.org/TR/widgets-digsig/#signature-properties
http://www.w3.org/TR/2010/WD-xmldsig-properties-20100204/#placement
http://www.w3.org/TR/widgets-digsig/#signature-properties
http://www.w3.org/TR/xmldsig-properties/#role-property-generation
http://gsma.com/ns/iari-authorization#role-standalone
http://www.w3.org/TR/xmldsig-properties/#identifier-property-generation
http://www.w3.org/TR/widgets-digsig/#signature-properties
http://www.w3.org/TR/xmldsig-properties/#profile-property-generation
http://gsma.com/ns/iari-authorization-profile
http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/xmldsig-core/#sec-ReferenceGeneration


GSM Association Non-confidential 

Official Document RCC.55 - RCS Extensibility, Terminal and Network API Security 

V2.0  Page 39 of 47 

b) If the element is a package-name element, let package-name be the text content 

of this element. If the element is not the first package-name element, it must be 

ignored, 

c) If the element is a package-signer element, let package-signer be the text 

content of this element. If the element is not the first package-signer element, 

it must be ignored, 

d) If the element is a client_id element, let client-id be the text content of this 

element. If the element is not the first client_id element, it must be ignored, 

e) If the element is a Signature element in the XMl Digital Signature namespace, 

then process the signature according to the signature processing step below. If 

the element is not the first Signature element, it must be ignored, 

f) Any other element must be ignored. 

4. If iari has not been assigned after processing all of the elements, the processor must 

terminate these steps and treat the IARI Authorisation as invalid. 

5. If exactly one of package-signer or client-id has not been assigned after processing 

all of the elements, the processor must terminate these steps and treat the IARI 

Authorisation as invalid. 

6. Process the signature by the following steps: 

a) If signature is not a valid [XMLDSIG] signature, then the processor must terminate 

these steps and treat the IARI Authorisation as invalid, 

b) Check that signature has a ds:Reference for each of the iari, range, 

package-name, package-signature and client_id elements present. If 

any such element exists without a reference, then the processor must terminate 

these steps and treat the IARI Authorisation as invalid, 

c) Check that signature has a single same-document ds:Reference to a 

ds:Object container for the SignatureProperties in accordance with the 

Signature Properties Placement section of [Signature Properties], 

d) Optionally, if the ds:Signature's key length for a given signature algorithm (e.g. 

RSA) is less than a stack-predefined minimum key length, then the processor 

must terminate these steps and treat the IARI Authorisation as invalid, 

e) Validate the Profile property against the profile URI in the manner specified in 

[Signature Properties]. If the profile property is missing or invalid, then the 

processor must terminate these steps and treat the IARI Authorisation as invalid, 

f) Validate the Identifier property in the manner specified in [Signature 

Properties]. If the identifier property is missing or invalid, then the processor must 

terminate these steps and treat the IARI Authorisation as invalid, 

g) Validate the Role property against the standalone role URI. If the Role property 

is missing or  invalid, then the processor must terminate these steps and treat the 

IARI Authorisation as invalid, 

h) Optionally, validate any other SignatureProperties supported by the processor in 

the manner specified in [Signature Properties], 

i) Perform reference validation and signature validation on the signature. If 

validation fails, then the processor must terminate these steps and treat the IARI 

Authorisation as invalid. 

http://www.w3.org/TR/widgets-digsig/#xmldsig


GSM Association Non-confidential 

Official Document RCC.55 - RCS Extensibility, Terminal and Network API Security 

V2.0  Page 40 of 47 

7. Check that the IARI Authorisation satisfies the trust requirements for the given iari: 

a) Check that that root certificate has iari as a Subject Alternative Name (SAN) entry 

of type URI. 

b) Check that iari matches the format for a standalone IARI, comprising the 

urn:urn-7:3gpp-application.ims.iari.rcs.ext.ss. prefix followed by 

a Base64-encoded hash value. 

c) Check that the hash value is the SHA-224 hash of the public key of the 

signature’s root certificate. 

8. If package-signer is set, check that the T-API application package associated with the 

IARI Authorisation matches: 

a) If package-name is set, verify that it matches the value of the package attribute in 

the package <manifest>, 

b) Verify that one of the package signatures has an entity certificate whose 

fingerprint matches package-signer. 

9. If client-id is set, verify that the N-API client application associated with the IARI 

Authorisation matches: 

a) Verify that client-id matches the Client Identifier associated with the Authorisation 

Grant presented when attempting access to the N-API.  

10. If the IARI Authorisation is valid according to the above steps, then the stack or the 

Request Validator invoked by the N-API gateway may permit the application to use 

iari. 

8 Use of IARI Authorisation in N-API 

8.1 Introduction 

This section defines the headers and error indications associated with the use of IARI 

Authorisation documents in N-API accesses. 

8.2 IARI Authorisation in N-API API access 

The GSMA RCS N-API provides access to RCS over an REST-style HTTP API. This section 

defines how IARI Authorisations are referenced when accessing the N-API in the REST 

binding. No other bindings of the N-API are considered. 

8.2.1 X-RCS-IARI 

This header must be included in N-API requests for all service invocations associated with a 

custom (i.e. second-party or third-party) IARI. It is mandatory to include this header for any 

request to the following methods: 

The following example shows how the X-RCS-IARI header should appear in an HTTP 

request generated using the curl utility: 

$ curl -v http://gsma.com --basic -u "clientid:clientsecret" -H "X-RCS-

IAIR:ABC...DEF" 

* Connected to gsma.com (46.137.85.46) port 80 (#0) 



GSM Association Non-confidential 

Official Document RCC.55 - RCS Extensibility, Terminal and Network API Security 

V2.0  Page 41 of 47 

* Server auth using Basic with user 'clientid' 

GET / HTTP/1.1 

Authorisation: Basic Y2xpZW50aWQ6Y2xpZW50c2VjcmV0 

User-Agent: curl/7.33.0 

Host: gsma.com 

Accept: */* 

X-RCS-IAIR:ABC...DEF 

 

NOTE:  This example also shows how the clientid (which is synonymous with 

username in HTTP Basic Auth) and client secret (synonymous with 

password) is combined and base64 encoded as specified in RFC 2617 

(http://tools.ietf.org/html/rfc2617). 

The header value is the IARI URI string encoded using the application/x-www-form-

urlencoded format (“URL-encoded”) defined in RFC6749 Appendix B. 

It is not valid to reference multiple IARIs in a N-API request. 

8.2.2 X-RCS-IARIAuthorisation 

This header may be included in any N-API request that also has an X-RCS-IARI header. It 

references an IARI Authorisation document that provides authorisation for the request. 

The reference must be a valid HTTP or HTTPS URL from which the IARI Authorisation 

request may be obtained via GET. 

The header value is the URL-encoded URI location of the IARI Authorisation document. 

For example, the use of the X-RCS-IARIAuthorization header in the HTTP request would be 

as follows: 

HEAD / HTTP/1.1 

Authorisation: Basic Y2xpZW50SWQ6Y2xpZW50U2VjcmV0 

Host: gsma.com 

Accept: application/json 

X-RCS-IARIAuthorization: 
http%3A%2F%2Fgsma.com%2FRCS%2FIARIAuthorizationExample.xml 

 

It is not valid to reference multiple IARIs authorisation documents in a N-API request.  

NOTE:  That if this field is omitted, the assumption is that the document has been 

uploaded into the federated central developer/application repository and is, 

therefore, available to the MNO 'Request Validator' service via their local 

cache of the developer/application repository. 

Network API requests which specify an IARI but have no accompanying authorisation 

document available should be rejected as 'Non Authorised' as below. 

8.3 Error responses associated with IARI authorisation in N-API 

A range error conditions may arise in connection with processing an N-API request involving 

an IARIAuthorisation. The specific error conditions and their associated error codes are 

defined below. 

http://tools.ietf.org/html/rfc2617


GSM Association Non-confidential 

Official Document RCC.55 - RCS Extensibility, Terminal and Network API Security 

V2.0  Page 42 of 47 

Error responses will follow the OMA defined formats which combines a 4xx or 5xx series 

status code and a JSON based error message 

HTTP/1.1 400  Bad Request 

Content-Type: application/json 

Content-Length: 1234 

Date: Thu, 04 Jun 2009 02:51:59 GMT 

 

{"requestError": { 

    "serviceException": { 

        "messageId": "SVC0002", 

        "text": " Invalid input value for message part %1", 

        "variables": " tel:+016309700000" 

    } 

}} 

400 errors: 

 Missing or invalid IARI reference. 

 Unknown IARI. 

401 errors: 

 Missing or invalid IARIAuthorisation reference. 

 Invalid IARIAuthorisation document 

 Inapplicable IARIAuthorisation document 

 IARIAuthorisation expired 

 IARIAuthorisation revoked 

403 errors: 

 IARI forbidden for API access 

 IARI blocked for API access 

9 Device Provisioning for API 

9.1 Introduction 

The configuration parameters available in RCS 5.3 [1] will be extended with following 

additional provisioning parameter which controls the API access control policy of the MNO 

by standardised means. 

9.2 Device Management parameters for API policy 

 



GSM Association Non-confidential 

Official Document RCC.55 - RCS Extensibility, Terminal and Network API Security 

V2.0  Page 43 of 47 

Configuration 

parameter 

Description Notes 

EXTENSIONS 

POLICY 

This parameter indicates to a device whether or not non-

native applications are permitted to access the T-API  

If this parameter is set to: 

0, Only natively integrated Extensions are authorised to 

access and use the RCS service via the T-API. Non native 

applications are not permitted to access the T-API. 

 

1, Natively-integrated Extensions and self-signed 

Extensions are authorised to access the RCS service via 

the T-API. For self-signed Extensions, the app accessing 

the API shall have an IARI Authorisation corresponding to 

its unique IARI. 

 

This parameter is not applicable to a device not 

compatible with the Extensions (e.g. not exposing terminal 

APIs) or if ALLOW RCS EXTENSIONS (defined in section 

A.1.16 of [1]) is set to 0 

Optional 

Parameter 

Mandatory if  

ALLOW RCS 

EXTENSIONS 

(defined in 

section A.1.16 

of [1]) is set to 1 

Table 1: RCS API Extensions Policy configuration parameters 

 

The Extensions Policy is placed in APIExt MO sub tree, located in the Ext node of the other 

subtree defined in section A.2.10 of RCS 5.3 [1]. 

 
Figure 1: New APIExt sub tree in Other Ext MO 

 

The associated HTTP configuration XML structure is presented in the table below: 

<characteristic type=” APIExt”>  

<parm name=”extensionsPolicy” value=”X”/> 

</characteristic> 

Table 2: APIExt sub tree associated HTTP configuration XML structure 



GSM Association Non-confidential 

Official Document RCC.55 - RCS Extensibility, Terminal and Network API Security 

V2.0  Page 44 of 47 

 

This structure will be included into the configuration document defined in section A.3 of 

RCS 5.3 [1] as follows: 

<?xml version="1.0"?> 

<wap-provisioningdoc version="1.1"> 

<characteristic type="VERS"> 

<parm name=”version” value=”1”/> 

<parm name=”validity” value=”1728000”/> 

</characteristic> 

<characteristic type="TOKEN"> 

<parm name=”token” value=”X”/> 

</characteristic> 

<characteristic type="MSG">   -- This section is OPTIONAL 

<parm name=”title” value=”Example”/> 

<parm name=”message” value=”Hello world”/> 

<parm name=”Accept_btn” value=”X”/> 

<parm name=”Reject_btn” value=”X”/> 

</characteristic> 

<characteristic type="APPLICATION"> 

<parm name=”AppID” value=”ap2001”/> 

<parm name=”Name” value=”IMS Settings”/> 

<parm name=”AppRef” value=”IMS-Settings”/> 

… 

</characteristic> 

<characteristic type="APPLICATION"> 

<parm name=”AppID” value=”ap2002”/> 

<parm name=”Name” value=”RCS settings”/> 

<parm name=”AppRef” value=”RCSe-Settings”/> 

<characteristic type=”IMS”> 

<parm name=”To-AppRef” value=”IMS-Settings”/> 

</characteristic> 

<characteristic type=”SERVICES”> 

… 

</characteristic> 

<characteristic type=”PRESENCE”> 

… 

</characteristic> 

<characteristic type=”XDMS”> 

… 

</characteristic> 

<characteristic type=”SUPL”> 

… 

</characteristic> 

<characteristic type=”IM”> 

… 

</characteristic> 

<characteristic type=”CPM”> 

… 

</characteristic> 

<characteristic type=”CAPDISCOVERY”> 

… 

</characteristic> 

<characteristic type=”APN”> 

… 

</characteristic> 

<characteristic type=”OTHER”> 



GSM Association Non-confidential 

Official Document RCC.55 - RCS Extensibility, Terminal and Network API Security 

V2.0  Page 45 of 47 

<parm name=”endUserConfReqId” value=”X”/> 

<parm name=”allowVSSave” value=”X”/> 

<characteristic type=” transportProto”> 

<parm name=”psSignalling” value=”X”/> 

<parm name=”psMedia” value=”X”/> 

<parm name=”psRTMedia” value=”X”/> 

<parm name=”wifiSignalling” value=”X”/> 

<parm name=”wifiMedia” value=”X”/> 

<parm name=”wifiRTMedia” value=”X”/> 

</characteristic> 

<parm name=”uuid_Value” value=”X”/> 

<parm name=”IPCallBreakOut” value=”X”/> 

<parm name=”IPCallBreakOutCS” value=”X”/> 

<parm name=”rcsIPVideoCallUpgradeFromCS” value=”X”/> 

<parm name=”rcsIPVideoCallUpgradeOnCapError” value=”X”/> 

<parm name=”rcsIPVideoCallUpgradeAttemptEarly” value=”X”/> 

<parm name=”extensionsMaxMSRPSize” value=”X”/> 

<parm name=”maximumRRAMDuration” value=”X”/> 
                          <characteristic type=”Ext”> 

<characteristic type=” APIExt”>  

<parm name=”extensionsPolicy” value=”X”/> 

</characteristic> 

                          </characteristic> 

</characteristic> 

<characteristic type=”SERVICEPROVIDEREXT”> 

… 

</characteristic> 

</characteristic> 

</wap-provisioningdoc> 

Table 3: Complete RCS HTTP configuration XML structure 

The parameters for the API Policy are formally defined in the sections below. 

Node: /<x>/Other/Ext/APIExt 

Under this interior node the RCS parameters related to API policy are placed. 

 

Status Occurrence Format Min. Access Types 

Optional ZeroOrOne Node Get 

Table 4: Other MO sub tree APIExt node 

 Values: N/A 

 Type property of the node is:  urn:gsma:mo:rcs-other:5.3:Ext:APIExt 

 Associated HTTP XML characteristic type: “APIEXT” 

Node: /<x>/Other/Ext/APIExt/extensionsPolicy 



GSM Association Non-confidential 

Official Document RCC.55 - RCS Extensibility, Terminal and Network API Security 

V2.0  Page 46 of 47 

Leaf node that describes the types of Extensions authorised by the MNO to access the RCS 

infrastructure. 

 

It is required to be instantiated if allowRCSExtensions is set to 1. 

 

Status Occurrence Format Min. Access Types 

Required ZeroOrOne Int Get 

Table 5: APIExt MO sub tree addition parameters (extensionsPolicy) 

 Values:  

0 - Only natively integrated Extensions are authorised to access and use the RCS 

service via the T-API. 

1 – Natively-integrated Extensions and self-signed Extensions are authorised to 

access the RCS service via the T-API. For self-signed Extensions, the app accessing 

the API shall have an IARI Authorisation corresponding to its unique IARI. 

 Post-reconfiguration actions: The client should be reset and should perform the 

complete first-time registration procedure following a reconfiguration (e.g. OMA-

DM/HTTP) as described in section of RCS 5.3 [1]. 

 Associated HTTP XML parameter ID: “extensionsPolicy” 

 

 
  



GSM Association Non-confidential 

Official Document RCC.55 - RCS Extensibility, Terminal and Network API Security 

V2.0  Page 47 of 47 

 

Annex A Document Management 

A.1 Document History 

Version Date Brief Description of Change Approval 

Authority 

Editor / 

Company 

1.0 15 October 

2014 

Initial version  RCS APICOM 

PSMC 

P. Byers, D. 

O’Byrne, 

Kelvin Qin / 

GSMA 

2.0 23 July 

2015 

Security Framework and Network 

API integrations, tag registration 

and application blocking subjects 

are added. 

 

RCS APICOM 

PSMC 
P. Byers, 

Stephen Doyle, 

Erdem Ersoz / 

GSMA 

 

A.2 Other Information 

Type Description 

Document Owner RCS APICOM 

Editor / Company Paddy Byers, Stephen Doyle, Erdem Ersoz / GSMA 

 

It is our intention to provide a quality product for your use. If you find any errors or omissions, 

please contact us with your comments. You may notify us at prd@gsma.com 

Your comments or suggestions & questions are always welcome. 

mailto:prd@gsma.com

