MWC[®]

5G未来峰会

GSMA计划 GSMA[™]

刘鸿 GSMA大中华区 技术总经理

第三节:5G-Advanced 助 力打造智能网络

日程 第三节: 5G-Advanced 助力打造智能网络

5G 未来峰会

主题演讲 #1 3GPP的人工智能/机器学习 进展

Xie Fang Principal Researcher Technical Manager China Mobile

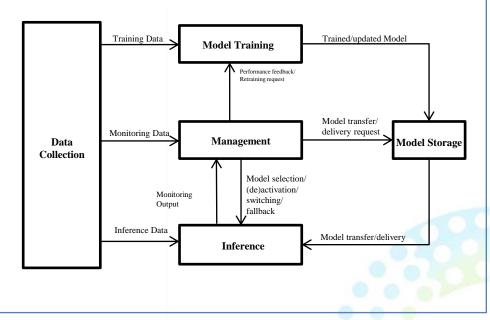
AI/ML Progress in 3GPP

Fang Xie

CMCC

2023-06

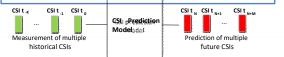
AI/ML for Air Interface


- AI/ML for NG-RAN
- AI/ML for 5GS
- AI/ML for OAM

Rel18 SI on AI/ML for Air-Interface

- 3 major training collaboration types between NW side and UE side
- Level x: No collaboration
- Level y: Signaling-based collaboration without model transfer
- Level z: Signaling-based collaboration with model transfer
- General framework for life cycle management (LCM), including model-based LCM and functionality-based LCM
- Data collection
 - For training, inference, monitoring, etc.
- Model training
- Functionality/model identification
- Model transfer/delivery
- Model inference
- Functionality/model selection, activation/deactivation, switching, and fallback
- Functionality/model monitoring
 - For Functionality/model management
- UE capability

Rel18 SI on AI/ML for Air-Interface (cont.)

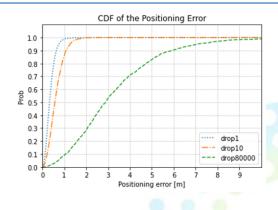

CSI

CSI compression:

- Baseline: R16 eType-II codebook
- Observation:
 - CSI feedback overhead reduction can be achieved under some configurations and simulation assumptions

CSI prediction :

- Baseline: non-AI prediction scheme/ nearest historical CSI
- Observation:
 - CSI estimation accuracy can be improved with some configurations and simulation assumption


Beam Management

- Application scenario:
 - Spatial domain beam prediction: Beam prediction in spatial domain, N beam pairs for L1 measurement, M (M>N) beam pairs for estimated at a time instance
 - Temporal domain beam prediction: Beam prediction in time domain, N beam pairs for L1 measurement with periodicity t₁ for time period T₁, predict the beams for time period T₂
- Observation:
 - Decent beam prediction
 accuracy with less
 measurements/RS overhead
 for at least for DL Tx beam
 prediction for spatial domain
 prediction

Positioning

- Application scenario: InF-DH heavy NLOS
- Baseline: conventional positioning method
- Observation:
 - For direct AI positioning,
 <1m@90% horizontal positioning accuracy as compared to >15m for baseline

Outlook of R19 AI/ML for Air-Interface

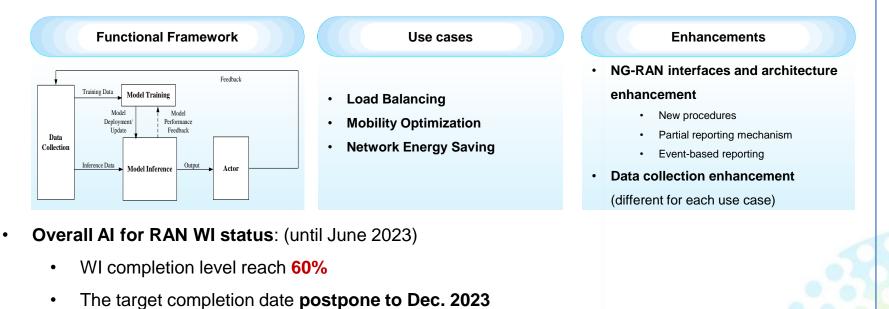
R19 WI - Motivation

- All the 6 sub use cases have shown performance gain over non-AI/ML scheme in Rel-18 SI evaluation
- The selected sub use cases are diverse to support various gNB-UE collaboration levels targeting at separate or joint ML operation (one-sided/two-sided model)
- The general LCM framework should be specified for the identified use cases in Rel-18 and potential new use cases in the future

R19 WI - Potential Objectives

- Specify procedures, protocol and signaling aspects to support the sub-use cases studied in Rel-18 SI
 - Sub-use cases selection for Rel-19 standardization in air interface, considering
 - One-sided model based sub use cases and two-sided model based sub use cases, respectively
 - Specify LCM related procedures and signaling enhancements for selected use cases, including functionality identification/ activation/ deactivation, model identification/ activation/ deactivation/ switching/ selection, model training/ inference/ monitoring etc.
 - Specify the procedure and signaling for model transfer/delivery between the UE and network entities
 - Specify a unified data collection framework to support model training, inference and management, etc.
 - Enhancements on the existing framework (e.g., MDT, LPP, L3 reporting), or define a new data collection entity
 - Model and functionality related UE capability signaling, e.g., static or dynamic UE capability reporting

Al/ML for Air Interface


- AI/ML for NG-RAN
- AI/ML for 5GS
- AI/ML for OAM

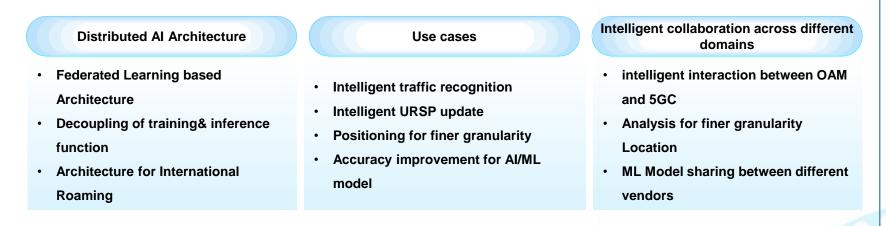
R18 WI on AI for RAN

 Specify data collection enhancements and signaling support within existing NG-RAN interfaces and architecture (including non-split architecture and split architecture) for AI/ML-based Network Energy Saving, Load Balancing and Mobility Optimization

中国移动

Outlook of R19 AI for RAN

- Study and specify data collection enhancements and signaling support within existing NG-RAN interfaces and architecture (including non-split architecture and split architecture) for AI/ML-based new use cases:
 - Slice management
 - QoE optimization
 - Mobility enhancement
 - Inter-frequency measurements prediction with no gap required based on intra-frequency measurements
 - AI/ML-based Device Efficiency Improving
 -
- R18 leftover issues:
 - NG-RAN interface enhancement to support AI for RAN
 - CU-DU split scenario
- MDT procedure enhancements, if needed
- New UE measurements, if needed



- Al/ML for Air Interface
- AI/ML for NG-RAN
- AI/ML for 5GS
- AI/ML for OAM

R18 WI on AI for 5GS

一
回移动 5
「
China Mobile 5
「

- Further investigating system enhancements for NWDAF to allow 5GS to support network automation
- Focus on analytics for 5GC NFs with the target to support their decision making
- Further study the necessary inputs to NWDAF and the necessary NWDAF outputs and potential architecture enhancement, new scenarios and R17 leftovers to support:

- Overall eNA_Ph3 WI status: (until June 2023)
 - WI completion level reach 100%

R19 Outlook of AI/ML for 5GS

今 中国移动 5
ず

- Expand the scope of network AI services to leverage AI/ML technologies to enable 5GC and Air interface Intelligence by providing network automation and improving the efficiency of 5G network architecture
- Study possible AI/ML enabled Use Case(s) of 5GS Service
 - Detection/prevention/ mitigation of signalling storm.
 - NWDAF assisted energy saving.
 - NWDAF assisted policy recommendation.
 -

.

- Study whether and how leverage AI/ML technologies for 5GS AI/ML Service
 - Vertical federal learning, including UE, RAN, 5GC and AF.
 - Enhance architecture to support online learning in the 5GC.
 - Enhance architecture to support reinforcement learning in the 5GC.

- Potential coordinate and align to support for AI/ML
 for air interface
 15
 - Terminology alignment btw RAN and SA2
 - UE data collection framework enhancement to support AI/ML use cases..
 - ML Model delivery to UE.
 - Lifecycle management of AI/ML model btw RAN and SA2.
 - SA2 and RAN Convergence for Model ID/Analytics ID defined in SA2 since R16 eNA and Model ID/feature ID studied/concluded in RAN R18.
 - Architecture enhancement to support AI based
 Positioning.
 -

- AI/ML for Air Interface
- AI/ML for NG-RAN
- AI/ML for 5GS
- AI/ML for OAM

R18 SI/WI on AI for OAM

10 Al-related SI/WI for OAM :

- MDAS for management data analysis service ٠
- AI/ML, Closed Control Loop, intent-driven management, autonomous network levels

MDA MnS Consumer MDAS (MDA MnS) Management Data Analytics Function MDA (Internal business logic) Non-3GPP MDAS (MDA MnS) ⊖ MnS management Nnwdaf NImf data Other MDA Non-3GPP MnS NWDAF LMF management MnS Producer Producer system

- Identify ongoing issues impacting the performance of the network and services
- Help to identify in advance potential issues that may cause potential failure and/or performance degradation.
- Assist to predict the network and service demand to enable timely resource provisioning and deployments

1	Study on enhancement of autonomous network levels	China Mobile, Huawei	
2	Study on evaluation of autonomous network levels	China Mobile, Huawei	
3	Study on enhanced intent driven management services for mobile networks	Huawei, Ericsson	
4	Study on intent-driven management for network slicing	Ericsson, Huawei	
5	AI/ ML management	Intel, NEC	
6	Enhancement of the management aspects related to NWDAF	China Telecom	
7	Enhancement of Management Data Analytics phase 2	Intel, NEC	
8	Study on Fault Supervision Evolution	China Mobile, Huawe	
9	Study on measurement data collection to support RAN intelligence	Intel, China Mobile	
10	Self-Configuration of RAN NEs	China Mobile, Huawei	

MDA functional overview and service framework

7 kinds of potential AI/ML items in SA5 to address management aspects in Rel-19 under discussion

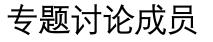
1. AI/ML management phase2	2. Management Data Analytics (MDA) (continuation)	3. Enhanced Closed Control Loop (continuation)
Al/ML management and operational	Edge computing performance and energy	Enabling dynamic CCL composition
capabilities to support additional 3GPP	efficiency analytics	Managing multi-vendor CCL
AI/ML functionalities	Data correlation analytics	Conflict resolution among CCL
Energy efficiency aspects of AI/ML	(e)MIMO performance analytics	State management of a CCL
Enhancements to support different types of	ATSSS performance analytics	CCL scope extension
learning	•	•

4. Integration of ONAP on Zero- touch Orchestration and Management	5. Trustworthiness in OAM	6. Intent driven management services for mobile network (continuation)	7. Digital Twin aspects of management
 How the ONAP Zero-touch Orchestration and Management can be supported in 3GPP Find mismatches Feedback to ONAP to be 3GPP compliant for easier alignment 	 Trustworthiness for Closed Loop (Autonomous operations) Trustworthiness for Data Analytics (non-ML) 	 New scenarios: for user experience assurance, enabling 5G advanced feature New generic capabilities Support service and OAM APIs with collaboration with GSMA/CAMARA 	 Potential scenarios, use cases and corresponding requirements based on digital twin of the 5G network Potential enhancements (e.g., new interfaces) and extensions(e.g., data collection type, frequency and methods)

THANK YOU!

Star over success and the star over

GSMA计划



会议主持人

刘鸿 GSMA大中华区技术 总经理

罗志毅 中国移动通信集团公司网络事业 部网管支撑处

程新洲 网络智能运营研究中心总监 中国联通研究院

Kevin Xu

Head of APAC TM Forum **MWC**^{*}

5G未来峰会

GSMA计划 GSMA[™]