[image:][image:][image:]EIT Digital is supported by the EIT,
a body of the European Union.

Deep Augur.
Design of Smart Traffic Analysers

Contents
1.	Contents	1
2.	Executive Summary	2
3.	Introduction	4
4.	Generator of Smart Traffic Analysers (G-STA)	7
4.1	GSTA- Components description	9
4.1.1	Mouseworld Laboratory infrastructure	9
4.1.2	Breakingpoint tool	11
4.1.3	Packet collector (tcpdump)	13
4.1.4	Tstat (TCP STatistic and Analysis Tool)	13
4.1.5	Tagger	14
4.1.6	Machine Learning Model Builder	14
5.	Preconfigured machine learning engines and training processes and their integration in the STAs	17
6.	STA repository	22

[bookmark: _Toc429160516]Executive Summary
Nowadays, more and more traffic is being encrypted (> 80%) as pervasive traffic encryption is been adopted by many network protocols. Moreover, governments concerned about privacy issues are imposing limitations to telecom providers for accessing user data. In this context of significant increases in demand for network bandwidth and speed, as well as the proliferation of sophisticated security attacks, governments, enterprises and network service providers are looking for ways to manage their data flows more intelligently as the aforementioned trends preclude the future applicability of current products.
In this context and using extensively supervised machine learning mechanisms, the Deep-Augur project has investigated and developed Smart Traffic Analyser (STA) technology to leverage the application of smart network traffic analysis, such as security threat identification or traffic pattern prediction. STA technology takes advantage of the massive amounts of data that cross core infrastructures of network service providers in order to endow them with methods for adding security and robustness not only to their infrastructure but also to the applications components offered by them to vertical industry companies. A key element of STA technology is its ability for ensuring privacy of personal data and identities while providing smart traffic analysis functionalities. With the goal of creating and fostering new business models, STA technology can be offered as a service or as a product. In this way, STA adopters can choose the most convenient way to integrate this technology in their business infrastructure.
One of the keys outputs of Deep Augur is the Generator of Smart Traffic Analysers (G-STA). G-STA is able to generate STAs in an automated way and using as input only a set of network characteristics provided by the STA customer. G-STA can setup complex network infrastructure topologies, run realistic combinations of network applications on them, collect the generated network traffic and produce labelled network traffic datasets representative of applications that need smart traffic analysis, such as security threat identification or traffic pattern prediction. Using these labelled datasets as input, G-STA can automatically training and evaluate STAs based on supervised machine and deep learning models.
G-STA relays on advanced machine and deep learning models to train STAs specifically tailored to fit the customer specifications in order to perform with the expected precision and accuracy.
G-STA architecture is composed by four modules: (1) A topology generator d; (2) A Launcher component for deploying and running experiments (3) A Tagger component that collects the network traffic generated by the Launcher and labels it in an automated way and without expert intervention and (4) A Machine Learning Model Builder that produces STAs in an automated way. In addition, a commercial tool from Ixia called BreakingPoint is integrated in G-STA with the aim to enrich the traffic generated with a diversity of Internet protocols. In addition, MLFlow, a recently appeared open source tool for covering all the aspects of machine learning lifecycle, was integrated in G-STA in order to store temporary machine learning models under evaluation and final versions of STAs.
[bookmark: _Toc429160517]Introduction
In the short and medium term, analysts’ predictions show significant increases in demand for network bandwidth and speed, as well as the proliferation of sophisticated security attacks. Nowadays, more and more traffic is being encrypted (> 80%) as pervasive traffic encryption is been adopted by many network protocols (e.g. TLS, SSH, QUIC, VPNs), and additionally, governments concerned about privacy issues are imposing limitations to telecom providers for accessing user data or inspecting packet payload. Therefore, in this generalised context of scalable 5G networks deployments, governments, enterprises and network service providers are not only upgrading their network infrastructures for greater speed and QoS but they are looking for ways to manage their data flows more intelligently. These trends preclude the future applicability of current products.
From a technical perspective, traffic classification is an automated process which categorises computer network traffic according to various parameters (e.g. based on port number or protocol) into a number of traffic classes. Nowadays, many of the current state-of-the art enterprise solutions are based on DPI (Deep Packet Inspector) technology that relies on accessing packets payload to identify network flows and requires massive amount of resources (HW and SW) when real-time searching for signatures. Moreover, any foreseeable evolution of Internet and mobile traffic implies growths that complicate this scenario. In addition, pervasive traffic encryption adopted by network protocols (TLS, SSH, QUIC, VPNs…) -partially justified by privacy issues- precludes the usage of current solutions in the near future. For that reason, we propose to follow a totally different approach based on the application of machine and deep learning mechanisms. Machine learning is an emerging field in the area of Artificial Intelligence (IA) that uses the vast amounts of data generated everyday to train algorithms that learn from this data and generate an insight. The Machine Learning algorithms typically are categorized into supervised, semi-supervised and unsupervised. The usage of one of them depends mainly on the available datasets and the tasks to be performed. Normally, supervised approaches need more information (e.g. labelled data) and produce better results in the context of traffic classification.
In this context and using extensively supervised machine learning mechanisms, the Deep-Augur project has investigated and developed Smart Traffic Analyser (STA) technology to leverage the application of smart network traffic analysis, such as security threat identification or traffic pattern prediction. STA technology takes advantage of the massive amounts of data that cross core infrastructures of network service providers in order to endow them with methods for adding security and robustness not only to their infrastructure but also to the applications components offered by them to vertical industry companies. A key element of STA technology is its ability for ensuring privacy of personal data and identities while providing smart traffic analysis functionalities. With the goal of creating and fostering new business models, STA technology can be offered as a service or as a product. In this way, STA adopters can choose the most convenient way to integrate this technology in their business infrastructure.
Figure 1 contextualizes STA technology in a typical operations network management scenario in which network packets are collected from the core network of a Telecom provider and grouped into flows that are subsequently analysed in real time using the STA technology. The output of STA is the category of the analysed flow that is fed to a typical monitoring dashboard.
[image: Macintosh HD:Users:alberto:Dropbox:PY Deep Augur 18217:Deliverables:D03:Deep Augur basic concept.png]
[bookmark: _Ref409549017]Figure 1. Basic concept of Deepp Augur STA technology
One of the keys outputs of Deep Augur is the Generator of Smart Traffic Analysers. G-STA is based on an Emulation On-demand Framework and is able to generate STAs in an automated way and using as input only a set of network characteristics provided by the STA customer. G-STA can setup complex network infrastructure topologies, run realistic combinations of network applications on them, collect the generated network traffic and produce labelled network traffic datasets representative of applications that need smart traffic analysis, such as security threat identification or traffic pattern prediction. Using these labelled datasets as input, G-STA can automatically train STAs based on supervised machine and deep learning models.
Therefore, the generated STAs are based on advanced machine and deep learning techniques and can analyse network flows (classify, predict, detect anomalies, etc.) without accessing the packet payload. In this way, G-STA trains generic machine learning components and produces STAs tailored to solve the problems of the customer network. STAs can be applied in real-time scenarios or as forensic tools, and commercialized as a service or as pluggable building blocks.
G-STA was conceived as an emulation-based framework consisting on four modules that were jointly designed and integrated: (1) A topology generator built on top of OSM (Open Source MANO) and OpenStack; (2) A Launcher component for deploying and running experiments (3) A Tagger component that collects the network traffic generated by the Launcher and labels it in an automated way and without expert intervention; (4) A Machine Learning Model Builder that runs in an automated way the learning process of hybrid Deep Neural Network models using as input labelled datasets generated by the Tagger. In addition, a commercial tool from Ixia called BreakingPoint was integrated in order to enrich the traffic generated with a diversity of Internet protocols.
The rest of this document provides a description of the G-STA and its main components. Chapter 4 is devoted to present the architecture and main components of the Generator of Smart Traffic Analysers. In Chapter 5, a summary of the machine learning models included in G-STA is presented. Finally, the STA repository based on MLFlow, an open source tool covering all aspects of the Machine Learning lifecycle is described.

[bookmark: _Toc429160518]Generator of Smart Traffic Analysers (G-STA)
Deep Augur architecture is based on two components, the G-STA (Generator of Smart Network Traffic Analyzers) and the STAs (Smart Network Traffic Analyzers). Figure 2 presents the architectural view of Deep Augur detailing both components, the G-STA and the STAs.

[image:]
[bookmark: _Ref409701621]Figure 2. Deep Augur architecture overview.

The G-STA is based on an emulation based network traffic framework and a generator of machine learning models.

· The emulation based network traffic framework (internally called Mouseworld Lab[footnoteRef:1]) is the component in charge of emulating a specific network configuration and generating the required traffic to be used subsequently by the machine learning algorithms. Mouseworld Lab is an emulation environment setup in Telefonica premises that allows deploying complex network scenarios in a controlled way. To this end, Mouseworld Lab provides a way to launch clients and servers and collect the traffic generated by them even if they interact with clients and servers outside the Mouseworld in the Internet. [1: Antonio Pastor, Alberto Mozo, Diego R. Lopez, Jesus Folgueira, and Angeliki Kapodistria. 2018. The Mouseworld, a security traffic analysis lab based on NFV/SDN. In Proceedings of the 13th International Conference on Availability, Reliability and Security (ARES 2018). ACM, New York, NY, USA, Article 57, 6 pages. DOI: https://doi.org/10.1145/3230833.3233283]

· The generator of machine learning models is the component that produces the corresponding STAs using as input the traffic previously generated in the Mouseworld. Firstly, packets are grouped in flows, and a label is attached to each flow representing the type of traffic that this flow contains. After that, and using as input the previously labelled dataset a supervised machine learning model is trained and tested. Finally, different machine learning models and architectures are evaluated and their hyperparameters tuned in order to select the model with the best accuracy and performance.

For grouping packets into flows, we utilise Tstat, an open source software tool, that using as input the network traffic generated in the Mouseworld, produces network features based on statistics at flow level such as, arrival times or the number of packets sent or received. Additionally, and in order to attach the corresponding label to each flow description, a component named Tagger was developed. The Tagger adds labels to traffic flows following a rule-based process.

The STA is the product generated G-STA. STAs components are in esence machine learning models that have been exposed to a supervised learning process using labelled datasets obtained by deploying and running customer network configurations in the Mouseworld Lab. Therefore, STAs are trained using as input client needs for a concrete network configuration and use case. After having been trained and tuned, STAs are ready to be deployed in the customer network infrastructure not requiring additional training or tuning.
It is worth noting that in case that changes appear in network traffic patterns, machine learning retraining processes do not need to be done from the scratch as many of these models, and in particular those based on deep neural networks, can be partially retrained using transfer learning. When transfer learning is applied, only last layers of a previously trained deep learning model need to be retrained in order to adapt the model to the new scenario. All layers with the exception of the last ones, are kept fixed during the new retraining process as it is assumed that they model high level abstract features that tend to be invariants of the domain although statistical variations could appear in the input data. Therefore, only minimal human and computational efforts are required in this scenario as only the inner layers of the network need to be readjusted.
[bookmark: _Toc429160519]GSTA- Components description
The Generator of STAs (G-STA) was developed on top of a controlled network deployment setup in Telefonica premises internally called “Mouseworld Laboratory”. The G-STA is composed of four modules interacting in a pipeline: Launcher, Tstat, Tagger and Machine Learning Model Builder. The Launcher uses as input a customer network specification and runs experiments that generate real network traffic that cross not only the Mouseworld network but also the Internet. Additionally, and with the aim of mimicking the statistical distribution of the Internet traffic patterns, the Launcher runs synthetic sessions that generate network traffic of a collection of complementary Internet protocols using Ixia Breakingpoint, a commercial tool that allows to generate complex patterns of synthetic traffic. The injection of these packets is made in parallel with the traffic generated by the real experiments. An intermediate Tstat module collects all the packets generated by a concrete experiment and group them in flows based on the five-tuple of source and destination ip-address/port number and transport protocol. Next, the Tagger adds automatically and without human intervention labels to each flow using log information output by the Launcher during the execution of each experiment. Finally, the Machine Learning Model Builder uses as input the labelled datasets output by the Tagger and chooses and tunes from a library of Machine and Deep Learning models the one that generates the best results for the task proposed (e.g. classifying traffic, detecting a non-authorised cryptomining flow).
In the next subsection we comment the components that compose the G-STA. It is worth noting that the training and testing processes of the Machine Learning Model Builder, which tend to involve the execution of very deep neural network architectures, are performed more efficiently in GPU based infrastructures. Therefore, this last stage of the G-STA can be located in a more specialised computation infrastructure.

[bookmark: _Toc429160520]Mouseworld Laboratory infrastructure
The Mouseworld laboratory is an emulation-based environment setup in Telefonica R&D premises that allows deploying complex network scenarios in a controlled way for running experiments that can generate realistic labelled datasets for training supervised Machine Learning components and validate supervised and unsupervised solutions. In other words, the Mouseworld Lab provides a way to launch clients and servers, collect the traffic generated by them even if they interact with clients and servers outside the Mouseworld in the Internet, and finally add labels to this traffic without operator intervention. This environment is deployed on an NFV-enabled architecture, under the management of an orchestrator (NFVO), extending an NFV MANO stack as necessary. Figure 4 gives a detailed view of the main physical and virtual elements that are part of the current Mouseworld Lab. In this figure we can identify several physical machines CGClientPoolX that host a collection of virtual machines in which we run clients (e.g. physical CGClientPool9 hosts a set of virtual machines from vmcgclient33 to vmcgclient64) and servers (e.g. physical CGServer hosts virtual servers such as vmcgserver101, vmcgserver102, vmcgserver103 and vmcgTstat) for different purposes. In addition, it can be observed in this figure the routers and switches that provide the expected connectivity among Mouseworld clients and servers and with external machines. As commented previously, we deployed G-STA on top of the Mouseworld Lab using a subset of the physical and virtual machines that are present in the figure.
[image: Macintosh HD:Users:alberto:Mouseworld:MAQUETA_MouseWorld_Lab_01122017.pdf]
[bookmark: _Ref410222232]Figure 4. Mouseworld Lab. Physical and virtual machines and network infrastructure.
[bookmark: _Toc429160521]Breakingpoint tool
BreakingPoint tool is a commercial product from Ixia Networks that allows network security and application performance testings from a single platform. It has been designed to help to build IPS and firewalls and validate DDoS defenses. Additionally, this tool can inject traffic emulating different Internet protocols It should be noted that the traffic injected by this tool is not real traffic and falls in the category of synthetic traffic since all the packets that are injected by BreakingPoint are generated from a database of traffic samples and patterns.

With the aim to provide the required extra variablility of network traffic, BreakingPoint can provide the following features:
· Emulate more than 300 real-world application protocols
· Model 37,000 security attacks and malware
· Optimize security tools including NGFWs and IPS
· Validate service provider networks.
· Harden networks. Measure and harden the performance of network and security devices

In DeepAugur we utilise a commercial license of this tool in order to complement and add diversity to the traffic and network protocols generated by the Mouseworld clients and servers. Specifically, we utilise this tool to add traffic from service applications that are not possible to emulate in the Mouseworld such as Netflix or Facebook traffic.
[image:]
[bookmark: _Ref410247028]Figure 6. Ixia BreakingPoint too. Example of the web based configuration interface.
Figure 6 shows the web-based interface for configuring BreakingPoint experiments. In this screen, several pre-configured experiments emulating different services can be loaded. In addition, the tool allows the user to re-create a specific network configuration and change the network load during the different phases of the experiment.
[bookmark: _Toc429160522]Packet collector (tcpdump)
G-STA utilises the tcpdump open source tool for collecting packets from the network. Tcpdump is a common packet analyzer that runs under the command line. It allows the user to display and store TCP/IP and other packets being transmitted or received over a network to which the computer is attached. G-STA runs tcpdump on the CGTstat machine that connects one of its Ethernet interfaces to a mirror port of the CognetMngmt switch. This switch is configured to dump all the traffic sent and received by clients and servers to this mirror port. Therefore, tcpdump can gather and store all transmitted packets by clients and server into a standard pcap file for a posterior processing by Tstat.
[bookmark: _Toc429160523]Tstat (TCP STatistic and Analysis Tool)
Tstat is an open source tool (http://tstat.polito.it/) developed at the Politecnico di Torino (POLITO) and supported by the FP7-MPlane research project that offers to network managers and researchers audit important information about classic and novel performance indexes and statistical data about Internet traffic. Tstat is a passive sniffer (Figure 7) able to provide several insights on the traffic patterns at both the network and the transport levels. To this end, Tstat analyzes real-time captured packet traces, using either common PC hardware or more sophisticated ad-hoc cards such as the DAG cards. In addition to live captures, Tstat can analyze previously recorded packet-level traces, supporting various dump formats, such as the one supported by the libpcap library. Tstat analyses network traffic (e.g. a pcap file) and generates as output three different types of measurement collections: histograms, round robin database and log files. Tstat analyses network traffic (e.g. a pcap file) and generates as output three different types of measurement collections: histograms, round robin database and log files. [image: Macintosh HD:Users:alberto:Pictures:Sin título.png]
[bookmark: _Ref410739213]Figure 7. Tstat tool.

[bookmark: _Toc429160524]Tagger
[bookmark: _GoBack]The Tagger module is the mponent in G-STA that is in charge of adding labels to each element of the training and testing datasets. Regarding that STAs are based on supervised machine learning modules, attaching the right label to each element of the dataset implies that the learning process will be done in right way.
Nowadays, the Tagger implements automatic labelling of two scenarios: traffic classification and cryptomining prediction and detection. In the case of cryptomining scenarios labels are binaries (cryptomining flows are labelled with 1 and the rest with 0).
[bookmark: _Toc429160525]Machine Learning Model Builder
The Machine Learning Model Builder (MLMB) is the last component in the G-STA chain that produces as output a STA specifically trained for analysing network flows following the patterns defined in the customer traffic specifications that were provided as input to the G-STA.
STAs are Machine Learning models that are trained for analysing network flows generated in scenarios compliant with a customer specification. Therefore, building a STA implies training, tuning and testing a set of different machine learning architectures in order to chose the one that performs the best under a collection of customer specifications. This process consists basically in optimizing several machine learning models, measuring the error of each model and selecting the one that minimises the error function. The optimization process involves searching for the set of values of the model parameters that minimise the error function. In addition, the instantiation of a model is made by assigning specific values to a different set of parameters -called hyperparameters- that are not modified during the optimization process.
The Machine Learning Model Builder utilises as input two different labelled dataset obtained from two separate experiments deployed and run using the same customer configuration. One of them is used for training and the second for testing the model. If we are in a big data regime (i.e. datasets containing millions of examples) the training dataset is split in two datasets, the first (99% of examples) for training the model and the second (1% of examples) for obtaining the validation score. In case the training dataset size is not so large, cross-validation approaches can be used for obtaining validation datasets of a decent size.
Evaluation metrics
Evaluation metrics explain the performance of a model and therefore, during the optimization process some evaluation metrics must be defined to assess models performance. G-STA applies several evaluation metrics used commonly in Machine Learning, and more precisely the ones that serve to evaluate binary and multiclass classifiers and predictors for regression problems.
Classifiers are evaluated using Precision, Recall and F1 scores.
· Precision: Precision is the ratio of correctly predicted positive observations to the total predicted positive observations and can be computed as TP/TP+FP, where TP is the number of true positives and FP is the number of false positives.

· Recall : Recall is the ratio of correctly predicted positive observations to the all observations in actual class and can be computed as TP/TP+FN, where TP is the number of true positives and FN the number of false negatives.

· F1 score : It is a measure of a test's accuracy. It considers both the precision and the recall of the test to compute the score and it can be defined as the harmonic mean of precision and recall.

[image:]

In the case of a regression problem, G-STA adopted several common metrics present in Machine Learning literature such as MAE (Mean Absolute Error), MSE (Mean Squared Error) and MAPE (Mean Absolute Percentage Error). The corresponding formulas for these regression metrics are shown in Table 1.
[bookmark: _Ref410820380]Table 1. Regression metrics used in the Machine Learning Model Builder
	[image:]

	[image:]

	[image:]

Hyperparameter tuning
Optimising hyperparameters is considered to be one of the trickiest parts of building machine learning models as it is virtually impossible to obtain the optimal parameters while building a model by simply guessing and testing several combinations of these values. On the other side, trying all the combinations of values for a set of hyperparameters is not scalable as the number of combinations to be tested grows exponentially with the number of hyperparameters and the ranges of the values to be tested in each of them. There are various heuristics that can help to find these optimal hyperparameters, being random search one of the most popular and efficient approach. As its name suggests the evaluated combinations of hyperparameters are chosen at random from the hyperparameter multidimensional grid. The Machine Learning Model Builder applies random search heuristic algorithm for tuning hyperparameters of each selected model.
The basic strategy for random search is simple: for each hyperparameter value combination, evaluate the validation score and record the results along with the hyperparameters. Then, at the end of searching, choose the hyperparameters that yielded the highest validation score, train the model on all the training dataset, and make predictions on the test dataset.
Three elements need to be considered when applying this heuristic for hyperparameter tuning:
1) The objective function.
This function takes in hyperparameters and outputs a value representing a score. Traditionally in optimization, this is a score to minimize, but another approaches as the ROC AUC are possible and so, the score should be maximised.
2) The domain, or search space.
All the possible values for all the hyperparameters that we want to search over. For random search, the domain is a hyperparameter grid.
3) The Heuristic algorithm.
For random search, the domain is input and each time the algorithm produces a random combination of hyperparameter values to try. There are no requirements for random search other than that the next values are selected at random.
[bookmark: _Toc429160526]Preconfigured machine learning engines and training processes and their integration in the STAs
In this section we make a brief introduction to the models that the Machine Learning Model Builder applies when a STA needs to be configured and tuned. Firstly, we introduce Random Forest, a traditional machine learning technique that provides decent results in classification problems and serves as a baseline to compare its results against more advanced techniques. Secondly, we provide a brief description of convolutional and recurrent neural networks as main representatives of advanced deep learning techniques.
A Random Forest is a classic machine learning technique that uses an array of decision trees for making predictions. A decision tree is a binary system that takes as input a dataset and tries to divide it into 2 sub-datasets of lower entropy (data in each resulting dataset is more similar). Figure 10 shows a simplified view of a Random Forest generating a prediction in which the three Random Forest decision trees produce a result and the final decision is taken applying on them a majority voting criteria. We chose a Random Forest for it's simplicity and ease of implementation, so we can get fast feedback and check if our results make sense or we have to modify our experiment. In G-STA we can select Random Forest implementation from sklearn in which G-STA can configure with a variable number of estimators and tree depth.
A Convolutional Neural Network (CNNs) is a neural network architecture that was primarily conceived to solve difficult image-driven pattern recognition tasks. CNNs allow to encode image-specific features into the network architecture reducing the model parameters required to be trained. CNNs are composed of several layers organised in dimensions (2 or 3 in the case of 2-D or 3-D images). A typical CNN architecture is composed of a) an input layer is needed to accommodate the input image, b) several convolutional layers that determine the output of neurons that are connected to local regions of the input c) a Rectified Linear unit (ReLu) that produces non-linear activations at the output of each convolution, d) pooling layers for summarising or downsampling the output of convolutions and e) a set of fully connected layers that perform similar tasks than the ones found in ANNs (Fully connected artificial neural networks). We selected CNNs although our problem is not related to image processing, as CNNs are able to discover non-linear relations among the features that form the input data in the same way that they discover common patterns in images. In Figure 11 we present an example of the architecture of a CNN based model that we applied in a previous research work.
[image: Macintosh HD:Users:alberto:Desktop:Screen Shot 2019-01-03 at 19.29.14.png]
[bookmark: _Ref409258850]Figure 10. Simplified view of a Random Forest (W. Koehrsen, accessed 20 Dec 2018, https://medium.com/@williamkoehrsen/random-forest-simple-explanation-377895a60d2d)

[image: Macintosh HD:Users:alberto:Dropbox:0-ARTICULOS PAPERS:0- Accepted:2017:2017 Noisy Neigborgs ESANN Core B 2017:Camera ready:images:convs.png]
[bookmark: _Ref409259591]Figure 11. Example of a Convolutional Neural Network for time series processing. (A. Mozo et al, “Deep convolutional neural networks for detecting noisy neighbours in cloud infrastructure”, in Proc. European Symposium Artificial Neural Networks, 2017)

Recurrent Neural Networks (RNNs) are networks with loops in them, allowing information to persist. In some way, these neural networks can be seen as a sequence of units in which all the units are copies of the first one and the output of one of them is the input to its successor next. In other words, they can be thought as multiples copies of the same unit, each passing a message to a successor. In Figure 12 a RNN and its unrolled view are depicted. The unrolled view shows the message passing process from predecessor units to their successors. Due to this specific architecture, RNNs have achieved incredible success modelling sequences and lists such as time series, speech recognition and language modelling problems. In these neural netwokrs the input and output pattern can be different and so, a variety of different RNNs can be considered: one to one, one to many, many to one and many to many. In our experiments we will apply many to one topology as we are interested in input a time series (many) and generate a prediction of the current instant of time (one).

[image:]
[bookmark: _Ref409282298]Figure 12. Example of an unrolled Recurrent Neural Network (Colah, accessed 20 Dec 2018, http://colah.github.io/posts/2015-08-Understanding-LSTMs)
LSTM (Long Short Term Memory) are a subset of the RNN family that provides the unique property of selectively remembering patterns for long durations of time. Therefore, we can train LSTM to propagate patterns discovered at the early beginning of the neural network sequence to the final units. This feature cannot be provided in general RNN nor CNNs and so LSTM are chosen in very deep models in order to preserve patterns discovered in the first layers to be used in the last layers. The internal components in a LSTM that allow the propagation of previous patterns across units are called gates. In Figure 13 it is shown the internal detail of a LSTM in which gates and interacting layers are interconnected in order to produce two different outputs. Note that the output at the bottom of the unit is the normal one and the top is the one in charge of propagating patterns discovered in previous units.
[image: Macintosh HD:Users:alberto:Desktop:Screen Shot 2019-01-03 at 13.16.15.png]
[bookmark: _Ref409283301]Figure 13. Example of a Long Short Term Memory neural network containing four interacting layers (Colah, accessed 20 Dec 2018, http://colah.github.io/posts/2015-08-Understanding-LSTMs)
Figure 14 presents a hybrid architecture that has revealed as extremely efficient when dealing with complex problems in which intricate relationships among input features have to be discovered. This hybrid architecture applies firstly a CNN model in order to find the non-linear relationships among input features. Then the output of the CNN model is passed as input to a LSTM model with the aim to search for non-linear relations in sequences (e.g. time series). Finally, the output of the LSTM is passed to a Fully Connected Neural Network in order to find global relationships to produce the final output.
Input
CNN model
LSTM model
Dense
Ouput

[bookmark: _Ref409283545]Figure 14. Example of a hybrid neural network with a sequence of CNN and LSTM models
Another hybrid model utilised in G-STA and shown in Figure 15, is based on the combination of two fully connected neural network blocks. The rationale of this composition is to avoid the vanishing gradient effect that has been observed in very deep neural networks in which the importance of weights in the outer layers vanish progressively in favour of inner layer weights. The ResANN architecture proposed as novelty in G-STA is inspired in the well-known Resnet50 very deep network created specifically for computer vision tasks. ResANN is composed by two different stages in which the input of the second block is the concatenation of the bypassed original input and the output of the first block. In this way, we maintain the predominance of input features, bypassing them directly to the second block. In addition, non-linear relations that could exist among input features are obtained in the first block and input to the second block jointly with the original input features.
[image: Macintosh HD:Users:alberto:Desktop:Screen Shot 2019-01-26 at 13.11.52.png]
[bookmark: _Ref410127795]Figure 15. Example of a hybrid ResANN neural network model.

[bookmark: _Toc429160527]STA repository
In this section we present an auxiliary component of the G-STA that provides a standardised machine learning repository to easily store and access intermediate machine learning models under evaluation jointly with final models and STAs.
Instead of creating from scratch an in-house machine learning repository for G-STA, we adopted and integrated a recently emerged open source platform called MLFlow that claims to cover all aspects of the Machine Learning lifecycle. The main goal of MLflow is to provide an extra layer on top of Machine Learning allowing to work with virtually any Machine Learning library (e.g. h2o, keras, mleap, pytorch, sklearn and tensorflow). To this end, MLflow provides three components:
· Tracking — This component allows recording and querying experiments, and in particular, code, data, configuration files and results. Its usefulness resides in the ability for keeping track of the modelling progress.
· Projects —This module provides a packaging format for reproducible runs on any platform.
· Models —This component offers a general format for sending models to diverse deployment tools.
An example of the integration of MLFlow in G-STA is presented in Figure 16 and Figure 17. Figure 16 shows Minado, an STA for cryptoming scenarios, integrated in MLFlow tool. Using MlFlow, STA data can be accessed by Experiment ID or Artifact Location. In addition, a list of runs belonging to this experiment is also available in this screen. Experiments can be filtered by name, state, parameters or metrics and every run shows complementary data regarding its parameters or metrics, logged at choice in the experiment script. In particular, Figure 17 shows all the data of the first execution in which parameters and metrics are presented jointly with additional information like its duration or some notes or tags that can be appended to each execution. It is worth noting the inclusion of the Artifacts section in which artifacts that were previously stored in the file system server can be accessed.

[image: Macintosh HD:Users:alberto:Downloads:MLFlow - Vista experiments.png]
[bookmark: _Ref410820999]Figure 16. MlFlow. Repository view of Minado, a STA for cryptomining scenarios.

[image: Macintosh HD:Users:alberto:Downloads:MLFlow - Vista run.png]
[bookmark: _Ref410821000]Figure 17. MlFlow. Detailed view of evaluation results of Minado, a STA for cryptomining scenarios.

[image:]
9
image1.png

image2.jpg

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.jpeg

image19.png

image20.png

