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[bookmark: _Toc101946531][bookmark: _Toc74460299][bookmark: _Toc535503347][bookmark: _Toc535504612][bookmark: _Toc21942590]
Introduction
0. [bookmark: _Toc489349783][bookmark: _Toc426450942][bookmark: _Toc424545639][bookmark: _Toc535503348][bookmark: _Toc535504613][bookmark: _Toc21942591]Overview
Mobile Connect is a portfolio of mobile-enabled services to provide Authentication, Authorisation, Identity Services and Network Attribute Services to be used in conjunction with services offered to a User by Service Providers (SPs).
[image: ]
[bookmark: _Ref521058022]: Mobile Connect Portfolio of Services

Mobile Connect is based upon the OpenID Connect (OIDC) protocol suite [1] and allows Users to be identified by their MSISDN (or a related Pseudonymous Customer Reference) and to provide Authentication, Authorisation and Consent via their mobile device. 
The serving Mobile Operator supports and selects an appropriate Authenticator to present the Authentication, Authorisation and Consent request to the User on their mobile device to which the User responds. The Authenticator is selected based on Operator policy, device capability and the Level of Assurance required.
Mobile Connect also provides access to an enriched set of User attributes[footnoteRef:2] provided by the Mobile Operator, that can be shared with a SP, subject to User consent. [2:  OpenID Connect specifies a set of attributes that can be obtained from the OIDC Provider’s Resource Server (e.g., the serving Operator’s IDGW) also referred to as ‘Protected Resources’. Mobile Connect provides an enriched set of attributes that also includes information relating to a User’s mobile account and status] 

The Mobile Connect architecture consists of a Core framework around which additional components can be added to support different Mobile Connect services that utilise the Core.
This specification defines a Mobile Connect Server-Initiated API (Application Programming Interface) offered by an Operator’s Identity Gateway (IDGW) to a SP that enables a Mobile Connect service to be initiated when the User is not interacting online with the SP. 
This specification is normative - it includes examples for illustration purposes that are non-normative.

[bookmark: _Toc467067281][bookmark: _Toc489349784][bookmark: _Toc535503349][bookmark: _Toc535504614][bookmark: _Toc21942592][bookmark: _Toc426450943][bookmark: _Toc424545640]Scope 
	In Scope
	Out of Scope

	Mobile Connect Server-Initiated communication (Server-to-Server)
Mobile Connect Server-Initiated request through signed request object by value
Retrieval of tokens using Notification
Retrieval of tokens using Polling
	Mobile Connect Device-Initiated communication 
Mobile Connect Server-Initiated signed request object through the reference [i.e. request_uri]. 
TLS and mTLS implementation details


0. [bookmark: _Toc489349785][bookmark: _Toc467067282][bookmark: _Toc535503350][bookmark: _Toc535504615][bookmark: _Toc21942593]Audience 
The target audience for this document are the Operator service/technical departments who are considering deploying Mobile Connect services in Server-Initiated mode. 
[bookmark: _Toc516761942][bookmark: _Toc517965128][bookmark: _Toc535503351][bookmark: _Toc535504616][bookmark: _Toc21942594]Relationship to Other Mobile Connect Documentation
This document describes and specifies the Mobile Connect Server-Initiated mode and API. It includes details of the OIDC Authorization Request and Response and the mechanisms for then obtaining tokens upon successful Authorization. It also includes examples and generic error codes. This specification defines the server-initiated OIDC Authorization process and Token Retrieval that underpins Mobile Connect and forms part of the Core framework. All Mobile Connect Services published as server 2 server, make use Server-Initiated mode.
The Mobile Connect Technical Overview document [18] provides a high-level description of Mobile Connect and how it works. It also includes a master list of abbreviations and terminology used within the Mobile Connect Documentation set and a map of that documentation set. It serves as a starting point for understanding how Mobile Connect works and references the relevant documents for the reader to obtain further details.
The Mobile Connect Architecture and Core Technical Requirements document [19] describes the Mobile Connect Architecture in more detail and also includes the core technical requirements and specification of elements for Mobile Connect that are generic to all Mobile Connect services and modes of operation. 
The Mobile Connect Resource Server Specification [21] provides details on how to handle a Resource request and the associated response for Mobile Connect Identity and Network Attribute services including error codes where this approach is used by a Mobile Connect service.
[bookmark: _Toc489349786][bookmark: _Toc467067283]Each individual Mobile Connect service has its own definition document which includes service specific parameters, such as scope value and any service specific error codes. It also includes technical requirements that relate to that specific Mobile Connect service.
[bookmark: _Toc535503352][bookmark: _Toc535504617][bookmark: _Toc21942595]Conventions
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC2119 [6].
0. [bookmark: _Toc516761945][bookmark: _Toc517965130][bookmark: _Toc535503353][bookmark: _Toc535504618][bookmark: _Toc21942596][bookmark: _Toc489349787][bookmark: _Toc467067284]Terminology & Definitions
Mobile Connect technical specifications and related documentation make use of terms that are defined by the OpenID Connect Core Specification [2] and supporting specifications and extended in the OpenID Connect MODRNA Client Initiated Backchannel Authentication Flow specification [5].
The Mobile Connect Technical Overview document [18] provides a list of definitions and abbreviations that are used within the Mobile Connect Specifications. It includes terminology from source standards and interprets that terminology in Mobile Connect terms. 
Due to potential confusion with OIDC (built on top of OAuth2.0) and OAuth2.0 terminology;  the initial Mobile Connect Service Request (OIDC Authentication Request) which underpins Mobile Connect Authentication, Authorisation and User Consent associated with Identity Services and Network Attribute Services, is referred to as an OIDC Authorization Request following the OAuth2.0 terminology (spelled with a ‘z’) throughout this document.
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1. [bookmark: _Toc535503355][bookmark: _Toc535504620][bookmark: _Toc21942598]OpenID Connect
OpenID Connect (OIDC) is a simple Identity layer that sits on top of the OAuth 2.0 protocol. It enables Clients to verify the identity of a User based on the authentication performed by an Authorization Server as well as to obtain basic profile information about the User in an inter-operable and REST-like manner. Figure 2 outlines the Open ID Connect Protocol Suite reproduced from OpenID.net [1].
OpenID Connect provides an additional token (an ID Token) along with the OAuth 2.0 Access Token. The ID Token is represented as a JWT [13] and contains a claim set related to the Authentication Context of the subject. The JWT can be a plain text JWT or cryptographically protected JWT – represented as a signed JWT using JSON Web Signatures (JWS) [16] or as an encrypted JWT using JSON Web Encryption (JWE)[footnoteRef:3] [17]. [3:  Within Mobile Connect the ID Token is a signed JWT using JWS] 

OpenID Connect does not specify how users should be authenticated - Mobile Connect is a specific implementation of Open ID Connect (OIDC) that uses the User’s MSISDN (and an associated Pseudonymous Customer Reference) as an identifier and their mobile device as the Authentication Device. Additionally, it extends the range of information about the User that can be obtained by a Client, subject to the User’s consent.
[image: ]
[bookmark: _Ref517940494]: OpenID protocol suite
A general introduction to OIDC is provided in [1]. The Core Specification [2] defines the core OIDC functionality and that underpins Mobile Connect. The Open ID Connect Basic Client Implementer’s Guide [4] and the OpenID Connect Basic Client Profile 1.0 [3] contain a subset of the Core Specification that is designed to be easy to read and implement for basic web-based SPs using the OIDC Authorization Code Flow – referred to in Mobile Connect as Device-Initiated mode.
[bookmark: _Toc517965134]Extensions to OpenID Connect to support device-initiated / server-initiated requests (Mobile Connect Server-Initiated mode) are outlined in Reference [5]. 
1. [bookmark: _Toc535503356][bookmark: _Toc535504621][bookmark: _Toc21942599]Mobile Connect Server-Initiated Mode
There are some use cases where the SP server needs to be the initiator of the User authentication flow and where User interaction through a Consumption Device is not possible or not required for Mobile Connect calls. 
The OIDF Client Initiated Backchannel Authentication Flow (CIBA)[5] specifies an authentication flow by means of which the SP knows the User identifier they want to authenticate (i.e. the MSISDN for Mobile Connect) and will be able to initiate an authorization flow to authenticate their Users. This is the basis for the Mobile Connect Server-Initiated mode. The flow is a direct communication from the SP server to the Operator IDGW. It introduces a new SI Authorization Endpoint[footnoteRef:4] to which the OIDC Authorization request is posted and introduces multiple asynchronous methods for result delivery.  It does not introduce new scope values, nor does it change the semantics of standard OpenID Connect Core parameters in the Authorization Request. Some OIDC core parameters which are required in a redirect-based protocol are meaningless in this server-to-server communication. A few new parameters are introduced e.g. those required for the asynchronous responses.  [4:  Mobile Connect recommends to use new SI Authorization endpoint for SI mode Mobile Connect services, however, based on few Operators infrastructure requirements, implementations can use the same endpoint for both DI and SI modes with the value of the response_type in the OIDC Authorization Request determining how the Authorization Server (in the IDGW responds). Implementation details of single authorization endpoint are out of scope this document. 
] 

This specification describes Mobile Connect Server-Initiated mode including the structure of the OIDC Authorization Request and the various responses to that request including possible error codes. There are two variants to a Server-Initiated request described which relate to how Tokens are retrieved: 
· Token Retrieval through Notification (Asynchronous PUSH) –The SP pre-registers Notification Endpoints with the IDGW and includes the Notification Endpoint to be used and the response_type to use notification in the OIDC Authorization Request. 

Once the OIDC Authorization Request has been validated and acknowledged, the request is processed and if successful (i.e. the User has been authenticated, has authorised a transaction or has provided consent to share personal information) then a Token Response (including an ID Token and Access Token) is pushed to the Notification Endpoint. 

For any processing failures, an appropriate error with a description is pushed to the Notification Endpoint.

The SP validates the Token Response and acknowledges the receipt if successful, otherwise returns an error for logging purposes. 
· Token Retrieval through Polling (Asynchronous PULL) – The SP pre-registers with the IDGW for Server-Initiated mode using Polling and includes the appropriate response_type indicating use of polling in the OIDC Authorization Request.

Once the OIDC Authorization Request has been validated and acknowledged, the request is processed and if successful (i.e. the User has been authenticated, has authorised a transaction or has provided consent to share personal information) then  a Token Response (including an ID Token and Access Token) is prepared. 

In parallel, the SP starts to poll the IDGW’s published Polling Endpoint based upon a minimum interval supplied by the IDGW in the Authorization Response/ Acknowledgement. Once the Mobile Connect service request has been processed, the IDGW responds to the next polling request with a Polling Response (i.e. with ID Token and Access Token).

For any processing failures, the response includes the appropriate error and description.
Server-Initiated requests are specified by setting the response_type value in the OIDC Authorization Request to “mc_si_async_code" for Server-Initiated mode using Notification or “mc_si_polling” for Server-Initiated mode using Polling.
The relative advantages and disadvantages of each approach to Token Retrieval are summarised in Table 1.
	
	Advantages
	Disadvantages

	Using Notification
	Real time response 
Minimal amount of network traffic and round trips
	Potential loss of critical information / packet loss if the communication channel is not configured correctly.

	Using Polling
	SP does not need to open ports for ingress traffic.
	Multiple polling requests, if the IDGW is not ready with the data; thus, causing delays.
Greater network traffic and number of round trips compared to notification.
Potential loss of critical information / packet loss with the IDGW unable to verify that tokens have been received successfully by the SP and that they are error-free. 


[bookmark: _Ref526414294]: Advantages and Disadvantages of Different Token Retrieval Mechanisms
Server-Initiated mode MUST only be used where its use has been pre-agreed and configured for both participating servers (i.e., the SP server application and the Operator IDGW). In other words, an SP must register for Server-Initiated mode using Notification or Server-Initiated mode using Polling with the Operator.
[bookmark: _Toc535503357][bookmark: _Toc535504622][bookmark: _Toc21942600]Endpoints for Server-Initiated Mode
The following Endpoints are specified to support Server-Initiated mode. IDGW Endpoints are published within the IDGW Provider Metadata, specified in [19].
For Mobile Connect Server-Initiated requests, the Operator IDGW MUST only support use of the HTTP POST method and the request MUST be a signed request object as described in Section 6 of the OIDC Core Specification [2]. 
[bookmark: _Toc518572481][bookmark: _Ref490234264][bookmark: _Toc489349799]Mobile Connect Server-Initiated Authorization Endpoint 
The Server-Initiated Authorization Endpoint is provided by the serving Operator and is published as part of the Mobile Connect Provider Metadata which can be obtained by a SP via the Mobile Connect Discovery API.
Mobile Connect recommends maintaining a separate authorization endpoint value for SI mode services. However, Operators who have infrastructure dependencies can use single Authorization Endpoint for Device-Initiated and Server-Initiated Requests. Where a separate Server-Initiated Authorization Endpoint is in use, the RECOMMENDED value of the name for provider metadata is “si-authorize”.
e.g., https://operator.example.com/mc/si-authorize/ 
[bookmark: _Toc489349800]The SP MUST use TLS[footnoteRef:5] (Transport Layer Security) [9] to access the Mobile Connect Server-Initiated Authorization Endpoint. [5: 
] 

The SI Authorization Endpoint URI SHOULD follow the OAuth2.0 endpoint URI format as described in Section 3.1 of RFC 6749 [7]. 
Service Provider Notification Endpoint (when using Notification for Token Retrieval)
The SP’s Notification Endpoint is registered at the Operator IDGW during SP registration and is provided by the SP in the OIDC Authorization Request. It is used by the Operator IDGW to return the Token Response to the SP. Once an SP has submitted an OIDC Authorization Request and has received an OIDC Authorization Response (acknowledgment) from the Operator IDGW, it monitors the notification endpoint for a response. It requires the request to be authenticated as described in [5]. For a given client_id, the SP can register multiple Notification Endpoints during SP registration. 
[bookmark: _Toc517942508]Mobile Connect Server Initiated Polling Endpoint (when using Polling for Token Retrieval)
The Server-Initiated Polling Endpoint is provided by the serving Operator and is published as part of the Mobile Connect Provider Metadata which can be obtained by a SP via the Mobile Connect Discovery API.
The SP submits a Polling Request (Token Request) to the Polling Endpoint at regular intervals to request a Token Response.
The serving Operator returns the tokens in response to the Polling Requests with a response containing ID Token and Access Token. 
It requires the Polling Request to be authenticated as described either using a private_key_jwt as specified in the OIDC Core Specification [2] or using mTLS[footnoteRef:6]. mTLS implementation details are not in the scope of this specification.   [6:  Mutual Transport Layer Security (mTLS). There is no standard specified for mTLS. There might be several infrastructure setups to support mTLS. The implementation details are out of scope of this specifications.  Operator and SP must negotiate offline to support mTLS. 
] 


[bookmark: _Toc535503358][bookmark: _Toc535504623][bookmark: _Toc21942601]Protocol Flow Using Notification 
[image: ]
[bookmark: _Ref518573078]: Mobile Connect Server-Initiated Flow Using Notification
Figure 3 illustrates the Server-Initiated asynchronous flow using Notification to obtain the ID Token, Access Token and Refresh Tokens directly and is optimised for trusted Clients. The SP MUST initiate the service requests from the SP Server (SP Client) using the OIDC signed request object. No re-direction via the user agent on a Consumption Device is involved. 
This specification details the parameters involved in the OIDC Authorization Request and Response (Acknowledgement) and the Token Response and Acknowledgement for Server-Initiated mode using Notification. Note that it is assumed that the SP already has all the relevant details about the serving Operator’s IDGW which have been cached from a previous service request or have been obtained via the Mobile Connect Discovery Service [22].
The high-level flow is as follows:
· The SP prepares the OIDC Authorization Request including a response type, client id, required LoA, the requested scope(s) and a “request”. The request is in the form of a signed request[footnoteRef:7] object which incorporates the details of the request. The SP needs to register the jwks_uri to enable the IDGW to validate the signature. The SP sends the OIDC Authorization Request to the Server-Initiated Authorization Endpoint at the Operator IDGW. Server-Initiated mode using Notification is requested by setting the response_type value to “mc_si_async_code". [7:  Refer to OIDC specs more information on request object. ] 

· The Operator IDGW validates the signed request object using the SP’s jwks_uri and public keys. It then immediately returns an OIDC SI Authorization Response (HTTP 200 OK response) to the SP and acknowledges that the request is in progress. The response includes an “auth_req_id” which allows the requests and responses to be correlated, an “expires_in” parameter which provides a timeout for the requests and provides an indication to the SP of the period for which it should monitor its Notification Endpoint. If the SP included a “correlation_id” in the OIDC Authorization Request then this is also returned. The SP starts listening to the SP’s notification endpoint.
· The Operator IDGW selects the appropriate authenticator for the requested LoA and prompts the User to authenticate, authorize or optionally to give their consent to the sharing of User information (attributes) with the SP on their mobile device[footnoteRef:8].  [8:  Note that there are use cases where consent capture from the end-user is managed by the SP and not explicitly requested by the Operator via their authentication device (i.e. mobile device). In those cases, the SP submits the consent proof to Operator using an offline business process (implementation details are out of the scope of this specification).] 

· The Operator IDGW returns the Token Response, (including an ID Token [JWT], Access Token, and optional Refresh Token), by pushing a notification to the registered Notification Endpoint. The SP Notification Endpoint authenticates the IDGW using the client_notification_token value as the bearer token. 
· The SP validates the Token Response, extracts the PCR and issuer iss and stores in the User’s profile. The SP acknowledges the response through either HTTP 204 or 200. It MAY return an error if validation fails. 
· Where requested (via the OIDC Authorization Request). the SP can then call the relevant resource endpoint (PremiumInfo or Mobile Connect Service-Specific Endpoint) by submitting the received Access Token to retrieve the requested attributes / claims (not shown in Figure 3). 
[bookmark: _Toc535503359][bookmark: _Toc535504624][bookmark: _Toc21942602]Protocol Flow Using the Polling
Figure 4 illustrates the Server-Initiated asynchronous flow where the tokens are retrieved using a Polling mechanism. This specification details the parameters involved in the OIDC Authorization Request and Response and in the Polling Request (or Token Request) and Response (or Token Response) for Server-Initiated mode using Polling. 
[image: ]
[bookmark: _Ref526580770]: Mobile Connect Server-Initiated Flow Using Polling
The high-level flow is as follows:
· The SP prepares and submits the OIDC Authorization Request including a response type, client id, required LoA, the requested scope(s) and a “request”. Server-Initiated mode using Polling is requested by setting the response_type value to “mc_si_polling".
· The Operator IDGW validates the request parameters and signed request object using the SP’s jwks_uri and public keys. It then immediately returns an Authorization Response (HTTP 200 OK response) to the SP and acknowledges that the request is in progress. The response is the same as for SI mode using Notification except that an additional “interval” parameter is returned which provides an indication to the SP of the minimum interval before submitting a Polling Request.
· Where required, the Operator IDGW selects the appropriate authenticator for the requested LoA and prompts the User to authenticate, authorize or optionally to give their consent to the sharing of User information (attributes) with the SP on their mobile device. 
· SP submits a signed Polling Request to the IDGW Polling Endpoint to retrieve tokens.
· If the response is ready, the Operator IDGW returns the response, i.e. the ID Token, Access Token, and optional Refresh Token, by responding to the polling request. If tokens are not ready then a polling response is provided indicating the situation and the SP then waits for at least an “interval” of time before submitting a Polling Request again.
· The SP validates the Polling (Token) Response, extracts the PCR and issuer ID and stores them in the User’s profile.
· Where requested (via the OIDC Authorization Request). the SP can then call the relevant resource endpoint by submitting the received Access Token to retrieve the requested attributes / claims (not shown in Figure 4). 
1. [bookmark: _Toc489349804][bookmark: _Toc535503360][bookmark: _Toc535504625][bookmark: _Toc21942603]Service Provider Client Registration – Required Information.
The SP MUST first register the appropriate credentials for their client applications with the Operator IDGW through the Mobile Connect Developer Portal [23] and API Exchange [22]. If an Operator is acting as an onboarding agent for SPs, the SPs register their services/applications with the Operator who then populates the API Exchange accordingly. 
Table 2 defines the information that MUST be specified during SP registration to support Server-Initiated mode. Further details on SP registration can be found in [23].
	Registration Parameter Name 
	Usage Category
	Description

	sector_identifier_uri
	REQUIRED
	The value of the sector_identifier_uri[footnoteRef:9] MUST be a URL using the https scheme that references a file with a single JSON array of jwks_uri values for polling and / or SP notification_uri values for notification mode. It can also include redirect_uri for DI mode.  [9:  The previous version of Mobile Connect profile was considering 'host part of the redirect_uri should be same' for grouping SP applications to have consistent PCR value. This is deprecated since it has potential issues if SP hosts redirect URIs using multiple domain names, thus not allowing to group them to have same PCR value. The new sector_identifier_uri concept resolves them. ] 

It provides a way for a group of services under common administrative control to have consistent PCR values independent of the individual domain names. It also provides a way for SPs to change service domains without having to re-register all their Users. 
The values MUST be included in the elements of the array, or registration MUST fail. This MUST be validated at SP on-boarding time. If it is not registered then the registration process MUST throw an error. 

Mobile Connect Providers MUST utilize the sector_identifier_uri.

	jwks_uri
	REQUIRED
	The URL for the SP’s JSON Web Key Set [15] document that lists the signing keys that the IDGW uses to validate signatures from the SP. Only asymmetric signatures are supported[footnoteRef:10]. [10:  The current version of Mobile Connect supports signing of the request object but does not specify encryption of the request object.] 

e.g. https://mc-sp.example.com/mc/jwks_uri.json

All Server-Initiated Mobile Connect service requests MUST be submitted using an OIDC signed Request Object [2]. 

For the polling mechanism, the polling request will be signed using one of the keys from this JSON file using the mechanism as listed in OIDC Core Specification [2]

	request_object_signing_alg
	REQUIRED
	The algorithm that MUST be used for signing the Request Objects sent to the IDGW. This algorithm MUST be used when the Request Object is passed by value (using the request parameter). All Request Objects from this SP MUST be rejected, if not signed with this algorithm. 
The possible algorithms are defined in the alg header parameter values (JOSE Header) for the JWS [16] (See also the JWA specification [14]). It is RECOMMENDED that the IDGW supports the RS256 signing algorithm, as a minimum.

	notification_uris
	OPTIONAL 
[REQUIRED for notification mode]
	An array of Notification URI values. The  notification_uri parameter value used in each OIDC Authorization Request MUST exactly match a uri element within the notification_uris array, with the matching performed as described in Section 6.2.1 of RFC 3986 (Simple String Comparison) [11].


[bookmark: _Ref518659500]: SP Metadata for SP Client Registration (Server-Initiated Mode)
[bookmark: _Toc489349820][bookmark: _Toc535503361][bookmark: _Toc535504626][bookmark: _Toc21942604]OIDC Authorization Request
For Server-Initiated mode, an OIDC Authorization Request is submitted to the Operator’s IDGW SI Authorization Endpoint.
The communication with the IDGW MUST use HTTPS/TLS.
The request MUST use POST as specified in Section 4 of the OIDC MODRNA Client Initiated Backchannel Authentication Flow specification [5]
The SP MUST use a signed Request Object (JWT) as specified in Section 6 of the OIDC Core Specification [2].
[bookmark: _Toc535503362][bookmark: _Toc535504627][bookmark: _Toc21942605][bookmark: _Toc489349821]OIDC Authorization Request Parameters 
Table 3 lists the parameters to be included within a Server-Initiated OIDC Authorization Request. 
	Parameter
	Usage Category
	Description

	response_type
	REQUIRED
	For Mobile Connect Server-Initiated requests using Notification, the value MUST be “mc_si_async_code”

For Mobile Connect Server-Initiated requests using Polling, the value MUST be “mc_si_polling”.

The value MUST match with the value in the Request Object as defined in Table 4. 

	client_id
	REQUIRED
	The value MUST match with the value in the Request Object as defined in Table 4. 

	scope
	REQUIRED
	The value MUST match with the value in the Request Object as defined in Table 4. 

	request
	REQUIRED
	This parameter contains a Request Object which enables Mobile Connect service requests to be passed in a single, self-contained parameter and to be signed. It represents the request as a JWT whose Claims are the OIDC Authorization Request parameters. The Request Object MUST be signed.
For more information see Section 6 of the OIDC Core Specification [2]. [footnoteRef:11] [11:  Mobile Connect does not adopt all the OIDC concepts listed for authorization requests as a JWT in the OIDC Core Specification. It adopts the OIDC signed request object concepts partially (i.e. only “request” is supported, but not request_uri etc.), and usage categories are changed from OPTIONAL to MANDATORY. Plain request objects and encrypted request objects are not supported.] 
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[bookmark: _Toc535503363][bookmark: _Toc535504628][bookmark: _Toc21942606]The Signed Request Object
Server-Initiated OIDC Authorization Requests MUST use a signed Request Object to specify the parameters of the request. Only the request parameter is supported. OIDC Authorization Requests using the parameters detailed in Table 4 are represented as a JWT, which are respectively passed by value.
The request parameter, described in the Section 6.3.3 of the OIDC Core Specification [2], MUST be passed using this JWT. Support for the request parameter is REQUIRED in Mobile Connect. 
The request parameter MUST be signed, and it represents the request as a JWT, whose claims are the OIDC Authorization Request parameters specified in Section 6.3.3 of the OIDC Core Specification [2]. 
Values for the scope, response_type and client_id parameters MUST be included using the OAuth2.0 request syntax. The values for these parameters MUST match those in the Request Object; i.e.: these parameters MUST exist both in the OIDC Authorization request and signed request object. Comparing both the values will yield more security. 
The Request Object MUST contain the iss [issuer of the Request Object, i.e. SP client ID] and aud [IDGW’s issuer ID obtained through Mobile Connect Discovery]. 
The request parameter MUST NOT be included in the Request Object as specified section 6.1 of OIDC Core [2]. 
[bookmark: _Toc489349823]Authorization Request Signatures
Depending on the communication channel through which the Mobile Connect service requests are sent, the integrity of the requests MUST be guaranteed by utilizing JSON Web Signature (JWS) [16] to sign the contents. The SP declares its required signing algorithms and its public keys during the SP onboarding process by registering a jwks_uri and request_object_signing_alg as specified in Table 2. 
Signing 
Mobile Connect only supports asymmetric signatures for Server-Initiated requests. The RECOMMENDED signing algorithm is RS256, but the signing algorithm can be negotiated offline between the SP and the IDGW. 
When using Signatures, the alg Header Parameter value of the JOSE Header MUST be set to an appropriate algorithm as defined in JSON Web Algorithms (JWA) [14]. The private key used to sign the content MUST be associated with a public key used for signature verification published by the SP in its JWK set. If there are multiple keys in the referenced JWK set [15], a kid value MUST be provided in the JOSE Header. The key usage of the respective keys MUST support signing.
Further information including a RECOMMENDED approach for rotating asymmetric signing keys refer can be found in Section 10 of the OIDC Core Specification [2].
0. [bookmark: _Toc535503364][bookmark: _Toc535504629][bookmark: _Toc21942607]Request Object Parameters
Table 4 describes the Mobile Connect Server-Initiated request parameters that MUST be included within the signed Request Object (included in the SI OIDC Authorization Request as the request parameter). The IDGW MUST first process parameters listed in the Request Object. The parameters, MUST use the OAuth2.0 request syntax [7].
Note that two parameters relate to Server-Initiated Requests using Notification to retrieve the Token Response and are not required when Polling is used.
	Parameter
	Usage Category
	Description

	response_type
	REQUIRED
	· The OAuth 2.0 Response Type value that determines the authorization processing flow to use, including the parameters, returned from the endpoints used.
· For Server-Initiated requests using Notification, the value MUST be “mc_si_async_code" to indicate that it is a Server-Initiated request with asynchronous flow. This value indicates to the IDGW to return both an Access Token and an ID Token by sending a notification.
· For Server-Initiated requests using Polling, the value MUST be “mc_si_polling". This value indicates to the IDGW to return both an Access Token and an ID Token in response to a Polling Request (Token Request).

	client_id
	REQUIRED
	OAuth 2.0 Client Identifier MUST be globally unique and needed for an OIDC Authorization Request which is valid at the IDGW Authorization Server.

	scope
	REQUIRED
	A space delimited and a case-sensitive list of ASCII strings for OAuth 2.0 scope values. Mobile Connect OIDC Authentication Request MUST contain the scope value “openid” followed by other values depending on the specific Mobile Connect products/services being requested. 
For Mobile Connect “openid mc_authn” is the default scope value.

	version 
	REQUIRED 
	It is a plain string and value used to identify the profile version. This is always used in conjunction with the scope parameter values. 
Note:  Since, SI profile first version is Siv1.0. There is no backwards compatibility.   
See [19] for allowed values.

	nonce
	REQUIRED

	A string value used to associate a client session with the ID Token. It is passed unmodified from Authorization Request to ID Token. The value SHOULD be unique per session to mitigate replay attacks.

	prompt 
	OPTIONAL
	Space delimited, case-sensitive ASCII string values to specify to the Authorization Server whether to prompt or not for re-authentication and consent.
The value can only be:
login: Must prompt the user for re-authentication or consent. In case it is not possible, an error MUST be returned.
none : MUST NOT display any UI for re-authentication or consent to the user. If the user is not already authenticated or authentication or consent is needed to process the Authorization Request, a login_required error is returned. This can be used as a mechanism to check existing authentication or consent
If scope is "openid mc_authz" the Authorization server MUST always prompt the User for Mobile Connect Authorisation using context, binding_message and client_name parameters which must override any setting in the prompt parameter.

	max_age
	OPTIONAL
	Specifies the maximum elapsed time in seconds since the last authentication of the User. If the elapsed time is greater than this value, a re-authentication MUST be attempted. When this parameter exists in the request, the ID Token MUST contain the auth_time claim value.

	ui_locales
	OPTIONAL
	Space separated list of User preferred languages and scripts for the UI as per RFC5646[12]. This parameter is for guidance only and in the case of unsupported locales, IDGW Authorization Server SHOULD NOT return an error.
If scope value is "openid mc_authz" and a value is present the Mobile Connect Provider MUST consider this value for processing the context parameter.
For instance, the value "fr-CA fr en" represents a preference for French as spoken in Canada, and then French (without a region designation), followed by English (without a region designation). An error SHOULD NOT result if some or all of the requested locales are not supported by the OpenID Provider. For more information see Reference [2].

	claims_locales
	OPTIONAL
	Space separated list of User preferred languages and scripts to return the Claims as per RFC5646 [12]. This parameter is for guidance only and in the case of unsupported locales, IDGW Authorization Server SHOULD NOT return an error.

	id_token_hint
	OPTIONAL
	Used in conjunction with prompt=none to pass the previously issued ID Token as a hint for the current or past authentication session. If the User is logged in and the ID Token is still valid, then the server returns a positive response, otherwise, SHOULD return a login_error response. For the ID Token, the server need not be listed as an audience, when included in the id_token_hint.
However, the server SHOULD respond successfully when possible, even if it is not present.
If scope is "openid mc_authz" this value MUST be ignored. IDGW Authorization Server MUST always display an authorization prompt to the User for approval.

	login_hint
	RECOMMENDED [REQUIRED if login_hint_token does not exist]
	An indication to the IDGW Authorization Server on what ID to use for login.
The login_hint can contain the MSISDN, encrypted MSISDN or PCR. The format MUST be as MSISDN:<Value,ENCR_MSISDN:<Value and PCR:<value
The usage to transport the encrypted MSISDN will be deprecated in future releases, Instead login_hint_token will be used. 

	login_hint_token
	OPTIONAL  [ REQUIRED if login_hint does not exist] 
	The "login_hint_token" is used to transport a User identifier (MSISDN for Mobile Connect) from the Discovery Servicer to the Operator IDGW without revealing the identifier to the SP Client [5]. The "login_hint_token" is an encrypted JSON Web Token (JWT) [13]. This token is typically created if a User has entered an MSISDN during the discovery process, and, if present, SHALL be used by the Client as login hint with the particular Operator.

	acr_values

	REQUIRED

	Authentication Context Class Reference. Space separated string that specifies the Authentication Context Reference used during authentication processing. 
The acr_values are an indication of what level of assurance (LoA) is required and therefore which Authenticator should be selected by the IDGW.
The SP Client can request Levels of Assurance in order of preference for a particular use case. Depending upon which Levels of Assurance are supported in the IDGW, the  IDGW MUST consider only the first supported value in the list and ignore remaining values whilst processing the request. 
Possible values for acr_values are defined in the Mobile Connect Technical Architecture and Core Requirements document [19].
IDGW Authorization Server MUST return the achieved level of assurance in the acr claim in the ID Token.

	binding_message
	OPTIONAL 
[REQUIRED if scope = “openid mc_authz”] 
	Client provided plain text, "reference or ID" to interlock consumption device and authorization device for a better User experience and User assurance. The SP should provide the value of binding_message to the end-user wherever possible.  Empty values are allowed. (zero length)
binding_message MUST be provided by the SP Client if scope = "openid mc_authz”.

	client_name
	OPTIONAL [REQUIRED if scope = “openid mc_authz”] 
	A short name to identify SP Client Application. 
It MUST be displayed on the Authentication Device. 
Client_name MUST be provided by the SP Client in the following scenarios. 
if scope = “openid mc_authz” i.e. all Mobile Connect Authorisation services. 

	context
	OPTIONAL
[REQUIRED if scope = “openid mc_authz”] 
	A transaction / action-based message displayed on the Authentication Device to provide context to the transaction. 
context  MUST be provided by the SP Client if scope = "openid mc_authz”. 

	claims
	OPTIONAL
	Within Mobile Connect this parameter is used to specify specific claims and associated values to be returned from the relevant Resource Endpoint in the context of a requested Mobile Connect service (via the scope parameter). The value is a JSON object listing the requested claims. Claim values can be in plain text or in a hashed form. This is only used for the Mobile Connect KYC Match services. New services will make use of the mc_claims parameter included within a Resource Request.

	correlation_id
	OPTIONAL
	This parameter is  generated by the SP only. It is used to correlate transactions across Mobile Connect components (Discovery, Mobile Connect Profile requests, IDGW internal components etc.,). It MUST be locally unique.

	iss
	REQUIRED
	The issuer ID SHOULD be the Client ID of the SP, unless it was signed by a different party than the SP. 

	aud
	REQUIRED
	The aud value SHOULD be or include the IDGW’s issuer identifier URL, obtained through the Mobile Connect Discovery API. 

	client_notification_token
	REQUIRED (for Notification Mode only)
	A unique token provided by the Client that will be used by the IDGW as a bearer token to authenticate the call-back request to send the tokens to the Client (Notification Mode) . See Section 4.1 of the OIDC MODRNA Client initiated Backchannel Authentication Flow [5]

	notification_uri
	REQUIRED (for Notification Mode only)
	Notification URI to which the tokens will be sent. The URI MUST exactly match one of the notification URI value for the SP pre-registered at the time of onboarding. The matching MUST be performed as described in Section 6.2.1 of RFC 3986. When using the Server-Initiated flow the notification URI MUST use the HTTPS scheme. 
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OIDC scope values determine the specific Mobile Connect services being requested by the SP, subject to the SP being registered to use those services. 
The Mobile Connect OIDC Authorization Request MUST contain the scope parameter which is a space delimited, case-sensitive list of ASCII strings (scope values). The scope values MUST include “openid”, to indicate that the request is an OpenID Connect request, followed by other values depending on the specific Mobile Connect services being requested. Multiple scope values can be requested simultaneously, subject to the SP being registered to use those “scopes”. 
Scope values are defined for each Mobile Connect service in the relevant service “Definition and Technical Requirements” document.
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The Operator IDGW SHOULD process the Server-Initiated OIDC Authorization Request as specified in the OIDC MODRNA Client Initiated Backchannel Authentication Flow [5] and Section 3.1.6 in the OIDC Core Specification [2]. When signed request object parameters are used, the following additional steps MUST be performed by the Operator IDGW to validate the Mobile Connect request: 
Confirm that the response_type value is either “mc_si_async_code” or “mc_si_polling”. 
Confirm that the notification endpoint ( notification_uri ) matches one of the values in the notification_uris that was registered by the SP requesting the Mobile Connect service. If not, then an error MUST be returned. 
Confirm that the SP is registered for Server-Initiated mode using Notification or Server-Initiated mode using Polling. If not then an error MUST be returned.
Validate and process the signed request object[footnoteRef:12], i.e. signature validation and assembly and validation of the parameters in the Request Object.  [12:  Encrypted request object is not required by Mobile Connect. ] 

[bookmark: _Toc535503367][bookmark: _Toc535504632][bookmark: _Toc21942610]Signature Validation 
The IDGW MUST perform signature validation: the alg Header Parameter in the JOSE Header MUST match the value of the request_object_signing_alg which was set during the SP registration process. The signature MUST be validated against the appropriate key for that client_id and algorithm. The IDGW MUST return an invalid_request error if signature validation fails. (See Section 6 of the OIDC Core Specification [2]). 
[bookmark: _Toc535503368][bookmark: _Toc535504633][bookmark: _Toc21942611]Validation and Assembly of Request Parameters 
The IDGW MUST assemble the set of Authorization Request parameters to be used from the Request Object value and the other SI OIDC Authorization Request parameters (minus the request parameter itself). If the same parameter exists both in the Request Object and the OIDC Authorization Request parameters, the parameter in the Request Object is used. Using the assembled set of Authorization Request parameters, the Authorization Server then validates the request. (See Section 6.3.3 of the OIDC Core Specification [2]). 
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The Operator IDGW MUST return Server-Initiated specific values as described in Table 5. In the case of the Mobile Connect service request failing, the Operator IDGW Authorization Server MUST return an error in the OIDC Authorization Response as described in Table 11. 
After receiving and validating a valid and signed OIDC Authorization Request from the SP, the IDGW returns a successful response that includes HTTP 200 OK response to the SP to indicate that the Mobile Connect service request is validated and accepted. The response uses the application/json media type. 
	Parameter
	Usage Category
	Description

	auth_req_id
	REQUIRED
	Unique per request-based ID, for more details refer to [5]. 

	expires_in
	REQUIRED
	Expiration time of auth_req_id. For more details refer to [5]. The expires_in value MUST be equal to the timeout value for the SP Notification Endpoint (i.e. the maximum time an SP will wait to receive a notification from the IDGW). Any notification after this interval MUST be discarded. 

	correlation_id
	OPTIONAL 
[REQUIRED if provided in the OIDC Authorization Request]
	The correlation_id submitted through the OIDC Authorization Request, if present.

	interval
	OPTIONAL 
[REQUIRED if the SP is registered for Polling]
	The minimum amount of time in seconds that the SP Client SHOULD wait between polling requests to the Polling Endpoint. This parameter exists, if the SP is registered for use of polling and the respose_type value in the OIDC Authorization Request is "mc_si_polling". 


[bookmark: _Toc489349875][bookmark: _Ref526348958][bookmark: _Toc442950522]: Authorization Response Parameters 
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The use of Notification or Polling distinguishes how Tokens can be retrieved from the IDGW Authorization Server as a result of a successful Authorization in Server-Initiated mode.
[bookmark: _Toc535503371][bookmark: _Toc535504636][bookmark: _Toc21942614]Token Retrieval Using Notification
The Operator IDGW MUST generate the notification request  that contains tokens which is sent to the SP’s Notification Endpoint. The Token Response SHALL comply with that specified in the OIDF CIBA Notification Flow [5]. 
The SP must authenticate the IDGW  using the client_notification_token value provided to the IDGW in the Mobile Connect OIDC Authorization Request. 
Table 6 lists the parameters to be included within the Token Response after a successful OIDC Authorization: 
	Parameter
	Required Category in Profile
	Description

	auth_req_id
	REQUIRED
	The auth_req_id received from the Operator IDGW Authorization Server, because of the successful OIDC Authorization Request. For more details refer [5]. 

	access_token
	REQUIRED
	OAuth 2.0 access_token used to get the PremiumInfo/ User Info object from the PremiumInfo endpoint and can be reused for accessing other protected resources, if required. This parameter MUST be utilized using either the Authorization header field or a form-encoded POST body parameter.

	token_type
	REQUIRED
	MUST be "bearer" as defined in RFC 6749 section 7.1 [7] and RFC6750 [8], unless another token_type value as agreed between the SP Client and IDGW Authorization Server. For the Mobile Connect Profile, token_type=bearer is the RECOMMENDED value.

	id_token
	REQUIRED
	An additional security token used in OIDC to provide Claims about the Authentication of a User and potentially other requested Claims. The format of the ID Token is a JSON Web Token (JWT).

	expires_in
	REQUIRED
	Expiration time of the Access Token in seconds since the response was generated.

	refresh_token
	OPTIONAL
	OAuth 2.0 refresh token to get a new Access Token using the same authorization grant through a grant_type parameter.

	correlation_id
	REQUIRED [if provided in the OIDC Authorization Request]
	The correlation_id submitted through the OIDC Authorization Request, if present. 
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On receipt of the Token Response from the Operator IDGW, the SP MUST send either an HTTP 204 or an HTTP 200 OK response as an acknowledgement. The IDGW MUST ignore the content if 200 OK is received. 
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The SP MUST generate the polling request as specified in [5] using the private_key_jwt method and encoding scheme defined in the Section 9 of the OIDC Core Specification [2]. 
By default the SP should send the polling request using the private_key_jwt method but as an alternative mechanism, mTLS[footnoteRef:13] can also be used. Infrastructure setup for mTLS and implementation of mTLS are out of scope of this specification. Table 7 specifies the Polling Request parameters. [13:  There is no standard specified for mTLS. There might be several infrastructure setups to support mTLS. The implementation details are out of scope of this specification.  Operator and SP must negotiate offline to support mTLS. ] 

	Parameter
	Usage Category
	Description

	client_assertion_type
	REQUIRED
	The value must be "urn:ietf:params:oauth:client-assertion-type:jwt-bearer".

	client_assertion
	REQUIRED 
	The JWT that contains relevant parameters as specified in Table 8. 

	correlation_id
	OPTIONAL [REQUIRED if provided in the OIDC Authorization Request
	The correlation_id submitted through the OIDC Authorization Request, if present.

	auth_req_id
	REQUIRED
	The auth_req_id received from the Operator IDGW Authorization Server in the Authorization Response/Acknowledgement, because of the successful authorisation request. For more details refer to [5].

	client_id
	REQUIRED 
	OAuth 2.0 Client Identifier MUST be globally unique and needed for an OIDC Authorization Request which is valid at the IDGW Authorization Server. 

	grant_type
	REQUIRED 
	For all Polling Requests the value of the grant_type parameter MUST have the value:
"urn:openid:params:mc:grant‑type:server_initiated".


[bookmark: _Ref526768554]: Polling Request Parameters
Table 8 lists all the parameters that MUST be included the client_assertion JWT.  The assertion is only valid for a single Polling Request and a new client assertion MUST be generated for each polling request. Further details can be found in the OIDC Core Specification [2].
	Parameter
	Usage Category
	Description

	iss
	REQUIRED
	This MUST contain the client_id (issuer) of the SP that is registered with the IDGW.  

	sub
	REQUIRED 
	The value MUST contain the client_id of the SP that is registered with the IDGW. 

	aud
	REQUIRED 
	The value MUST be the polling endpoint of the IDGW. The value identifies the IDGW as an intended audience for this token. 

	jti
	REQUIRED 
	The value must be a GUID (globally unique identifier), which is used to prevent reuse of the JWT.

	exp
	REQUIRED 
	The expiration time on or after which the ID Token and Access Tokens MUST NOT be accepted for processing. 
If the expiration time is elapsed then the IDGW must return an error, instead of processing the request.

	iat
	REQUIRED 
	The JWT Creation time. It should be used in conjunction with exp parameter to determine whether to process the request to return ID Token and Access Token.


[bookmark: _Ref526353466]:Client Assertion JWT Parameters
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Table 9 shows the parameters that are reurned in the Token Response (or Polling Response) when using the Polling mechanism for Token retrieval. 
	Parameter
	Required Category in Profile
	Description

	access_token
	REQUIRED
	OAuth 2.0 Access Token used to get the PremiumInfo/ User Info object from the PremiumInfo endpoint and can be reused for accessing other protected resources, if required. This parameter MUST be utilized using either the Authorization header field or a form-encoded POST body parameter.

	token_type
	REQUIRED
	MUST be "bearer" as defined in RFC 6749 section 7.1 [7] and RFC6750 [8], unless another token_type value as agreed between the SP Client and IDGW Authorization Server. For the Mobile Connect Profile, token_type=bearer is the RECOMMENDED value.

	id_token
	REQUIRED
	An additional security token used in OIDC to provide Claims about the Authentication of a User and potentially other requested Claims. The format of the ID Token is a JSON Web Token (JWT).

	expires_in
	REQUIRED
	Expiration time of the Access Token in seconds since the response was generated.

	refresh_token
	OPTIONAL
	OAuth 2.0 refresh token to get a new Access Token using the same authorization grant through a grant_type parameter.

	correlation_id
	OPTIONAL [REQUIRED if provided in the OIDC Authorization Request]
	The correlation_id submitted through the OIDC Authorization Request, if present.


[bookmark: _Ref526355147]: Token Response (Polling)

2. [bookmark: _Toc535503376][bookmark: _Toc535504641][bookmark: _Toc21942619]ID Token
The primary extension that OpenID Connect makes to OAuth 2.0 in order to enable Users to be Authenticated is the ID Token data structure. The ID Token is a security token that contains Claims about the Authentication of a User by an Authorization Server when using a Client, and potentially other requested Claims. It is returned along with the Access Token.
The ID Token is represented as a JSON Web Token (JWT) [13] and is created and returned by the IDGW. The JWT is signed by the IDGW using JSON Web Signatures (JWS) [16]. See also the OIDC Core Specification [2].
Table 10 describes the contents of the ID Token for Mobile Connect Server-Initiated Mode.
	Parameter
	Required Category in Profile
	Description

	iss
	REQUIRED
	Issuer Identifier. It is a case-sensitive HTTPS based URL, with the host. It MAY contain the port and path element (OPTIONAL) but no query parameters.

	sub
	REQUIRED
	Subject identifier. A globally unique identifier for the User to work in a federated environment. It is a case-sensitive ASCII string with a maximum length of 255. The sub value MUST not contain the MSISDN. Within Mobile Connect this is populated by a Pseudonymous Customer Reference (PCR) which is a system-facing unique identifier that links a User’s MSISDN to a SP (SP). It is generated by the IDGW. This is defined in Mobile Connect Techncial Architecture and Core Requirements [19].

	aud
	REQUIRED
	The intended audience for the ID Token. It is an array of case-sensitive strings. It MUST contain the client_id of the SP Client, and MAY contain identifiers of other OPTIONAL audiences.
If there is one audience, the aud value MAY be a single case-sensitive string OR an array of case-sensitive strings with only one element. An implementation MUST support both scenarios.

	exp
	REQUIRED
	The expiration time after which the ID Token MUST NOT be accepted for processing. The format is the number of seconds from 1970-01-01T0:0:0Z as measured in UTC until the date/time specified.
If scope = "openid mc_authz", the implementor MUST give the lowest possible time but no more than a few minutes. The processing of this parameter requires that the current date/time MUST be before the expiration date/time listed in the value. See RFC 3339 [10] for details regarding date/times in general and UTC in particular.

	iat
	REQUIRED
	The time of issue of the ID Token. The format is the number of seconds from 1970-01-01T0:0:0Z as measured in UTC until the date/time specified.

	auth_time
	REQUIRED
	Time of User authentication or authorization. The format is the number of seconds from 1970-01-01T0:0:0Z as measured in UTC until the date/time specified. See RFC 3339 [10] for details regarding date/times in general and UTC in particular.

	nonce
	REQUIRED

	Opaque string value to associate the SP Client session with the ID Token, to avoid the replay attacks.
The nonce value MUST be same as the nonce used in the Authorization request.

	at_hash
	REQUIRED
	A base64url encoded value of the hash of the access_token The OIDC Core Specification, Section 3.1.3.6 [2] describes the process for generating the Access Token hash value (at_hash).

	acr
	REQUIRED

	Authentication context class reference. This is a case-sensitive string, representing the achieved authentication by the IDGW Authorization Server. The value returned is one of the possible values for the acr_values parameter in the OIDC Authorization Request.

	amr
	REQUIRED

	Authentication Methods References. An array of case-sensitive strings to indicate the authentication method used. The possible amr values are defined in Mobile Connect Technical Architecture and Core Requirements [19].

	azp
	REQUIRED

	Authorised Party – the party to which the ID Token is issued. If present, it MUST contain the Client ID. This Claim MUST be present when the ID Token has a single audience value, and that audience is different than the authorized party. It MAY be included even when the authorized party is the same as the sole audience. The azp value is a case sensitive string containing a String or URI.

	displayed_data
	OPTIONAL 
[REQUIRED when scope is “openid mc_authz”]
	Displayed data on the Authentication Device. Value is derived by combining client_name, context and binding_message.

	dts
	OPTIONAL 
[only applicable for future PKI Mobile Connect services]
	Signature. The data signed includes displayed_data and dts_time. 

Optional extension that can be used in conjunction with a future LoA4 enabled Mobile Connect services that require a User-signed response to be returned to the SP

	upk
	OPTIONAL 
[only applicable for future PKI Mobile Connect services]
	User Public Key or User certificate / reference to the certificate. 

Optional extension that can be used in conjunction with a future LoA4 enabled Mobile Connect services that require a User-signed response to be returned to the SP

	dts_time
	OPTIONAL
[only applicable for future PKI Mobile Connect services]
	The time of signing the text. The format is the number of seconds from 1970-01-01T0:0:0Z as measured in UTC until the date/time specified. 

Optional extension that can be used in conjunction with a future LoA4 enabled Mobile Connect services that require a User-signed response to be returned to the SP

	hashed_login_hint
	REQUIRED 
	Hashed login_hint or login_hint_token value to mitigate security threats. If the request is made using login_hint, then it MUST return the hashed login hint value and if the request is made using login_hint_token then it MUST return the hashed login_hint_token value. See Mobile Connect Technical Architecture and Core Requirements [19] for more information on hashing algorithms. The SHA256 algorithm SHOULD only be used for backwards compatibility only. 

	recipient
	REQUIRED (for Notification Mode only)
	The notification URI specified in the OIDC Authorization Request. 


[bookmark: _Ref518635045]: ID Token Claims (Server-Initiated Mode)
[bookmark: _Toc535503377][bookmark: _Toc535504642][bookmark: _Toc21942620]Access Token
Access tokens are credentials used to access protected resources (User attributes). An access token is a string representing an authorization issued to the SP Client.  The string is opaque to the SP Client.  Tokens represent specific scopes and durations of access, granted by the User (through appropriate User consent), and enforced by the IDGW Resource Server and IDGW Authorization Server. Further information on the Access Token can be found in RFC6749 [7] and RFC6750 [8].
[bookmark: _Toc535503378][bookmark: _Toc535504643][bookmark: _Toc21942621]Refresh Token (OPTIONAL)
Refresh tokens are credentials used to obtain access tokens.  Refresh tokens are issued to the client by the authorization server and are used to obtain a new access token when the current access token becomes invalid or expires.
A refresh token is a string representing the authorization granted to the client by the resource owner.  The string is usually opaque to the client.  The token denotes an identifier used to retrieve the authorization information.  Unlike access tokens, refresh tokens are intended for use only with the Authorization Server and are never sent to Resource Servers.
Further information can be found in RFC6749 [7]
1. [bookmark: _Toc516762006][bookmark: _Toc535503379][bookmark: _Toc535504644][bookmark: _Toc21942622]Security Considerations 
The security considerations listed in the OIDF specifications SHALL be considered in the Mobile Connect implementation:
· Section 16, OIDC Core Specification [2]. 
· Section 7, OIDC MODRNA Client-Initiated Backchannel Authentication Flow [5].


[bookmark: _Ref519245260][bookmark: _Toc535503380][bookmark: _Toc535504645][bookmark: _Toc21942623][bookmark: _Toc489349855]Generic[footnoteRef:14] Error Codes and Descriptions for Server-Initiated Mode [14:  Generic means that they apply irrespective of the specific Mobile Connect service – Service-specific error codes and descriptions (if any) are defined in the relevant service “Definition and Technical Requirements” document] 

[bookmark: _Toc535503381][bookmark: _Toc535504646][bookmark: _Toc21942624]Authorization Response – Error Codes and Descriptions
After receiving a signed OIDC Authorization Request from the SP, the IDGW validates the request before processing the request. If there is any problem with that validation then an error response is returned. The error response uses the application/json media type with the format shown in Table 11. 
The OIDC Authorization Request error response is an OIDC Authentication Error Response as specified in Section 3.1.2.6 of the OIDC Core Specification [2] but delivered in the form of a Token Error Response as specified in Section 3.1.3.4 of [2]. 
	Parameter
	Usage Category
	Description

	correlation_id
	REQUIRED if provided in the OIDC Authorization Request
	The correlation_id submitted through the OIDC Authorization Request, if present.

	error
	REQUIRED
	Error as defined in [2]

	error_description
	REQUIRED
	Error description as defined in [2].


[bookmark: _Ref526350263]: Authorization Response – Required Fields to Report an Error
Error codes and descriptions are described in the following tables:
Table 12 lists the possible errors generated as a result of validating the basic Server-Initiated OIDC Authorization Request including errors where the parameter passed on the request does not match the equivalent parameter in the signed Request Object in the request parameter.
Table 13 lists the possible errors that arise in validating the signed Request Object parameters in the OIDC Authorization Request.
	Error Scenario
	HTTP Response
	Error code
	Error Description (Suggested Text)

	SP credentials are invalid, and the IDGW has rejected the Request
	
 401
	access_denied (or) 
invalid_client
	The client is not authorised to make Mobile Connect requests and the IDGW denies the request.

	Invalid login hint or login_hint_token
	Bad Request 400
	invalid_request
	Unable to find the corresponding Mobile Connect account.

	response_type parameter is missing
	Bad Request 400 
	Invalid_request
	REQUIRED parameter response_type is missing. 

	response_type parameter exists but value is invalid (or) 
response_type parameter exists, and the value is valid as defined in the specs, but value is not supported by the IDGW (or)
response_type parameter exists, and the value is valid, but not matching the request object response_type value. 

	Bad Request 
400
	invalid_request (or)
unsupported_response_type
	REQUIRED parameter response_type is missing (or) invalid (or) malformed request; response_type values do not match.

	client_id parameter does not exist
	Bad Request
400

	access_denied (or) 
invalid_request
	REQUIRED parameter client ID does not exist. 

	client_id parameter exists, but it has an invalid value 
	Bad Request
400
	access_denied (or) 
invalid_client
	Unknown client ID.

	client_id parameter exists, but the value does not match the request object client_id value
	Bad Request
400
	invalid_request
	Malformed request, ambiguous client ID values.

	client_id is valid, but not allowed to make Mobile Connect service requests. 
	Bad Request 400
	unauthorized_client(or) 
access_denied
	The client is not allowed to make Mobile Connect service requests. 

	scope parameter is missing 

	Bad Request 400 
	Invalid_request
	REQUIRED parameter scope is missing. 

	scope parameter exists, it does not contain "openid" 
	Bad Request 400
	invalid_scope
	REQUIRED parameter scope parameter is missing.

	scope parameter exists, but it does not match the request object scope value 
	Bad Request
400
	invalid_request
	Malformed request, ambiguous scope values.

	scope parameter exists, request scope is not supported by the Operator IDGW
	Bad Request 400 
	invalid_scope
	Service is not available. 

	scope parameter exists, IDGW has published the scope value in the provider metadata, but IDGW does not support the requested scope temporarily 
	Service Unavailable 503 
	temporarily_unavailable
	Service is not available temporarily. 

	Request object parameter does not exist (or) request object parameter exists, but value is not valid
	Bad Request
400
	invalid_request
	REQUIRED parameter request is missing.

	Signature validation of request object failed 
	Bad Request
400
	invalid_request (or) invalid_request_object 
	Malformed request, invalid signature.

	System connection problem (or) Expiration in server

	Service Unavailable 503
	server_error
	Service is not available, 

	Multiple requests for the same MSISDN sent at the same time 
	Internal Server Error 
500
	server_error
	The User is busy with another transaction. 

	Unexpected error [Internal to IDGW]
	Internal Server Error
500
	server_error
	Internal Server Error.

	IDGW time-out due to internal error. 
	Internal Server Error 
500
	server_error
	Timeout: Server internal error. 


[bookmark: _Ref519179736]: Generic Error Responses for OIDC Authorization Request Validation

	Error Scenario
	HTTP Response
	Error code
	Error Description (Suggested Text)

	MSISDN/ENCR MSISDN/ PCR provided does not belong to the Operator. 
	Bad Request
400
	access_denied
	User is not recognized. [OR] Unknown User.

	MSISDN/ENCR_MSDISDN belongs to the Operator, but Mobile Connect services are not enabled, 
Note: This applies if IDGW policy does not allow “on-the-fly” User registration 
	Bad Request
400
	access_denied
	"User is not registered" [OR] "Unknown User". 

	response_type parameter is missing or invalid
	Bad Request
400
	invalid_request
	REQUIRED parameter response_type is missing, or value is invalid. 

	client_id parameter is missing 

	Bad Request
400
	invalid_request (or) 
access_denied 
	REQUIRED parameter client_id is missing.

	
client_id parameter value is invalid
	Bad Request
400
	invalid_request (or) 
unauthorized_client (or) 
access_denied
	The client is not authorized to request an authorization code. 

	client_id is valid, but not allowed to make Mobile Connect service requests 
	Bad Request
400
	access_denied (or) 
unauthorized_client
	The Client is not allowed to make Mobile Connect service requests. 

	scope parameter is missing (or) scope value "openid" is missing (or) invalid scope values (ex: "abcd")
	Bad Request
400
	invalid_request (or) 
invalid_scope
	REQUIRED parameter scope is missing (or) invalid scope value.

	version parameter is missing (or) 
version parameter value is invalid 
	Bad Request
400
	invalid_request
	REQUIRED parameter version is missing (or) invalid. 

	nonce parameter is missing, or nonce parameter exists, but value is empty 
	Bad Request
400
	invalid_request
	REQUIRED parameter nonce is missing (or) invalid. 

	login_hint and login_hint_token parameters are missing 
	Bad Request
400
	invalid_request
	REQUIRED parameters login_hint_token (or) login_hint does not exist. 

	login_hint and login_hint_token both exist 
	Bad Request
400
	invalid_request
	Malformed request, duplicate parameter entries.

	login_hint (or) login_hint_token value is invalid 
	Bad Request
400
	invalid_request
	Invalid value for login_hint (or) login_hint_token.

	acr_values parameter is missing (or) 
acr_values exist but contains invalid value, other than supported values
	Bad Request
400
	invalid_request
	REQUIRED parameter acr_values are missing (or) invalid values. 

	Same parameter exists multiple times 
	Bad Request
400
	invalid_request
	Multiple parameter names in the OIDC Authorization Request. Malformed request. 

	claims parameter exists but it does not have any value (or) invalid values. 
	Bad Request
400
	invalid_request 
	claims value is invalid, 

	GET request is used, and the request parameters are NOT serialized using URI string serialization, IDGW able to validate the redirect_uri. 
	Bad Request
400
	invalid_request 
	GET request invalid serialization.

	POST request is used, the request parameters are NOT serialized using form serialization, IDGW can validate the redirect_uri
	Bad Request
400
	invalid_request 
	POST request Invalid serialization.

	max_age parameter exists, and it has an invalid value 
	Bad Request
400
	invalid_request
	Invalid max_age value.

	Multiple problems in OIDC Authorization Request [redirect URI is valid]
	Bad Request
400
	invalid_request
	Malformed request multiple problems exist.

	correlation_id exists, but it has empty value 
	Bad Request
400
	invalid_request
	Invalid correlation_id value. 

	client_name exists, but it has empty value (or)
client_name parameter exists, but the provided value is not a registered client_name with Operator IDGW and is invalid
	Bad Request
400
	invalid_request
	Invalid client_name value.

	client_notification_token REQUIRED parameter is missing (or) 
client_notification_token exists, but it has an invalid value
	Bad Request
400
	invalid_request
	REQUIRED parameter client_notification_token is missing (or) invalid.

	notification_uri parameter is missing (or) notification_uri exists but it is not registered with IDGW (or) has an invalid value
	Bad Request
400
	invalid_request
	REQUIRED parameter notification_uri is missing (or) invalid. 

	iss parameter is missing	 (or) 
iss parameter exists, but it has an invalid value
	Bad Request
400
	invalid_request
	REQUIRED parameter SP’s iss parameter is missing (or) invalid.

	aud parameter is missing (or) 
aud parameter exists, but it has an invalid value
	Bad Request
400
	invalid_request
	REQUIRED parameter  aud parameter is missing (or) invalid. 

	login_hint parameter contains plain MSISDN and IDGW does not allow the SP (client_id) to send the plain MSISDN ( Previously TSP level 1) 
	Bad Request 400 
	access_denied
	SP is not allowed to send the plain MSISDN.

	SP has sent acr_value = 0, indicating SP has captured the consent IDGW policy does not allow the SP to capture consent ( IDGW does not explicitly capture the consent from the user for any reason ( i.e. not available, policy does not allow)  [ Previously TSP level 2] 
	Bad Request 400 
	access_denied 
	SP is not allowed to capture the consent.

	SP has sent request, by capturing the consent ( through business process) and IDGW does not allow SP ( client_id) to capture the consent. [Previously TSP level 2]
Note : SP does not send acr_values = 0 (new feature). 
	Bad Request 400 
	access_denied 
	SP is not allowed to capture the consent.


[bookmark: _Toc488088767][bookmark: _Ref526586504]: Generic Error Responses - Request Object Parameter Validation

[bookmark: _Toc535503382][bookmark: _Toc535504647][bookmark: _Toc21942625]Token Response (Using Notification) – Error Codes and Descriptions
In the event of an unsuccessful OIDC Authorization, where validation of the requests has been completed but where the processing of the request has failed, the Token Response to the SP’s Notification Endpoint shall indicate an error and provide an error description. Table 14 shows the required fields in the Token Response in the event of an error when using Notification. Generic and all service-specific errors MUST be returned in this format.
	Parameter
	Usage Category
	Description

	auth_req_id
	REQUIRED
	A unique ID for this OIDC Authorization Request (See also [5] ). 

	correlation_id
	Only REQUIRED if provided in the OIDC Authorization Request
	The correlation_id submitted through the OIDC Authorization Request, if present.

	error
	REQUIRED
	Error as defined in [2]

	error_description
	REQUIRED
	Error description as defined in [2]


[bookmark: _Ref519243069]: Token Response (Notification) – Required Fields to Report an Error
The following is an example of the token error response
POST /<token_notification> HTTP/1.1 
Content-Type: application/json
Host: spserver.example.com
Authorisation: bearer <client_notification_token> 
{
	“correlation_id”: “42da5b19-457a-4d30-a5c4-038c62dccbb0”,
	“auth_req_id”:”162537”,
    "error”:” invalid_request,
    “error_description”: “service is not available”
}


Table 15 describes the generic errors that can be returned in the Token Response.
	Error Scenario
	Error code
	Error Description (Suggested Text)

	Authenticator unreachable / expiration in server 
	server_error
	Service is not available, 

	System connection problems (internal to IDGW)
	server_error
	Connection problem. 

	Unexpected error (internal to IDGW)
	server_error
	Internal server error. 


[bookmark: _Toc488088769][bookmark: _Ref519243330]: Generic Error Responses – Token Response Using Notification

[bookmark: _Toc535503383][bookmark: _Toc535504648][bookmark: _Toc21942626]Notification Acknowledgement (When Using Notification) – Error Codes and Descriptions
In the situation where the Operator IDGW has returned an OIDC Authorization Response but there is an error in the SP’s ability to process that response, an error is returned through the server to server acknowledgement from the SP. The SP MUST return the errors through standard HTTP error mechanisms.
The IDGW must not respond to SP with another notification request; the error codes should be logged internally. IDGW must not do default redirection if it received 3xx errors in the acknowledgement for security reasons.. 
Table 16 describes the error responses that can be included within a Notification Acknowledgement.. The Notification Acknowledgement error response takes the following form:
HTTP/1.1 400 Bad Request
  Content-Type: application/json
  Cache-Control: no-store
  Pragma: no-cache

  {
   "correlation_id": "42da5b19-457a-4d30-a5c4-038c62dccbb0",
   "error": "invalid_request", 
   "error_description": "invalid tokens"
  }


	Error Scenario
	HTTP Response
	Error code
	Error Description (Suggested Text)

	Invalid JWT received from Operator IDGW [ID Token]
	Bad Request 
400
	invalid_request
	Invalid JWT [ID Token] received. 

	Invalid access_token is received 
	Bad Request
400
	invalid_request
	Invalid access_token received

	Invalid auth_req_id
	Bad Request 
400
	invalid_request
	Malformed request, unable to identify the response. 

	Invalid correlation_id 
	Bad Request
400
	invalid_request
	Malformed request, unable to correlate the response. 

	token_type parameter is missing
	Bad Request
400
	invalid_request
	REQUIRED parameter token_type is missing 

	token_type parameter exists, but the value is not Bearer
	Bad Request
400
	invalid_request
	Invalid token type value 

	expires_in parameter does not exist 
	Bad Request
400
	invalid_request
	REQUIRED parameter expires_in does not exist. 

	expires_in parameter exists, but value is invalid 
	Bad request
400
	invalid_request
	Invalid expires_in value 

	ID Token parameter does not exist
	Bad Request
400
	invalid_request
	REQUIRED parameter ID Token does not exist

	Access Token parameter does not exist
	Bad Request
400
	invalid_request
	REQUIRED parameter access token does not exist 

	System connection problem (or) Expiration in server

	Service Unavailable 503
	server_error
	Service is not available, 

	Unexpected error [Internal to SP]
	Internal Server Error
500
	server_error
	Internal Server Error

	SP server time-out due to an internal error. 
	Internal Server Error 
500
	server_error
	Timeout: Server internal error. 


[bookmark: _Ref519244925]: Error Responses from SP - Notification Acknowledgement

[bookmark: _Toc535503384][bookmark: _Toc535504649][bookmark: _Toc21942627]Token (Polling) Response – Error Codes and Descriptions
In the event of an unsuccessful OIDC Authorization, where validation of the requests has been completed but where the processing of the request has failed, the Token Response in response to a Polling Request shall indicate an error and provide an error description. Table 17 shows the required fields in the Token Response in the event of an error when using Polling. Note that the auth_req_id is not required. Generic and all service-specific errors MUST be returned in this format.
	Parameter
	Usage Category
	Description

	correlation_id
	Only REQUIRED if provided in the OIDC Authorization Request
	The correlation_id submitted through the OIDC Authorization Request, if present.

	error
	Mandatory
	Error as defined in [2]

	error_description
	Mandatory
	Error description as defined in [2]


[bookmark: _Ref526589320]: Token Response (Polling) – Required Fields to Report an Error
Table 18 describes the generic errors that can be returned in the Token Response. Note that when using Polling, the Token Response uses a standard HTTP response code in response to the Polling Request whereas when using Notification, the Token Response is an HTTP POST to the SP’s Notification Endpoint.

	Error Scenario
	HTTP Response
	Error code
	Error Description (Suggested Text)

	The Authorization Server doesn't recognise the auth_req_id that the SP Client has submitted (Polling mode only). 

	Bad Request 
400
	invalid_grant
	auth_req_id is not recognised. 

	The auth_req_id  does not exist in the request (Polling mode only). 

	Bad Request 400 
	invalid_request
	REQUIRED parameter auth_req_id is missing. 

	The authorization request is still pending as the User hasn't yet been authenticated (Polling mode only).  
	Bad Request 400 
	authorization_pending
	Pending authorisation from the user. 

	The SP Client is polling too quickly and should back off at a reasonable rate (Polling mode only).
	Bad Request 400 
	slow_down
	Request is submitted too early.  

	The auth_req_id has expired. The SP Client will need to make a new OIDC Authorization Request. 
	Bad Request
400
	expired_token
	auth_req_id has expired. 

	The polling request is missing a required parameter 
	Bad Request
400
	invalid_request
	Required parameter is missing 

	includes an unsupported parameter value (other than grant type),
	Bad Request 400 
	invalid_request
	Unsupported parameter value. 

	Malformed request [other than above mentioned errors]
	Bad Request 400 
	Invalid_request
	Malformed request. 

	client_id does not correspond to auth_req_id
	Bad Request 400 
	Invalid_request 
	Malformed auth_req_id. 

	Client_id is missing 
	Bad Request 400
	invalid_request 
	Required parameter client_id is missing 

	Client authentication failed (e.g., unknown client, signature failure)
	Bad Request
401
	invalid_client
	Client authentication failed 

	The grant_type is missing 
	Bad Request 400 
	Invalid_request
	REQUIRED parameter grant_type is missing 

	The provided grant_type value  is correct but it does not relate to auth_req_id. 
	Bad Request
400
	invalid_grant
	Required parameter grant_type is incorrect

	The grant type parameter exists, but it is invalid 
	Bad Request 
	unsupported_grant_type 
	Grant type value is invalid. 

	Authenticator unreachable / expiration in server 
	Service Unavailable 503
	server_error
	Service is not available, 

	System connection problems (internal to IDGW)
	Internal Server Error
500
	server_error
	Connection problem. 

	Unexpected error (internal to IDGW)
	Internal Server Error 
500
	server_error
	Internal server error. 


[bookmark: _Ref526589722]: Generic Error Responses – Token Response (Using Polling)


[bookmark: _Toc535503385][bookmark: _Toc535504650][bookmark: _Toc21942628]Example Requests and Responses
0. [bookmark: _Toc489349856][bookmark: _Toc535503386][bookmark: _Toc535504651][bookmark: _Toc21942629] OIDC Authorization Request - Signed Request Object (Using Notification)
The following is an example of a signed Request Object after base64url encoding and signing (with line wraps within values for display purposes only):
POST /authorize HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Host: operatoridgw.example.com
Authorization: Basic <Berdaz1234dzsdf>
   response_type=mc_si_async_code
   &client_id=s6BhdRkqt3
   &scope=openid%20Fmc_authn
&request= eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpc3MiOiJzNkJoZFJrcXQzIiwiaWF0IjoxNTI5NzEyMDY2LCJleHAiOjE1NDQ0NTY5MDAsImF1ZCI6Imh0dHBzOi8vbWMub3BlcmF0b3IuZXhhbXBsZS5jb20iLCJzdWIiOiJzNkJoZFJrcXQzIiwicmVzcG9uc2VfdHlwZSI6Im1jX3NpX2FzeW5jX2NvZGUiLCJjbGllbnRfaWQiOiJzNkJoZFJrcXQzIiwic2NvcGUiOiJvcGVuaWQgbWNfYXV0aG4iLCJ2ZXJzaW9uIjoibWNfc2lfcjJfdjEuMobile ConnectIsIm5vbmNlIjoiYTdkOGRhODQtYTkzNi00MWU3LWEyMGItN2UyYmZhZTkzOTdjIiwicHJvbXB0IjoibG9naW4iLCJtYXhfYWdlIjoiODY0MDAiLCJ1aV9sb2NhbGVzIjoiZW4tdXMiLCJjbGFpbXNfbG9jYWxlcyI6ImVuLXVzIiwibG9naW5faGludCI6IjQ0NzQxMTE4ODI1OCIsImFjcl92YWx1ZXMiOiIyIiwiYmluZGluZ19tZXNzYWdlIjoiSW50ZXJsb2NrIG1zZyIsImNsaWVudF9uYW1lIjoic3BfY2xpZW50X25hbWUiLCJjb250ZXh0IjoiY2FuIHlvdSBhdXRoZW50aWNhdGUgZm9yIG15IFNQIiwiY29ycmVsYXRpb25faWQiOiJlYzNmNjVmNS00MzhkLTRjMzAtYTM1ZS1iYzhjYTUwZGU1MTQiLCJjbGllbnRfbm90aWZpY2F0aW9uX3Rva2VuIjoiNzhiYzZjOTgtYWEyNy00NzEwLWFkMTAtMTJkYmM4ZmY4ZjIyIiwibm90aWZpY2F0aW9uX3VyaSI6Imh0dHBzOi8vd3d3LnNlcnZpY2Vwcm92aWRlci5leGFtcGxlLmNvbS9ub3RpZmljYXRpb25fZW5kcG9pbnQiLCJqdGkiOiI1NjYwNmVmOC04OGY0LTQzNmItYTVmYy05ZmI3Yzg4YjdiODgifQ.N0c5A7mdKPTuJfqjRIEfBzO2Bx9Dm32Aw8aPbqhLkes

}



The following is an example of a Request Object before base64url encoding and signing:
Headers : 
{
  "typ": "JWT",
  "alg": "RS256"
}

Claims : 
{
  "iss": "s6BhdRkqt3",
  "iat": 1529712066,
  "exp": 1529713261,
  "aud": "https://mc.operator.example.com",
  "sub": "s6BhdRkqt3",
  "response_type": "mc_si_async_code",
  "client_id": "s6BhdRkqt3",
  "prompt": "login",
  "scope": "openid mc_authn",
  "version": "mc_si_r2_v1.0",
  "nonce": "a7d8da84-a936-41e7-a20b-7e2bfae9397c",
  "max_age": "86400",
  "ui_locales": "en-us",
  "claims_locales": "en-us",
  "login_hint": "447411188258",
  "acr_values": "2",
  "binding_message": "interlock id",
  "client_name": "sp_client_name",
  "context": "can you authenticate for my SP",
  "correlation_id": "ec3f65f5-438d-4c30-a35e-bc8ca50de514",
  "client_notification_token": "78bc6c98-aa27-4710-ad10-12dbc8ff8f22",
  "notification_uri": "https://www.serviceprovider.example.com/notification_endpoint"
}


0. [bookmark: _Toc489349857][bookmark: _Toc535503387][bookmark: _Toc535504652][bookmark: _Toc21942630]Authorization Response (Using Notification)
The following is an example of a successful Authorization Response from the IDGW:
HTTP/1.1 200 OK
  Content-Type: application/json
  Cache-Control: no-store
  Pragma: no-cache
  {
   "auth_req_id": "1234567",
   "correlation_id": "42da5b19-457a-4d30-a5c4-038c62dccbb0",
   "expires_in": 3600
  }



The following is an example for an unsuccessful Authorization Response from the IDGW:
HTTP/1.1 400 Bad Request
  Content-Type: application/json
  Cache-Control: no-store
  Pragma: no-cache

  {
   “correlation_id”: “42da5b19-457a-4d30-a5c4-038c62dccbb0”,
   "error": "invalid_request",
   “error_description”: “acr values are missing”
  }


0. [bookmark: _Toc535503388][bookmark: _Toc535504653][bookmark: _Toc21942631]Token Response (Token Notification)
The following is an example of successful notification to SP. 
POST /token_notif HTTP/1.1
Content -Type: application/json
Host: spserver.example.com
Authorization: bearer 78bc6c98-aa27-4710-ad10-12dbc8ff8f22
{
   “correlation_id”: "ec3f65f5-438d-4c30-a35e-bc8ca50de514",
   “auth_req_id”: “89bd81bd-6269-4a6c-9c55-73be670c4c1”,
   "access_token": "SlAV32hkKG",
   "token_type": "Bearer",
   "refresh_token": "8xLOxBtZp8",
   "expires_in": 3600,
   "id_token": " eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJpc3MiOiJodHRwczovL3d3dy5tYy5vcGVyYXRvci5leGFtcGxlLmNvbSIsImlhdCI6MTUyOTczNzMzMywiZXhwIjoxNTI5NzM4NTM2LCJhdWQiOiJzNkJoZFJrcXQzIiwic3ViIjoiOTM3OGQ3MzYtNjEzZS00ZjhjLWJlMDUtMGY1MDE4Y2ViODkxIiwiYXV0aF90aW1lIjoiMTUyOTczNzMzMyIsIm5vbmNlIjoiYTdkOGRhODQtYTkzNi00MWU3LWEyMGItN2UyYmZhZTkzOTdjIiwiYXRfaGFzaCI6ImFkNzFmYjQxNjU1MzY2NzVkODBhOGJiZmU5NTc2OTdlNGI5ZTE3YjM1ZDU1MDA0MDZhYmMyMTk3MDUzMzcxMDciLCJhbXIiOiJTSU1fT0siLCJhenAiOiJzNkJoZFJrcXQzIiwiaGFzaGVkX2xvZ2luX2hpbnQiOiIyMDI0MGUzMjZjZTNhYTAxM2IwMGQzMDMyZThjMzc4N2Q1MjBmODdmZjFlOTNhMmQxYzdjMDQ0NzdmYTQ0YzliIiwicmVjaXBpZW50IjoiaHR0cHM6Ly93d3cuc2VydmljZXByb3ZpZGVyLmV4YW1wbGUuY29tL25vdGlmaWNhdGlvbl9lbmRwb2ludCIsImRpc3BsYXllZF9kYXRhIjoic3BfY2xpZW50X25hbWUtSSBhbSBiaW5kaW5nIG1lc3NhZ2UtY2FuIHlvdSBhdXRoZW50aWNhdGUgZm9yIG15IFNQIn0.nU7WlP1CIZTPzt_tsCRnc6Q7lwnmej9heLU0m3hNwzWzbByNG3Cr19b3AGVxgQzTIjU485E71ur9A3pP4O8xLG7EKTjjuZFjJjcSekATfeHsbeiKRk9a5phsk_ZXqH1tCaZ_ZkeIUkLI6Hn3z-30QsmmHe7XXvDZ402isJih1oU"
}



The following is the decoded ID Token in plain text format. 
Headers 
{
  "typ": "JWT",
  "alg": "RS256"
}

Payload 

{
  "iss": "https://www.mc.operator.example.com",
  "iat": 1529737333,
  "exp": 1529738536,
  "aud": "s6BhdRkqt3",
  "sub": "9378d736-613e-4f8c-be05-0f5018ceb891",
  "auth_time": "1529737333",
  "nonce": "a7d8da84-a936-41e7-a20b-7e2bfae9397c",
  "at_hash": "ad71fb4165536675d80a8bbfe957697e4b9e17b35d5500406abc219705337107",
  "amr": "SIM_OK",
  "azp": "s6BhdRkqt3",
  "hashed_login_hint": "20240e326ce3aa013b00d3032e8c3787d520f87ff1e93a2d1c7c04477fa44c9b",
  "recipient": "https://www.serviceprovider.example.com/notification_endpoint",
  "displayed_data": "sp_client_name-I am binding message-can you authenticate for my SP"
}
   

The following is an example of an unsuccessful Authorization sent as a notification to the SP:
POST /token_notif HTTP/1.1
Content -Type: application/json
Host: spserver.example.com
Authorization: bearer Bedsfe2134sd
{
   “correlation_id”: “42da5b19-457a-4d30-a5c4-038c62dccbb0”,  
   “auth_req_id”: “1234455”,
   “error”: “access_denied”, 
   “error_description”: “authentication failure example”
}

0. [bookmark: _Toc489349859][bookmark: _Toc535503389][bookmark: _Toc535504654][bookmark: _Toc21942632]Notification Acknowledgement 
The following is an example of a successful acknowledgement:
HTTP/1.1 204 No Content
Content-Length:0

The following is an example of an error acknowledgement returned to the IDGW:
HTTP/1.1 400 Bad Request
  Content-Type: application/json
  Cache-Control: no-store
  Pragma: no-cache

  {
   “correlation_id: “42da5b19-457a-4d30-a5c4-038c62dccbb0”,
   "error": "invalid_request", 
   “error_description”: “invalid tokens”
  }



0. [bookmark: _Toc517942550][bookmark: _Toc535503390][bookmark: _Toc535504655][bookmark: _Toc21942633]Signed Request Object Authorization Request (Using Polling)
The following is an example of a signed Request Object for polling after base64url encoding and signing (with line wraps within values for display purposes only. The client authentication mechanism used is basic http header client authentication. 
POST /authorize HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Host: operatoridgw.example.com
Authorization: Basic <Berdaz1234dzsdf>
   response_type=mc_si_polling
   &client_id=s6BhdRkqt3
   &scope=openid%20Fmc_authn
&request= eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpc3MiOiJzNkJoZFJrcXQzIiwiaWF0IjoxNTI5NzEyMDY2LCJleHAiOjE1NDQ0NTcwMDIsImF1ZCI6Imh0dHBzOi8vbWMub3BlcmF0b3IuZXhhbXBsZS5jb20iLCJzdWIiOiJzNkJoZFJrcXQzIiwicmVzcG9uc2VfdHlwZSI6Im1jX3NpX3BvbGxpbmciLCJjbGllbnRfaWQiOiJzNkJoZFJrcXQzIiwic2NvcGUiOiJvcGVuaWQgbWNfYXV0aG4iLCJ2ZXJzaW9uIjoibWNfc2lfcjJfdjEuMobile ConnectIsIm5vbmNlIjoiNWZmMDZmZDctY2MxMy00MDI2LTg2NGQtZjlmZTYzMWFiZDYxIiwicHJvbXB0IjoibG9naW4iLCJtYXhfYWdlIjoiODY0MDAiLCJ1aV9sb2NhbGVzIjoiZW4tdXMiLCJjbGFpbXNfbG9jYWxlcyI6ImVuLXVzIiwibG9naW5faGludCI6IjQ0NzQxMTE4ODI1OCIsImFjcl92YWx1ZXMiOiIyIiwiYmluZGluZ19tZXNzYWdlIjoiSW50ZXJsb2NrIG1zZyIsImNsaWVudF9uYW1lIjoic3BfY2xpZW50X25hbWUiLCJjb250ZXh0IjoiY2FuIHlvdSBhdXRoZW50aWNhdGUgZm9yIG15IFNQIiwiY29ycmVsYXRpb25faWQiOiJmOTU2M2QyMi00YTZjLTRkYmEtYWUzZC0zMDI4OWY2ZmQ0YWYiLCJqdGkiOiI2NjBmOWI0NS1jYjgxLTQyYzQtYTZhMobile Connect1iZTI5Y2U5NGEzZDkifQ.bDVlPI7aVYiPTfhjXymNE9LQHXIDevnTG-01EDWGIBQ


}


The following is the example data before encoding and signing. 
Headers :
{
  "typ": "JWT",
  "alg": "RS256"
}
 
Payload Data : 
{
  "iss": "s6BhdRkqt3",
  "iat": 1529712066,
  "exp": 1529713261,
  "aud": "https://mc.operator.example.com",
  "sub": "s6BhdRkqt3",
  "response_type": "mc_si_polling",
  "client_id": "s6BhdRkqt3",
  "scope": "openid mc_authn",
  "version": "mc_si_r2_v1.0",
  "nonce": "5ff06fd7-cc13-4026-864d-f9fe631abd61",
"prompt": "login",  
"max_age": "86400",
  "ui_locales": "en-us",
  "claims_locales": "en-us",
  "login_hint": "447411188258",
  "acr_values": "2",
  "binding_message": "Interlock msg"
  "client_name": "sp_client_name",
  "context": "can you authenticate for my SP",
  "correlation_id": "f9563d22-4a6c-4dba-ae3d-30289f6fd4af"
}


0. [bookmark: _Toc517942551][bookmark: _Toc535503391][bookmark: _Toc535504656][bookmark: _Toc21942634]Authorization Response (Using Polling)
The following is an example for a authorization response where the request has been successfully validated: 
HTTP/1.1 200 OK
  Content-Type: application/json
  Cache-Control: no-store
  Pragma: no-cache
  {
   "auth_req_id": "89bd81bd-6269-4a6c-9c55-73be670c4c17",
   "correlation_id": "f9563d22-4a6c-4dba-ae3d-30289f6fd4af",
   "expires_in": 3600,
   "interval" : 25
  }


The following is an example for authorization response where an error has occurred: 
HTTP/1.1 400 Bad Request
  Content-Type: application/json
  Cache-Control: no-store
  Pragma: no-cache

  {
   “correlation_id”: "f9563d22-4a6c-4dba-ae3d-30289f6fd4af",
   "error": "invalid_request",
   “error_description”: “acr values are missing”
  }


0. [bookmark: _Toc517942552][bookmark: _Toc535503392][bookmark: _Toc535504657][bookmark: _Toc21942635]Polling Request (Token Request) with private_key_jwt
The following is an example for polling request using basic http authorization flow:
POST /token_notif HTTP/1.1
Content -Type: application/x-www-form-urlencoded
Host: servce-provider.example.com


  client_id=s6BhdRkqt3& 
  grant_type=urn%3Aopenid%3Aparams%3Amc%3Agrant+type%3Aserver_initiated&
  auth_req_id=89bd81bd-6269-4a6c-9c55-73be670c4c17&
  client_assertion_type=urn%3Aietf%3Aparams%3Aoauth%3Aclient-assertion-type%3Ajwt-bearer&
  client_assertion= eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJpc3MiOiJzNkJoZFJrcXQzIiwiaWF0IjoxNTI5NzQxMjg1LCJleHAiOjE1Mjk3NDI0ODYsImF1ZCI6Imh0dHBzOi8vbWMub3BlcmF0b3IuZXhhbXBsZS5jb20iLCJzdWIiOiJzNkJoZFJrcXQzIiwianRpIjoiOTVjY2YzODUtOTIxYy00ZTc4LTk3ZTEtYWFjOWE5MDEyMmZiIn0.m8S9SrcwMXJQFYYH5VzcXUF_zYJUUPkNKMVyxMrcCwY2Q0lY-oQUETan1pZTHxSPtF1QUmAqdYvVuAEV8MFNAzZnOSv9B7zbPXTVnh-DIS_RhebBi6vjHqwxpvjKS2WksOwHNMo5K1TzBLdtFTyUpX3vb11n4fzIBULIc07pTz8
}


The following is the plain text data before encoding and signed. 
Headers : 

{
  "typ": "JWT",
  "alg": "RS256"
}

PAYLOAD 

{
  "iss": "s6BhdRkqt3",
  "iat": 1529741285,
  "exp": 1529742486,
  "aud": "https://mc.operator.example.com",
  "sub": "s6BhdRkqt3",
  "jti": "95ccf385-921c-4e78-97e1-aac9a90122fb"
}


0. [bookmark: _Toc517942553][bookmark: _Toc535503393][bookmark: _Toc535504658][bookmark: _Toc21942636]IDGW Polling Response (Token Response)  

The following is an example of polling response. 
HTTP/1.1 200 OK
  Content-Type: application/json
  Cache-Control: no-store
  Pragma: no-cache
  {
   “correlation_id”: "ec3f65f5-438d-4c30-a35e-bc8ca50de514",
   "access_token": "SlAV32hkKG",
   "token_type": "Bearer",                                           "refresh_token": "8xLOxBtZp8"                                                        "expires_in": 3600,                                         "id_token":"eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJpc3MiOiJodHRwczovL3d3dy5tYy5vcGVyYXRvci5leGFtcGxlLmNvbSIsImlhdCI6MTUyOTczNzMzMywiZXhwIjoxNTI5NzM4NTM2LCJhdWQiOiJzNkJoZFJrcXQzIiwic3ViIjoiOTM3OGQ3MzYtNjEzZS00ZjhjLWJlMDUtMGY1MDE4Y2ViODkxIiwiYXV0aF90aW1lIjoiMTUyOTczNzMzMyIsIm5vbmNlIjoiYTdkOGRhODQtYTkzNi00MWU3LWEyMGItN2UyYmZhZTkzOTdjIiwiYXRfaGFzaCI6ImFkNzFmYjQxNjU1MzY2NzVkODBhOGJiZmU5NTc2OTdlNGI5ZTE3YjM1ZDU1MDA0MDZhYmMyMTk3MDUzMzcxMDciLCJhbXIiOiJTSU1fT0siLCJhenAiOiJzNkJoZFJrcXQzIiwiaGFzaGVkX2xvZ2luX2hpbnQiOiIyMDI0MGUzMjZjZTNhYTAxM2IwMGQzMDMyZThjMzc4N2Q1MjBmODdmZjFlOTNhMmQxYzdjMDQ0NzdmYTQ0YzliIiwiZGlzcGxheWVkX2RhdGEiOiJzcF9jbGllbnRfbmFtZS1JIGFtIGJpbmRpbmcgbWVzc2FnZS1jYW4geW91IGF1dGhlbnRpY2F0ZSBmb3IgbXkgU1AifQ.lmaFgpsIZQMgYyvOYvsknhHLgqVxrRp4g0XWQ_cSlDkj2wCXoOncau7OTYwux7jmfKrDLL9RvgYD-ndtrZzv_cnKHgbjYGYKVF__5OywuJId1j6QNk0mN8Chq8ioS2BRVFjRJ89jlsnW_Nq5a8jxfEDyXtuyfvYRF9yVC5aqimE" 
}


The following is the example of ID token before encoding and signing 

Headers 

{
  "typ": "JWT",
  "alg": "RS256"
} 

PAYLOAD : 

{
  "iss": "https://www.mc.operator.example.com",
  "iat": 1529737333,
  "exp": 1529738536,
  "aud": "s6BhdRkqt3",
  "sub": "9378d736-613e-4f8c-be05-0f5018ceb891",
  "auth_time": "1529737333",
  "nonce": "a7d8da84-a936-41e7-a20b-7e2bfae9397c",
  "at_hash": "ad71fb4165536675d80a8bbfe957697e4b9e17b35d5500406abc219705337107",
  "amr": "SIM_OK",
  "azp": "s6BhdRkqt3",
  "hashed_login_hint": "20240e326ce3aa013b00d3032e8c3787d520f87ff1e93a2d1c7c04477fa44c9b",
  "displayed_data": "sp_client_name-I am binding message-can you authenticate for my SP"
}


The following is an example for a token response using Polling where an error has occurred: 
HTTP/1.1 400 Bad Request
  Content-Type: application/json
  Cache-Control: no-store
  Pragma: no-cache

  {
   “correlation_id”: "f9563d22-4a6c-4dba-ae3d-30289f6fd4af",
   "error": "unknown_auth_req_id",
   “error_description”: “auth_req_id is not recognised”
  }



0. [bookmark: _Toc535503394][bookmark: _Toc535504659][bookmark: _Toc21942637]Sector Identifier URI example 
The following is a non-normative example for sector identifier URI contents. The Sector Identifier URI is a JSON file containing a single array of notification Uris or JWKS URI for SI mode. 
GET /sector_identifier_uri_file.json HTTP/1.1
Accept: application/json 
Host: sp.example.com

HTTP/1.1 200 OK 
Content-Type: application/json
Cache-Control: no-store
Pragma: no-cache
[ "https://sp.example.com/notification_uri1"
  "https://sp.example.com/notification_uri2" ,
  "https://sp.example.com/jwks_uri1", 
  "https://sp.other_company.com/jwks_uri2"
]
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