
GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 1 of 97

Tech Mobile Connect smartphone app authenticator
specification

Version 1.2.1

06 December 2022

This is a Non-binding Permanent Reference Document of the GSMA

Security Classification: Non-confidential

Access to and distribution of this document is restricted to the persons permitted by the security classification. This document is confidential to the

Association and is subject to copyright protection. This document is to be used only for the purposes for which it has been supplied and

information contained in it must not be disclosed or in any other way made available, in whole or in part, to persons other than those permitted

under the security classification without the prior written approval of the Association.

Copyright Notice

Copyright © 2022 GSM Association

Disclaimer

The GSM Association (“Association”) makes no representation, warranty or undertaking (express or implied) with respect to and does not accept

any responsibility for, and hereby disclaims liability for the accuracy or completeness or timeliness of the information contained in this document.

The information contained in this document may be subject to change without prior notice.

Antitrust Notice

The information contain herein is in full compliance with the GSM Association’s antitrust compliance policy.

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 2 of 97

Table of Contents

1.0 Introduction 6

1.1 References 7

1.2 Conventions 7

1.3 Definitions 8

2.0 SAA subsystem overview 9

2.1 Mobile Connect architecture recap 9

2.2 SAA subsystem components 10

2.3 SAA Identifiers 11

3.0 Base SAA functional requirements 13

3.1 SAA Client User Interface features 13

3.2 Authentication modes/LoA support 14

3.3 Offline mode 15

3.4 Discovery of Operator logo 15

3.5 User prompts 16

3.6 SAA Client invocation 18

3.7 Mobile Connect lifecycle events 19

3.7.1 SAA activation (SAA + Mobile Connect) 19

3.7.2 Account recovery 21

3.7.3 SAA Client deletion/reinstallation 21

3.7.4 Device change notification 22

3.7.5 Mobile account status change (suspended/reactivation/deletion) 22

3.7.6 User churn 23

3.7.7 Lifecycle event summary 23

3.8 Interface requirements 24

3.9 Base SAA functional requirements summary 25

4.0 Enhanced SAA functional requirements 28

4.1 SAA Client User Interface features 28

4.2 Discovery of SP logo 28

4.3 User prompts 28

4.4 Mobile Connect lifecycle events 29

4.4.1 User churn 29

4.5 SAA Client local invocation (App deep-linking using custom URI scheme) 30

4.6 Extensible support for new authentication methods 31

4.7 SP binding management 32

4.8 Secured messaging feature 33

4.8.1 Message template 33

4.8.2 Secured messaging API support 33

4.9 Security enhancements 34

4.9.1 Network binding 34

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 3 of 97

4.9.2 Confidence Score 34

4.10 Enhanced SAA functional requirements summary 35

5.0 Technical solution and implementation guidelines 37

5.1 SAA Interface options 37

5.1.1 Option 1: INT1 and INT2 vendor proprietary 38

5.1.2 Option 2: INT1 standardised within Mobile Connect (Preferred
approach) 38

5.1.3 Option 3: INT2 standardised via FIDO UAF 38

5.1.4 Option 4: INT1 standardised within Mobile Connect, INT2
standardised via FIDO UAF 39

5.1.5 Pros and cons of the different SAA interface options 39

5.2 Security requirements & guidelines 41

5.2.1 Device security checks 41

5.2.2 Device secure key-store 42

5.2.3 Public key cryptography for signing a challenge 44

5.2.4 Summary of SAA security requirements 45

5.3 SAA Client activation and association 46

5.3.1 MSISDN discovery in SAA Client 46

5.3.2 Technical flow: SAA Client activation and Mobile Connect
registration instigated via SAA Client (MSISDN based pairing) 48

5.3.3 Technical flow: SAA Client activation instigated via an Operator
self-care portal (Association code based pairing) 51

5.3.4 Technical flow: SAA Client activation instigated via an Operator
self-care portal (MSISDN based pairing) 53

5.3.5 Technical flow: Recovery of existing account using recovery
information 54

5.4 Authentication flows 55

5.4.1 Remote invocation (network push; separate consumption device) 55

5.4.2 Remote invocation (network push; mobile browser) 61

5.4.3 Local invocation from SP app (deep-linking using custom URI
scheme) 62

5.5 Mobile Connect lifecycle events 71

5.5.1 Lifecycle events integration with Mobile Connect 71

5.5.2 Handling of device change notification 72

5.5.3 Handling of Mobile account status notification 72

5.6 SP binding management 76

5.6.1 Technical flow 76

5.7 Secured messaging flows 78

5.7.1 Message template management 78

5.7.2 Send message 78

5.7.3 Read message 79

5.7.4 Delete message 80

5.8 API summary (Base and Enhanced SAAs) 82

6.0 Deployment considerations 84

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 4 of 97

6.1 SAA subsystem deployment options 84

6.2 SAA Client SDK 86

6.3 Cost-benefit analysis for Base and Enhanced SAA solutions 87

Annex A Further information 89

A.1 Security threats and prevention techniques 89

A.2 Comparison of SAA vs SIM applet from a Security and Fraud perspective 93

A.3 FIDO-enabled SAA 94

A.4 Future options 94

A.4.1 SP lifecycle notifications 94

A.4.2 Utilising the SIM as a secure key-store 95

Annex B Document Management 96

Table of Figures

Figure 1: Mobile Connect Reference Architecture ... 9

Figure 2: Identity GW Reference Architecture & SAA subsystem .. 10

Figure 3: SAA identifiers ... 13

Figure 4: Sample Mobile Connect branded SAA Client home screen 13

Figure 5: SAA Client prompt requirements .. 18

Figure 6: SAA interface options ... 24

Figure 7: SAA interface options ... 37

Figure 8: INT1 and INT2 are both proprietary interfaces ... 38

Figure 9: Standardising INT1 .. 38

Figure 10: Standardising INT2 (e.g., FIDO UAF) ... 39

Figure 11: Standardising both INT1 and INT2 ... 39

Figure 12: SAA Security Measures ... 41

Figure 13: SAA Client activation and Mobile Connect registration instigated via the SAA Client
(MSISDN based pairing) ... 48

Figure 14: SAA Client activation instigated via Operator self-care portal (Association code
based pairing) ... 51

Figure 15: SAA Client activation instigated via an Operator self-care portal (MSISDN based
pairing) .. 53

Figure 16: Recovery of existing account using account recovery code 54

Figure 17: SAA Client remote invocation technical flow (MSISDN prompt in SP App) 59

Figure 18: SAA Client local invocation component view .. 63

Figure 19: SAA Client local invocation technical flow (MSISDN prompt in SP App) 66

Figure 20: SAA Client local invocation technical flow (without MSISDN prompt in SP App) 69

Figure 21: Lifecycle events integration with Mobile Connect ... 72

Figure 22: User’s account suspension/reactivation/deletion technical flow 74

Figure 23: SP binding management technical flow .. 76

Figure 24: Message template management technical flow .. 78

Figure 25: Send message technical flow ... 79

Figure 26: Read message technical flow ... 80

Figure 27: Delete message technical flow ... 81

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 5 of 97

Tables

Table 1: SAA identifiers ... 12

Table 2: Summary of SAA Client UI features .. 14

Table 3: Authentication mode/LoA support .. 15

Table 4: SAA Client invocation scenarios .. 19

Table 5: Lifecycle event summary ... 23

Table 6: Base SAA functional requirements .. 27

Table 7: Enhanced SAA Client UI features (delta to Base SAA) .. 28

Table 8: Confidence Score claim (ID Token) ... 34

Table 9: Enhanced SAA functional requirements .. 37

Table 10: Comparison of SAA Interface options .. 40

Table 11: API summary (Base and Enhanced SAAs) .. 83

Table 12: SAA subsystem deployment options ... 85

Table 13: Pros and Cons of SAA subsystem deployment options 86

Table 14: Cost-benefit analysis for Base and Enhanced SAA solutions 88

Table 15: Security threats and prevention techniques ... 92

Table 16: Comparison of SAA vs SIM applet from a security and fraud perspective 93

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 6 of 97

1.0 Introduction

Mobile Connect is a portfolio of mobile-based secure identity services delivered by mobile
operators, that can be integrated into third-party Service Provider’s applications to provide
authentication, authorisation, and permissioned access to a User’s attributes.

One of the key aspects of the Mobile Connect architecture is its support for “Pluggable

Authenticators” such that a range of authenticators can be easily employed to meet different

Operator/SP/user needs whilst also ensuring that Mobile Connect is future-proof and can

accommodate new authentication mechanisms as they come along (e.g., providing support

for advanced biometric authenticators or the inclusion of passive behavioural authentication

methods).

With a rapid erosion in the average selling price of smartphones, the number of smartphone

connections is predicted to grow threefold over the next six years and reach a 60% tipping

point by 2017 (GSMAi). Given this growth, there will be an expectation that Mobile Connect

provides authentication solutions that utilise the richer GUI of smartphone devices as well as

underlying device features such as gestures and biometric sensors and that such

authentication solutions also work over WLAN to support nomadic usage and when the user

is out of cellular coverage.

This document therefore provides a set of functional requirements, security and technical

implementation guidelines for a Smartphone App Authenticator (SAA) that can be used

within the Mobile Connect framework.

Given that there are a number of different approaches that can be taken in the design and

deployment of the SAA (e.g., ranging from a simple ‘over-the-top’ implementation to one

more tightly integrated with and using the mobile network) this document identifies two

different SAA solution variants:

1. Base SAA Minimum Viable Product that can be brought to market quickly

2. Enhanced SAA Tighter integration with the Operator’s network to improve user

experience and SAA security

The body of the document focuses on the core requirements for the Base SAA; this is then

expanded in section 4.0 to reflect the Enhanced SAA.

The document is organised into the following sections:

1. Section 2.0 – Introduction to the SAA subsystem and how it integrates into the

existing Mobile Connect architecture

2. Section 3.0 - Functional requirements for the Base SAA including Mobile Connect

lifecycle events for the end-end SAA solution including interconnection to and

support within the ID GW

3. Section 4.0 – Identification of additional functionality/features that could be

incorporated within an Enhanced SAA to improve the user experience and security

robustness

4. Section 5.0 – Security guidelines, technical implementation guidelines and technical

solutions to the requirements captured in previous sections

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 7 of 97

5. Section 6.0 – Deployment considerations

6. Annexes – Analysis of key Mobile Connect authenticators, options and

considerations for integrating FIDO within the SAA Subsystem to deliver a FIDO-

enabled SAA, additional information on security considerations and future options

1.1 References

Ref Doc Number Title

[1] IDY.04 Mobile Connect Technical Architecture and Core Requirements

[2] OAuth 2.0 for Native Apps1

[3] OWASP Mobile Security Project2

[4] Android Security Tips3

[5] iOS App deep-linking reference4

[6] Android App deep-linking reference5

[7] Push tokens in Android6

[8] Push tokens in iOS7

[9]
“Key words for use in RFCs to Indicate Requirement Levels”, S.

Bradner, March 1997

[10] IDY.16 Mobile Connect Product Manager’s Lifecycle Handbook

1.2 Conventions

The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”,

“recommended”, “may”, and “optional” in this document are to be interpreted as described in

RFC2119 [9].

1 https://tools.ietf.org/html/draft-ietf-oauth-native-apps-00

2 https://www.owasp.org/index.php/OWASP_Mobile_Security_Project#tab=Top_10_Mobile_Risks

3 http://developer.android.com/training/articles/security-tips.html

4

https://developer.apple.com/library/IOs/documentation/UIKit/Reference/UIApplicationDelegate_Protocol/Referenc

e/Reference.html

5 http://developer.android.com/training/app-indexing/deep-linking.html

6 https://developers.google.com/cloud-messaging/android/client#get-config

7

https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Ch

apters/ApplePushService.html

https://tools.ietf.org/html/draft-ietf-oauth-native-apps-00
https://www.owasp.org/index.php/OWASP_Mobile_Security_Project#tab=Top_10_Mobile_Risks
http://developer.android.com/training/articles/security-tips.html
https://developer.apple.com/library/IOs/documentation/UIKit/Reference/UIApplicationDelegate_Protocol/Reference/Reference.html
http://developer.android.com/training/app-indexing/deep-linking.html
https://developers.google.com/cloud-messaging/android/client#get-config
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
https://developers.google.com/cloud-messaging/android/client#get-config

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 8 of 97

1.3 Definitions

Term Description

APNS
Apple Push Notification Service – Apple’s cloud messaging service supporting push

notifications to iOS devices

BSS Mobile Network Operator’s Business Support System i.e., CRM portal etc.,

COTS Commercial Off The Shelf

FIDO Fast IDentity Online

FIDO UAF FIDO’s Universal Authentication Framework to support password less experience

FCM
Firebase Cloud Messaging – Google’s cloud messaging service supporting push

notifications to Android devices

ID GW
Identify Gateway, interfacing between SP and backend authenticator

implementations

INT Interface; to support integration between various system components

IPC Inter Process Communication

LoA Level of Assurance

Mobile

Connect
Mobile Connect

MCC Mobile Country Code of the SIM provider

MNC Mobile Network Code of the SIM provider

MVNO Mobile Virtual Network Operator

Operator Mobile Network Operator

OWASP

The Open Web Application Security Project is an online community which creates

freely-available articles, methodologies, documentation, tools, and technologies in

the field of web application security

PNS Push Notification Service (e.g., APNS or FCM)

QoS Quality of Service

SAA Smartphone App Authenticator

SAA

subsystem
Logical entity comprising SAA Adapter, SAA Server and SAA Client

SAA

Client
An instance of the SAA application installed on a mobile device

SAA

Server

The SAA authentication server provided by the vendor (setup, app lifecycle

management, authentication processing etc.)

SAA

Adapter
Integration component between Identity Gateway and vendor’s SAA Server

SP Service Provider or Relying Party

TEE

The Trusted Execution Environment (TEE) is a secure area of the main processor of

a smart phone (or any connected device including tablets, set-top

boxes and televisions). It guarantees code and data loaded inside to be protected

with respect to confidentiality and integrity

https://en.wikipedia.org/wiki/Smartphone
https://en.wikipedia.org/wiki/Tablet_computer
https://en.wikipedia.org/wiki/Set-top_boxes
https://en.wikipedia.org/wiki/Set-top_boxes
https://en.wikipedia.org/wiki/Television

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 9 of 97

2.0 SAA subsystem overview

2.1 Mobile Connect architecture recap

Mobile Connect’s pluggable approach is achieved through an abstraction layer using a

logical component, the Identity Gateway (ID GW) that decouples the interface provided

northbound to the Service Provider from the method of authentication used. Taking such an

approach allows:

• The SP to indicate the Level of Assurance needed for a particular use case

• The ID GW pluggable arch to support multiple Authenticators and select the most

appropriate on a per transaction basis based on the SP’s LoA requirements and

policy of the Operator

The following diagram depicts the logical architecture of Mobile Connect and illustrates the

pluggability of the Identity GW to support multiple Authenticators:

Figure 1: Mobile Connect Reference Architecture

Indicative MNO Internal Sub Systems

Authenticators

«discovery s...

API Exchange

Discov ery

API

Validation

API

Enterprise Serv ice Bus

«mno»

Prov isioning

System

OIDC API

Serv ice Prov ider 2

OIDC API

ID Gateway Component

View

«mno»

Permissions and

Preference

Management

«mno»

MSSP System

CPAS 8

«mno»

Customer

Care

System

«mno»

SMS Gateway

SMS

Priv ate API/FIDO

UAF
«mc authentic...

SAA Client

Priv ate API/FIDO

UAF

Push

Message

«mc authentic...

SIM Applet

Authenticator

CPAS 8

«mc authentic...

USSD

Authenticator

Consumption

Dev ice (User 2)

«mno»

HLR (Home

Location Register)

«mno»

CRMCustomer

Registry

«mno»

USSD

Gateway

USSD

«mc authentic...

SMS Authenticator

(OTP or URL)

SMS

«mno»

MNO Self Care

Console

«GSMA»

Dev eloper

Console

«GSMA»

Path Finder

cmp Component Legend

Legend

«legend»

MNO System

«legend»

MC

Authenticator

Component

«legend»

ID Gateway

Component

«legend»

Utility

Serv ice

Component

«legend»

3rd Party

Serv er

Component

«discov...

Serv ice

Prov ider

Component

«legend»

GSMA

Component

POST: token request

<<optional>>

Validation of SP

client credentials

Redirect: AuthZ code

Provision developer, SP Client

SMS

AuthN response

HTTP 302 Redirect:

AuthZ code

MSISDN lookup

Discover ID GW API

endpoints

GET: AuthZ code Request

AuthN response

Initiate AuthN request

Manage MC Account

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 10 of 97

The reference architecture of the Identity GW components is illustrated below, the logical

components of the SAA subsystem being highlighted with a RED border:

Figure 2: Identity GW Reference Architecture & SAA subsystem

More information on the Identity GW and the overall Mobile Connect architecture can be

found in [1].

2.2 SAA subsystem components

The SAA subsystem comprises three components:

• SAA Adapter

• SAA Server

• SAA Client

Authenticators

External Serv ers

«mno»

MSSP

System

CPAS 8

ETSI TS102

204

Authenticator Adapters

«id gateway»

OpenID Connect Serv er

OpenID

Connect

«id gateway»

Throttling and SLA

Serv ice

«id gateway»

Business Activ ity

Manager (BAM)

«id gateway»

Policy Based

Authentication

Router

ETSI TS102

204

«id gateway»

SIM Applet

Authentication

Adapter

ETSI TS102

204

«id gateway»

SMS

Authentication

Adapter

Custom

API
GSMA

API

«id gateway»

SAA Adapter

GSMA

API

GSMA

API

«id gateway»

USSD

Authentication

Adapter

«util ity ...

Push

Serv ice

«uti...

APNS

Adapter

«uti...

GCM

Adapter

«3rd pa...

Google Cloud

Messaging

Serv er

GCM

Message

«3rd pa...

Apple Push

Notification

Serv er

APN

Message
GSMA

API

«3rd party»

SAA Serv er

Private

API/FIDO

UAF

GSMA

API
GSMA

API

«mno»

USSD

Gateway

USSD

«mc authen...

USSD

Authenticator

«mc aut...

SIM Applet

Authenticator

CPAS 8 Private

API/FIDO

UAF

«mc authen...

SAA Client

Private

API/FIDO

UAF

Push

Message
SMS

«id gateway»

Token Serv ice

«id gateway»

User Management

System

User

Repository

Token

Repository

SMS

«uti...

SMS

Adapter

SMS

«mc authen...

SMS

Authenticator

(OTP or URL)

SMS

«id gateway»

Policy Serv ice

«id gateway»

Attribute Serv ice

AuthN

response

AuthN

response

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 11 of 97

The SAA subsystem also needs to integrate with a platform-specific push notification service

(PNS)8. The components are explained in more detail below:

SAA Adapter

The SAA Adapter provides a façade interface between the Identity GW and SAA subsystem

in order to support SAA setup, user authentication and any Mobile Connect lifecycle events

that impact on the SAA subsystem. The SAA Adapter will be responsible for discovering the

MSISDN of the user during the SAA Client activation process.

SAA Server

The SAA Server supports SAA setup, app lifecycle management, authentication/

authorisation processing etc.

SAA Client

The SAA Client is an instance of the Smartphone authenticator app installed on the device.

Push Notification Service

This is a utility service responsible for sending platform-specific push messages (FCM9 or

APNS10) for initiating the authentication process of the user via the SAA Client.

Note that the SAA vendor will typically provide the SAA Server and Client; the SAA Adapter

will generally be developed by the Identity GW vendor to interface to the API exposed by the

SAA Server.

2.3 SAA Identifiers

Assuming a platform-specific PNS is used, the SAA Client is no longer addressed using

MSISDN as is the case for most of the other Mobile Connect Authenticators hence an

additional identifier is needed for each specific SAA Client instance (SAA Client ID) which is

mapped back to the MSISDN identifier (SAA Client ID <-> MSISDN) used within the Mobile

Connect system for identifying a particular user (and Mobile Connect account).

Furthermore, in order to increase security, each SAA Client instance should ideally be bound

to the underlying device/SIM identifiers on which it is installed. Hence this introduces an

additional identifier (SAA Client device ID) and mapping (SAA Client ID <-> SAA Client

device ID).

8 Note: it is possible to invoke the SAA Client via SMS push to a specific port but the PNS approach is much

more reliable, assuming the user has a data tariff/connection. If in some markets there is a high proportion of

smartphones without data packages then the SMS approach may need to be used.

9 Firebase Cloud Messaging

10 Apple Push Notification Service

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 12 of 97

The various SAA identifiers are defined as follows:

Identifier Description

MSISDN Uniquely identifies a Mobile Connect account in the Identity GW

SAA Client ID Uniquely identifies an SAA Client instance and is generated by the SAA

Server after successful SAA Client activation

SAA Client

Device ID

Generated by the SAA Client as a SHA-256 hash of device/SIM

identifiers11. It uniquely identifies the device where the SAA Client app is

installed and activated. SAA Client Device ID is compared every time the

app starts/resumes with the hash of device/SIM identifiers to detect any

device/SIM change and app clone characteristics.

Note:

In Android, access to some telephony information is permission-protected

although it is possible to read IMEI and IMSI using Android’s

TelephonyManager12 class.

In iOS, access to telephony information is restricted and is not available to

be read using public functions. It is possible to read UUID that is generated

by iOS on a per-app basis. As long as the user doesn’t completely delete

the app then this identifier will persist between app launches hence

enabling the user to be identified using a particular app on a device.

Unfortunately, if the user completely deletes and then reinstalls the app the

UUID will change.

SAA Client

push token

Generated by the SAA Client’s OS/platform and registered with the

platform-specific push server for sending push notification messages to the

device. SAA Client receives the registration push token on registering with

the platform specific PNS connection servers13. The push token is

registered with the platform-specific push server through the SAA Server.

Note: The push tokens will have to be refreshed with the SAA Server

whenever a new registration token is issued to the SAA Client.

Table 1: SAA identifiers

Note: SAA Identifiers need to be treated as personal data and Operator’s privacy policies

should reflect the various identifiers that will be stored

11 For Android/Windows: Recommendation - use IMSI and IMEI; For iOS: Recommendation - use UUID

12 TelephonyManager - http://developer.android.com/reference/android/telephony/TelephonyManager.html

13 For retrieving push tokens in Android [7] - https://developers.google.com/cloud-messaging/android/client#get-

config; iOS [8] -

https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Ch

apters/ApplePushService.html

http://developer.android.com/reference/android/telephony/TelephonyManager.html
https://developers.google.com/cloud-messaging/android/client#get-config
https://developers.google.com/cloud-messaging/android/client#get-config

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 13 of 97

The following diagram illustrates the various identifiers and the mapping between them:

Figure 3: SAA identifiers

3.0 Base SAA functional requirements

This section describes the minimal functional requirements to deliver the Base SAA solution.

Section 4.0 then builds on the Base SAA to demonstrate how the Authenticator could be

enhanced to improve user experience and security through leveraging Operator network

assets.

3.1 SAA Client User Interface features

An example of a Mobile Connect branded SAA Client home screen is shown below:

Figure 4: Sample Mobile Connect branded SAA Client home screen

SAA subsystem ID GW

«id gateway»

OpenID Connect

Serv er

«id gatew...

SAA Adapter

«3rd party»

SAA Serv er

«mc auth app»

SAA client

INT1

INT2

SAA Client ID <-> SAA

Client Device ID; SAA

Client Device ID <->

Device push token

MSISDN<->SAA

Client ID
SAA Client Device ID MSISDN <-> MC Acct

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 14 of 97

The following table outlines user interface features that should be supported by the SAA

Client:

Table 2: Summary of SAA Client UI features

3.2 Authentication modes/LoA support

In alignment with the other Mobile Connect authenticators, the SAA should support both

LoA2 and LoA3 although can expand beyond ‘Click OK’ for LoA2 to include Tap, Swipe or

other such gestures as supported by smartphone devices and within LoA3 can introduce

support for biometrics.

Level of Assurance Authentication Mode

LoA2 Click OK, Tap or Swipe

UI Category UI Feature

Generic The SAA Client should support localised strings for labels and messages

(corresponding to successful and error response codes received from SAA Server)

Generic The SAA Client should perform device security checks as described in section 5.2.1

Home screen The SAA Client should display a static Mobile Connect logo on the home screen

Home screen The SAA Client should display a localised “powered by Operator” on the home

screen. Displaying a PNG logo of the Operator brand is highly desirable; options

for obtaining the Operator name and logo are covered in section 3.4

Home screen The SAA Client should display ‘Administration Settings’ and ‘Help’ menu options

Home screen On opening the app for the first time, the SAA Client should prompt the user to set a

local PIN in alignment with Operator policy. This PIN will be SHA-256 hashed and

retained on the device and used for both authenticating the user to Mobile Connect

as well as granting access to the Administration Settings of the SAA Client

Home screen On opening the app for the first time, the SAA Client should prompt the user to

activate using an association code or recover an existing account using account

recovery information

Home Screen Upon activation, if the MSISDN is determined to be associated to an existing Mobile

Connect account, the user should be prompted to recover the account

User prompt

screen

The User should be redirected to a prompt screen on receiving authentication,

authorisation or attribute sharing consent requests. The SAA Client should support

various prompts as described in section 3.5. On completing the transaction request,

the user should be redirected back to the screen it was previously on

Administration

Settings

Access to the Administration Settings menu should be possible only by

authenticating the user against the local PIN registered when the user activated the

SAA Client

Administration

Settings

It should be possible for the user to manage their PIN (register/change) and on-

device biometric14 profile (e.g., training) where supported

Administration

Settings

It should be possible for the user to view account recovery information

Help Menu Display help contents on ‘Introduction’, ‘How to use?’, ‘Where to use?’, ‘Security

tips’, ‘FAQ’, ‘Terms of service’, ‘Privacy policy’. It is expected that the Help

information will be generic to Mobile Connect and not curated per Operator

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 15 of 97

LoA3 Enter PIN or use on-device biometric14

Table 3: Authentication mode/LoA support

The Base SAA Client can support biometrics using the native Biometrics APIs provided by

the underlying platform (Apple TouchID15, Samsung Pass16 or Android 6 fingerprint API17).

Note that the SAA Server may request a particular authentication mode (e.g., based on SP

or Operator policy) or this may be selected in the SAA Client based on user preference

(although noting that the Operator/SP policy may need to override any user preference).

Optionally, the SAA may also provide a fall-back OTP mechanism for use when offline – see

next section for details.

3.3 Offline mode

In situations where the user is offline for whatever reason or as a fall-back mechanism

following a timeout at the ID GW, there is an option for the SAA Client to support the

generation of a One-Time Password (OTP) that can be entered manually by the user into the

browser of the consumption device for validation by the SAA Server. This is a secured

facility and user should be allowed to access One-Time Password generation menu only

after successful PIN based local authentication.

The offline code should be generated using a time based mechanism based on pre-

synchronized keys/tokens and also be unique to the device (e.g., through using IMEI or MAC

address18). The pre-synchronized keys/token should have a validity period, be tokenized and

be refreshed periodically when the device is online to keep them valid.

Support of an offline mode is optional within the Base SAA but recommended.

3.4 Discovery of Operator logo

There is no standard way of discovering Operator logo metadata dynamically at runtime.

Potential options include:

1. Pre-bundling variants of logo resources (mdpi, hdpi, xxhdpi etc.,) of participating

Operators in the SAA Client binary and loading them dynamically based on a

resource key based on the Operator’s MCC + MNC19. The SAA Client can read the

MCC + MNC of the Operator using platform specific APIs20. An application upgrade

14 Fingerprint, voice recognition, face recognition, iris scan etc.

15 https://developer.apple.com/library/ios/samplecode/KeychainTouchID/Introduction/Intro.html

16 http://developer.samsung.com/galaxy#pass

17 http://developer.android.com/about/versions/marshmallow/android-6.0.html

18 This information would be provided by the SAA Client to the SAA Server upon initial installation and enrolment

of the SAA Client

19 Mobile Country Code + Mobile Network Code

20 iOS -

https://developer.apple.com/library/ios/documentation/NetworkingInternet/Reference/CTCarrier/index.html;

Android - http://developer.android.com/reference/android/telephony/TelephonyManager.html

https://developer.apple.com/library/ios/samplecode/KeychainTouchID/Introduction/Intro.html
http://developer.samsung.com/galaxy#pass
http://developer.android.com/about/versions/marshmallow/android-6.0.html
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Reference/CTCarrier/index.html

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 16 of 97

will be required to load any new participating Operator resources or modify existing

resources.

Note however that this functionality cannot be used to support MVNO brands and

sub-brands.

2. Pre-bundling variants of logo resources (mdpi, hdpi, xxhdpi etc.,) of participating

Operators including MVNOs in the SAA Client binary and loading them dynamically

based on a resource key. As part of the SAA Client activation process based on

MSISDN, the user’s MSISDN is discovered in the SAA Client (see section 3.7.1.1).

This MSISDN will be passed to an API exposed by the Operator to discover a key

representing the Operator including any MVNO’s brand/sub-brand. This key will be

used by the SAA Client to load logo resources dynamically. An application upgrade

will be required whenever Operator’s logo resources needs modification.

3. Instead of pre-bundling logo resources in the SAA Client library, the Operators’

resources can be hosted either in the ID GW or SAA Server. These resources can

be provisioned in the corresponding server during the Operator on-boarding process.

A new logo discovery API exposed by either the ID GW or SAA Server will be

responsible for returning a JSON document containing logo metadata including

public facing URL’s. As part of SAA Client activation process based on MSISDN, the

user’s MSISDN is discovered in the SAA Client (see section 3.7.1.1) and passed to

the logo discovery API to retrieve the logo metadata JSON document, followed by

loading the logo resources from the server based on the resource URL. It should be

possible for the SAA Client to cache these images to avoid any network latency and

improve application performance. No application upgrade will be required if

resources needs modification. This approach also allows the ID Gateway to change

the branding, links or other personalization on the fly in case something needs to be

changed.

3.5 User prompts

Mobile Connect aims to support a range of services encompassing authentication,

authorisation and attributes. In doing so it will need to present a range of different prompts

to the user via the SAA Client including:

• Authentication prompt - identifying the SP to which a user is being asked to

authenticate.

• Authorisation prompt - present the SP-provided details of a transaction that the user

is being asked to authorise.

• Attributes prompt - present the Operator-provided attribute labels and associated

values that will be shared with an SP, if the user provides their consent.

The SAA Client should support the following requirements for the authorisation prompt:

• SAA Client should support display of SP short name (client_name) to provide context

to the user on which service they are authenticating/authorising to21.

21 The Service Name will be determined from the SP client_id in the ID GW and passed to the SAA Client.

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 17 of 97

• In case of Authentication and Authorisation prompts, SAA Client should support

display of context value (context) passed by SP to provide context to the user on

which service they are authenticating/authorising to22.

• In case of Attributes prompt, SAA Client should support display of transaction

attribute values in the transaction text for seeking user’s consent.

• Optionally, SAA Client should support display of a binding message

(binding_message) if provided; this is a reference number displayed on the

consumption device and authorisation device for interlocking purposes.

• The ID GW will communicate various context specific dynamic values (client_name,

binding_message, context and transaction attribute values) via the SAA Adapter to

the SAA Server. The SAA Server in turn will return these values to the SAA Client

for display purpose.

• The authentication mode (Click OK, PIN23 etc.) will be communicated via the SAA

Server; the SAA Client will present the appropriate instruction to the user (e.g., a

‘PIN’ authentication mode being displayed as ‘Enter PIN’ on the SAA Client).

• UTF-8 character set must be supported24.

• SAA Client should provide a cancel option for the user to cancel the transaction.

22 The Service Name will be determined from the SP client_id in the ID GW and passed to the SAA Client.

23 SAA Clients are likely to support communication of Authentication mode as follows: Any; Time based One

Time Passcode; Tap; Swipe; PIN; Fingerprint scan; Face recognition; Voice recognition

24 Note that the OIDC AuthZ Request has an optional parameter, ui_locales, which is a space separated list of

preferred languages as per RFC5646 but that this parameter is for guidance only and the ID GW can override

this without prompting any error.

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 18 of 97

The following diagram provides an example illustration of the different prompt/text

requirements:

Figure 5: SAA Client prompt requirements

3.6 SAA Client invocation

Mobile Connect takes a ‘network initiated’ approach in which the user typically receives the

authentication challenge on their mobile phone (authentication device) via the network. The

same approach should be followed by the SAA authenticator hence the SAA subsystem will

need to utilise a platform-specific push notification system such as FCM (Firebase Cloud

Messaging) or APNS (Apple Push Notification Service) or alternatively push an SMS to a

specific port. Given that the PNS approach results in a better user experience (i.e., reduced

latency; ability to use when out of coverage but on WLAN) it is recommended that the Base

SAA uses PNS rather than SMS.

In alignment with the existing Mobile Connect authenticators, the SAA should also provide a

seamless, intuitive experience to the user when authenticating, and in particular should

endeavour to return the smartphone to its prior state after the authentication25 event has

completed. There are three scenarios:

25 Authentication, Authorisation or Attribute consent interaction

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 19 of 97

Remote invocation

(network push; separate

consumption device)

• User initiates authentication via consumption device OR SP

service initiates authentication through server-based

invocation

• SAA Client opens via push notification (with user interaction26)

and closes or deactivates automatically after completing the

authentication process

Remote invocation

(network push; mobile

browser; same

consumption device)

• User initiates authentication via a mobile browser interaction

• Mobile browser initiates typical Mobile Connect flow; SAA

client invoked remotely by push notification

• User will be navigated away from the mobile browser to the

SAA Client in order to authenticate

• SAA Client closes or deactivates after authentication

• Underlying platform should then return focus to the mobile

browser so that the user can continue with the SP service

Local invocation from

SP app (same

consumption device)

Enhanced SAA only

• SAA Client opens via platform-specific invocation method

initiated by the SP app

• After authentication the SAA Client should invoke the custom

URI of the SP app to return control back

• SAA Client closes or deactivates after returning control

• Please see section 4.2 for further reading

Table 4: SAA Client invocation scenarios

Further details on the different invocation scenarios, the accordant technical flows and

resultant user experience are covered later in section 5.4.

Note: In case of the device being locked, the user will be required to unlock their device

before being able to interact with a Mobile Connect authentication request.

3.7 Mobile Connect lifecycle events

This section provides an overview/guidance on how each of the lifecycle events may impact

on the implementation and operation of a Smartphone App Authenticator within Mobile

Connect. Section 5.5 then provides a detailed technical walkthrough.

3.7.1 SAA activation (SAA + Mobile Connect)

The activation phase for the SAA solution involves the following steps:

• Download and installation of the SAA Client from the App Store.

• Activation of the SAA Client, setup of an SAA Client account and association with a

Mobile Connect user account [optional registration if account not yet available].

The user could potentially discover the SAA Client in a multiple number of ways including:

• Via the App Store.

• SAA Client pre-embedded on the device by the Operator.

26 Depending on the platform (iOS, Android), there may be a dependency on user interaction in order for the SAA

Client to open – this may include unlocking the phone and/or clicking on a notification

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 20 of 97

• User clicking on a link within the Operator website.

• User clicking on a link within the website of an SP supporting Mobile Connect.

• User clicking on a link received in an SMS pushed to the user by their Operator.

• User clicking on a link within the Operator self-care app.

Note: at this stage, no consideration is being made as to whether the SAA Client exists as a

single app on the App Store shared across Operators (and potentially personalised based on

Operator) or that there are multiple apps for the user to choose from – distribution options

and the pros/cons of each will be considered in more detail in section 6.1.

Once the SAA Client has been downloaded to the device, it needs to be activated27 and

associated with the user’s Mobile Connect account (MSISDN), as well as being provisioned

to the platform specific push notification service (e.g., APNS or FCM).

The activation can be initiated either by the SAA Client or by an Operator self-care portal but

the aim should be to streamline the user interaction flow as far as possible. As part of the

activation process the SAA Client ID needs to be linked with the requisite Mobile Connect

account via the use of MSISDN or an association code; there are two options:

• MSISDN based linking

• System generated association code based linking

3.7.1.1 MSISDN based linking

o User downloads SAA Client and initiates activation process

o SAA Client discovers MSISDN of the user during activation phase. The MSISDN can be

discovered as described in section 5.3.1

o MSISDN is used as the association code for linking SAA Client ID with Mobile Connect

account

This is the preferred approach as the user is not required to remember/enter a system

generated association code as part of the activation step; however, supporting this approach

would require the Operator to expose an API for determining MSISDN or the use of SMS

based MSISDN discovery thereby adding additional complexity.

3.7.1.2 System generated association code based linking

o User receives the association code either by email or Operator’s website after successful

Mobile Connect registration. The association code will be linked to user’s Mobile Connect

account.

o The association code should be a temporary one-time code with a very short life span

(typically 60 seconds).

o It should be possible for the user to request a new association code from the website in

case of association code expiry.

o User downloads the SAA Client and initiates the activation process.

o User enters the association code during activation to link SAA Client ID with his/her

Mobile Connect account.

27 The SAA Client activation is a one-time activity that takes place at the start of usage but may need to be

repeated periodically (depending on Mobile Connect lifecycle events).

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 21 of 97

Note: the above assumes that the user is already registered with a Mobile Connect account

and is upgrading to the SAA authenticator – further technical details in section (1).

In the situation where the user is not yet registered for Mobile Connect, this would need to

be invoked within the SAA Client activation process – further technical details in section

5.3.2.

3.7.2 Account recovery

For consistency, ease of use and security purposes, a single account recovery mechanism

should be established whether the SAA Client has been disabled or deleted or whether the

user’s device has been lost, stolen or changed. In all cases, the previous SAA Client and

the Mobile Connect account should be suspended pending activation of a new SAA Client.

As part of the SAA Client activation process, the ID GW (via the SAA Adapter) will generate

a unique account recovery code and make it available for the user to view via the

Administration Settings menu item (through SAA Adapter->SAA Server-> SAA Client). The

recommended size of the recovery code is 16 alphanumeric characters. This is a secured

facility and user should be allowed to access this setting only after successful PIN based

local authentication.

3.7.3 SAA Client deletion/reinstallation

It’ll be a common occurrence that a user will delete the SAA Client (either by mistake or to

free up some space on their device) and then want to reinstall the SAA Client later on. There

should be security mechanisms to ensure the deletion/ reinstallation sequence cannot be

executed quickly and repeatedly i.e. so that it could be attacked by a bot.

The following guidelines are applicable in this scenario:

1. The SAA Client should prompt the user to set up a new PIN and biometric profile

(where applicable).

2. If the user has access to account recovery information from a previous SAA

activation process, then it should be possible to activate the SAA Client by entering

the account recovery information – further technical details in section 5.3.

3. If the user does not have access to account recovery information, the SAA activation

process detailed in section 3.7.1 should be followed. It should not be possible for the

user to use the previous association code in this case.

4. If a new SAA Client is successfully activated with an existing Mobile Connect

account, then:

i) As all the SP linkages are maintained with MSISDN it will not be necessary to re-

establish these linkages in case of reinstallation of SAA Client.

ii) Previous SAA Client (MSISDN <-> SAA Client ID) related to a particular Mobile

Connect account should be deleted or permanently disabled.

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 22 of 97

3.7.4 Device change notification

A common occurrence is for a user to upgrade their device or swap their SIM from their

primary device to a secondary device that is used for a particular purpose (e.g., a smaller

phone for use whilst jogging).

Because the SAA Client is linked to the device and only to the MSISDN indirectly via the

Mobile Connect account, any authentication requests for that user will always be routed to

their primary (or previous) device until the user downloads an instance of the SAA Client into

their new/secondary device and associates it with their SAA account.

The Operator can support the requirement of device change status in the following ways:

1. Pushing notifications from the provisioning systems to the ID GW.

2. Providing an internal API that the ID GW can call every time on a transactional basis.

3. Enabling the user to manually update their Mobile Connect account from the

Operator’s Mobile Connect website (or similar business process).

Either way, the ID GW must notify the SAA Server of any change in the user’s device in

order for the SAA Server to act accordingly. The handling of device change status

notification events is covered in section 5.5.2.

3.7.5 Mobile account status change (suspended/reactivation/deletion)

The user’s mobile account may be suspended for a number of different reasons including

lost/stolen or unpaid bills. Because the SAA authenticator works over WLAN, suspending

the user’s mobile account will not prevent them from using Mobile Connect – in fact a user

could register to Mobile Connect on a prepay SIM, throw it away and continue using Mobile

Connect services.

It is therefore imperative that the ID GW is aware of the standing of the mobile account

associated with the MSISDN being used for Mobile Connect and reject the SP authentication

request if that MSISDN is no longer valid.

The Operator can support the requirement of account status change in the following ways:

1. Pushing notifications from the Operator’s provisioning systems to the ID GW when a

relevant lifecycle event occurs. This in turn should modify the status of the

corresponding Mobile Connect account accordingly.

2. Provide an internal API that the ID GW can call every time on a transactional basis.

3. Modify the status of a Mobile Connect account directly from the Operator’s BSS (e.g.,

the CRM portal) by calling an internal API in ID GW (Base requirement).

Whichever approach is implemented, the ID GW must notify the SAA Server of the change
in user account status in order for the SAA Server to act accordingly. The handling of
various account status change notification events is covered in section 5.5.3.

Note that the user must also be able to delete their Mobile Connect account (e.g., via the
Operator’s self-care portal) – this is a generic requirement of the Mobile Connect solution
and not specific to SAA.

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 23 of 97

3.7.6 User churn

As part of the activation phase, the SAA Server assigns an identifier for the user (SAA Client

ID) and this identifier is provided to the ID GW. If the user moves to another Operator, the

following processes are applicable:

• User will have to de-register their Mobile Connect account with the old Operator

resulting in deactivation of the old SAA Client.

• User will have to register for a Mobile Connect account with the new Operator

o The user registers for a new Mobile Connect account via the new Operator self-

care portal and activates the SAA Client of the new Operator.

Risks:

• Service Providers (SPs) may still use old MSISDN in requests28. Hence there is a

danger that the SP will continue to use the user’s old MSISDN allowing whoever

receives this recycled number to authenticate to the user’s account with the SP

(although MSISDNs typically are quarantined for 90 days29 hence this situation is

unlikely). This risk is mitigated by the previous Operator deleting the user’s old

Mobile Connect account as part of de-registration process. So any request from the

SP to the ID GW for an old MSISDN will be rejected with an appropriate error

message. However there is an edge case where a user changes Operator and

doesn’t bother setting up a new account with their new Operator. Hence the recipient

of the old device will be able to authenticate the previous owner’s SP accounts. This

risk is mitigated by use of PIN/biometric gestures for LoA3 transactions.

• SP uses cached endpoints of the old Operator; however, in such a scenario the PCR

used by the SP in the OIDC request will no longer be valid, hence the old Operator

will reject the request with an error indicating that the SP needs to call Discovery to

determine the new Operator endpoints for the target user.

3.7.7 Lifecycle event summary

The following table summarises the lifecycle events:

Table 5: Lifecycle event summary

28 Trusted SPs are able to stipulate the target MSISDN as a login_hint in their service requests

29 The period for which numbers are quarantined differs from jurisdiction to jurisdiction

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 24 of 97

3.8 Interface requirements

The following diagram illustrates the interfaces between:

• SAA Server <-> ID GW (INT1)

• SAA Server <-> SAA Client (INT2)

Figure 6: SAA interface options

The following sections identify the requirements for each interface. Detailed discussions of

options to meet these requirements are covered in section 5.1

INT1 requirements

• The interface SHOULD be simple, lightweight and extensible.

• The interface SHOULD be RESTful.

• The interface SHOULD use TLS.

• The interface MAY use message layer security, like encrypted payload.

• The parameters passed within INT1 MUST be sufficient for the SAA Server to

register the SAA Client, securely identify the specific instance of the SAA Client, send

secure messages to the SAA Client etc.

• The interface MUST not restrict the deployment options for the SAA subsystem, e.g.

it SHOULD be possible for SAA subsystem components such as the SAA Server to

be deployed in the public/private/hybrid Cloud, on premise and also as multi-instance

or multi-tenant deployments.

• The interface SHOULD use PKI for integrity.

• Use of Nonce is recommended to ensure the threat of replay attacks is minimised.

INT2 requirements

• The interface MUST use secure communications between the Device and the SAA

Server.

• The interface MUST allow the SAA Server to initiate the Authentication challenge to

the SAA Client.

• The payload used in the interface SHOULD be minimal, such that the latency of

interaction is minimised and optimal bandwidth is used.

• The interface SHOULD use TLS.

• The transport used SHOULD be IP based and transports like SMS, USSD SHOULD

be avoided.

• The interface SHOULD use signed messages and PKI for integrity.

• Use of Nonce is recommended to ensure the threat of replay attacks is minimised.

SAA subsystem ID GW

«id gateway»

OpenID Connect

Server

«id gatew...

SAA Adapter

«3rd party»

SAA Server

«mc auth app»

SAA client

INT1

INT2

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 25 of 97

3.9 Base SAA functional requirements summary

The following table summarises the functional requirements for the Base SAA solution:

Requirement Description

App instance Recommendation:

• Single SAA Client app that is branded Mobile Connect and used by all

Operators within a market/region.

• Section 6.1 provides more analysis on the different SAA subsystem

and SAA Client distribution options

App discovery/

download

Multiple options:

• SAA Client pre-embedded on the device by the Operator .

• User clicking on a link within the Operator website.

• User clicking on a link within the website of an SP supporting Mobile

Connect.

• User clicking on a link received in an SMS pushed to the user by their

Operator.

• User clicking on a link within the Operator self-care app

SAA subsystem

Identifiers

• As per section 2.3

SAA Client invocation • SAA Client remote invocation (Network push model) using platform-

specific (Android, iOS, Windows) push messaging mechanisms over an

IP bearer.

• See section 5.4.1 for more details.

Biometrics support • SAA Client should support biometrics using the native Biometrics APIs

provided by the underlying platform (Apple TouchID30, Samsung

Pass31 or Android 6 fingerprint API32).

Authentication modes • As per section 3.2

User prompt

composition & format

• SAA Client should support prompt text on a per transactional basis.

• SAA Client should support display of SP short name (client_name) to

provide context to the user on which service they are

authenticating/authorising to33.

• In case of Authentication and Authorisation prompts, SAA Client should

support display of context value (context) passed by SP to provide

context to the user on which service they are authenticating/authorising

to34.

• In case of Attributes prompt, SAA Client should support display of

transaction attribute values in the transaction text for seeking user’s

consent.

30 https://developer.apple.com/library/ios/samplecode/KeychainTouchID/Introduction/Intro.html

31 http://developer.samsung.com/galaxy#pass

32 http://developer.android.com/about/versions/marshmallow/android-6.0.html

33 The Service Name will be determined from the SP client_id in the ID GW and passed to the SAA Client.

34 The Service Name will be determined from the SP client_id in the ID GW and passed to the SAA Client.

https://developer.apple.com/library/ios/samplecode/KeychainTouchID/Introduction/Intro.html
http://developer.samsung.com/galaxy#pass
http://developer.samsung.com/galaxy#pass
http://developer.android.com/about/versions/marshmallow/android-6.0.html

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 26 of 97

• Optionally, SAA Client should support display of binding message

(binding_message), a reference number on consumption device and

authorisation device for interlocking purposes.

• The ID GW will communicate various context specific dynamic values

(client_name, binding_message, context and transaction attribute

values) via the SAA Adapter to the SAA Server. The SAA Server in

turn will return these values to SAA Client for display purpose.

• The authentication mode (Click OK, PIN35 etc.) will be communicated

via the SAA Server; the SAA Client will present the appropriate

instruction to the user (e.g., a ‘PIN’ authentication mode being

displayed as ‘Enter PIN’ on the SAA Client).

• UTF-8 character set must be supported36.

• SAA Client should provide a cancel option for the user to cancel the

transaction.

SAA Interfaces • INT1 (ID GW <-> SAA Server) vendor specific (ID GW develops SAA

Adapter as required).

• INT2 (SAA Server <-> SAA Client) vendor specific.

• See section 5.1 for more details.

Security Guidelines • As per section 5.2

Lifecycle: SAA Client

activation

• User receives the association code either by email or the Operator’s

Mobile Connect or self-care website after successful Mobile Connect

registration.

• The association code should be a temporary one-time code with a very

short life span (typically 60 seconds).

• It should be possible for the user to request a new association code

from the Operator’s website in case of association code expiry.

• User downloads SAA Client and initiates activation process.

• User enters the association code during activation to link SAA Client ID

with his/her Mobile Connect account.

• See section 3.7.1.2 for more details.

Lifecycle: Account

recovery

• On successful activation, the ID GW (SAA Adapter) must generate a 16

character account recovery code and make it available for the user to

view via the SAA Client (Administration Settings menu).

• It should be possible for the user to recover an existing account using

the account recovery code.

• See section 5.3.5 for more details.

Lifecycle: SAA Client

deletion/reinstallation

• SAA Client should prompt the user to set up new PIN and also allow

the user to set up a biometric profile (where appropriate).

• If the user has access to account recovery information from a previous

SAA activation process, it should be possible to activate the SAA Client

35 SAA Clients are likely to support communication of Authentication mode as follows: Any; Time based One

Time Passcode; Tap; Swipe; PIN; Fingerprint scan; Face recognition; Voice recognition

36 Note that the OIDC AuthZ Request has an optional parameter, ui_locales, which is a space separated list of

preferred languages as per RFC5646 but that this parameter is for guidance only and the ID GW can override

this without prompting any error.

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 27 of 97

by entering the account recovery information – further technical details

in section (1).

• If the user does not have access to account recovery information, then

the SAA activation process detailed in section 3.7.1 should be followed.

It should not be possible for the user to use a previous association

code in this case.

• As all the SP linkages are maintained with MSISDN, it will not be

necessary to re-establish these linkages in case of reinstallation of the

SAA Client.

• All previous SAA Clients (MSISDN <-> SAA Client ID) related to a

particular Mobile Connect account should be deleted or permanently

disabled.

Lifecycle: Device

change

• The user must be able to manually update their Mobile Connect

account from the Operator’s Mobile Connect website (or similar

business process) when switching to a new device OR the Operator

BSS systems must advise the ID GW of a device change.

• In doing so, the existing SAA Client account should be blocked and the

user prompted to download, install and activate an SAA Client instance

on their new device.

• The ID GW must notify the SAA Server of device change status for the

SAA Server to act accordingly.

• See section 5.5.2 for more details.

Lifecycle: Account

status notifications

• The Operator must have the ability to modify the status of the Mobile

Connect account from the Operator’s BSS (e.g., the CRM portal).

• The ID GW must check for lifecycle events and ensure the mobile

account is in good standing before issuing an

authentication/authorisation/consent request to the SAA Server.

• The ID GW must notify the SAA Server of any account status change

for the SAA Server to act accordingly.

• The User must be able to delete their Mobile Connect account via the

Operator’s self-care portal.

• See section 5.5.3 for more details.

Lifecycle: User churn • User de-registers their Mobile Connect account with the old Operator

resulting in deactivation of old SAA Client.

• User activates the SAA Client with the SAA Server of the new Operator

resulting in a new SAA Client ID.

Table 6: Base SAA functional requirements

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 28 of 97

4.0 Enhanced SAA functional requirements

One of the key principles of Mobile Connect is to use/re-use Operator assets, business

processes and security mechanisms to provide a better overall authentication solution.

In many of the other Mobile Connect authenticators, network assets are implicitly used to

deliver the authentication mechanism (e.g. USSD, Class 2 SMS etc.) hence providing an

implicit Operator value-add. In the case of the SAA, an IP-channel is more suitable for

connectivity but there are other ways in which network assets can be used to enhance the

solution. In particular, the SAA can be bound to Operator identifiers thereby reusing

Operator assets such as network authentication, SIM and Device identity association and

knowledge.

This section describes an Enhanced SAA solution that leverages Operator APIs and network

assets as well as introducing additional functionality to deliver a more robust/feature rich

proposition. Note that the Enhanced SAA solution places a number of dependencies on

both GSMA platforms (e.g., API Exchange) and Operator systems hence is not expected to

be ready for deployment until a later Mobile Connect Release.

4.1 SAA Client User Interface features

The following table outlines user interface features that should be supported by the

Enhanced SAA Client in addition to those required for the Base SAA as defined in section

3.1:

Table 7: Enhanced SAA Client UI features (delta to Base SAA)

4.2 Discovery of SP logo

The ID GW could retrieve additional SP details (SP logo URL, short name, SP background

image URL) by calling the Request Validation API of the API Exchange using SP client_id as

the parameter. This call could be made during the authorisation code request call from the

SP client. To support variants of SP logo resources (mdpi, hdpi, xxhdpi etc.,), it is

recommended that the Request Validation API return SP logo metadata as JSON document.

Note however that this functionality is not yet supported within the API Exchange so would

require additional development hence is for further study.

4.3 User prompts

In addition to the user prompts requirements described in Base SAA (section 3.5), the

additional requirements are:

UI Category UI Feature

Administration

Settings

The SAA Client should allow a user to retrieve a list of SP bindings,

and be able to request revoking or removing them from the ID GW

Administration

Settings

The SAA Client should provide an inbox capability allowing a user to

view a list of messages, read a specific message and delete a

message

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 29 of 97

• SAA Client should support display of SP logo.

• SAA Client should support display of SP background logo.

• The ID GW will communicate various context specific dynamic values (client_name,

binding_message, context, transaction attribute values, SP logo URL, SP

background image URL etc.,) via the SAA Adapter to the SAA Server. The SAA

Server in turn will return these values to SAA Client for display purpose.

4.4 Mobile Connect lifecycle events

4.4.1 User churn

As part of the activation phase, the SAA Server assigns an identifier for the user (SAA Client

ID) and this identifier is provided to the ID GW. If the user moves to another Operator, this

SAA Client ID and device related information (SAA Client Device ID, Device Push Token)

may need to be passed to the new Operator through the Lifecycle Account Migration API

(e.g., in addition to the passing of the PCR mappings) to ensure that any authentication

requests for that MSISDN are routed to the correct instance of the SAA Client (and not an

SAA Client remaining on the user’s previous handset).

However, it depends on the individual circumstances of the user and is applicable only if the

user keeps their existing device. This is discussed further in the following subsection.

Note however that this functionality is not yet supported within the Lifecycle Account

Migration API so would require additional development hence is for further study.

4.4.1.1 User keeps their existing device

Assuming that the user retains their existing SAA Client on their device, the process is likely

to work as follows:

• If the Operators (ported from and ported to) are using an SAA subsystem from the

same vendor37, the user can keep their existing SAA Client instance and associate

this with the Mobile Connect account as part of the Account Migration process. The

SAA Client ID, Device Push Token, Device OS type and SAA Client Device ID are

ported along with the PCRs as part of the Account Migration process. The Operator

stores the SAA Client ID along with the MSISDN in the SAA Adapter and the SAA

Client Device ID, Device Push Token and Device OS type within the SAA Server

along with SAA Client ID. This is the recommended option for operator’s supporting

account migration process.

Note that the Device Push Token is tied to the SAA Client and will need to be

refreshed even if the SAA Client is reinstalled. The SAA Server should replace the

existing Device Push Token with a new Device Push Token when supplied by the

SAA Client.

Risks:

37 Or if the interface between SAA Client and SAA Server (i.e., INT2) is standardised to allow for any SAA Client

to interwork with any SAA Server; for more information on interface approaches see section 5.1

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 30 of 97

• Service Providers may still use an old MSISDN in requests38. Hence there is a

danger that the SP will continue to use the user’s old MSISDN allowing whoever

receives this recycled number to authenticate to the user’s account with the SP

(although MSISDNs typically are quarantined for 90 days39 hence this situation is

unlikely). This risk is mitigated by the previous Operator deleting the user’s old

Mobile Connect account (which should happen when the user ports across their old

Mobile Connect account to the new Operator - see section 5.5.3 for further details).

So any request from an SP to the ID GW for an old MSISDN will be rejected with an

appropriate error message. However there is an edge case where a user changes

Operator and doesn’t bother setting up a new account with their new Operator.

Hence the recipient of the old device will be able to authenticate the previous owner’s

SP accounts. This risk is mitigated by use of PIN/biometric gestures for LoA3

transactions.

• SP uses cached endpoints of the old Operator; however, in such a scenario the PCR

used by the SP in the OIDC request will no longer be valid, hence the old Operator

will reject the request with an error indicating that the SP needs to call Discovery to

determine the new Operator endpoints for the target user.

4.4.1.2 User upgrades to a new device

User churns and sets up a new Mobile Connect account with the new Operator.

Similarly, as per the previous scenario, the SAA Client ID could be ported across with

the PCRs or a new SAA Client ID generated. The SAA Client Device ID and Device

Push Token though will change as in this scenario the user has upgraded to a new

device.

Risks:

• Service Providers may still use an old MSISDN in service requests - mitigation is as

described in the previous section

• SP uses cached endpoints of the old Operator; mitigation as per previous section

4.5 SAA Client local invocation (App deep-linking using custom URI scheme)

If the user is accessing the SP’s service via an SP App on the mobile phone, the

authentication flow can be optimised by the SP App invoking the SAA Client locally. The high

level flow will be as follows:

1. SP App initiates OIDC authorization code request with Operator’s ID GW passing

relevant parameters (SP client_id, state, context, prompt, login_hint etc.,).

2. In parallel, SP App invokes the custom URI of SAA Client passing SP App’s call-back

URL, SP client_id and state parameters. This action activates SAA Client and pushes

SP App into background.

3. ID GW processes the OIDC request, creates a new transaction record for the

combination of user’s MSISDN, SP client_id and state parameters and suppresses

authentication challenge depending on the new value passed in prompt parameter.

38 Trusted SPs are able to stipulate the target MSISDN as a login_hint in their service requests

39 The period for which numbers are quarantined differs from jurisdiction to jurisdiction

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 31 of 97

Note: A change will be required in the OIDC Mobile Connect profile to pass a new

value in prompt parameter that will inform ID GW to suspend network push for

initiating user’s authentication process. The actual value to be passed will be

finalised after further study.

4. SAA Client initiates AuthN session with SAA Server passing SP client_id, state and

other relevant parameters.

5. SAA Server retrieves transaction details from ID GW corresponding to user’s

MSISDN, SP client_id and state parameters created in step 3.

6. SAA Client prompts the user based on AuthN request response received from SAA

Server.

7. User authenticates via SAA Client depending on level of assurance requested by SP

and Operator’s policy.

8. SAA Client returns control back to the SP App by invoking the callback URL of the

SP App.

9. In the background, ID GW responds to original OIDC request with authorization code

in the redirect URL as a query parameter.

The SP App can discover the SAA Client custom URI either:

1. Dynamically, reading Operator’s MCC + MNC using platform specific functions and

calling the API in the API Exchange to retrieve Operator specific provider metadata

containing custom URL of SAA Client. This is the recommended approach.

Note: A change would be required in the API Exchange to support retrieval of

Operator specific provider metadata.

2. Static links published in mobileconnect.io (for each Operator’s SAA Client) or similar

GSMA public facing portal. See section 5.4.3 for technical details on SAA Client local

invocation.

For Custom URI Scheme Namespace Considerations, please see [2] (section 4.1.2).

4.6 Extensible support for new authentication methods

The SAA solution may support a range of authentication approaches including knowledge-

based (e.g., PIN) and biometrics. Going forward, the SAA solution should be extensible to

support new authentication methods as they become available on the smartphone platform –

this may include new capabilities intrinsic to the platform itself or new software-based

authenticators that can be incorporated into the SAA implementation (e.g., PixelPIN40, face

recognition, iris scanning etc.).

In doing so, the SAA Client should enable the user to choose which authentication method

they prefer for a given LoA – for instance, choosing between PIN vs fingerprint. This choice

should be stored locally but communicated to the ID GW (through SAA Server->SAA

Adapter) such that the authentication context parameter (amr) can be correctly specified in

the OIDC response to the SP.

40 http://pixelpin.co.uk

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 32 of 97

Note that in future phases it may be necessary for the SAA to adapt based on SP

requirements and override a user preference – for instance, if the SP demands a biometric

authentication for LoA3 rather than a PIN. In such a scenario, the SAA Server and SAA

Client can do a handshake to exchange the allowed list of authentication modes based on

the LoA requested and configured policies, which can then be presented to the user for

selecting their preference.

Note that in any case, ID GW should retain control over authentication methods based on

Operator’s policy.

4.7 SP binding management

The SAA Client should provide an interface through which the user can:

• Review the list of Service Providers that the user has linked their Mobile Connect

account to

• Remove one or more of the SPs from their Mobile Connect account

• Request for revocation of SP specific Access and ID tokens

Please note that this is a secured interface and should only be accessible after user has

authenticated locally with SAA Client using the PIN.

There are two scenarios:

• SP binding removal: User wishes to remove an SP so that their Mobile Connect

account can no longer be used for authenticating to that SP, results in:

o ID Gateway shall no longer allow the specific SP to use the Mobile Connect

service to authenticate the user.

o At an ID GW level, this will lead to the PCR for that particular user:SP pairing

being removed from the user’s Mobile Client account.

o User wishing to reinstate the Mobile Connect <-> SP binding will be required to re-

authenticate with that particular SP.

• SP binding revocation: User wishes to revoke an SP to, in effect, ‘log out’ results in:

o Revocation of the Access and ID Tokens for that user:SP pairing.

o The SP will not know this until either a refresh token call is made (or) a new

Authorisation call is made.

If an SP is removed or disabled by the user via the SAA Client, the ID Gateway shall no

longer allow the specific SP to use the Mobile Connect service to authenticate the user.

The Identity GW should provide APIs through which the SAA Client can:

• Request a list of SP bindings

• Request that an SP binding is removed

• Request that an SP binding is revoked

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 33 of 97

4.8 Secured messaging feature

Secured messaging is a feature to deliver notifications (information, offers, reminders etc.,)

from the SPs or Operators to Mobile Connect registered users on SAA Client. With secured

messaging, it is possible to further engage with users while avoiding the spam and phishing

problems of email.

The SAA Client should provide a message inbox interface through which the user can:

• Review the list of messages in inbox.

• Read the details of a message. The message must be marked as ‘READ’ in SAA

Server.

• Delete a message from inbox that in-turn will either mark the message as

‘DELETED’ or physically delete the message from SAA Server.

If an SP is removed or disabled, the ID GW shall no longer allow the specific SP to send

messages to users.

Please note that message inbox is a secured interface and should only be accessible after

user has authenticated locally with SAA Client using the PIN.

4.8.1 Message template

A message template defines the structure of a message to be delivered to end users on the

SAA Client. It should support keyword placeholders surrounded by double curly braces {{}}

that can be replaced by actual text at runtime in the message.

For example: If the message template is:

This is a {{message}}

At runtime, SP provides parameter:

 Message = simple text message

The actual message delivered to the user will be:

 This is a simple text message

Additionally, a message template can also include title and URL of icon to be displayed in

the message. The URL should be a publicly resolvable URL that will load an image resource

at runtime when the message is rendered on the SAA Client.

SP will be responsible for managing their message templates using the portal provided by

the Operator or through private APIs exposed by the ID GW. Please see section 4.8.2 for

secured messaging API support.

Please note that the mechanisms of message template management is beyond the scope of

this document.

4.8.2 Secured messaging API support

It should be possible for SPs to manage message templates and send messages to multiple

recipients (Mobile Connect registered users) using the private APIs exposed by ID GW. The

ID GW will be responsible for delegating the API request from SP to SAA Server for

fulfilment.

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 34 of 97

Please note that the actual API specification in ID GW for providing secured messaging

feature is beyond the scope of this document and is left to ID GW vendors to define.

Likewise, the SAA Server will expose messaging APIs to allow SPs to manage message

templates and send messages to users inbox on SAA Client. Please see later for the

secured messaging API definition in the SAA Server.

The interaction between SP and ID GW components for secured messaging support will be

as follows:

SP ---> ID GW ---> SAA Server ---> SAA Client

4.9 Security enhancements

4.9.1 Network binding

In the case of the Base SAA, mitigation against app cloning risks is achieved by comparing

the device token (SAA Client Device ID) stored in the device secured key-store with the

device/SIM identifiers read from the device. This check can be further strengthened by

utilising an Operator network API to fetch the registered device/SIM identifiers from the

BSS/OSS systems for the MSISDN and compare with the values read from the device. The

additional network check ensures that the device token is bound to network validated

device/SIM identifiers and provides a strong mitigation strategy against device tampering

and app cloning risks.

The potential technical solution for SAA activation using network binding concepts is covered

in more detail in section 5.3.2.

4.9.2 Confidence Score

Creating a Confidence Score based on attributes such as location, device change time, SIM

change time and frequency, length of contract, network presence, type of tariff etc. can

provide an additional factor “Something the Network knows” to enhance the authentication

service.

The Confidence Score would be calculated by the ID GW and passed back to the SP within

the OIDC response using an optional claim in the ID Token:

Parameter Description

auth_conf_score The Confidence Score for the authentication based on additional

context known to the Operator

The auth_conf_score value MUST be in the format – X:Y, where X is

the score out of Y

Table 8: Confidence Score claim (ID Token)

Note: where the MSISDN verification check provides explicit information that the user

account and/or device are unreliable, the authentication could be immediately declined

without the user being asked to authenticate (dependent on Operator/SP policy).

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 35 of 97

In the approach being described above, the user authenticates but the response is

accompanied with a Confidence Score – in this situation, the Operator has no explicit

knowledge that the authentication should be declined, but can provide input parameters (amr

parameter in OIDC response) to an SP’s risk engine. In both cases, it is ultimately the SP’s

decision on how to act on the authentication response.

Note that this approach of providing a confidence score is not exclusive to the SAA

authenticator but could be used to enhance the Mobile Connect authentication product in

general; however, in the case of the SAA authenticator where there may not be a direct

value-add from the mobile network, being able to combine the rich UI and flexibility of an

SAA authenticator with a Confidence Score could be important for delivering a differentiated

product.

Note however, that introduction of a Confidence Score would require an extension to the

OIDC Mobile Connect profile to accommodate the additional claim value within the ID Token

hence is for further study.

4.10 Enhanced SAA functional requirements summary

The following table summarises the incremental functional requirements for the SAA

subsystem and ID GW for the Enhanced SAA:

Item Requirement

App instance Recommended:

• Single app that is branded Mobile Connect and used by all MNOs but

using an MCC+MNC lookup and logo discovery mechanisms (see

section 3.4) to incorporate the Operator logo

• [optionally] SAA vendor SDK for Operator app

• Section 6.1 provides more analysis on the different SAA subsystem

and SAA Client distribution options

App discovery/

download

• Same as for the Base SAA solution (see section 3.9)

Identifiers • Same as for the Base SAA solution (see section 3.9)

SAA Client

invocation

• Same as for the Base SAA solution (see section 3.9)

• [optional] SAA Client local invocation (app deep-linking method); see

section 4.2

Authentication

modes

• Same as for the Base SAA solution (see section 3.9)

User prompt

composition & format

• SAA Client should support prompt text on a per transactional basis.

• SAA Client should support display of SP short name (client_name) to

provide context to the user on which service they are

authenticating/authorising to41.

• In case of Authentication and Authorisation prompts, SAA Client should

support display of context value passed by SP to provide context to the

user on which service they are authenticating/authorising to.

41 The Service Name will be determined from the SP client_id in the ID GW and passed to the SAA Client.

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 36 of 97

• In case of Attributes prompt, SAA Client should support display of

transaction attribute values in the transaction text for seeking user’s

consent.

• Optionally, SAA Client should support display of binding message

(binding_message), a reference number on consumption device and

authorisation device for interlocking purposes.

• SAA Client should support display of SP logo.

• SAA Client should support display of SP background logo.

• The ID GW will communicate various context specific dynamic values

(client_name, binding_message, context, transaction attribute values,

SP logo URL, SP background image URL etc.,) via the SAA Adapter to

the SAA Server. The SAA Server in turn will return these values to

SAA Client for display purpose.

• The authentication mode (Click OK, PIN42 etc.) will be communicated

via the SAA Server; the SAA Client will present the appropriate

instruction to the user (e.g., a ‘PIN’ authentication mode being

displayed as ‘Enter PIN’ on the SAA Client).

• UTF-8 character set must be supported43.

• SAA Client should provide a user option to cancel the transaction.

SAA Interfaces • Common set of principles and API specifications for INT1

• See section 5.1 for more details

Security • Same as for Base SAA solution plus:

• Network signature binding (binding the device signature with some

server side verifiable information) as per section 4.9.1

• [optional] Confidence score calculated at the ID GW and passed back

to the SP via the OIDC response44

Lifecycle: SAA Client

activation

• Same as for the Base SAA solution (see section 3.9)

• User instigates SAA Client activation by entering MSISDN on SAA

Client (see section 3.7.1.1)

Lifecycle: Account

recovery

• Same as for the Base SAA solution (see section 3.9)

Lifecycle: SAA Client

deletion/reinstallation

• Same as for the Base SAA solution (see section 3.9)

Lifecycle: Device

change

• Same as for the Base SAA solution (see section 3.9)

Lifecycle: Account

status

• Operator must implement mechanisms to either check (poll) or push

relevant lifecycle events to the ID GW

• ID GW must check for lifecycle events and ensure the mobile account

is in good standing before issuing authentication request to SAA Server

42 SAA Clients are likely to support communication of Authentication mode as follows: Any; Time based One

Time Passcode; Tap; Swipe; PIN; Fingerprint scan; Face recognition; Voice recognition

43 Note that the OIDC AuthZ Request has an optional parameter, ui_locales, which is a space separated list of

preferred languages as per RFC5646 but that this parameter is for guidance only and the ID GW can override

this without prompting any error.

44 Note that this capability could be introduced in general for the Mobile Connect Authenticate products and is not

unique to the SAA solution

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 37 of 97

Lifecycle: Account

suspension/

reactivation/deletion

• Same as for the Base SAA solution (see section 3.9)

Lifecycle: SP binding

management

• Review the list of Service Providers that the user has linked their

Mobile Connect account to

• Remove one or more of the SPs from their Mobile Connect account

• Request that an authentication is revoked

Lifecycle: User churn • Same as for the Base SAA solution (see section 3.9)

• The SAA Client ID may need to be passed to the new Operator through

the Lifecycle Account Migration API (e.g., in addition to the passing of

the PCR mappings) (see section 4.4.1)

Secured messaging

feature

• Allow the SP to define and manage message templates (see section

4.8.1)

• Allow the SP to send message to multiple end users (see section 4.8.2)

• Allow the user to review the list of messages (see section 4.8)

• Allow the user to read details of a message (see section 4.8)

• Allow the user to delete a message (see section 4.8)

Table 9: Enhanced SAA functional requirements

5.0 Technical solution and implementation guidelines

This section provides technical solutions and implementation guidelines for realisation of the

various functional requirements outlined in previous sections for the Base and Enhanced

SAA solutions. Please note that these technical flows are provided for guideline purposes

only and the actual implementation may differ from the proposed solutions.

5.1 SAA Interface options

Section 3.8 identified the core requirements for the interfaces within the SAA Subsystem:

• SAA Server <-> ID GW (INT1)

• SAA Server <-> SAA Client (INT2)

Figure 7: SAA interface options

Ideally it should be possible to easily swap out all or part of the SAA subsystem to

accommodate new authentication capabilities as smartphones evolve. This could either be

achieved by standardising INT1 (hence enabling the whole SAA subsystem to be easily

swapped out) or by standardising INT2 (hence enabling different SAA Clients to be used

with a common SAA Server) or by standardising both INT1 and INT2.

SAA subsystem ID GW

«id gateway»

OpenID Connect

Server

«id gatew...

SAA Adapter

«3rd party»

SAA Server

«mc auth app»

SAA client

INT1

INT2

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 38 of 97

5.1.1 Option 1: INT1 and INT2 vendor proprietary

For the Base SAA, the aim will be to use existing COTS products for speed to market hence

INT1 and INT2 are likely to be proprietary to each SAA vendor.

Figure 8: INT1 and INT2 are both proprietary interfaces

5.1.2 Option 2: INT1 standardised within Mobile Connect (Preferred approach)

This is effectively the approach that has been taken for the SIM applet by reusing the ETSI

Mobile Signature Service API specification (TS 102 204) for the northbound interface from

MSSP (Authentication Server) to the Identity GW – the Identity GW (in theory) only needs to

develop an adapter to ETSI TS 102 204 and can then interwork with any MSSP vendor.

As shown below, a possible future improvement could be to standardise INT1 so that there

would only need to be one integration carried out at the Identity GW and hence any SAA

subsystem could then be used.

Figure 9: Standardising INT1

5.1.3 Option 3: INT2 standardised via FIDO UAF

Another approach would be to allow INT1 to be proprietary (per SAA vendor) but fix INT2

hence ensuring that different SAA Clients can be used without any further work required at

the Identity GW – in effect, taking this approach moves the ‘pluggability’ from the Identity

GW down to the Authentication Subsystem and to the device itself.

This approach of enabling support for multiple device-level authenticators irrespective of the

back-end Authentication server and associated infrastructure is effectively what’s been

defined by the FIDO Alliance. By taking such an approach, INT2 could therefore utilise the

FIDO UAF45 protocol and use adapters on the smartphone for interfacing between the FIDO

client and specific authenticators on the device46.

In the FIDO approach, the Operator would need to procure the Identity GW, a FIDO-

compliant Authentication Server (along with the FIDO Metadata Server) and an associated

45 Universal Authentication Framework

46 these adapters are known within the FIDO framework as Authenticator Specific Modules, ASMs

SAA subsystem ID GW

«id gateway»

OpenID Connect

Server

«id gatew...

SAA Adapter

«3rd party»

SAA Server

«mc auth app»

SAA client

Private API

Private API

SAA subsystem ID GW

«id gateway»

OpenID Connect

Server

«id gatew...

SAA Adapter

«3rd party»

SAA Server

«mc auth app»

SAA client

GSMA API

Private API

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 39 of 97

adapter to integrate the two, but once this has been done the Operator is free to try different

authenticators without needing to change any of their back-end infrastructure.

Figure 10: Standardising INT2 (e.g., FIDO UAF)

One important consideration of using FIDO is that a helper app would be needed on the

device in order to invoke the FIDO authentication process based on a network-initiated push.

In effect this becomes the ‘Smartphone App’ on the device but there may be some

deployment dependencies/requirements that will require further consideration. There may

also be commercial implications (licensing, IPR etc.) of Operators taking this approach and

utilising FIDO hence this approach is still for further study. In addition, with the transition

from FIDO 1.0 (UAF) to FIDO 2.0, the FIDO architecture changes hence more due diligence

will be needed.

Summary

In summary, two approaches have been identified:

1. Standardise on INT1; SAA vendor subsystems remain proprietary.

2. INT1 remains proprietary per FIDO Server vendor; utilise UAF for INT2 hence

enabling pluggability of Smartphone App Authenticators on the device itself.

5.1.4 Option 4: INT1 standardised within Mobile Connect, INT2 standardised

via FIDO UAF

Of course the two approaches (Option 2 and Option 3) could also be combined to create a
fourth option:

• INT1 being defined by Mobile Connect to simplify integration for Operators/Identity

GW vendors.

• INT2 being defined by FIDO (UAF) to enable pluggability at the device.

Such an option would provide a complete “pluggable authenticator” approach, enabling the

Operator to ‘plugin’ different SAA vendors as well as extending the pluggability to the device

using UAF.

Figure 11: Standardising both INT1 and INT2

5.1.5 Pros and cons of the different SAA interface options

SAA subsystem ID GW

«id gateway»

OpenID Connect

Server

«id gatew...

SAA Adapter

«3rd party»

SAA Server

«mc auth app»

SAA client

Private API

FIDO/UAF

SAA subsystem ID GW

«id gateway»

OpenID Connect

Server

«id gatew...

SAA Adapter

«3rd party»

SAA Server

«mc auth app»

SAA client

GSMA API

FIDO/UAF

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 40 of 97

Interface
options

Pros Cons

Option 1:

INT1 =
Vendor
proprietary

INT2 =
Vendor
proprietary

• Enables existing SAA

vendors to participate in MC

ecosystem by providing MC

certified SAA authenticator

• Requires Operator and/or Identity GW vendor to

develop a bespoke adapter for the SAA vendor solution

(however, this only needs to be done once)

• Introduces SAA vendor lock in and makes it difficult for

the Operators to migrate to another SAA vendor

solution

Option 2:

INT1 =
Standardised
API spec

INT2 =
Vendor
proprietary

• Enables Operators and ID

GW vendors to develop a

single adapter to integrate

with any SAA vendor

solution

• Enables pluggability of SAA

sub-system allowing

Operators to replace a

vendor’s SAA sub-system

without impacting ID GW

• Places burden on SAA vendors to develop solutions in

compliance with a standardised INT1 – many may

choose not to bother and compete directly with Mobile

Connect.

• May introduce significant latency in getting agreement

across Operators, Identity GW vendors and SAA

vendors on how INT1 should be specified.

• Implementing a new SAA may require implementation

of a complete new SAA subsystem (e.g., from a new

vendor) hence potentially introducing high cost for the

Operator

Option 3:

INT1 =
Vendor
proprietary

INT2 = UAF
(FIDO)

• Different authenticators can

be implemented on the

smartphone

• Requires the Operator and/or SAA vendor to develop

ASMs for each new authenticator (e.g., fingerprint

sensor; iris scanner etc.)

• Requires Operator and/or Identity GW vendor to

develop a bespoke adapter for the SAA vendor solution

(however, this only needs to be done once)

• Adopting FIDO may introduce commercial/strategic

risks (TBD); but equally, not embracing FIDO could lead

to FIDO solutions disintermediating Mobile Connect if

SPs deploy their own multi-factor authentication solution

Option 4:

INT1 =
Standardised
API Spec

INT2 = UAF
(FIDO)

• Enables Operators and ID

GW vendors to develop a

single adapter to integrate

with any SAA vendor

solution

• Different authenticators can

be implemented on the

smartphone

• Enables pluggability of SAA

sub-system allowing

Operators to replace a

vendor’s SAA sub-system

without impacting ID GW

• Requires the Operator and/or SAA vendor to develop

ASMs for each new authenticator (e.g., fingerprint

sensor; iris scanner etc.)

• Adopting FIDO may introduce commercial/strategic

risks (TBD); but equally, might be needed to mitigate

against disintermediation

Table 10: Comparison of SAA Interface options

For the Base SAA, the proposed approach is to go with whatever APIs the SAA vendors

already have defined and deployed. For the Enhanced SAA, the possibility for Mobile

Connect to define its own set of SAA subsystem APIs from the SAA Server -> SAA Adapter

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 41 of 97

(i.e. INT1) but allow for the INT2 interface (from SAA Server <-> SAA Client) to remain

proprietary to the SAA vendor requires further investigation.

5.2 Security requirements & guidelines

This section provides an overview of the security measures that should be followed in

securing the SAA solution end to end as illustrated in the following diagram:

Figure 12: SAA Security Measures

The following subsections provide details of various security measures to provide a robust and
secure SAA solution.

5.2.1 Device security checks

The SAA Client should perform device security checks on application start-up or activation.

Some of these checks are performed locally by SAA Client and some are performed

remotely by SAA Server as result of device check API invocation by SAA Client. This is the

first API that should be called by SAA Client before invocation of any other APIs. These

checks may include:

• Detect jail broken/rooted device: If the device is jail broken/rooted, notify the user accordingly

and do not allow further use of the SAA Client.

• Detect device/SIM changes: Read device/SIM identifiers11 from the Device secure key-store,

generate a unique device token (SAA Client Device ID) as described in section 2.3 and compare

with the existing device token (if present). Optionally, utilise Operator’s network API to compare

the network-registered device/SIM identifiers for the MSISDN with the device/SIM identifiers read

from the device. If a change is found, notify the user accordingly and prompt the user to recover

their existing account using account recovery information.

• Verification of client signature: The SAA Client creates a signature by signing the SAA Client

Device ID with private key. The SAA Server verifies the signature by decrypting with

corresponding public key. The decrypted SAA Client Device ID is then validated (e.g., whether or

not it has been revoked due to Lifecycle events. See section 5.5.1 for lifecycle events integration

with Mobile Connect). If verification of client signature fails, notify the user accordingly and do not

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 42 of 97

allow further use of the SAA Client. Further information on generation and utilisation of the SAA

Client signature can be found in section 5.2.3

• Code integrity check: SAA Client must be able to detect at runtime that code has been added or

changed from what it knows about its integrity at compile time. The app must be able to react

appropriately at runtime to a code integrity violation by notifying the user accordingly and not

allowing further use of the SAA Client.

• Detection of Emulator/Debugging tools: SAA Client must detect that the code is not running in

an emulated environment/debugger and stop immediately.

On invocation of device check API call, SAA Server performs some of the above checks. On

successful verification of these checks, SAA Server must generate a device check token

proof and return it to SAA Client. The token proof generation algorithm is dependent on

various security checks performed by SAA Server. For example: Detecting device/SIM

changes or code integrity check or verification of client signature. It should be possible to

deduce various security checks performed by SAA Server from device check token proof.

SAA Client will be responsible for passing the token proof in subsequent API calls to SAA

Server and SAA Server will be responsible for inspecting the token proof (deduce various

security checks already performed) before completing the API request.

5.2.2 Device secure key-store

The SAA client must store data and tokens using whatever secure key-store is provided by

the platform on which it resides.

5.2.2.1 Android

The most common security concern for an application on Android is whether the data that is

saved on the device is accessible to other apps. There are three fundamental ways to store

data on the device:

Using internal storage (Recommended approach)

By default, files created on internal storage are only accessible to the app. This protection is

implemented by Android and sufficient for most applications.

To provide additional protection for sensitive data, data should be encrypted using a key that

is not directly accessible to the application. For example, a key can be placed in a

KeyStore47 and can be unlocked seamlessly on the device by user’s action. The local

KeyStore48unlock is accomplished by a secure action such as swiping a finger, entering a

PIN, or using biometrics depending on the LoA requested by the SP and Operator’s policy.

Using external storage (Not Recommended)

47 KeyStore - http://developer.android.com/reference/java/security/KeyStore.html

48 KeyStore - http://developer.android.com/reference/java/security/KeyStore.html

http://developer.android.com/reference/java/security/KeyStore.html
http://developer.android.com/reference/java/security/KeyStore.html

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 43 of 97

Files created on external storage49, such as SD Cards, are globally readable and writable.

Because external storage can be removed by the user and also modified by any application,

sensitive information should not be stored on external storage.

Using content providers

Content providers50 offer a structured storage mechanism that can be limited to own

application or exported to allow access by other applications. The ContentProvider51 used in

the SAA Client should not be accessible by other applications. This can be achieved by

setting the value of ‘android:exported’ to ‘false’ for the SAA Client ContentProvider in the

application manifest.

Please see Android Security Tips52 for further reading.

5.2.2.2 iOS

Keychain Services53 provides secure storage of passwords, keys, certificates, and notes for

one or more users. A user can unlock a keychain with a single password, and any Keychain

Services aware application can then use that keychain to store and retrieve secured data.

There are a number of conditions that impact the security of the data an app stores in the

Keychain:

• the presence and strength of a passcode on the device

• the access restrictions assigned to the app’s Keychain items

• the chipset used in the device (recommended)

Presence of device passcode

Prior to iOS 8, there was no Apple-sanctioned way to determine if a passcode had been set

on the device, so apps had no way of knowing if the data they entrusted to the Keychain was

actually secure. Starting with iOS 8, Apple provided a new ‘kSecAttrAccessible’ value that

allows apps to store items in the Keychain only when the device has a

‘passcode:kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly’. Additionally, if the user

removes their passcode, all the Keychain items with this access restriction will be removed

as well, preventing the items from being exposed on the unprotected device.

Keychain access restrictions

Starting with iOS 4, each item in the Keychain can have its own access restriction

defining when the item can be accessed; the item is securely encrypted the rest of the time.

The recommended options are detailed below. These options have variants ending

49 http://developer.android.com/guide/topics/data/data-storage.html#filesExternal

50 Content providers - http://developer.android.com/guide/topics/providers/content-providers.html

51 ContentProvider - http://developer.android.com/reference/android/content/ContentProvider.html

52 http://developer.android.com/training/articles/security-tips.html

53 Keychain services -

https://developer.apple.com/library/mac/documentation/Security/Conceptual/keychainServConcepts/01introductio

n/introduction.html#//apple_ref/doc/uid/TP30000897-CH203-TP1

http://developer.android.com/guide/topics/data/data-storage.html#filesExternal
http://developer.android.com/guide/topics/providers/content-providers.html
http://developer.android.com/reference/android/content/ContentProvider.html
http://developer.android.com/guide/topics/manifest/provider-element.html#exported
http://developer.android.com/training/articles/security-tips.html
https://developer.apple.com/library/mac/documentation/Security/Conceptual/keychainServConcepts/01introduction/introduction.html#//apple_ref/doc/uid/TP30000897-CH203-TP1

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 44 of 97

with ‘ThisDeviceOnly’ that prevent the Keychain item from being included in iTunes backups,

iCloud backups, or iCloud Keychain.

kSecAttrAccessibleWhenUnlocked

The Keychain item is secure when the device is off and when it is locked. This is

recommended for items that need to be accessible only while the application is in the

foreground. This is the default value for modern versions of iOS.

kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly

Similar to kSecAttrAccessibleWhenUnlocked, but only available if a passcode is set on the

device. If the device lacks a passcode, the item will not be stored. Disabling the passcode

after the item has been created with this restriction causes the item to be deleted. Items with

this attribute never migrate to a new device through backups or iCloud. This access

restriction is only available in iOS 8.0 and later.

Modern device hardware (recommended)

Devices running iOS 7 or iOS 8 on the Apple A7 and later A-series processors leverage

Apple’s new “Secure Enclave” technology. The Secure Enclave is a coprocessor that

performs security-sensitive tasks, such as verifying the user’s passcode and

encrypting/decrypting keychain content without interference from malicious programs.

In practical terms, devices with a Secure Enclave cannot be jailbroken without the user’s

consent; i.e., while the device is locked or powered off. This significantly impedes attackers

attempting to gain access to sensitive data by jailbreaking such a device.

Additionally, the Secure Enclave enforces a 5-second delay between failed attempts to

unlock the device. This provides a governor against brute-force attacks in addition to

safeguards enforced by iOS.

5.2.3 Public key cryptography for signing a challenge

It is highly recommended to use standard public key cryptography techniques to provide

stronger authentication, protect against MITM attacks and enhance security as well as

providing value-add through the business processes that PKI provides54. This model is

similar to FIDO UAF. The use of public key cryptography supports non-repudiation

requirements as well. The two-step process of keys creation and usage is defined as follows:

1. During SAA setup/enrolment phase (Keys creation phase): the SAA Client

creates a new key pair using either RSA-2048 or ECC-256 asymmetric cryptographic

algorithms. It retains the private key and registers the public key with the SAA Server.

2. During authentication phase (Keys usage phase): the SAA Client proves

possession of the private key to the SAA Server by signing a server generated

challenge. The Client’s private key can be used only after they are unlocked locally

on the device by the user. The local unlock is accomplished by a secure action such

54 Can be extended for non-repudiation use cases with proper ID proofing when issuing the certificates

https://en.wikipedia.org/wiki/Apple_A7

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 45 of 97

as swiping a finger, entering a PIN, or using biometrics depending on the LoA

requested by the SP and Operator’s policy.

5.2.4 Summary of SAA security requirements

The SAA should implement mechanisms to mitigate against the following fraud and security

issues:

• On start-up or activation, the SAA Client should perform device security checks as

defined in section 5.2.1.

• Ensure the SAA Client has not been cloned:

o Generate a digital fingerprint of the device and SIM card (SAA Client Device

ID) in order to detect device/SIM card changes and protect from app cloning

risks.

o Utilisation of app cloning detection mechanisms.

• Protection against phishing attacks:

o The SAA Client must show SP short name and transaction details (where

applicable) on a per transaction basis as defined in section 3.5.

o Optionally, the SAA Client must show SP logo and SP background image on

a per transaction basis as defined in section 4.2. This is recommended for

the Enhanced SAA.

o In the case of a common SAA Client deployed across Operators (e.g., within

a given market), the SAA Client should show the Operator name and logo as

defined in section 3.4.

• Ensure the authentication response cannot be tampered with:

o Use of transport layer security (TLS) for communication between SAA Client

and SAA Server.

o Using certificate checking to detect MITM attack vectors and ensuring that

SAA Server only support secure crypto algorithms.

o Inclusion of public key cryptography with minimum key length and avoiding

weak crypto algorithms for signing SAA Server generated challenge as

described in section 5.2.3.

• Ensure the SAA Client has not been compromised:

o Code obfuscation (white-box cryptography) and black-boxing to make the app

as tamperproof as possible.

o Utilisation of rooting/jailbroken detection.

o The SAA Client should store SAA Client Device ID and crypto keys securely

on device secure key-store as defined in section 5.2.2.

• Message security, trust and non-repudiability

o Digitally signed authentication challenge using the SAA Client’s private key.

o All API interaction must be done over a secure channel (HTTPS).

o Auditing transaction (no sensitive data).

o Use of Nonce to ensure replay attacks are minimised.

• Protection from OWASP top 10 mobile risks:

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 46 of 97

o Weak server side controls

o Insecure data storage

o Insufficient transport layer protection

o Unintended data leakage

o Poor authorisation and authentication

o Broken cryptography

o Client side injection

o Security decisions via untrusted inputs

o Improper session handling

o Lack of binary protections

Please see Annex A.1 for further information on security threats and prevention techniques.

5.3 SAA Client activation and association

5.3.1 MSISDN discovery in SAA Client

SAA Client discovers MSISDN of the user during activation phase. The MSISDN can be

discovered in one of two ways:

• If on-net (or the user is asked to switch off WLAN to force on-net):

o Option 1: the MSISDN can be retrieved through header enrichment. The SAA client

would typically follow these steps:

1. Make a simple API call to SAA Adapter through SAA Server. The assumption

here is that ID GW and SAA Adapter will be deployed inside Operator’s network.

The Operator should white list the network domain of SAA Adapter for header

enrichment.

2. On receiving the API request, Operator’s network component will insert the

MSISDN in the header of the API request.

3. SAA Adapter retrieves the MSISDN from the header and encrypts it using a

symmetric key.

4. Encrypted MSISDN is returned back to SAA Client through SAA Server.

5. Sends the encrypted MSISDN to ID GW (through SAA Server->SAA Adapter) at

the time of linking.

6. ID GW decrypts the token using the symmetric key.

o Option 2: the MSISDN can be retrieved through Operator API. The SAA client would

typically follow these steps:

1. Make a call to the appropriate Operator API to request user’s MSISDN.

2. Receive in return a unique token representing user’s MSISDN.

3. Provide such token to the ID GW (through SAA Server->SAA Adapter) at the time

of linking.

4. Using the token, the ID GW can then retrieve the actual MSISDN by invoking the

Operator API.

o If off-net (or where Header Enrichment is not available):

o Option 1: SMS with one-time verification code:

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 47 of 97

1. The SAA Client requests the user to enter their MSISDN which is sent to the ID

GW for verification (through SAA Server->SAA Adapter).

2. To verify that the current device MSISDN matches, the ID GW pushes an SMS

with a one-time verification code to the user’s device.

3. The SAA Client either monitors the incoming SMS queue to retrieve the one-time

verification code (this should be within 2 seconds) or prompts the user to enter

the one-time verification code manually.

4. The SAA Client sends the one-time verification code to the ID GW for verification

(through SAA Server->SAA Adapter) at the time of linking. If the one-time

verification code matches, then the MSISDN is confirmed in the ID GW.

o Option 2: Mobile-Originated (MO-SMS) and Mobile-Terminated (MT-SMS) SMS

1. The SAA Client requests the user to enter their MSISDN and generates a MO-

SMS to an Operator registered short code.

2. The SAA Client receives an MT-SMS in response, in turn validating the MSISDN.

Note Both the mobile phone and the Operator’s network must support this feature

for the above option to work.

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 48 of 97

5.3.2 Technical flow: SAA Client activation and Mobile Connect registration

instigated via SAA Client (MSISDN based pairing)

Figure 13: SAA Client activation and Mobile Connect registration instigated via the
SAA Client (MSISDN based pairing)

«mc auth app»

SAA client

1. In case of Android, Windows

- Read IMSI and IMEI

2. In case of iOS - Read UDID

«3rd party»

SAA Server

«mno»

Subscriber Validation

SystemUser

«id gateway»

SAA Adapter

Private API/FIDO UAF GSMA API

alt MSISDN Discov ery

[If SAAClientID Token is not found]

SAA Client ID token can be generated as:

F(MSISDN, IMSI, IMEI/UDID, GUID, Timestamp)

MSISDN can be discovered in the following manner:

1. Calling MNO API to discover MSISDN

2. Header enrichment by disabling WIFI on the app

3. Prompt the user to enter MSISDN; generate SMS

based OTP/URL; prompt the user to enter OTP/click

URL; validate OTP/URL

Client Device Token can be

generated as:

F(Device/SIM identifiers)

Device security checks may include:

1. Detect jail broken/rooted device

2. Detect device/SIM changes

3. Verification of client signature

4. Code integrity check

alt Dev ice Identifier Validation using MNO network API

1.16 :IMSI, IMEI/UDID

1.14 Validate device identifiers(IMSI, IMEI/UDID, MSISDN)

1.12 Retrieve device push token(): push token

1.28 Store SAAClientDeviceID, private key securely in key store()

1.24 Check for existence of MC account(MSISDN)

1.10 Generate KeyPair(MCC, MNC): public, private keys

1.26 :SUCCESS_OK

1.7 :MC T&C Accepted

1.21 Link MConnect Account(MSISDN info, SAAClientID)

1.5 :Register with MC selected

1.19 Generate Unique Client ID(): SAAClientID

1.3 :PIN/Password is set

1.0 Opens the App()

1.17 Compare IMSI, IMEI/UDID with values in payload()

1.15 Retrieve IMSI. IMEI/UDID for the MSISDN(MSISDN)

1.29 Display successful registration message()

1.13 Activate SAA Client(MSISDN info, SAAClientDeviceID, Device/SIM identifier, public key, push token, OS Type)

1.11 Generate client device token(Device/SIM identifier): SAAClientDeviceID

1.25 Create new MC account(MSISDN, SAA Client ID)

1.9 Retrieve Device/SIM identifiers()

1.27 :SUCCESS_OK

1.22 Extract MSISDN(MSISDN info): MSISDN

1.23 Validate subscriber(MSISDN)

1.6 Prompt to accept MC T&C()

1.8 Discover MSISDN()

1.20 Link SAA Client Device Token(SAAClientID, SAAClientDeviceID)

1.4 Prompt to register with MC or account recovery()

1.1 Perform device security checks()

1.18 :SUCCESS_OK

1.2 Set local PIN/Password()

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 49 of 97

1. User opens SAA Client.

2. SAA Client performs device security checks as described in section 5.2.1.

3. User is prompted to set local PIN. The PIN is seeded and hashed using SHA-256

hashing algorithm and stored securely on the device secure key-store as described in

section 5.2.2.

4. User is prompted to register with Mobile Connect or recover an existing Mobile Connect

account.

5. User selects the option to register for Mobile Connect account.

6. SAA Client prompts the user to accept Mobile Connect terms and conditions.

7. SAA Client discovers the MSISDN of the user as described in section ‘MSISDN

discovery’.

8. SAA Client reads device/SIM identifiers.

9. SAA Client generates cryptographic keys (public-private key pair) as described in section

5.2.3. This key pair will be used for signing and confirming the challenge for client

verification during the authentication process.

10. SAA Client generates unique client device token (SAA Client Device ID) using the

device/SIM identifiers obtained in step 8.

11. SAA Client reads device push token for registering with SAA Server.

12. Mobile Connect registration and SAA Client activation using MSISDN:

(1) SAA Client invokes SAA vendor’s setup API by passing MSISDN information (encrypted

MSISDN or MSISDN and one-time verification code or token and MSISDN retrieval URL),

public key, generated client device token (SAA Client Device ID), device/SIM identifiers,

device push token and device platform type.

(2) [Optional] SAA Server invokes device API of Operator through SAA Adapter to read the

device/SIM identifiers for the authenticated MSISDN. The two sets of identifiers are compared

(from the device and from the network) and an appropriate response is returned back to SAA

Server.

(3) On successful validation, SAA Server generates a unique client identifier (SAA Client ID).

One approach for generation of this identifier can be a combination of device/SIM identifiers,

MSISDN, GUID and timestamp.

(4) SAA Server creates new SAA user account and associates newly generated SAA Client ID

with SAA Client Device ID along with all the parameters passed in the setup API.

(5) SAA Server invokes an API in the SAA Adapter to link the SAA Client ID with MSISDN

passing SAA Client ID and MSISDN information (encrypted MSISDN or MSISDN and one-

time verification code or token and MSISDN retrieval URL).

(6) [where appropriate] SAA Adapter retrieves MSISDN using the information passed in previous

step and validates the same.

(7) [alternate exception flow] If a Mobile Connect account for the MSISDN already exists,

appropriate error response is returned back to SAA Client through SAA Server, prompting

the user to either recover existing Mobile Connect account or provide verification details to

continue.

(8) SAA Adapter creates a new Mobile Connect account associating MSISDN and SAA Client ID.

The adapter adds the flag that the user has accepted T&Cs, and responds to the SAA Server

with a successful response.

(9) SAA Server returns successful response to SAA Client.

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 50 of 97

(10) SAA Client will be responsible for securely storing SAA Client Device ID and crypto keys on

the device secure key-store as described in section 5.2.2.

(11) SAA Client should indicate to the user that the process is now complete (display some user

friendly message).

13. Confirmation: Upon completion of the above step:

(1) User’s MSISDN and SAA Client ID are now fully enrolled with Mobile Connect. Optionally,

user may be prompted to enter personal information to validate their account details with the

Operator.

(2) SAA Client displays Mobile Connect account recovery text to the user (recommendation is to

use a random text of 16 alpha-numeric characters). Optionally, user can provide their email

address for the account recovery text to be emailed.

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 51 of 97

5.3.3 Technical flow: SAA Client activation instigated via an Operator self-care

portal (Association code based pairing)

Figure 14: SAA Client activation instigated via Operator self-care portal (Association
code based pairing)

«mc auth app»

SAA client

1. In case of Android, Windows

- Read IMSI and IMEI

2. In case of iOS - Read UUID

«3rd party»

SAA Server
User

«id gateway»

SAA Adapter

«id gateway»

OpenID Connect

Server

«mno»

MNO Self Care

Console

Client Device Token can be

generated as:

F(Device/SIM identifiers)

Device security checks may include:

1. Detect jail broken/rooted device

2. Detect device/SIM changes

3. Verification of client signature

4. Code integrity check

SAA Client ID token can be generated as:

F(MSISDN, IMSI, IMEI/UDID, GUID, Timestamp)

Private API/FIDO UAF GSMA API

1.10 :display successful message with assoc code

1.27 Retrieve MC account for identifier

(identifier): MC account

1.1 Register for MC account(MSISDN)

1.8 Link identifier with MC account

(MSISDN, identifier)

1.25 Link SAA Client Device Token(SAAClientID, SAAClientDeviceID)

1.16 Prompt to activate using association code()

1.33 Display successful registration message()

1.6 :assoc code, identifier

1.23 Retrieve association code(assoc code): identifier

1.14 Prompt to set local PIN/Password()

1.31 :SUCCESS_OK

1.4 Fetch association code(): assoc code

1.21 Retrieve device push token(): push token

1.28 Validate subscriber(MSISDN)

1.2 Create MC account(MSISDN)

1.19 Generate KeyPair(MCC, MNC): public, private keys

1.11 User downloads SAA client from app store()

1.0 Registers for MC account(MSISDN)

1.13 Perform device security checks()

1.9 assoc code()

1.26 Link MConnect Account(identifier, SAAClientID)

1.17 :association code is entered

1.29 Link SAA Client(MSISDN, SAA Client ID)

1.7 :assoc code, identifier

1.24 Generate Unique Client ID(): SAAClientID

1.15 :PIN/Password set

1.32 Store SAAClientDeviceID, private key securely in key store()

1.5 Generate association code(): assoc code, identifier

1.22 Activate SAA Client(assoc code, SAAClientDeviceID, Device/SIM identifier, public key, push token, OS Type)

1.30 :SUCCESS_OK

1.3 Fetch association code(): assoc code

1.20 Generate client device token(Device/SIM identifier): SAAClientDeviceID

1.12 User opens app()

1.18 Retrieve Device/SIM identifiers()

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 52 of 97

1. User accesses the Operator self-care portal to register for Mobile Connect by

providing their MSISDN and (optionally) display the T&C’s online:

(1) Operator’s self-care console sends an API request to ID GW to register the user for MC

account passing the MSISDN.

(2) ID GW registers the user for a new MC account, if not already registered.

(3) ID GW requests a new association code from SAA server through SAA adapter.

(4) SAA server generates a new unique short-lived association code and identifier; returns it

to ID GW through SAA adapter.

(5) ID GW associates the user’s MC account with the unique identifier; returns the

association code back to MNO self-care console for display purpose.

2. Operator self-care portal displays the association code to the user with a successful

registration message. The portal presents links for the user to download the SAA

Client from appropriate App Store if not already pre-embedded/downloaded, and

request that the user open the app.

3. User downloads SAA Client from appropriate App Store.

4. User opens SAA Client.

5. SAA Client performs device security checks as described in section 5.2.1.

6. User is prompted to set local PIN. The PIN is seeded and hashed using SHA-256

hashing algorithm and stored securely on the device secure key-store as described

in section 5.2.2.

7. SAA Client prompts the user to enter association code.

8. User enters the association code and initiates the activation process.

9. SAA Client reads device/SIM identifiers.

10. SAA Client generates cryptographic keys (public-private key pair) as described in

section 5.2.3. This key pair will be used for signing and confirming the challenge for

client verification during authentication process.

11. SAA Client generates unique client device token (SAA Client Device ID) using

device/SIM identifiers read in Step 9.

12. SAA Client reads device push token for registering with SAA server.

13. SAA Client enrolment process using association code:

(1) SAA Client invokes SAA vendor’s setup API by passing association code, public key,

generated client device token (SAA Client Device ID), device/SIM identifiers, device push

token and device OS type.

(2) SAA Server validates the association code and retrieves the unique identifier.

(3) On successful validation, SAA server generates a unique client identifier (SAA Client ID).

One approach for generation of this identifier can be a combination of device/SIM

identifiers, MSISDN, GUID, timestamp.

(4) SAA server creates new SAA Client account and associates newly generated SAA Client

ID with SAA Client Device ID along with all the parameters passed in the setup API.

(5) SAA server invokes an API in SAA adapter to link SAA Client ID with user’s Mobile

Connect account passing SAA Client ID and unique identifier.

(6) SAA adapter retrieves the Mobile Connect account for the unique identifier.

(7) [alternate exception flow] If a Mobile Connect account is not found, appropriate error

response is returned back to SAA Client through SAA Server, prompting the user to

register for Mobile Connect through Operator self-care portal.

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 53 of 97

(8) SAA Adapter links SAA Client ID with the existing account and responds with a

successful response to SAA server.

(9) SAA Server returns successful response to SAA Client.

(10) SAA Client will be responsible for storing SAA Client Device ID and crypto keys securely

on the device secure key-store as described in section 5.2.2.

(11) SAA Client should indicate to the user that the process is now complete (display some

user friendly message).

14. Confirmation: Upon completion of above step:

(1) User’s MSISDN and SAA Client ID are now fully enrolled with Mobile Connect.

Optionally, user may be prompted to enter personal information to validate their account

details with the Operator.

(2) SAA Client displays Mobile Connect account recovery text to the user (recommendation

is to use a random text of 16 alpha-numeric characters). Optionally, user can provide their

email address for the account recovery text to be emailed.

5.3.4 Technical flow: SAA Client activation instigated via an Operator self-care

portal (MSISDN based pairing)

Figure 15: SAA Client activation instigated via an Operator self-care portal (MSISDN
based pairing)

1. User accesses the Operator self-care portal to register for Mobile Connect by

providing their MSISDN and (optionally) display the T&C’s online:

(1) Operator’s self-care console sends an API request to ID GW to register the user for MC

account passing the MSISDN.

(2) ID GW registers the user for a new MC account, if not already registered.

2. MNO self-care console displays a successful registration message to the user. The

console presents links for the user to download the SAA Client from the appropriate

App Store if not already pre-embedded/downloaded, and request that the user open

the app.

3. User downloads SAA Client from appropriate App Store.

4. Same as Steps (1)–(13) in section 5.3.2.

«mc auth app»

SAA client

«3rd party»

SAA Server
User

«id gateway»

SAA Adapter

«id gateway»

OpenID Connect

Server

«mno»

MNO Self Care

Console

Private API/FIDO UAF GSMA API

ref

SAA Activ ation flow v ia SAA client (MSISDN based pairing)

1.0 Registers for MC account(MSISDN)

1.4 :display successful message

1.2 Create MC account(MSISDN)

1.1 Register for MC account(MSISDN)

1.5 User downloads SAA client from App Store()

1.3 :SUCCESS_OK

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 54 of 97

5.3.5 Technical flow: Recovery of existing account using recovery information

Figure 16: Recovery of existing account using account recovery code

1. User downloads SAA Client from appropriate App Store.

2. SAA Client performs device security checks as described in section 5.2.1.

3. User is prompted to set local PIN. The PIN is hashed and seeded using SHA-256

hashing algorithm and stored securely on the device secure key-store as described

in section 5.2.2.

4. User is prompted to register with Mobile Connect or recover an existing Mobile

Connect account.

5. User selects the option to recover an existing account by entering the recovery

information. User can find the recovery code in the account recovery email that was

sent as part of the original activation process described in previous technical flow

sections. Optionally, user’s MSISDN will be discovered as described in section 5.3.1.

This guarantees that the MSISDN/SIM is in possession of a registered Mobile

Connect user.

6. SAA Client reads device/SIM identifiers.

«mc auth app»

SAA client

1. In case of Android, Windows

- Read IMSI and IMEI

2. In case of iOS - Read UUID

«3rd party»

SAA Server
User

«id gateway»

SAA Adapter

«id gateway»

OpenID Connect

Server

«mno»

MNO Self Care

Console

Client Device Token can be

generated as:

F(Device/SIM identifiers)

Device security checks may include:

1. Detect jail broken/rooted device

2. Detect device/SIM changes

3. Verification of client signature

4. Code integrity check

Private API/FIDO UAF GSMA API

1.0 User downloads SAA client from app store()

1.5 Prompt to recover existing account using recovery code()

1.14 Fetch account details matching account recovery code

(account recovery code): MC account

1.17 Link SAA Client Device Token(SAAClientID, SAAClientDeviceID)

1.20 Display successful registration message()

1.16 :SAA Client ID

1.12 Retrieve existing account details(account recovery code)

1.18 :SUCCESS_OK

1.10 Retrieve device push token(): push token

1.3 Prompt to set local PIN/Password()

1.8 Generate KeyPair(MCC, MNC): public, private keys

1.1 User opens app()

1.6 :recovery code is entered

1.13 Validate account recovery code(account recovery code)

1.4 :PIN/Password set

1.19 Store SAAClientDeviceID, private key securely in key store()

1.11 Recover existing account(recovery code, SAAClientDeviceID, Device/SIM identifier, public key, push token, OS Type)

1.9 Generate client device token(Device/SIM identifier): SAAClientDeviceID

1.2 Perform device security checks()

1.15 Validate subscriber(MSISDN)

1.7 Retrieve Device/SIM identifiers()

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 55 of 97

7. SAA Client generates cryptographic keys (public-private key pair) as described in

section 5.2.3. This key pair will be used for signing and confirming the challenge for

client verification during authentication process.

8. SAA Client enrolment process using account recovery code:

(1) SAA Client invokes SAA vendor’s recovery API by passing account recovery information,

public key, generated client device token (SAA Client Device ID), device/SIM identifiers,

device push token and device OS type.

(2) SAA Server calls an API in ID GW through SAA Adapter to retrieve existing client details

passing the account recovery information.

(3) SAA Adapter validates the account recovery information, retrieves corresponding MC

account details and returns previous SAA Client ID.

(4) SAA Server associates SAA Client ID with SAA Client Device ID along with all the

parameters passed in the setup API.

(5) SAA Server returns successful response to SAA Client.

(6) SAA Client will be responsible for storing SAA Client Device ID and crypto keys securely

on the device secure key-store as described in section 5.2.2.

(7) SAA Client should indicate to the user that the process is now complete (display some

user friendly message).

9. Confirmation: Upon completion of above step:

(1) User’s MSISDN and new SAA Client ID are now fully enrolled with Mobile Connect.

5.4 Authentication flows

5.4.1 Remote invocation (network push; separate consumption device)

5.4.1.1 User flow (iOS and Android)

The various flows captured below do not include any server side interactions including

request/response messages. Please see corresponding technical flows for detailed

interaction between various actors.

Scenario 1 – iOS based SAA Client; device is locked; SAA Client is not active

1. User initiates Mobile Connect AuthN request in the SP’s website on the consumption

device browser.

2. Consumption device browser’s user agent initiates OIDC call with Operator’s ID GW.

3. ID GW initiates AuthN request with SAA Server through SAA Adapter, resulting in a

push notification trigger to the authentication device.

4. Push notification prompt is displayed in the notification area of the authentication

device (containing the SAA Client name and prompt).

5. User unlocks the authentication device.

6. User can either click on the notification prompt in the notification bar or SAA Client

icon to open the app.

7. SAA Client prompts the user to authenticate (based on LoA requested by the SP and

Operator’s policy) on the authentication device.

8. User authenticates via the SAA Client.

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 56 of 97

9. OIDC AuthN response is sent back to the consumption device’s user agent from the

ID GW.

10. User continues with the journey on the consumption device, the result of the

authentication being displayed to the user.

Scenario 2 – iOS based SAA Client; device is locked; SAA Client is already open and active

1. User initiates Mobile Connect AuthN request in the SP’s website on the consumption

device browser.

2. Consumption device browser’s user agent initiates OIDC call with Operator’s ID GW.

3. ID GW initiates AuthN request with SAA Server through SAA Adapter, resulting in a

push notification trigger to the authentication device.

4. Push notification prompt is displayed in the notification area of the authentication

device (containing the SAA Client name and prompt).

5. User unlocks the authentication device.

6. SAA Client prompts the user to authenticate (based on LoA requested by SP and

Operator’s policy) on the authentication device.

7. User authenticates via the SAA Client.

8. OIDC AuthN response is sent back to the consumption device’s user agent from the

ID GW.

9. User continues with the journey on the consumption device, the result of the

authentication being displayed to the user.

Scenario 3 – iOS based SAA Client; device is unlocked; SAA Client is not active

1. User initiates Mobile Connect AuthN request in SP’s website on consumption device

browser.

2. Consumption device browser’s user agent initiates OIDC call with Operator’s ID GW.

3. ID GW initiates AuthN request with SAA Server through SAA Adapter, resulting in a

push notification trigger to authentication device.

4. Push notification prompt is displayed in the notification area of the authentication

device (containing SAA Client name and prompt).

5. User clicks on the push notification prompt, iOS activates SAA Client.

6. SAA Client prompts the user to authenticate (based on LoA requested by SP and

Operator’s policy) on authentication device.

7. User authenticates on SAA Client.

8. OIDC AuthN response is sent back to the consumption device’s user agent from ID

GW.

9. User continues with the journey on consumption device, the result of the

authentication being displayed to the user.

Scenario 4 – iOS based SAA Client; device is unlocked; SAA Client is already open and

active

1. User initiates Mobile Connect AuthN request in SP’s website on consumption device

browser.

2. Consumption device browser’s user agent initiates OIDC call with Operator’s ID GW.

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 57 of 97

3. ID GW initiates AuthN request with SAA Server through SAA Adapter, resulting in a

push notification trigger to authentication device.

4. SAA Client prompts the user to authenticate (based on LoA requested by SP and

operator’s policy) on authentication device.

5. User authenticates on SAA Client.

6. OIDC AuthN response is sent back to the consumption device’s user agent from ID

GW.

7. User continues with the journey on consumption device, the result of the

authentication being displayed to the user.

Scenario 5 – Android based SAA Client; device is locked; SAA Client is not active

1. User initiates Mobile Connect AuthN request in SP’s website on consumption device

browser.

2. Consumption device browser’s user agent initiates OIDC call with Operator’s ID GW.

3. ID GW initiates AuthN request with SAA Server through SAA Adapter, resulting in a

push notification trigger to authentication device.

4. Push notification prompt is displayed in the notification area of the authentication

device (containing SAA Client icon).

5. User unlocks the authentication device.

6. User can either click on the notification prompt in the notification bar or SAA Client

icon to open the app.

7. SAA Client prompts the user to authenticate (based on LoA requested by SP and

Operator’s policy) on authentication device.

8. User authenticates on SAA Client.

9. OIDC AuthN response is sent back to the consumption device’s user agent from ID

GW.

10. User continues with the journey on consumption device, the result of the

authentication being displayed to the user.

Scenario 6 – Android based SAA Client; device is locked; SAA Client is already open and

active

1. User initiates Mobile Connect AuthN request in SP’s website on consumption device

browser.

2. Consumption device browser’s user agent initiates OIDC call with Operator’s ID GW.

3. ID GW initiates AuthN request with SAA Server through SAA Adapter, resulting in a

push notification trigger to authentication device.

4. Push notification prompt is displayed in the notification area of the authentication

device (containing SAA Client icon).

5. User unlocks the authentication device.

6. SAA Client prompts the user to authenticate (based on LoA requested by SP and

Operator’s policy) on authentication device.

7. User authenticates on SAA Client.

8. OIDC AuthN response is sent back to the consumption device’s user agent from ID

GW.

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 58 of 97

9. User continues with the journey on consumption device, the result of the

authentication being displayed to the user.

Scenario 7 – Android based SAA Client; device is unlocked; SAA Client is not active

1. User initiates Mobile Connect AuthN request in SP’s website on consumption device

browser.

2. Consumption device browser’s user agent initiates OIDC call with Operator’s ID GW.

3. ID GW initiates AuthN request with SAA Server through SAA Adapter, resulting in a

push notification trigger to authentication device.

4. Push notification prompt is displayed in the notification area of the authentication

device (containing SAA Client name and prompt).

5. User clicks on the push notification prompt, Android activates the SAA Client.

6. SAA Client prompts the user to authenticate (based on LoA requested by SP and

Operator’s policy) on authentication device.

7. User authenticates on SAA Client.

8. OIDC AuthN response is sent back to the consumption device’s user agent from ID

GW.

9. User continues with the journey on consumption device, the result of the

authentication being displayed to the user.

Scenario 8 – Android based SAA Client; device is unlocked; SAA Client is already open and

active

1. User initiates Mobile Connect AuthN request in SP’s website on consumption device

browser.

2. Consumption device browser’s user agent initiates OIDC call with Operator’s ID GW.

3. ID GW initiates AuthN request with SAA Server through SAA Adapter, resulting in a

push notification trigger to authentication device.

4. SAA Client prompts the user to authenticate (based on LoA requested by SP and

Operator’s policy) on authentication device.

5. User authenticates on SAA Client.

6. OIDC AuthN response is sent back to the consumption device’s user agent from ID

GW.

7. User continues with journey on consumption device, the result of the authentication

being displayed to the user.

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 59 of 97

5.4.1.2 Technical flow

Figure 17: SAA Client remote invocation technical flow (MSISDN prompt in SP App)

User

Consumption Device

(User 1)

«server»

Service Provider 1

«id gateway»

OpenID Connect Server

«id gateway»

SAA Adapter

«util ity service»

Push Service

«3rd party»

SAA Server

«mc auth app»

SAA client

MSISDN is retrieved either by:

1. Header Enrichment

2. Passed in encrypted format in the GET request

OpenID Connect Private API/FIDO

UAF

1.8 Find SAA Client ID(MSISDN): SAA Client ID

1.29 Generate assertion object(device

parameters, signed challenge)

1.2 Validate client details(client_id, redirect_uri)

1.38 POST: token request(client_id, client_secret, AuthZ code)

1.10 Create new transaction record(SP details, state, AuthN level, SAA Client ID, Session ID,

context): transaction id

1.4 Validate Subscriber(MSISDN)

1.36 Redirect AuthZ code(AuthZ code)

1.41 token response(ID_Token, Access_Token)

1.34 Process AuthN response(assertion object, SP client_id, state, MSISDN)

1.19 Retrieve SAA Client ID(SAA Client Device ID): SAA Client ID

1.14 Send Push Event(message payload)

1.32 :SUCCESS_OK

1.23 Retrieve transaction details(transaction id): transaction

details

1.1 GET: AuthZ code Request(client_id, redirect_uri, state, acr_values, context)

1.26 Prompt user to authenticate based on AuthN level - PIN, Swipe, Biometric()

1.30 Process AuthN response(assertion object, SAA Client Device ID, transaction id)

1.20 Retrieve pending transactions for client(SAA Client ID)

1.6 Generate unique Session ID(): Session ID

1.0 Initiate MConnect AuthN()

1.39 Validate client details(client_id, client_secret)

1.24 Generate challenge(): challenge

1.11 :transaction id

1.9 Initiate AuthN Session(SP details, state, AuthN level, SAA Client ID, Session ID, context)

1.5 Initiate AuthN Session(SP client_id, state, MSISDN, acr_values, context)

1.37 Redirect AuthZ code(AuthZ code)

1.42 :SUCCESS_OK

1.12 Retrieve device push token and OS Type(SAAClientID)

1.3 Retrieve MSISDN(): MSISDN

1.17 Retrieve SAA Client Device ID and

crypto keys from key-store()

1.35 Generate AuthZ code(): AuthZ code

1.21 :transaction details

1.40 Generate ID_Token, Access_Token(AuthZ code)

1.13 Send AuthN Push Event(message payload)

1.33 Process AuthN response(assertion object, transaction id, SAA Client ID, Session ID)

1.18 Retrieve pending transaction details(SAA Client Device ID)

1.16 Perform device security checks()

1.27 :Authenticate and provide consent

1.31 Validate response(AuthN response)

1.22 Initiate AuthN session(): SAA Client Device ID, transaction id

1.7 Find AuthN Level(acr_values): AuthN level

1.25 :AuthN message, challenge, AuthN Level, context, SP details

1.28 Sign the challenge using private key():

signed challenge

1.15 User clicks on notification banner to activate the app()

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 60 of 97

1. User accesses SP's web page on the consumption device and needs to authenticate:

• The SP implementation uses a Discovery mechanism such as the API Exchange to

identify the Operator and needed parameters.

2. The user agent of the consumption device sends an OIDC AuthZ code request to the

ID GW of the operator passing SP client_id, state, context and other relevant

parameters.

3. The ID GW validates the parameters passed in the request.

4. The ID GW retrieves the MSISDN/PCR of the user. The MSISDN/PCR is retrieved

either by:

• Header enrichment

• Encrypted MSISDN passed in AuthZ code request’s login_hint parameter

• Plain text MSISDN passed in AuthZ code request’s login_hint parameter, in case of trusted

SP

• PCR passed in AuthZ code request’s login_hint parameter

5. Optionally, If the ID GW is unable to retrieve MSISDN/PCR in the OIDC request, it

presents a MSISDN discovery page in SP app’s external user agent to capture user’s

registered MSISDN.

6. The ID GW checks the standing of the MSISDN/Mobile Connect account being

authenticated; If the mobile account is inactive/suspended, the ID GW rejects the SP

authentication request (passing back the requisite error codes).

7. The ID GW initiates an AuthN request call with the SAA Adapter passing the

parameters received in original request along with MSISDN.

8. SAA Adapter generates a unique session id for the combination of MSISDN, SP

client_id and state.

9. SAA Adapter determines the required AuthN level based on the acr_value passed in

the SP request.

10. SAA Adapter retrieves the SAA Client ID corresponding to the MSISDN.

11. SAA Adapter utilises the SAA Server API to initiate an AuthN session with the SAA

Client passing the relevant parameters (AuthN level, session id, details of SP [short

name, SP logo URL, SP background image URL etc.,], context and SAA Client ID).

(1) SAA Server checks the validity of the SAA Client ID (e.g., whether or not it has been

revoked due to Lifecycle events. See section 5.5.1 for lifecycle events integration with

Mobile Connect).

(2) If valid, SAA Server creates a new transaction record with an unique transaction id for

SAA Client ID; transaction id is returned to SAA Adapter.

(3) SAA Adapter records the transaction id against the session id and marks the

transaction in “Pending” state.

12. SAA Server retrieves the device push token and Platform type55 for the SAA Client

ID.

13. SAA Server triggers platform-specific push notification message to initiate AuthN

session on SAA Client.

14. SAA Client is activated when the user clicks on the notification prompt on the

authentication device.

55 i.e., iOS or Android

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 61 of 97

15. SAA Client performs device security checks as described in section 5.2.1.

16. SAA Client retrieves private key and SAA Client Device ID tokens from device secure

key-store as described in section 5.2.2.

17. SAA Client retrieves the pending transaction details (including transaction id) from

SAA Server passing SAA Client Device ID.

18. SAA Client invokes an API in SAA Server to initiate AuthN session passing SAA

Client Device ID and transaction id.

19. SAA Server validates incoming parameters and retrieves transaction record matching

the transaction id.

20. SAA Server generates a unique challenge and returns an AuthN request message

containing the challenge, transaction id, AuthN level, context and details of SP.

21. SAA Client prompts the user for a ‘Click OK’ or to ‘Enter their PIN’ or ‘Fingerprint

swipe’ or ‘Facial/Iris Scan’ depending on AuthN level.

22. On successful authentication, SAA Client generates a new assertion object

containing device characteristics (locale, device locked/unlocked etc.) and signed

challenge (using the private key).

23. SAA Client invokes an API in SAA Server to process AuthN response message

passing the assertion object, SAA Client Device ID and transaction id.

24. SAA Server validates the AuthN response message and responds appropriately to

SAA Client.

25. SAA Server invokes a callback API in SAA Adapter to process AuthN response

message passing the transaction id and assertion object.

26. SAA Adapter records the assertion object and marks the transaction as “Complete”;

passes AuthN response back to ID GW containing the transaction id and session id.

27. The ID GW generates an OIDC response back to the SP:

(1) The AuthZ code is sent as a redirect (through consumption device’s user agent) to

the registered redirect_uri of SP.

(2) The SP backend server implementing the redirect_uri retrieves the AuthZ code from

the URI.

(3) The SP backend server makes the token call passing the AuthZ code to get the

access token and the ID Token which contains the PCR.

5.4.2 Remote invocation (network push; mobile browser)

5.4.2.1 User flow

In this scenario, the user has invoked Mobile Connect via the browser on their mobile phone

(e.g., the user has navigated to an SP login page and chosen to log in using Mobile

Connect). The mobile browser will invoke Mobile Connect in the normal way, and the

technical flow will be as per the default remote invocation case (see section 5.4.1.2);

however on the same consumption device, the user will be navigated away from their mobile

browser in order to authenticate via the SAA Client hence there is the added consideration of

how to return the user to the mobile browser so that they can continue with the SP service.

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 62 of 97

The various flows captured below do not include any server side interactions including

request/response messages. Please see corresponding technical flows for detailed

interaction between various actors.

Scenario 1 – Same consumption and authentication device (iOS based)

1. User initiates Mobile Connect AuthN request in SP’s website on mobile browser.

2. Mobile browser’s user agent initiates OIDC call with Operator’s ID GW.

3. ID GW initiates AuthN request with SAA Server through SAA Adapter, resulting in a

push notification trigger to authentication device.

4. Push notification prompt is displayed in the notification area of the authentication

device (containing SAA Client name and prompt).

5. User clicks on push notification prompt, iOS activates SAA Client and mobile browser

app goes into the background.

6. SAA Client prompts the user to authenticate (based on LoA requested by SP and

Operator’s policy) on authentication device.

7. User authenticates on SAA Client and deactivates it by clicking on the home button.

8. OIDC AuthN response sent back to the mobile browser’s user agent from ID GW.

9. User clicks on the mobile browser icon to restart the app and continue with the

journey, the result of the authentication being displayed to the user.

Scenario 2 – Same consumption and authentication device (Android based)

1. User initiates Mobile Connect AuthN request in SP’s website on mobile browser.

2. Mobile browser’s user agent initiates OIDC call with Operator’s ID GW.

3. ID GW initiates AuthN request with SAA Server through SAA Adapter, resulting in a

push notification trigger to authentication device.

4. Push notification prompt is displayed in the notification area of the authentication

device (containing SAA Client name and prompt).

5. User clicks on push notification prompt, Android activates SAA Client

6. SAA Client prompts the user to authenticate (based on LoA requested by SP and

operator’s policy) on authentication device.

7. User authenticates on SAA Client and deactivates it by clicking the home button.

8. OIDC AuthN response sent back to the mobile browser’s user agent from ID GW.

9. User clicks on the mobile browser icon or goes back to the mobile browser app using

the back button, continues with the journey, the result of the authentication being

displayed to the user.

5.4.3 Local invocation from SP app (deep-linking using custom URI scheme)

5.4.3.1 Logical architecture – Component View

The diagram below depicts the logical architecture and conceptual flow of messages

between various components for completing the authentication process in the particular

scenario of local invocation of the SAA Client from an SP app using the app deep-linking

method:

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 63 of 97

Figure 18: SAA Client local invocation component view

5.4.3.2 App deep-linking implementation guidelines

Deep-linking is a methodology for launching a native mobile application via a link (URL) by

connecting a unique URL to a defined action in a mobile app thereby seamlessly linking

users to relevant content.

Deep-link structure

Deep-linking functions much like a traditional hyperlink on a webpage. It is composed of

separate elements that make up what is referred to as a Uniform Resource Identifier (URI).

The URI contains all the information that, when invoked, launches a mobile application with

a specific screen.

The best practice is to implement a URL with a unique scheme name and routing

parameters (path and query strings) that represent custom actions to take in the app (SP

App and SAA Client). The recommendation is to use a simple URL structure as shown in the

example below:

scheme_name://path?query_string

For URI Scheme Namespace Considerations, please see section 4.1.2 of the OAuth 2.0 for
Native Apps spec.

ID GWMobile Dev ice

User

Serv ice Prov ider

App

Native API

User Agent

Native API

Private

API/FIDO

UAF

«mc auth app»

SAA client

Native API
Native API

Private

API/FIDO

UAF

«id gateway»

OpenID Connect

Serv erOpenID

Connect

GSMA

API

«id gateway»

SAA Adapter
GSMA API

GSMA

API

GSMA API

«3rd party»

SAA Serv er

Private

API/FIDO

UAF

GSMA

API

GSMA API

OIDC API

Serv ice Prov ider 1

OIDC API

Authenticate and provide consent

invoke customURL

passing state,

client_id, callback

URL

AuthN response

GET: AuthZ code request

AuthN ResponseInitiate AuthN flow

302 Redirect -

AuthZ code

Invoke callback

customURL

302 Redirect - AuthZ code

POST: token request

Initiate AuthN flow, signed challenge

response

https://tools.ietf.org/html/draft-ietf-oauth-native-apps-00
https://tools.ietf.org/html/draft-ietf-oauth-native-apps-00

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 64 of 97

Routing parameters are optional, but are highly recommended. They can be used for

routing the user to specific screens of the application or passing in additional parameters.

The query string is optional, and might be used to pass specific named parameters.

Developer introduction

• Select the URI scheme and declare it in the app’s manifest. As discussed in the previous
section, the scheme name must be unique to the SP App and SAA Client otherwise
conflicts with other apps may occur.

• Define the actions that must be launched by using a deep-link. Make sure these actions

are in accordance with the URI syntax that is chosen. As discussed in the previous
section, the use of URL syntax is highly recommended; e.g.,
scheme_name://path?query_string

Deep-link implementation – iOS

The high level process is as follows:

• iOS apps are self-contained entities. There is only one point of entry in the app: the
AppDelegate. When a deep-link to the SAA Client is initiated, it will call the AppDelegate
with the deep-linking metadata.

• It is important to maintain a consistent state in the SP App and SAA Client while
providing the desired experience.

• For example, this can mean allowing the user to return to the main screen of the app. To
accomplish this, the appropriate view controllers should be used to send the user to the
desired part of the app while still maintaining the correct view hierarchy.

• When the app is opened, it is possible to recover the URL that was used to launch it and
process it as needed.

Further details can be found in reference documentation56 of AppDelegate57

Deep-link implementation – Android

The high level process is as follows:

• Android apps are composed of a set of Activities. Each of these Activities can be called
by other apps if configured as such. Depending on how the app and deep-links are
structured, you can choose to use one central endpoint or many.

• It is important to maintain a consistent state in the SP App and SAA Client while
providing the desired experience. An Android Activity will launch on top of the current
context and it is important to ensure that the appropriate view hierarchy is
maintained. Additionally, it is important to have the necessary data ready for the Activity
when it is loaded for the user.

• When the app is opened, it is possible to recover the URL that was used to launch it and
process it as needed.

56

https://developer.apple.com/library/IOs/documentation/UIKit/Reference/UIApplicationDelegate_Protocol/Referenc

e/Reference.html

57

https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIApplicationDelegate_Protocol/index.htm

l

https://developer.apple.com/library/IOs/documentation/UIKit/Reference/UIApplicationDelegate_Protocol/Reference/Reference.html
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIApplicationDelegate_Protocol/index.html

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 65 of 97

Further details can be found in reference documentation58 of Android deep-linking59

5.4.3.3 User flow

The flows captured below do not include any server side interactions including

request/response messages. Please see corresponding technical flows for detailed

interaction between various actors.

1. User initiates Mobile Connect AuthN request in SP App via an external user agent.

2. SP App’s user agent initiates OIDC call with Operator’s ID GW; SP App invokes the

custom URL of the SAA Client to launch it.

3. SAA Client prompts the user to authenticate (based on LoA requested by SP and

Operator’s policy).

4. User authenticates via the SAA Client; SAA Client deactivates and returns control

back to the SP App by invoking the custom URL of the SP App; Device’s OS

activates the SP App.

5. OIDC AuthN response sent back to the SP App’s user agent from ID GW.

6. User continues with the journey on SP app; the result of the authentication being

displayed to the user.

58 http://developer.android.com/training/app-indexing/deep-linking.html

59 Android deep-linking - http://developer.android.com/training/app-indexing/deep-linking.html

http://developer.android.com/training/app-indexing/deep-linking.html
http://developer.android.com/training/app-indexing/deep-linking.html

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 66 of 97

5.4.3.4 Technical flow – User is prompted for MSISDN in SP App

Figure 19: SAA Client local invocation technical flow (MSISDN prompt in SP App)

User

Service Provider App «server»

Service Provider 1

«mc auth app»

SAA client

«id gateway»

OpenID Connect

Server

«id gateway»

SAA Adapter

«3rd party»

SAA Server

1. The SAA server will wait for 'x' seconds before

triggering a push notification message for

initiating remote authentication invocation

on SAA client.

2. Push message will not be triggered if the SAA

server receives an AuthN initiation request

within the wait time from the client for the

matching client_id and state

MSISDN is retrieved either by:

1. Header Enrichment

2. Passed in encrypted format in the GET request

Client signature can be generated by signing device/SIM

unique identifier with client's private key

Native API User Agent Private API/FIDO UAF OpenID Connect GSMA API Private API/FIDO UAF

1.28 Invoke customURL(TXN ID)

1.10 Initiate AuthN Session(client_id, state, AuthN level, SAAClientID, Session ID, context)

1.20 Generate challenge():

challenge

1.26 Validate response

and generate TXN ID():

TXN ID

1.8 Find AuthN Level(acr_values): AuthN level

1.18 Validate Subscriber(MSISDN)

1.0 Initiate MConnect AuthN()

1.37 token response(ID_TOKEN, ACCESS_TOKEN)

1.24 Sign the challenge using private key(): AuthN response

1.6 Initiate AuthN Session(client_id, state, acr_values, MSISDN, Session ID, context)

1.16 Validate AuthN Session(client_id, state, SAAClientID, Session ID)

1.35 Validate client details(client_id, client_secret)

1.33 302: Redirect AuthZ code(AuthZ code)

1.4 Retrieve MSISDN(MSISDN)

1.14 Initiate AuthN Session(client_id, state, SAAClientID, client signature)

1.31 Generate AuthZ code(): AuthZ code

1.2 GET: AuthZ code request(client_id, redirect_uri, state, acr_values, context)

1.12 Retrieve SAA Client ID(): SAAClientID

1.29 Process AuthN response(TXN ID, Session ID, SAAClientID)

1.11 Invoke customURL(client_id, state)

1.21 :AuthN message, challenge, AuthN Level, Session ID, context

1.27 SUCCESS_OK(TXN ID)

1.9 Find SAA Client ID(MSISDN): SAAClientID

1.19 :SUCCESS_OK

1.38 :SUCCESS_OK

1.25 Process AuthN response(SAAClientID, AuthN response, Session ID)

1.7 Generate unique Session ID(): Session ID

1.17 Validate session(client_id, state, Session ID)

1.36 Generate ID_TOKEN, ACCESS_TOKEN(AuthZ code)

1.23 :Authenticate and provide consent

1.5 Validate Subscriber(MSISDN)

1.15 Validate client(SAAClientID,

client signature)

1.34 POST: token request(client_id, client_secret, AuthZ code)

1.32 302: Redirect AuthZ code(AuthZ code)

1.3 Validate client details(client_id, redirect_uri)

1.13 Generate client signature(device/SIM identifier): client signature

1.30 Process AuthN response(TXN ID, state, client_id, MSISDN)

1.22 Prompt user to authenticate based on AuthN level - PIN, Swipe, Biometric()

1.1 Initiate AuthZ code flow()

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 67 of 97

1. User accesses SP app on the mobile device and needs to authenticate

• The SP implementation uses a Discovery mechanism such as the API Exchange to

identify the Operator and needed parameters.

2. The SP app sends an OIDC AuthZ code request to the ID GW of the Operator

through an external user agent passing SP client_id, state, context, login_hint and

other relevant parameters. In parallel, the SP app invokes the custom URL of the

SAA Client.

3. The ID GW validates the parameters passed in the request.

4. The ID GW retrieves the MSISDN/PCR of the user. The MSISDN/PCR is retrieved

either by:

• Header enrichment

• Encrypted MSISDN passed in AuthZ code request’s login_hint parameter

• Plain text MSISDN passed in AuthZ code request’s login_hint parameter, in case of trusted

SP

• PCR passed in AuthZ code request’s login_hint parameter

5. Optionally, If the ID GW is unable to retrieve MSISDN/PCR in the OIDC request, it

presents a MSISDN discovery page in SP app’s external user agent to capture user’s

registered MSISDN.

6. The ID GW checks the standing of the MSISDN/Mobile Connect account being

authenticated; if the mobile account is inactive/suspended, the ID GW rejects the SP

authentication request (passing back the requisite error codes).

7. The ID GW initiates an AuthN request call via the SAA Adapter passing the

parameters received in the original request along with MSISDN.

8. SAA Adapter generates a unique session id for the combination of SP client_id and

state.

9. SAA Adapter determines the required AuthN level based on the acr_value passed in

the SP request.

10. SAA Adapter retrieves the SAA Client ID corresponding to the MSISDN.

11. SAA Adapter utilises the SAA Server API to initiate an AuthN session with the SAA

Client passing the relevant parameters (AuthN level, session id, details of SP [short

name, SP logo URL, SP background image URL etc.,], context and SAA Client ID).

(1) The SAA Server checks the validity of the SAA Client ID (e.g., whether or not it has

been revoked due to Lifecycle events. See section 5.5.1 for lifecycle events

integration with Mobile Connect).

(2) If valid, SAA Server creates a new transaction record with unique transaction id for

SAA Client ID; transaction id is returned to SAA Adapter.

(3) SAA Adapter records the transaction id against the session id and marks the

transaction in “Pending” state.

12. SAA Server waits for ‘x’ milliseconds before triggering a push message via the

appropriate PNS:

(1) The SAA Server must support invocation of the SAA Client using the network push

model and also support local invocation of the SAA Client. Ideally, a special value in

prompt parameter in the OIDC AuthZ code request will inform the ID GW to suppress

network push for initiating user’s AuthN challenge. At present, the Mobile Connect

OIDC spec does this special value to be passed in the prompt parameter.

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 68 of 97

(2) As an alternative, the SAA Server waits for ‘x’ milliseconds before triggering a push

message. During the wait time, if it receives an AuthN initiation request from SAA

Client directly (in case of local invocation), then triggering of push message is

suppressed. An edge case can be a delay in SAA Client initiating AuthN request and

SAA Server meanwhile triggering a network push. This will not have any adverse

impact on SAA Client, as SAA Client is already active and no user’s action is required

to activate SAA Client.

13. On activation, SAA Client performs device security checks as described in section

5.2.1.

14. SAA Client retrieves private key, SAA Client Device ID from device secure key-store

as described in section 5.2.2.

15. SAA Client retrieves pending transaction details (including transaction id) from SAA

Server passing SAA Client Device ID.

16. SAA Client utilises the SAA Server API to initiate an AuthN session passing SAA

Client Device ID and transaction id.

17. SAA Server validates incoming parameters and retrieves transaction record matching

the transaction id.

18. SAA Server generates a unique challenge and returns an AuthN request message

containing the challenge, transaction id, AuthN level, context and details of SP.

19. The SAA Client prompts the user for a ‘Click OK’ or to ‘Enter their PIN’ or ‘Fingerprint

swipe’ or ‘Facial/Iris Scan’ depending on AuthN level.

20. On successful authentication, SAA Client generates a new assertion object

containing device characteristics (locale, device locked/unlocked etc.) and signed

challenge (using the private key).

21. SAA Client invokes an API in SAA Server to process AuthN response message

passing the assertion object, SAA Client Device ID and transaction id.

22. SAA Server validates the AuthN response message and responds appropriately to

SAA Client.

23. SAA Server returns the transaction id back to SAA Client.

24. SAA Client returns control back to the SP app’s user agent by invoking the custom

URL of the SP app and passing the transaction id.

25. SAA Server invokes a call-back API in SAA Adapter to process AuthN response

message passing the transaction id and assertion object.

26. SAA Adapter records the assertion object and marks the transaction as “Complete”;

passes AuthN response back to ID GW containing the transaction id and session id.

27. The ID GW generates an OIDC response back to the SP:

(1) The AuthZ code and state parameters are sent as query parameters in the OIDC

response (through consumption device’s user agent) to the registered redirect_uri of

SP.

(2) The SP backend server implementing the redirect_uri retrieves the AuthZ code from

the URI.

(3) The SP backend server makes the token call passing the AuthZ code to get the

access token and the ID Token which contains the PCR.

(4) The SP backend server returns control back to the SP app’s external user agent.

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 69 of 97

5.4.3.5 Technical flow – User is not prompted to enter MSISDN in SP App

Figure 20: SAA Client local invocation technical flow (without MSISDN prompt in SP
App)

1. User accesses SP app on the mobile device and needs to authenticate

• The SP implementation uses a Discovery mechanism such as the API Exchange to

identify the Operator and needed parameters

2. The SP app sends an OIDC AuthZ code request to the ID GW of the Operator

through an external user agent passing SP client_id, state, context and other relevant

User

Service Provider App «server»

Service Provider 1

«mc auth app»

SAA client

«id gateway»

OpenID Connect

Server

«id gateway»

SAA Adapter

«3rd party»

SAA Server

Native API User Agent Private API/FIDO UAF OpenID Connect GSMA API Private API/FIDO UAF

1.38 Generate ID_TOKEN, ACCESS_TOKEN(AuthZ code)

1.26 Generate assertion object(device parameters, signed challenge)

1.15 Retrieve AuthN trasaction details(SP client_id, state, SAA Client ID)

1.9 :SUCCESS_OK

1.33 Generate AuthZ code(): AuthZ code

1.0 Initiate MConnect AuthN()

1.27 Process AuthN response(assertion object, SAA Client Device ID, transaction id)

1.36 POST: token request(client_id, client_secret, AuthZ code)

1.10 Invoke customURL(SP client_id, state)

1.39 token response(ID_TOKEN, ACCESS_TOKEN)

1.31 Process AuthN response(assertion object, transaction id, Session ID, SAA Client ID)

1.8 Create new transaction record(SP details,

state, acr_values, context, Session ID)

1.24 :Authenticate and provide consent

1.34 302: Redirect AuthZ code(AuthZ code)

1.17 Retrieve MC account(SAA Client ID): MC account

1.29 SUCCESS_OK()

1.2 GET: AuthZ code request(SP client_id, redirect_uri, state, acr_values, context)

1.22 :AuthN message, challenge, AuthN Level, Session ID, SP details, context

1.6 Generate unique Session ID(): Session ID

1.19 :transaction details

1.4 Validate Subscriber(MSISDN)

1.16 Retrieve transaction details(SP client_id, state):

transaction details

1.13 Initiate AuthN Session(SP client_id, state, SAA Client Device ID)

1.20 Create new transaction record

(SP details, state, AuthN level, SAA

Client ID, Session ID, context)

1.1 Initiate AuthZ code flow()

1.28 Validate response

(AuthN response)

1.37 Validate client details(client_id, client_secret)

1.12 Retrieve SAA Client Device ID and crypto keys from key-

store()

1.40 :SUCCESS_OK

1.32 Process AuthN response(assertion object, SP client_id, state, MSISDN)

1.25 Sign the challenge using private key(): AuthN response

1.35 302: Redirect AuthZ code(AuthZ code)

1.11 Perform device security checks()

1.30 Invoke customURL()

1.3 Validate client details(client_id, redirect_uri)

1.23 Prompt user to authenticate based on AuthN level - PIN, Swipe, Biometric()

1.7 Find AuthN Level(acr_values): AuthN level

1.21 Generate challenge():

challenge

1.5 Initiate AuthN Session(SP details, state, acr_values, context)

1.18 Validate Subscriber(MSISDN)

1.14 Retrieve SAA Client ID(SAA Client

Device ID): SAA Client ID

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 70 of 97

parameters. In parallel, the SP app invokes the custom URL of the SAA Client

passing SP client_id and state parameters.

3. The ID GW validates the parameters passed in the request.

4. The ID GW is unable to retrieve the MSISDN from the incoming request. It initiates

an AuthN request call via the SAA Adapter passing the parameters received in the

original request without the MSISDN.

Note: A change will be required in OIDC Mobile Connect profile to pass a new value

in login_hint that will inform ID GW to suppress display of MSISDN page if unable to

extract from login_hint and stop further MSISDN validation.

5. SAA Adapter generates a unique session id for the combination of SP client_id and

state.

6. SAA Adapter records new transaction in “Pending” state along with incoming

parameters and session id.

7. On activation, SAA Client performs device security checks as described in section

5.2.1.

8. SAA Client retrieves private key, and SAA Client Device ID from device secure key-

store as described in section 5.2.2.

9. SAA Client utilises the SAA Server API to initiate an AuthN session passing SAA

Client Device ID, SP client_id and state parameters.

10. SAA Server retrieves SAA Client ID matching SAA Client Device ID and validates it

(e.g., whether or not it has been revoked due to Lifecycle events. See section 5.5.1

for lifecycle events integration with Mobile Connect).

11. On successful validation, SAA Server creates a new transaction record with unique

transaction id for SAA Client ID; the SAA Server invokes an API in SAA Adapter to

retrieve AuthN transaction details passing SAA Client ID, SP client_id, state and

transaction id.

12. SAA Adapter retrieves the MSISDN matching SAA Client ID. It checks the standing

of the MSISDN/Mobile Connect account being authenticated; if the mobile account is

inactive/suspended, the SP authentication request is rejected (passing back the

requisite error codes).

13. SAA Adapter retrieves the transaction details matching SP client_id and state

(created in step 6); records transaction id and returns the transaction details to SAA

Server (AuthN level, session id, details of SP [short name, SP logo URL, SP

background image URL etc.,], context and SAA Client ID).

14. SAA Server generates a unique challenge and returns an AuthN request message

containing the challenge, transaction id, AuthN level, context and details of SP.

15. SAA Client prompts the user to authenticate (using the appropriate user I/O based on

the authenticator type that was selected; e.g., ‘Click OK’, ‘Enter PIN’, ‘Fingerprint

swipe’, ‘Facial/Iris Scan’ etc.) dependent on AuthN level.

16. On successful authentication, SAA Client generates a new assertion object

containing device characteristics (locale, device locked/unlocked etc.) and signed

challenge (using the private key).

17. SAA Client invokes an API in SAA Server to process AuthN response message

passing the assertion object, SAA Client Device ID and transaction id.

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 71 of 97

18. SAA Server validates the AuthN response message and responds appropriately to

SAA Client passing transaction id for successful transaction.

19. SAA Client returns control back to the SP app’s user agent by invoking the custom

URL of the SP app and passing the transaction id.

20. In parallel, SAA Server invokes a callback API in SAA Adapter to process AuthN

response message passing the transaction id and assertion object.

21. SAA Adapter retrieves transaction details matching the transaction id; records the

assertion object and marks the transaction as “Complete”; passes AuthN response

back to ID GW containing the transaction id and session id.

22. The ID GW generates an OIDC response back to the SP:

(1) The AuthZ code and state parameters are sent as query parameters in the OIDC

response (through consumption device’s user agent) to the registered redirect_uri of

SP.

(2) The SP backend server implementing the redirect_uri retrieves the AuthZ code from

the URI.

(3) The SP backend server makes the token call passing the AuthZ code to get the

access token and the ID Token which contains the PCR.

(4) The SP backend server returns control back to the SP app’s external user agent.

5.5 Mobile Connect lifecycle events

5.5.1 Lifecycle events integration with Mobile Connect

The Operator Systems (e.g. Provisioning Systems, CRM/CVM systems, HLR etc.) involved

in any Lifecycle events need to notify user’s account status to the Mobile Connect System

(ID GW) so that an appropriate action (progressing or rejecting a request) can be taken

when an AuthN request arrives at the ID GW for that user. Also, ID GW in turn will have to

notify SAA Server through SAA Adapter to allow SAA Server to change the status of

corresponding SAA Client ID accordingly.

The proposed integration options are:

1) The Operator’s BSS sends a push notification of the event to the ID GW and a specific

state is added in the Mobile Connect account database at the ID GW (Base

requirement).

1. This can be done using a call-back/notification API implemented by the ID GW and

called by the Operator systems.

2) The Operator systems expose an MSISDN validation API which is called by the ID GW:

1. When an Authentication request arrives.

2. Periodically polled and the Mobile Connect account database updated with the state.

3) Enabling the user to manually update their Mobile Connect account from the Operator’s

Mobile Connect website (or similar business process).

The following diagram shows an indicative architecture for the notification mechanism:

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 72 of 97

Figure 21: Lifecycle events integration with Mobile Connect

5.5.2 Handling of device change notification

The device change scenario should be managed as follows:

1. The ID GW marks the state of the Mobile Connect account for the MSISDN to

“device changed”.

2. The ID GW -> SAA Adapter removes the association of the SAA Client ID.

3. The ID GW-> SAA Adapter notifies the SAA Server to block the SAA Client.

4. The user is either sent an SMS with a link to download the SAA Client OR the user

initiates the process using the Operator self-care portal.

5. The SAA Client activation process is performed using account recovery information

(see section (1)).

5.5.3 Handling of Mobile account status notification

5.5.3.1 Mobile account suspended

• The SP should receive an error message indicating an error in accessing account

details.

• Both the Mobile Connect account and SAA Client ID should be marked as

‘Suspended’ in the ID GW and SAA Server respectively.

• The SP can then flag that user account as being unavailable via Mobile Connect and

use an alternate method for authentication.

• The SAA Server needs to provide an API that the ID GW can invoke to notify the

SAA Server of the account’s suspended status.

5.5.3.2 Mobile account reactivation

• This should also reactivate the Mobile Connect account and SAA Client ID from the

ID GW and SAA Server respectively.

• Both the Mobile Connect account and SAA Client ID should be marked as ‘Active’ in

the ID GW and SAA Server respectively.

• The current assumption is that the SP will not be notified explicitly when the account

is reactivated so will need to discover this through issuing authentication requests.

• The SAA Server needs to provide an API that the ID GW can invoke to notify the

account’s reactivated status.

SAA subsystem

«3rd party»

SAA Serv er

«mc auth app»

SAA client

GSMA API

FIDO/UAF

ID Gateway Reference

Architecture -

Component View

«mno»

Subscriber

Validation System

Push lifecycle

notifications

Invoke validation

API

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 73 of 97

5.5.3.3 Mobile account deletion

• The SP should receive an error message indicating an error in accessing account

details.

• Both the Mobile Connect account and SAA Client ID should be marked as ‘Deleted’

in the ID GW and SAA Server respectively. The duration to keep the account in a

dormant state before deleting is based on Operator policy.

• The SAA Server needs to provide an API that the ID GW can invoke to notify the

account deletion status.

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 74 of 97

5.5.3.4 Technical flow

Figure 22: User’s account suspension/reactivation/deletion technical flow

«mno»

MNO Self Care

Console

«id gateway»

OpenID Connect

Server

«id gateway»

SAA Adapter

«3rd party»

SAA Server

Private API/FIDO

UAF

opt Lock User's MConnect Account

opt Unlock User's MConnect Account

opt Close User's MConnect Account

1.30 :SUCCESS_OK

1.20 Close MConnect Account(MSISDN)

1.7 :SUCCESS_OK

1.28 Delete Client(SAAClientID)

1.18 :SUCCESS_OK

1.4 Find SAA Client ID(MSISDN): SAAClientID

1.26 Change SAA client status(Deleted)

1.16 Unlock Client(SAAClientID)

1.1 Validate subscriber(MSISDN)

1.15 Change SAA client status(Active)

1.13 Unlock MConnect Account(MSISDN)

1.5 Change SAA client status(Suspended)

1.24 Close MConnect Account(MSISDN)

1.10 Unlock MConnect Account(MSISDN)

1.21 Validate subscriber(MSISDN)

1.8 :SUCCESS_OK

1.29 :SUCCESS_OK

1.19 :SUCCESS_OK

1.6 Lock Client(SAAClientID)

1.0 Lock MConnect Account(MSISDN)

1.31 :SUCCESS_OK

1.27 Remove client associations(MSISDN)

1.17 :SUCCESS_OK

1.3 Lock MConnect Account(MSISDN)

1.22 Change MC account status(Deleted)

1.14 Find SAA Client ID(MSISDN): SAAClientID

1.12 Change MC account status(Active)

1.25 Find SAA Client ID(MSISDN): SAAClientId

1.11 Validate subscriber(MSISDN)

1.2 Change MC account status(Suspended)

1.23 Remove tokens and PCR associated with MSISDN(MSISDN)

1.9 :SUCCESS_OK

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 75 of 97

1. MNO self-care console notifies ID GW of mobile account status change

(Blocked/Deleted/Reactivated).

2. ID GW validates the status of corresponding MC account.

3. ID GW changes the status of MC account accordingly (Blocked, Active, Deleted).

4. ID GW notifies SAA adapter to handle account status change.

5. SAA adapter modifies the status of SAA Client account accordingly (Blocked, Active,

Deleted).

6. SAA adapter notifies SAA server through notification API to handle account status

change for the SAA Client.

7. SAA server modifies the status of SAA Client account accordingly.

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 76 of 97

5.6 SP binding management

5.6.1 Technical flow

Figure 23: SP binding management technical flow

User

«id gateway»

SAA Adapter

«3rd party»

SAA Server

«mc authenti...

SAA Client

GSMA APIPrivate API/FIDO

UAF

Private API/FIDO

UAF

alt Authenticated Session

[User has successfully authenticated]

1.4 Retrieve SAA Client ID for SAA Client Device ID(SAA

Client Device ID): SAA Client ID

1.21 Remove SP()

1.10 :List of

SPs

1.1 Perform device security checks()

1.19 :SUCCESS_OK (200)

1.8 Fetch list of SP matching

MSISDN(MSISDN)

1.6 Find MSISDN(SAAClientID):

MSISDN

1.28 :SUCCESS_OK (200)

1.17 Remove Tokens associated with

SP(client_id, MSISDN)

1.3 Retrieve list of SP bindings(SAA Client Device ID)

1.26 Remove PCR associated with SP():

client_id, MSISDN

1.15 Find MSISDN(SAAClientID):

MSISDN

1.24 Find MSISDN(SAAClientID):

MSISDN

1.13 Revoke SP(SAAClientID, client_id)

1.22 Remove SP(SAAClientID, client_id)

1.11 :display list of SP

bindings

1.2 Retrieve SAA Client Device ID from secured key-store(): SAA Client Device ID

1.20 :display successful message

1.9 :List of SPs

1.30 :display successful message

1.7 Validate Subscriber(MSISDN)

1.29 :SUCCESS_OK (200)

1.18 :SUCCESS_OK (200)

1.5 Retrieve list of SP bindings(SAAClientID)

1.27 Remove tokens associated with

SP(client_id, MSISDN)

1.16 Validate subscriber(MSISDN)

1.0 User activates SAA Client to view list of SP bindings()

1.25 Validate subscriber(MSISDN)

1.14 Revoke SP(SAAClientID, client_id)

1.23 Remove SP(SAAClientID, client_id)

1.12 Revoke SP()

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 77 of 97

1. On activation, SAA Client performs device security checks as described in section

5.2.1.

2. User decides to review SP bindings in SAA Client.

3. SAA Client authenticates the user locally using the PIN.

4. SAA Client retrieves SAA Client Device ID from device secure key-store as described

in section 5.2.2.

5. On successful authentication and validation, SAA Client invokes an API provided by

the SAA Server to retrieve the list of SP bindings passing SAA Client Device ID and

SAA Client ID.

6. SAA Server retrieves SAA Client ID matching SAA Client Device ID and validates it

(e.g., whether or not it has been revoked due to Lifecycle events. See section 5.5.1

for lifecycle events integration with Mobile Connect).

7. On successful validation, SAA Server invokes corresponding API in SAA Adapter

passing SAA Client ID.

8. SAA Adapter retrieves the MSISDN for SAA Client ID and validates it.

9. It returns a list of SP bindings back to SAA Client through SAA Server.

10. If the user decides to revoke an SP, the above validation steps are carried out

again before SAA adapter removes user’s OIDC tokens associated with the SP from

ID GW database.

11. If the user decides to remove an SP binding, the above validation steps are

carried out again before SAA Adapter removes user’s OIDC tokens associated with

the SP, removes user’s PCR associated with the SP and deletes the SP binding

record from ID GW database.

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 78 of 97

5.7 Secured messaging flows

5.7.1 Message template management

Figure 24: Message template management technical flow

1. SP invokes a private API in ID GW to either create or update or delete a message

template.

2. ID GW checks the standing of SP status in ID GW (Blocked or Deleted) to ensure

validity of SP.

3. ID GW delegates the API request to SAA Server for processing.

4. SAA Server either creates or updates or deletes the message template and responds

accordingly to the calling client.

5.7.2 Send message

«server»

Service Provider 1

ID Gateway Reference

Architecture - Component

View

«3rd party»

SAA Server

opt Create message template

opt Update message template

opt Delete message template

1.4 Update message template(SP client_id, SP client_credentials, message template)

1.9 Validate SP(SP client_id)

1.8 Delete message template(SP client_id, SP client_credentials, message template

id)

1.2 Create message template(message template)

1.0 Create message template(SP client_id, SP client_credentials, message template)

1.10 Delete message template(message template id)

1.6 Update message template(message template)

1.11 Delete message template

(message template id)

1.7 Update message template

(message template)

1.5 Validate SP(SP client_id)

1.3 Create message template

(message template)

1.1 Validate SP(SP client_id)

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 79 of 97

Figure 25: Send message technical flow

1. SP invokes a private API in ID GW to send a message to multiple recipients identified

by MSISDN. The API request contains message template id, list of MSISDN and

placeholder parameters (key-value pair).

2. ID GW checks the standing of SP status in ID GW (Blocked or Deleted) to ensure

validity of SP.

3. ID GW resolves the list of MSISDN to retrieve corresponding SAA Client ID for each

MSISDN.

4. ID GW invokes an API in SAA Server passing message template id, list of SAA Client

IDs and placeholder parameters.

5. SAA Server retrieves the message template corresponding to message template id

and replaces placeholder keywords with corresponding values.

6. SAA Server creates the message for each SAA Client ID in local database storage.

The message will be retrieved when the user accesses message inbox interface on

SAA Client.

5.7.3 Read message

«server»

Service Provider 1

ID Gateway Reference

Architecture - Component

View

«3rd party»

SAA Server

opt Send message

1.5 Create message by replacing placeholder keys with values

(message template, placeholder key-value pairs): message

1.3 Send message(message template id, l ist of SAA Client ID, placeholder key-value pairs)

1.0 Send message(SP client_id, SP client_credentials, message template id, l ist of

MSISDN, placeholder key-value pairs)

1.6 Store message for each SAA Client ID(SAA Client ID,

message)

1.4 Retrieve message template(message

template id): message template

1.2 Resolve SAA Client ID from MSISDN(MSISDN): SAA Client ID

1.1 Validate SP(SP client_id)

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 80 of 97

Figure 26: Read message technical flow

1. On activation, SAA Client performs device security checks as described in section

5.2.1.

2. User decides to review list of messages in SAA Client.

3. SAA Client authenticates the user locally using the PIN.

4. SAA Client retrieves SAA Client Device ID from device secure key-store as described

in section 5.2.2.

5. On successful authentication and validation, SAA Client invokes an API provided by

the SAA Server to retrieve the list of messages passing SAA Client Device ID.

6. SAA Server retrieves SAA Client ID matching SAA Client Device ID and validates it

(e.g., whether or not it has been revoked due to Lifecycle events. See section 5.5.1

for lifecycle events integration with Mobile Connect).

7. On successful validation, SAA Server retrieves the list of messages for SAA Client ID

from local database storage and returns the list to SAA Client.

8. User selects the message from the inbox to read.

9. SAA Client fetches the details of the message from SAA Server and renders it for

display resolving the icon image from the public facing icon image URL.

10. On reading the message, SAA Client marks the message status as “READ” in SAA

Server.

5.7.4 Delete message

User

«mc authentic...

SAA Client

«3rd party»

SAA Server

opt Authenticated session

[User has successfully authenticated]

1.9 Retrieve message details(SAA Client Device ID, message id)

1.7 :List of messages

1.5 Retrieve list of messages (SAA Client ID):

List of messages

1.3 Retrieve list of messages(SAA Client Device ID)

1.12 :message details

1.1 Perform device security checks()

1.10 Retrieve message details(SAA Client ID, message id):

message details

1.8 User selects a message to read from list view()

1.6 :List of messages

1.4 Retrieve SAA Client ID for SAA Client Device ID(SAA

Client Device ID): SAA Client ID

1.2 Retrieve SAA Client Device ID from key store(SAA Client

Device ID)

1.11 :message details

1.0 User activates SAA Client to access inbox menu()

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 81 of 97

Figure 27: Delete message technical flow

1. On activation, SAA Client performs device security checks as described in section

5.2.1.

2. User decides to delete a messages from the inbox in SAA Client.

3. SAA Client authenticates the user locally using the PIN.

4. SAA Client retrieves SAA Client Device ID from device secure key-store as described

in section 5.2.2.

5. On successful authentication and validation, SAA Client invokes an API provided by

the SAA Server to delete the message passing SAA Client Device ID and message

identifier.

6. SAA Server retrieves SAA Client ID matching SAA Client Device ID and validates it

(e.g., whether or not it has been revoked due to Lifecycle events. See section 5.5.1

for lifecycle events integration with Mobile Connect).

7. On successful validation, SAA Server deletes the message for SAA Client ID

identified by message identifier from local database storage and returns a successful

response to SAA Client.

8. SAA Client removes the message from the list view.

User

«mc authentic...

SAA Client

«3rd party»

SAA Server

opt Authenticated session

[User has successfully authenticated]

1.2 Retrieve SAA Client Device ID from key store(SAA Client

Device ID)

1.11 :success response

1.0 User activates SAA Client to access inbox menu()

1.9 Delete message(SAA Client Device ID, message id)

1.7 :List of messages

1.5 Retrieve list of messages (SAA Client ID):

List of messages

1.3 Retrieve list of messages(SAA Client Device ID)

1.1 Perform device security checks()

1.10 Delete message(SAA Client ID, message id)

1.8 User selects a message to delete from list view

()

1.6 :List of messages

1.4 Retrieve SAA Client ID for SAA Client Device ID(SAA

Client Device ID): SAA Client ID

1.12 Delete message from list view()

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 82 of 97

5.8 API summary (Base and Enhanced SAAs)

The following table summarises all the APIs that have been outlined for the Base and

Enhanced SAA solutions:

Calling
Component

Provider
Component

API Description

Base SAA

SAA Adapter SAA Server Means for the ID GW to initiate an AuthN session with the SAA Server passing unique
session id and other parameters:

• Stipulate the preferred/required LoA (the SAA Client then selecting an

authenticator based on locally-set user preferences)

• Stipulate the authenticator type that the SAA must use in authenticating the user

(e.g., PIN vs biometric)

• Override any local user preference expressed on the device (in terms of which

authenticator to use for a given LoA)

This is the standard interface (INT1) between SAA Server and ID GW (SAA Adapter)

SAA Adapter SAA Server Means for the ID GW to notify the SAA Server of user’s device change status to
support Mobile Connect lifecycle events (see section 5.5.1)

SAA Adapter SAA Server Means for the ID GW to notify the SAA Server of user’s account status change to
support Mobile Connect lifecycle events (see section 5.5.1)

SAA Server SAA Adapter Means for the SAA Server to validate user’s Mobile Connect account in ID GW

SAA Client SAA Server Means for the SAA Client to enrol/setup with the SAA Server using an association
code for linking with the user’s Mobile Connect account (see section 3.7.1.2)

SAA Client SAA Server Means for the SAA Client to recover an existing account using the user’s recovery
information (see section 3.7.2)

SAA Server SAA Adapter Means for the SAA Server to retrieve user’s account details using account recovery
information (see section 3.7.2)

SAA Server SAA Adapter Means for the SAA Server to retrieve user’s account recovery information for display
purpose (see section 3.7.2)

SAA Client SAA Server Means for the SAA Client to retrieve user’s account recovery information for display
purpose (see section 3.7.2)

SAA Client SAA Server Means for the SAA Client to retrieve pending transaction details (see section 5.4.1.2)

SAA Client SAA Server Means for the SAA Client to initiate AuthN session with SAA Server passing server
generated transaction id (see section 5.4.1.2)

SAA Client SAA Server Means for the SAA Client to send AuthN challenge response after user’s
authentication on the device (see section 5.4.1.2)

SAA Server SAA Adapter Means for the SAA Server to send AuthN assertion to ID GW following user’s AuthN
challenge response (see section 5.4.1.2)

Enhanced SAA

SAA Adapter API
Exchange

Update to the API Exchange Request Validator API for the ID GW to retrieve SP
details (SP logo URL, SP background image URL, SP short name and SP name) by
passing SP client_id. This information will be used by SAA Client for displaying
transaction related context information (see section 4.2)

SP App API
Exchange

Update to the API Exchange’s Discovery API to retrieve the Custom URL of Operator-
specific SAA Client for invoking the SAA Client on the same device using app deep-
linking method (see section 4.5)

SAA Client Operator
subsystem

Means for the SAA Client to retrieve one-time token representing user’s MSISDN
during SAA Client activation process (see section 5.3.1)

SAA Adapter Operator
subsystem

Means for the ID GW to retrieve MSISDN using one-time token during SAA Client
activation process (see section 5.3.1)

SAA Adapter Operator
subsystem

Means for the SAA Adapter to retrieve network parameters (IMSI and IMEI) for a
MSISDN during SAA Client activation process (see section 4.9.1)

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 83 of 97

SAA Client ID GW/SAA
Server

Means for the SAA Client to retrieve Operator’s values including MVNO brand/sub-
brand for a MSISDN for personalisation of SAA Client (see section 3.4)

SAA Client ID GW/SAA
Server

Means for the SAA Client to retrieve Operator’s logo metadata JSON document for a
MSISDN for personalisation of SAA Client (see section 3.4)

SAA Client ID GW/SAA
Server

Means for the SAA Client to retrieve Operator’s logo for a public facing resource URL
for personalisation of SAA Client (see section 3.4)

Old Operator
ID GW

New
Operator ID
GW

Modifications to Mobile Connect lifecycle account migration API to support migration
of SAA identifiers for user churn event (see section 4.4.1)

SAA Server SAA Adapter Means for the SAA Server to retrieve network parameters (IMSI and IMEI) for a
MSISDN to compare against existing SAA Client Device ID token for detection of
device/SIM changes and app clone characteristics (see section 5.2.1)

ID GW SP Means for the ID GW to return Confidence Score as an optional claim in ID token;
requires an update to the OIDC Mobile Connect profile (see section 4.9.2)

SAA Client SAA Server Means for the SAA Client to setup/enrol with SAA Server using MSISDN for linking
with user’s Mobile Connect account

SAA Client SAA Server Means for the SAA Client to initiate AuthN session with SAA Server passing SP
client_id and state (local invocation)

SAA Client SAA Server Means for the SAA Client to retrieve list of user’s SP bindings to allow user to either
remove or revoke a SP binding (see section 4.7)

SAA Client SAA Server Means for the SAA Client to revoke an user’s SP binding (see section 4.7)

SAA Client SAA Server Means for the SAA Client to remove an user’s SP binding (see section 4.7)

SAA Server SAA Adapter Means for the SAA Server to retrieve list of user’s SP bindings from ID GW (see
section 4.7)

SAA Server SAA Adapter Means for the SAA Server to revoke a user’s SP binding in ID GW (see section 4.7)

SAA Server SAA Adapter Means for the SAA Server to remove a user’s SP binding in ID GW (see section 4.7)

SAA Server SAA Adapter Means for the SAA Server to check if a user is already registered for Mobile Connect
in ID GW (see section 5.3.1)

SP ID GW Means for the SP to create a new message template (see section 4.8.2)

SP ID GW Means for the SP to update a message template (see section 4.8.2)

SP ID GW Means for the SP to delete a message template (see section 4.8.2)

SP ID GW Means for the SP to send a message to multiple end users (see section 4.8.2)

ID GW SAA Server Means for the ID GW to create a new message template (see section 4.8.2)

ID GW SAA Server Means for the ID GW to update a message template (see section 4.8.2)

ID GW SAA Server Means for the ID GW to delete a message template (see section 4.8.2)

ID GW SAA Server Means for the ID GW to send a message to multiple end users (see section 4.8.2)

SAA Client SAA Server Means for the SAA Client to retrieve list of messages (see section 4.8)

SAA Client SAA Server Means for the SAA Client to retrieve details of a message (see section 4.8)

SAA Client SAA Server Means for the SAA Client to delete a message (see section 4.8)

Table 11: API summary (Base and Enhanced SAAs)

In summary, it can be seen that for the Base SAA there are no dependencies on either the

GSMA platforms or Operator subsystems.

NOTE: for the Base SAA it is assumed that lifecycle events will be notified to the Mobile

Connect system via a manual business process. These are vitally important to ensure

security and mitigate risk.

For the Enhanced SAA, given its aims of enhancing the user experience and security of the

SAA solution by more tightly integrating it with the Operator’s network, there are inevitably

many more dependencies on both GSMA platforms (e.g., API Exchange) and Operator

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 84 of 97

subsystems hence it is not expected to be ready for deployment until a later Mobile Connect

Release.

6.0 Deployment considerations

6.1 SAA subsystem deployment options

The SAA vendor will typically provide the SAA Server and Client; the SAA Adapter will

generally be developed by the Identity GW vendor in order to interface to the API exposed

by the SAA Server.

Operators may choose to deploy their own SAA subsystems (SAA Client + SAA Server) or

do so in collaboration with the other Operators in a given market to ensure homogeneity of

the solution towards users and ease of porting. The options break down as follows:

1) Operators deploy different SAA subsystems (different vendors)

2) Operators deploy different SAA subsystem instances but from the same vendor

3) Operators deploy a single common SAA subsystem within a market (single vendor)

Each of these deployment options can then be broken down further to reflect different

approaches for distributing the SAA Client:

• Operator integrated Operator leverages SAA Client SDK to integrate functionality into

one of their own apps (e.g., self-care); see section 6.2

• Operator own Operator deploys own-branded SAA Client (resulting in multiple

apps on the App Stores)

• Single Single common SAA Client deployed by all Operators within a

market (no Operator branding)

• Personalised Single common SAA Client branded Mobile Connect and used by

all Operators within a market but personalised upon activation to

show Operator branding

The following table summarises the different combinations:

 SAA Client options

 SAA

Client

SAA

Server

Single Personalised Operator

own

Operator

integrated

Option 1:

Operators deploy

different SAA

subsystems

Different per Operator No No Yes Yes

Option 2:

Operators deploy

different SAA

subsystem

instances but from

the same vendor

Either

common or

different

per

Operator

Different

per

Operator

Yes Yes Yes Yes

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 85 of 97

Option 3:

Operators deploy

a single common

SAA subsystem

within a market

Common across

Operators in a market
Yes Yes No No

Table 12: SAA subsystem deployment options

The pros and cons of the various options are as follows:

Interface options Pros Cons

Option 1:

Operators deploy
different SAA
subsystems

• Allows flexibility in selection of SAA

subsystem from various vendors

based on Operator choice and

preference for a particular vendor

• Any defects in SAA subsystem

does not affect other Operators

• Requires Operator and/or Identity GW

vendor to develop a bespoke adapter for

integration with vendor’s SAA Server

(however, this only needs to be done once)

• SAA Client cannot be re-used when user

ports

• Proliferation of Operator specific SAA

Clients in the app stores thereby causing

fragmentation and confusion for users

• Operators have to negotiate separate

contract with SAA subsystem vendors

• It may not be possible to negotiate

favourable pricing with SAA subsystem

vendor (cannot leverage economies of

scale across x-Operator footprint)

Option 2:

Operators deploy
different SAA
subsystem
instances but
from the same
vendor

• SAA Client can be re-used when

user ports

• Flexibility to deploy a common SAA

Client x-Operator (optionally

personalised by Operator) or

separate Operator-specific SAA

Clients

• Common software upgrade and

patches by SAA subsystem vendor

for all the instances

• Any advancement in supporting

future authentication modes is

available to all the Operators

• Requires Operator and/or Identity GW

vendor to develop a bespoke adapter for

integration with vendor’s SAA Server

(however, this only needs to be done once

by the ID GW vendor and can then be re-

used across Operator deployments)

• Risk of proliferation of Operator specific

SAA Clients in the App Stores thereby

causing fragmentation and confusion for

users

• Operators have to negotiate separate

contracts with the SAA subsystem vendor

• Any defects in the SAA subsystem affects

all the Operators

Option 3
(Recommended):

Operators deploy
a single common
SAA subsystem
within a market

• Single SAA Client for a given

market with the option of Operator

personalisation thereby avoiding

confusion and fragmentation

• SAA Client can be re-used

seamlessly when user churns (no

need to re-associate with the SAA

Server)

• Requires Operator and/or Identity GW

vendor to develop a bespoke adapter for

integration with vendor’s SAA Server

(however, this only needs to be done once

by the ID GW vendor and can then be re-

used across Operator deployments)

• Any defects in SAA subsystem affects all

the Operators

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 86 of 97

• Common software upgrade and

patches by SAA subsystem vendor

for single instance

• Operators can negotiate favourable

pricing with the SAA subsystem

vendor (leveraging economies of

scale)

• Operators can negotiate a single

contract with SAA subsystem

vendor (or at least a common

master agreement and individual

terms as needed)

• Any new authenticator supported in

the SAA Client is available to all

the Operators

Table 13: Pros and Cons of SAA subsystem deployment options

Whilst all the options listed above are viable, it is strongly recommended that Operators

within a given market utilise a common SAA Client. In doing so they will reduce confusion

and fragmentation for the user (through providing a single app on the App Store) whilst

delivering a consistent user experience x-Operator. Taking such an approach still allows the

SAA Client to be personalised on activation to reflect the correct Operator (although such

functionality will probably have a dependency on development at the ID GW/SAA Server

hence will be limited to the Enhanced SAA and delivery in a later Mobile Connect Release).

An alternative is for each Operator to integrate the SAA Client functionality into their own

[self-care] app – whilst this addresses the App Store fragmentation issue, it introduces a

dependency on integration within one the Operator’s existing apps which is likely to cause

delay in bringing an SAA solution to market and could result in inconsistent user experiences

x-Operator. More details on the SDK approach are included in the following section.

In terms of subsystem deployment, Operators can either deploy their own instances of the

SAA Server (Option 2) or share a single deployment (Option 3). Taking the latter approach

has the advantage of removing the need for the user to re-associate their SAA Client when

churning to a new Operator.

6.2 SAA Client SDK

Operators can enhance their existing apps with SAA capabilities by integrating an SAA

vendor SDK.

The SAA vendor SDK may not provide UI flows, but it will manage security and

communication with the vendor’s SAA Server. The SDK should also manage app integrity in

terms of secured storage of crypto keys (as described in section section 5.2.2) and device

security checks (as described in 5.2.1).

UI Considerations for Operator App to support SAA

1. The UI flows of the SAA (as described in section 3.1) will need to be incorporated into

the Operator’s existing app.

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 87 of 97

2. In case of remote invocation, the Operator app will be activated when the user clicks on

the notification prompt. This behaviour is identical to a standalone SAA Client. The

Operator app will need to register an authentication intent (depending on OS) for a

specific push message and act accordingly. The app will have to handle consistent state

while providing the desired experience; for example: restoring the state (previous

screen) after the user completes the authentication action.

3. In case of local invocation, the Operator app will need to provide a custom URL for the

calling SP app to invoke. Again the URL will be tied to a specific action (authentication

action) of the Operator app. Under this scenario, the Operator app will have to handle

consistent state while providing the desired experience; for example: restoring the state

(previous screen) after the user completes the authentication action and returning

control back to the SP app by invoking the custom URL of the SP app. Please see

5.4.3.2 for further implementation guidelines for Android and iOS OS.

4. The Operator app’s SAA Client SDK will have to communicate with the SAA Server for

SAA functionality. It is recommended that the SAA Server is deployed inside the same

internal network as the Operator’s server used by the Operator app to optimise QoS and

reduce any latency.

6.3 Cost-benefit analysis for Base and Enhanced SAA solutions

Feature Cost Benefit

Base SAA

Common help
contents

Participating Operators in a given region
will have to agree on common help
information to be displayed in the ‘Help’
menu of SAA Client

It becomes easier for users to follow
common help information (FAQ,
Privacy, Help Contents etc.,). Also,
common issues can be much easily
identified in the FAQ page

App instance Participating Operators within a
market/region have to agree to deploy a
single SAA Client app

By deploying a common SAA Client
for a given market reduces
fragmentation, provides better user
experience when user churns and
still allows for Operator
personalisation

App discovery/
download

Operator can upgrade their existing
device provisioning process and pre-
embed SAA Client on the device

Allows easier distribution and quick
adoption of SAA Client

Support Mobile
Connect registration
process

Operator will have to modify their website
to allow user’s Mobile Connect
registration process

Allows user to register for a Mobile
Connect account with confidence
from a trusted and well-known
Operator’s portal

Support Mobile
Connect lifecycle
events

The Operator Systems (e.g. Provisioning
Systems, CRM/CVM systems, HLR etc.)
involved in any Lifecycle events need to
make this information available to the
Mobile Connect System (ID GW)

Allows the ID GW to check for
lifecycle events and ensure the
mobile account is in good standing
before issuing an
authentication/authorisation/consent
request to the SAA Server

Enhanced SAA

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 88 of 97

User Interface
Features

Operators exposing an API to retrieve
MCC + MNC values including participating
MVNO’s specific values for a MSISDN

Allows personalisation of MVNO
brands/sub-brands as well

App instance Operator can optionally leverage SAA
Client SDK to integrate functionality into
one of their own apps (e.g., self-care)

Allows easier distribution and quick
adoption of SAA Client by wider
Operator’s user base

Security
enhancements

Operator exposing network API to allow
retrieval of device/SIM identifiers

Allows SAA Client device token to be
bound to Operator’s network
validated device/SIM identifiers,
thereby enhancing checks against
device tampering and app cloning
risks

Support MSISDN
based SAA Client
activation process

Operators exposing MSISDN discovery
API

Allows seamless registration of
Mobile Connect account from SAA
Client, thereby reducing friction

Support User churn
lifecycle event

Operators will have to support Mobile
Connect Lifecycle Account Migration API

Allows users to seamlessly continue
using Mobile Connect account and
SAA when churning to a different
participating Operator

Table 14: Cost-benefit analysis for Base and Enhanced SAA solutions

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 89 of 97

Annex A Further information

A.1 Security threats and prevention techniques

Please see the [3]60 for further reading and reference. The table below describes various

security threats and possible prevention techniques:

Security Risk Threat Agents Security Weakness Prevention Techniques

Weak server

side controls

(SAA Server)

Any entity that acts as

a source of

untrustworthy input to

SAA Server API

service. Examples of

such entities include:

a user, malware, or a

vulnerable app on the

mobile device

The exposed service or API call is

implemented using insecure

coding techniques that produce an

OWASP Top Ten vulnerability

within the server. Through the

mobile interface, an adversary is

able to feed malicious inputs or

unexpected sequences of events

to the vulnerable endpoint

Secure coding and configuration

practices must be used on SAA Server

Insecure data

storage

Agents that may

exploit this

vulnerability include

the following: an

adversary that has

attained a lost/stolen

mobile device;

malware or other

repackaged app

acting on the

adversary's behalf

that executes on the

mobile device

Insecure data storage

vulnerabilities occur when

development teams assume that

users or malware will not have

access to a mobile device's

filesystem and subsequent

sensitive information in data-stores

on the device. Filesystems are

easily accessible. Organizations

should expect a malicious user or

malware to inspect sensitive data

stores. Rooting or jailbreaking a

mobile device circumvents any

encryption protections. When data

is not protected properly,

specialized tools are all that is

needed to view application data

• Detection of rooted/jail broken

device and disallow any further

access during app start-up

• Secured storage of crypto keys and

secrets on mobile devices (as

defined in section A.4.2)

• Follow iOS and Android best

practices for storing sensitive

information on mobile devices

Insufficient

transport layer

protection

Data is commonly

exchanged in a client-

server fashion. When

the solution transmits

its data, it must

traverse the mobile

device's carrier

network and the

internet. Threat

agents might exploit

vulnerabilities to

intercept sensitive

data while it's

traveling across the

wire. The following

threat agents exist:

• An adversary that

shares your local

Mobile applications frequently do

not protect network traffic. They

may use SSL/TLS during

authentication but not elsewhere.

This inconsistency leads to the risk

of exposing data and session IDs

to interception.

The use of transport security does

not mean the app has

implemented it correctly.

To detect basic flaws, observe the

phone's network traffic. More

subtle flaws require inspecting the

design of the application and the

applications configuration

• Assume that the network layer is

not secure and is susceptible to

eavesdropping

• Apply SSL/TLS to transport

channels that the mobile app will

use to transmit sensitive

information, session tokens, or

other sensitive data to SAA Server

• Avoid mixed SSL sessions as they

may expose the user’s session ID

• Use strong, industry standard

cipher suites with appropriate key

lengths

• Use certificates signed by a trusted

CA provider

60 https://www.owasp.org/index.php/OWASP_Mobile_Security_Project#tab=Top_10_Mobile_Risks

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 90 of 97

network

(compromised or

monitored Wi-Fi);

• Carrier or network

devices (routers,

cell towers,

proxy's, etc); or

• Malware on your

mobile device

• Never allow self-signed certificates,

and consider certificate pinning for

security conscious applications

• Always require SSL chain

verification

• Only establish a secure connection

after verifying the identity of the

endpoint server using trusted

certificates in the key chain

• Alert users through the UI if SAA

Client detects an invalid certificate

• Apply a separate layer of encryption

to any sensitive data before it is

given to the SSL channel. In the

event that future vulnerabilities are

discovered in the SSL

implementation, the encrypted data

will provide a secondary defence

against confidentiality violation

• Follow iOS and Android best

practices for establishing securing

the transport

Unintended

data leakage

Agents that may

exploit this

vulnerability include

the following: mobile

malware, modified

versions of legitimate

apps, or an adversary

that has physical

access to the victim's

mobile device

Unintended data leakage occurs

when a developer inadvertently

places sensitive information or

data in a location on the mobile

device that is easily accessible by

other apps on the device.

Typically, these side-effects

originate from the underlying

mobile device's operating system

It is important to threat model operating

systems, platforms, and frameworks, to

see how they handle the following types

of features:

• URL Caching (Both request and

response)

• Keyboard Press Caching

• Copy/Paste buffer Caching

• Application backgrounding

• Logging

• HTML5 data storage

• Browser cookie objects

• Analytics data sent to 3rd parties

Broken

cryptography

Agents that may

exploit this

vulnerability include

the following: anyone

with physical access

to data that has been

encrypted improperly,

or mobile malware

acting on an

adversary's behalf

In order to exploit this weakness,

an adversary must successfully

return encrypted code or sensitive

data to its original unencrypted

form due to weak encryption

algorithms or flaws within the

encryption process

• Code obfuscation (white-box

cryptography) and black-boxing to

make the app as tamperproof as

possible

• Do not include the keys in the same

attacker-readable directory as the

encrypted content

• Avoid the use of hardcoded keys

within the binary

• Avoid use of custom encryption

protocols

• Always use modern algorithms that

are accepted as strong by the

security community, and whenever

possible leverage the state of the

art encryption APIs within the

mobile platform

• Avoid use of insecure and/or

deprecated algorithms

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 91 of 97

Client side

injection

Consider anyone who

can send untrusted

data to the mobile

app, including external

users, internal users,

the application itself or

other malicious apps

on the mobile device

Client-side injection results in the

execution of malicious code on the

mobile device via the mobile app

Follow iOS and Android best practices

(secure coding techniques) to prevent

client side injection

Security

decisions via

untrusted inputs

(applicable to

SAA Client local

invocation

method)

Threat agents include

entities that can pass

untrusted inputs to the

sensitive method

calls. Examples of

such entities include,

but are not limited to,

users, malware and

vulnerable apps

An attacker can intercept the calls

(IPC or web service calls) and

temper with such sensitive

parameters. Weak implementation

of such functionalities leads to

improper behaviour of an app

In general try and adhere to the

following IPC design patterns:

• SAA Client should restrict access to

a white-list of trusted SP

applications

• All input received from IPC entry

points must undergo stringent input

validation in order to prevent input

driven attacks

• Do not pass any sensitive

information through IPC

mechanisms, as it may be

susceptible to being read by third

party applications under certain

scenarios

Improper

session

handling

Any mobile app with

access to HTTP/S

traffic, cookie data

Improper session handling occurs

when the session token is

unintentionally shared with the

adversary during a subsequent

transaction between the SAA

Client and the SAA Server

• Always invalidate sessions on SAA

Client and SAA Server

• Allow adequate session timeout

protection

• Always reset session cookies

during authentication state changes

• To handle sessions properly,

ensure that SAA Client code

creates, maintains, and destroys

session tokens properly over the

life-cycle of a user's mobile app

session

Lack of binary

protections

Typically, an

adversary will analyse

and reverse engineer

a mobile app's code,

then modify it to

perform some hidden

functionality

 A lack of binary protections results

in a mobile app that can be

analysed, reverse-engineered, and

modified by an adversary in rapid

fashion

The application must follow secure

coding techniques for the following

security components within SAA Client:

• Jailbreak Detection Controls;

• Checksum Controls;

• Certificate Pinning Controls;

• Debugger Detection Controls

The app must adequately mitigate two

different technical risks that the above

controls are exposed to:

• The organization building the SAA

Client must adequately prevent an

adversary from analysing and

reverse engineering the app using

static or dynamic analysis

techniques

• The SAA Client must be able to

detect at runtime that code has

been added or changed from what it

knows about its integrity at compile

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 92 of 97

time. The app must be able to react

appropriately at runtime to a code

integrity violation

Identity Fraud Typically, an

adversary will use

victim’s mobile

number during SAA

setup/enrolment

process

Lack of subscriber (MSISDN)

verification checks will lead to

adversary performing

authentication requests on behalf

of the victim resulting in:

• Privacy related and

confidential data theft;

• Unauthorized access and

fraud;

• Brand and trust damage;

• Revenue loss and piracy;

SAA Server must use these techniques

to mitigate the risk:

• Use Operator API (if available) to

validate MSISDN and device/SIM

identifiers during SAA enrolment

and authentication process

• MSISDN verification using SMS

based OTP/URL technique, if

Operator API is not available

• SAA Server must expose

notification APIs to support Mobile

Connect lifecycle events

Session hijack Agents that may

exploit this

vulnerability include

the following: mobile

malware, malicious

app (modified

versions of legitimate

SAA Client)

Session hijack can be in the form

of:

• Invocation of malicious app on

receiving push notification

message for initiating

authentication process

• Malicious app responding to

SMS based MSISDN

verification during SAA

setup/enrolment process

• Use of prevention techniques

identified under ‘Lack of binary

protections’ risk

App cloning Typically, an

adversary will clone

SAA Client from

victim’s device to own

device

Cloned SAA Client can be

malicious and can cause severe

brand and trust damage

• Use a digital fingerprint of the

device and SIM card, or other such

mechanism, in order to detect

device / SIM card changes

• Use techniques identified under

‘Network binding’ section

Table 15: Security threats and prevention techniques

GSM Association Non-confidential

Official Document IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 93 of 97

A.2 Comparison of SAA vs SIM applet from a Security and Fraud perspective

Extract from an analysis report of Mobile Connect authenticators (based on CPAS 4); Study conducted by: Validsoft, TeleSign, Dialog, GSMA +

other members of SFRA

Authenticator

Transport

Mechanism LoA Security Pros Security Cons Mitigations

Authenticator Rating

(High/Medium/Low)

SIM Applet

(3DES)

Mobile

network
 2/3

* Well understood dynamic

PIN/password approach

* Uses SIM as a secure element

and a secure execution

environment and builds on

proven security model for telcos

Potentially standard

imposter/DOS attack

(imposter uses own

phone) if the initial ID

and entered MSISDN

are not coupled within

the system.

Augment MSISDN as user ID by another

element requested from the user, which is

captured during user registration (e.g. a "spam

code", DOB etc.) or based on the context (e.g.

make/model of the phone, location etc.)

depending on the implementation.

Medium/High (assuming

second element such as

“spam code” or similar

used - recommend

excluding public data

such as DOB) and High

using PIN (LoA3) Account Takeover ID proofing as part of robust business

processes

SIM Applet

(AES or

OATH OCRA)

Data /

Mobile

network

 2/3

As above plus:

* The Authenticator interactions

and messages happen over an

encrypted channel - both at the

transport level and also at the

application/messaging level-

making MitM/MitB unlikely

during authentication.

As above As above
High (spam-code or

equivalent and PIN used)

Smartphone

app (PKI)

Data /

Mobile

network

 2/3

* Builds on well understood PKI

security model familiar to

potential customers

Provisioning and

enrolment

Robust process for PKI and using TEE

(Trusted Execution Environment)

Medium (if PIN is used -

LoA3)
Reliance of security on

the device

Usage of TEE

Device takeover Require PIN / Robust business processes

Table 16: Comparison of SAA vs SIM applet from a security and fraud perspective

GSM Association Non-confidential

IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 94 of 97

A.3 FIDO-enabled SAA

In order for the SAA solution to support FIDO v1.0 UAF, the following options are applicable:

1. SAA Server is also a FIDO server and is FIDO compliant; SAA Client integrates a

FIDO UAF client

2. SAA Server is also a FIDO server and is FIDO compliant; SAA Client interworks with

FIDO UAF client resident on the target smartphone61

3. SAA Server is not FIDO compliant, but can still support FIDO client by integrating

UAF library and integrating with a separate FIDO server

Note that the FIDO approach has the benefit of introducing a pluggable authenticator

framework capable of supporting a variety of authenticators within the smartphone although

the downside is the added complexity it introduces given that FIDO UAF is typically invoked

client-side hence differs from the network-initiated norm of Mobile Connect.

Further consideration of how FIDO UAF may be integrated into the Mobile Connect

infrastructure and the associated impacts on the role and function of an SAA Client and

subsystem will be handled separately.

A.4 Future options

This annex identifies a number of areas where the SAA solution could be enhanced in the

future but still require further study and consideration.

A.4.1 SP lifecycle notifications

As has been discussed throughout the document, there are a number of lifecycle events that
will impact on the delivery of the Mobile Connect service and might therefore need to be
communicated back to the SP within the OIDC response.

A list of potential lifecycle events are as follows (non-exhaustive):

• User changes MSISDN (same Operator)

o Mandatory: Applicable to Service Providers who use an MSISDN in their OIDC

Authorization requests; if the SP is not informed there is a risk that they will ask

the wrong user to be authenticated

• Mobile account is suspended (e.g., unpaid; lost/stolen)

o Optional: SP requests will be rejected with error code hence notification to the SP

may not be that important (TBC)

• Mobile account is reactivated

o Optional: an SP receiving an OIDC ‘reject’ response due to account suspension

may black flag Mobile Connect for that user hence will need to be informed when

the Mobile Connect account is live again; alternatively, the SP may just continue

to issue Mobile Connect authentication requests ‘in case’ the Mobile Connect

account has been reactivated

• Mobile account is deleted (e.g., unpaid; inactive)

61 e.g., the Samsung Galaxy 6 onwards provide native FIDO client support embedded in the platform

GSM Association Non-confidential

IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 95 of 97

o Optional: SP requests will be rejected with error code indicating that Mobile

Connect authentication is no longer available for that user

• User churns

o Optional: SP will request authentication to the old Operator endpoints but the old

mobile account (and Mobile Connect account) should be deactivated once the

user churns; the error code returned will direct the SP to call Discovery to

determine the endpoints for the new Operator

Note that many of these lifecycle events are generic to Mobile Connect and are discussed in
the Mobile Connect Product Manager’s Lifecycle Handbook [10].

A.4.2 Utilising the SIM as a secure key-store

Keys and the binding tokens (SAA Client ID, SAA Client Device ID) should be placed in

secure storage (TEE or Secure Element) and cryptographic processes should be performed

in secure environments.

Within this, depending on the SIM stock that has been deployed in-market, there may be an

opportunity to leverage the SIM for supporting secure cryptographic processes. Doing so,

exploits the best of both approaches:

• Smartphone app for delivering a rich user experience

• A SIM applet for secure storage of secrets and crypto execution

The OpenMobile API specified by the SIM Alliance provides a standardised interface

between app and SIM but is yet to reach mass market.

The options open to SAA implementations are for further study.

GSM Association Non-confidential

IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 96 of 97

Annex B Document Management

Version Date Brief Description of Change Approval Editor / Company

0.1 15/8/15 First draft created
David

Pollington
Gautam Hazari/GSMA

0.2 31/8/15
Additional edits to incorporate use of UAF and FIDO as

an implementation option

David

Pollington

David Pollington

GSMA

0.3 01/09/15 Extended the Interface options
David

Pollington
Gautam Hazari/GSMA

0.4 22/10/15 Updated
David

Pollington
Jim & David

0.5 17/11/15 Updated the setup and authentication mechanism
David

Pollington
Gautam Hazari

0.6 20/11/15 Added requirements from SAA vendor session 30/10
David

Pollington
Jim Small

0.63 10/12/15
Editorial changes and expansion of functional

requirements

David

Pollington
David Pollington

0.65 17/12/15 Further edit / expansion of functional requirements
David

Pollington

Robert Blumenthal /

Jim Small

0.66 29/03/16

New section on Security Guidelines, Technical

Implementation Guidelines and rearranging the

sections. Standardised terminology used in the

document

David

Pollington
Kamal Shah

0.67 8/4/16
Updated throughout plus a series of comments added

identifying areas for further work

David

Pollington

David Pollington

GSMA

0.68 10/4/16 Updated some sections based on comments in v0.67
David

Pollington

Kamal Shah, David

Pollington

0.69

New user and technical flows

Updated some sections based on comments in v0.68

New section on Device secure key-store for iOS and

Android

New section on App deep-linking implementation

details

New section on Public key cryptography

Changes to MSISDN discovery logic

Finalisation of User Prompts

Changes to User Churn section

David

Pollington

Kamal Shah, David

Pollington

0.70 18/4/16

New section on SAA Client UI Features

Completed API summary for Base/Enhanced SAA

solutions

Modified User Flow sections

New section on Device security checks

Modified sections after technical workshop with

MeonTrust

David

Pollington

Kamal Shah

0.71 25/4/16
Modified sections as per previous comments from

David

David

Pollington
Kamal Shah

0.73 27/04/16
Modifications to technical flows, sequence diagrams,

rearranged some sections, updated API summary table

David

Pollington

Kamal Shah, David

Pollington

0.76 2/5/16 Additional edits for finalising first release
David

Pollington
David Pollington

0.77 23/5/16
Modifications as per comments from various

stakeholders

David

Pollington
Kamal Shah

1.0 27/5/16 Final edits
David

Pollington
David Pollington

GSM Association Non-confidential

IDY.12 - Tech Mobile Connect smartphone app authenticator specification

V1.2.1 Page 97 of 97

1.1 8/8/16

Modifications as per feedback from Operators and

vendors

Inclusion of secure messaging support

Reference to SAA API Spec

David

Pollington
Kamal Shah

1.2 12/9/16 Modifications as per feedback from TEF (Cristina)
David

Pollington
Kamal Shah

1.2 24/9/16

Replaced Mobile Connect Reference Architecture

component view diagram to remove reference to

Apigee

David

Pollington Kamal Shah

1.2.1 11/07/2019 Updated references as part of document refresh
David

Pollington
Nick Spencer

1.2.1 06/12/2022 Go through TG approval TG Yolanda Sanz/GSMA

B.1 Other Information

Type Description

Document Owner IDG

Editor / Company Yolanda Sanz / GSMA

It is our intention to provide a quality product for your use. If you find any errors or omissions,

please contact us with your comments. You MAY notify us at prd@gsma.com

Your comments or suggestions & questions are always welcome.

mailto:prd@gsma.com

	1.0 Introduction
	1.1 References
	1.2 Conventions
	1.3 Definitions

	2.0 SAA subsystem overview
	2.1 Mobile Connect architecture recap
	2.2 SAA subsystem components
	2.3 SAA Identifiers

	3.0 Base SAA functional requirements
	3.1 SAA Client User Interface features
	3.2 Authentication modes/LoA support
	3.3 Offline mode
	3.4 Discovery of Operator logo
	3.5 User prompts
	3.6 SAA Client invocation
	3.7 Mobile Connect lifecycle events
	3.7.1 SAA activation (SAA + Mobile Connect)
	3.7.1.1 MSISDN based linking
	3.7.1.2 System generated association code based linking

	3.7.2 Account recovery
	3.7.3 SAA Client deletion/reinstallation
	3.7.4 Device change notification
	3.7.5 Mobile account status change (suspended/reactivation/deletion)
	3.7.6 User churn
	3.7.7 Lifecycle event summary

	3.8 Interface requirements
	3.9 Base SAA functional requirements summary

	4.0 Enhanced SAA functional requirements
	4.1 SAA Client User Interface features
	4.2 Discovery of SP logo
	4.3 User prompts
	4.4 Mobile Connect lifecycle events
	4.4.1 User churn
	4.4.1.1 User keeps their existing device
	4.4.1.2 User upgrades to a new device

	4.5 SAA Client local invocation (App deep-linking using custom URI scheme)
	4.6 Extensible support for new authentication methods
	4.7 SP binding management
	4.8 Secured messaging feature
	4.8.1 Message template
	4.8.2 Secured messaging API support

	4.9 Security enhancements
	4.9.1 Network binding
	4.9.2 Confidence Score

	4.10 Enhanced SAA functional requirements summary

	5.0 Technical solution and implementation guidelines
	5.1 SAA Interface options
	5.1.1 Option 1: INT1 and INT2 vendor proprietary
	5.1.2 Option 2: INT1 standardised within Mobile Connect (Preferred approach)
	5.1.3 Option 3: INT2 standardised via FIDO UAF
	5.1.4 Option 4: INT1 standardised within Mobile Connect, INT2 standardised via FIDO UAF
	5.1.5 Pros and cons of the different SAA interface options

	5.2 Security requirements & guidelines
	5.2.1 Device security checks
	5.2.2 Device secure key-store
	5.2.2.1 Android
	5.2.2.2 iOS

	5.2.3 Public key cryptography for signing a challenge
	5.2.4 Summary of SAA security requirements

	5.3 SAA Client activation and association
	5.3.1 MSISDN discovery in SAA Client
	5.3.2 Technical flow: SAA Client activation and Mobile Connect registration instigated via SAA Client (MSISDN based pairing)
	5.3.3 Technical flow: SAA Client activation instigated via an Operator self-care portal (Association code based pairing)
	5.3.4 Technical flow: SAA Client activation instigated via an Operator self-care portal (MSISDN based pairing)
	5.3.5 Technical flow: Recovery of existing account using recovery information

	5.4 Authentication flows
	5.4.1 Remote invocation (network push; separate consumption device)
	5.4.1.1 User flow (iOS and Android)
	5.4.1.2 Technical flow

	5.4.2 Remote invocation (network push; mobile browser)
	5.4.2.1 User flow

	5.4.3 Local invocation from SP app (deep-linking using custom URI scheme)
	5.4.3.1 Logical architecture – Component View
	5.4.3.2 App deep-linking implementation guidelines
	5.4.3.3 User flow
	5.4.3.4 Technical flow – User is prompted for MSISDN in SP App
	5.4.3.5 Technical flow – User is not prompted to enter MSISDN in SP App

	5.5 Mobile Connect lifecycle events
	5.5.1 Lifecycle events integration with Mobile Connect
	5.5.2 Handling of device change notification
	5.5.3 Handling of Mobile account status notification
	5.5.3.1 Mobile account suspended
	5.5.3.2 Mobile account reactivation
	5.5.3.3 Mobile account deletion
	5.5.3.4 Technical flow

	5.6 SP binding management
	5.6.1 Technical flow

	5.7 Secured messaging flows
	5.7.1 Message template management
	5.7.2 Send message
	5.7.3 Read message
	5.7.4 Delete message

	5.8 API summary (Base and Enhanced SAAs)

	6.0 Deployment considerations
	6.1 SAA subsystem deployment options
	6.2 SAA Client SDK
	6.3 Cost-benefit analysis for Base and Enhanced SAA solutions

	Annex A Further information
	A.1 Security threats and prevention techniques
	A.2 Comparison of SAA vs SIM applet from a Security and Fraud perspective
	A.3 FIDO-enabled SAA
	A.4 Future options
	A.4.1 SP lifecycle notifications
	A.4.2 Utilising the SIM as a secure key-store

	Annex B Document Management
	B.1 Other Information

