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1. IntroductIon

Today, the shift to becoming a data driven business is driving massive transformation across 

all industries. The telecommunication industry, by its nature being a massive producer of 

data which will only increase with the coming explosion of the IoT (Internet of Things) and 

5G networks, is at the critical stage of transformation. Mobile operators are evolving from 

being connectivity providers to being intelligence service providers through the use of  

advanced analytics and big data technologies on IoT and other sources of data.

For decades, mobile operators have been capturing 
large volumes of data from both the Radio Access 
Network (RAN) and Core Network (CN) such as 
network statistics, customer calling patterns,  
data usage, subscriber profile and geographic  
information. Many operators have been applying 
data analytics tools and platforms to mobile data in 
areas such as network self - optimisation, network 
anomaly detection1, user behaviour and mobility 
understanding2, as well as transportation planning 
and management3.

However, when entering into the big data era, the 
inherent characteristics of big data - volume,  
velocity, variety (heterogeneity), and veracity  
(uncertainty) - pose big challenges to traditional 
database and software technologies. Especially,  
with the scaling of IoT networks and the upcoming 
IoT data ocean inflowing from different verticals, new 
architectures and platforms which can help extract 
value from huge volumes of disparate data from 
multiple sources and enable real time analysis and 
decision making will be the crucial part in the whole 
transformation journey of the mobile industry.

According to recent forecasts from GSMAi4, by 2025, 
total IoT connections will reach 25 billion and

the total potential revenue generated from the IoT 
will reach $1.1 trillion globally, with more than two-
thirds coming from platforms, applications, and  
intelligent services and only three per cent coming 
from connectivity services. With such significant  
market opportunities, mobile operators are  
already transitioning from being only connectivity  
providers to being end to end intelligence service 
providers. The advances in Artificial Intelligence 
(AI),  Machine Learning, Cloud Computing and Big 
Data Technology, and collaboration with the wider 
ecosystem, make it possible for operators to take the 
advantage of their data assets and enable new  
business models to gain a big share from the  
potential IoT market5.

This document, shares experiences and common 
data analytical techniques from the experience
of developing analytics services in the air quality 
field based on joint projects firstly with Royal
Borough of Greenwich in the UK and secondly with 
Far EasTone Telecommunications (FET) in Taiwan. 
The successful use case from FET is a good proof 
that mobile operators have the capability to not only 
deliver intelligence as a service but also add value by 
enriching the analysis

1 Ilyas Aplper Karatepe and Engin Zeydan, “Anomaly Detection in Cellular Network Data Using Big Data Analytics”.
2 Eyuphan Bulut and Boleslaw K.Szymanski, “Proc. IEEE ICC Workshops, Dynamic Social Networks, DYSON, London, June 8, 2015, pp. 1548-1553”.  
3 http://www.citilogik.com/uploads/1/3/7/9/13799627/utilising_mobile_network_data_for_transport_modelling_dft_dec2107.pdf
4 https://www.gsmaintelligence.com/research/2018/05/iot-the-1-trillion-revenue-opportunity/670/
5 https://www.gsma.com/iot/wp-content/uploads/2016/06/IoT.01-v1.0.pdf
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with their unique mobile network data. Monetising the 
data from the IoT and delivering an integrated service 
are feasible and actionable for operators. The diagram 
below shows the approach taken from beginning to 
end in developing the air quality prediction models, 

and this document expands on each of these topics in 
turn. Logically the development process can be  
structured into three main phases, which allows for 
teams with quite different skills to work together to 
produce the results:

Data
preparation

data requirement
identification

data source
identification

customised data
acquisition

data ingestion
and preprocessing

data
transformation,
normalisation,
consolidation  
and derivation

Selection of  
the preferred
machine learning
algorithm

optimisation  
of the machine
learning results

Extension of the
model

Machine
learning

presentation
of results

time plot Statistical plot time patterns
relationship
between
variables

Spatial plot

2. data prEparatIon

Data is the cornerstone for intelligence services - every big data analysis and machine  

learning project starts from data acquisition and collection. It is estimated that in the big 

data era,  the rate of data generation is roughly 2.5 quintillion bytes a day6. To find the right 

data source for a specific application area is becoming more and more challenging because 

of the growth in data volumes and channels. This section describes the process of  

identifying useful data sources for air quality as well as the generalised process used by data 

analysts and scientists to prepare the data ready for analysis / machine learning.

It is useful as a first step to identify the data that may 
be relevant to the problem area. This step is to help 
direct the later search for suitable data sources. For 
some problems, such as air quality, there is a good 

body of published academic research which  
considers air quality outcomes along with the  
environmental and other factors that influence  
the outcomes.

6 http://www.iflscience.com/technology/how-much-data-does-the-world-generate-every-minute/

2.1 Data requirement identification
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3 https://www.london.gov.uk/sites/default/files/old_oak_and_park_royal_air_quality_report_draft_final_issued_new_cover.pdf
8 https://www.diva-portal.org/smash/get/diva2:984443/FULLTEXT01.pdf
9 https://www.nice.org.uk/guidance/ng70/resources/air-pollution-outdoor-air-quality-and-health-pdf-1837627509445

With big data and machine learning techniques it 
isn’t necessary to narrow the range of input  
parameters to a few high correlation input factors  
asthe algorithms can find those, and more subtle 
connections. However, this desk research step 
helps in identifying the types of inputs useful to the 
domain being studied so that the appropriate data 
sources can be identified.

For example, air quality inputs: 

 \ There is an inter-relationship between certain   
 pollutants such as Nitrogen Dioxide and Ozone  
 gases, so measurements for these could form   
 useful inputs as well as outputs;

 \ Weather factors including the intensity of   
 sunlight, air temperature, wind speed, wind   
 direction, air pressure and precipitation have an  
 impact on the various pollutants;

 \ There is an element of hysteresis in the  
 environment where pollutants build-up and 
 disseminate over time;

 \ Human factors also influence the pollutant levels  
 through factors such as the days forming the   
 core of the working week, and the hours of the  
 day when people travel to work, remain at work  
 and return home after work.

Academic research can be identified using search 
engines7,8,9, and references between academic 
papers are useful to identify the factors that might 
be useful to include in the eventual models. It is  
also useful to identify and engage with academics  
working in the related discipline who can help  
identify useful input factors and outcomes.

The figure below shows a general overview of the 
correlations between different variables of wind 
speed, wind direction, temperature, NO2, O3, PM10, 
and PM2.5 to identify which factors could become 
parameters for building a model. This ‘pairwise’ 
correlation is useful to identify any apparent  
correlations between inputs and outputs. Note this 
analysis is for a specific site in Greenwich.

Figure 2.1 Pair plot of different variables
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For example, Figure 2.1 shows that concentrations of 
NO2 generally gradually decrease with the increase 
of wind speed. Concentrations of NO2 show a slight 
curve shape with respect to temperature. This means 
the concentration first decreases with the increase  
of temperature above zero degrees Celsius,  
subsequently increases slightly and stabilises once 
the temperature reaches around ten degrees Celsius.

Not much information can be determined relating to 
the correlation of wind direction (compass degrees 
relative to north) to NO2 in Figure 2.1, however the 
polar plot in Figure 2.2 can provide further insights.

Figure 2.2 Polar plot of wind speed and wind direction

For NO2, the highest levels are recorded when there 
is little or no wind. As the wind speeds increase the 
NO2 levels remain relatively high when the wind 
direction is from the east (E) to east-north-east 
(ENE). NO2 levels are generally lower when the wind 
speeds increase and particularly when coming  
from directions from west (W) to south (S).  

As mentioned earlier, this is an analysis for a specific 
monitoring site in a specific country and relates to 
both local conditions, such as the placement of the 
site with respect to pollution sources, as well as
climate conditions. It is important to perform 
such correlations and analysis for areas of interest 
because the correlations for one site in a specific 
country are likely to be different to another site, 
especially if that is in a different country. 
Therefore, from this analysis we can see that weather 

factors such as temperature, wind speed and wind 
direction affect the air quality. This provides guid-
ance that data sets providing these inputs should be 
useful to the analytics to be performed downstream.

2.2 Data source identification

Once there is a reasonable understanding of the data 
types needed to address the problem, the next step 
is to identify usable data sources for that data.

2.2.1 iot sources

There is an ever-increasing number of IoT devices 
that can be used to provide a wide variety of data 
useful to solve various problems. For example, as 
part of the air quality study, the GSMA used data 
from IoT air quality devices to gain a better  
understanding of the relationship between air  
quality in detailed locations across Greenwich.

It is expected that in the future there will be  
substantial amounts of IoT data made available by 
companies and even individuals which can provide 
data useful to topics such as air quality prediction. 
For example, parking bay sensors, traffic junction 
and flow measuring devices, smart car or even CCTV 
image analysis could be used to provide additional
context information that could improve air quality 
models in the future.

2.2.2 public database/ data sets

A good starting point is often a search of public data 
sources. Many countries are maintaining a commit-
ment to ‘open’ their data for use by for-profit and 
non-profit applications. The typical way to start is by 
the use of a search engine, and often assisted by
country or region-specific directories of open data. 
Public data can be further grouped into  
three categories as:

 \ Government and official organisations  
Each year, many government departments and  
official statistics agencies publish sets of  
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authoritative data covering domains such as national 
economy, social development, industry, energy,  
agriculture, entertainment, education, health,  
environment, climate. Some examples are: 

 Ô World Bank: https://data.worldbank.org
 Ô World Health Organization:  

  http://www.who.int/
 Ô United Nations: http://data.un.org/
 Ô US Government’s open data:  

  https://www.data.gov/
 Ô Weatherbase:  

  http://www.weatherbase.com/
 Ô UK Data Portal: https://data.gov.uk/
 Ô European Data Portal:  

  https://www.europeandataportal.eu/en

In the case of the air quality studies for London and 
Taiwan, data sets relating to air quality and weather 
were obtained from official sources published by 
national environmental agencies or departments. 
The table below summarises the data sets and
sources:

# SourceS Data SetS

1 http://www.londonair.org.uk
air Quality data for London based on the uK air Quality  
monitoring network

2 https://mesonet.agron.iastate.edu/
uK Weather data based on airport MEtar reports from Iowa 
State university* (a substitute data set)

3 https://taqm.epa.gov.tw/taqm/en/ taiwan air Quality and Weather data

Table 2.1 Summary of data sets and sources

 \ Academic and open sources 

There are also a number of academic or open source 
data sets which are worth identifying for particular 
problems. Some of these data sets are more focused 
on specific AI and machine learning problems, but it 
is also possible that data sets are available that are 
useful to specific problems such as air quality. Some 
popular sources include: 

 Ô UCI: http://archive.ics.uci.edu/ml/datasets. 
  html

 Ô Berkely Stat Lab: https://www.stat.berkeley. 
  edu/users/statlabs/labs.html

 Ô Figshare: https://figshare.com
 Ô Github: https://github.com/openimages/  

  dataset 
 
 
 
 
 

 \ Data contests  
Data contests are popular with many statisticians 
and data scientists at different levels to compete  
and try to produce the best prediction model for 
solving a certain problem. The data sets are normally 
contributed both by companies and individuals, and 
those data sets are usually cleansed (see later) and of 
a high quality. The top ranked data contests include, 
but are not limited to, the following:

 Ô Kaggle: the leading platform for data  
  prediction competition,  
  https://www.kaggle.com/

 Ô DrivenData: Data Science competitions to   
  save the world, https://www.drivendata.org/

 Ô AlibabaCloud: https://tianchi.aliyun.com/  
  competition/gameList.htm

 Ô DataFoundation: http://www.datafounda  
  tion.org/
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One general downside of ‘open data’ is that as a 
consumer of that data there is little
support or influence over that data. E.g.

 \ The consumer is responsible for understanding  
 what information is in that data set; what values  
 each parameter represents; what represents   
 valid versus invalid values; what the accuracy is;

 \ Data update frequency, intervals, and the delay  
 in receiving updated data needs to be checked  
 for suitability;

 \ The format or method by which the data is   
 obtained can be difficult e.g. often there is not a  
 good API to retrieve the data and it’s  
 therefore necessary to build ‘custom adapters’  
 (as described below) to read the data set. 
 
The experience of the GSMA in acquiring data for the 
air quality study is useful to reference at this point 
as it shows that there can be considerable effort 
required to source data when there is not a good, 
reliable source for such data. For the air quality study 
in the UK the obvious source of weather data was 
the UK Government’s Met Office. However, there was 
not an available API service for this data, and though 
a web-scraping process was developed this was 
extremely slow, required quite considerable  
bespoke software development, and ultimately 
stopped working when the source web feed was  
discontinued. The GSMA had then to establish an 
alternate data feed, ultimately using METAR data 
archived by Iowa State University, but having to 
rework some of the downstream processes due to
differences in the available data. These difficulties 
were in contrast to the ease of sourcing of air quality 
data from the London Air website due to the  
availability of an easy to use and performant API. 
This emphasises the benefit of using supported  
APIs to obtain data rather than unofficial web  
scraping methods. 

Code snippets of the process for reading air quality 
data from London Air and weather data
from Iowa State University can be found here:

https://gist.github.com/GSMADeveloper/
c0a8cc94603fa5444efa4eaf48a16200

https://gist.github.com/GSMADeveloper/2312e3d6b
97d94afbb873d41f07479a5

2.2.3 paid databases/data sets

Traditionally paid databases are offered mostly by 
intelligence agencies, consultancy companies and 
industry associations such as Bloomberg, Gartner, 
Experian and KMPG as well as new data market 
places such as Dawex and the IoT / Distributed 
Ledger enabled marketplace developed by the IOTA 
foundation.  

In recent years, due to the increased demand for 
data, there has been growth in the number of  
data brokers and data transaction marketplaces,  
attracting participation even from some  
universities and research institutes. Note that there  
is also a possibility for mobile operators to  
participate as a data broker by cleansing,  
harmonising, aggregating and anonymising external 
as well as their own data assets and make available 
over APIs. 

A significant advantage of paid databases is that  
the supplier can be expected to produce a higher 
quality, curated, and more frequently updated data 
set compared with open source data. In addition,  
the supplier will typically provide support both  
for obtaining the right data using a suitable  
distribution mechanism (API/ data feed), help with  
understanding the data provided, and assistance in 
the case that there are issues with the data. 

2.2.4 internal database/data set

In the Taiwan Air Quality study there was use of 
an internal mobile network data set processed to 
provide aggregate user mobility data as a  
representation of traffic movements and therefore 
an indication of vehicle generated pollution. Mobile 
operators have various internal databases and 
systems such as ERP, CRM and various transactional 
systems which might also be relevant to some  
problems. The mobile network comprises many 
different types of network element such as MME, 
PGW, SGW, GGSN, SGSN, etc. each of which will 
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produce vast amounts of data on a daily basis  
including attributes such as Cell ID, IMSI code, and 
timestamped spatial information comprised of  

longitude and latitude. In general, data from  
the mobile systems can be grouped into four  
categories:

Data cateGorIeS DeScrIptIon

user profile data
Basic user context info, such as IMSI, MSISSdn, subscriber profile, subscription 
plan, billing info etc. 

user Behaviour data
data extracted and mined mostly from users’ communication session records,  
including communication Behaviour, Mobility Behaviour, Social connection  
Behaviour, Web Behavior etc.  

Mobile network data
network performance data aggregated over a certain period (e.g., 5mins) mainly 
reflected as Key performance Indicator (KpI) and Measurement report (Mr) to 
monitor and evaluate the network.

terminal data
Information read from connected things such as smartphones and Iot devices 
which are comprised of device information, service characteristics, network  
parameters etc. 

Table 2.2 Categories of data from mobile system

In the Taiwan Air Quality study, the mobile  
operator successfully extracted aggregated  
population density and population change  
information from mobile network data. Details can 
be referenced in section three of this report.

2.3 customised data acquisition

Sometimes, for special projects or green field  
projects, it may be necessary to obtain data that 
does not exist anywhere else – by running user 
surveys or by tailored designed experiments.   
Usually the design needs to balance between 
comprehensiveness and the associated time,  
effort and cost. 

In the case of the air quality study in Greenwich it 
was desirable to demonstrate the benefit of  

finer-granularity temporal and spatial data to  
evaluate the potential value of mobile IoT in the 
application of air quality monitoring. The GSMA 
commissioned an eight-day data collection exercise 
using an electrically powered mobile ‘laboratory’ 
vehicle called the ‘Smogmobile’.  In addition to the 
instruments from the Smogmobile itself, two IoT  
air quality sensors were also installed into the  
Smogmobile, one on the inside and one on the 
outside, to allow comparisons to be drawn between 
the internal and external air quality. 
 
The Smogmobile data collected for each pollutant 
shown in the figure on page ten.. By applying such a 
purpose designed experiment, it could help us gain a 
highly detailed understanding of the pollution across 
the Greenwich area.
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air Quality relative pollution Level

Some sample data rows from the Smogmobile capture can be found below:

PM2.5 Combination of Pollutants

NO2 O3

Figure 2.3 Air quality relative quality level

tIMeStaMp
(DD/MM/yyyy
hh:MM)

LatItuDe_
avG

LonGItuDe_
avG

SpeeD_avG
m/s

o3_avG
(ug/m3)

no2_avG
(ug/m3 )

pM2.5_avG
(ug/m3)

Battv
(volts)

19/07/2017 07:38 5130.1 0.06 8.05 39.71 35.87 13.42 13.39

19/07/2017 07:39 5129.92 0.2 20.62 35.27 58.79 13.52 13.37

19/07/2017 07:40 5129.66 0.53 14.71 33.02 52.3 13.75 13.38

19/07/2017 07:41 5129.59 0.59 1.65 37.97 54.64 16.54 13.36

19/07/2017 07:42 5129.53 0.56 5.78 34.65 51.68 13.25 13.36

19/07/2017 07:43 5129.36 0.5 14.83 29.81 58.18 16.68 13.36

Table 2.3 Sample data rows from Smogmobile
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As can be seen from the table above, the  
Smogmobile gives per minute measurements of 
main pollutants of NO2, O3 and PM2.5 together with 
the detailed geo location information (GPS Latitude/ 
Longitude) as well as the remaining battery level 
of the vehicle. Battery level was not used in any air 

quality analysis as there was no expectation of any 
correlation with air quality outcomes. 

For the visual representation of the pollution band 
the guidance from the World Health Organization 
(WHO) 10 was used, as listed below:

poLLutant yearLy avG  
(ug/m3)

24 hour avG 
(ug/m3)

8 hour avG 
(ug/m3)

1 hour  avG( 
ug/m3)

10 MIn avG 
(ug/m3)

no2 40 200

o3 50 100

pM2.5 10 25

10 http://www.who.int/airpollution/en/

Table 2.4 Guidance from WHO

Each pollutant was categorised into three levels 
according to one hour or eight hour or 24 hour or 
annual mean depending on the type of the pollutant.  
For example, level of NO2 below 40 ug/m3 was 
categorized as green and level above 200 ug/m3 was 
categorised as red while the level between 40 ug/m3 
and 200 ug/m3 was categorised as yellow, while  
level of PM2.5 below 10 ug/m3 was categorised as  
green and level above 25 was classified as red and 
level between was marked as yellow. This broad  
categorisation is useful for output purposes though 
when predicting pollution levels this is not very 
useful for input parameters – so in general it’s better 
to use a ‘real’ value for parameters such as NO2 
rather than a categorised value.

2.4 Data ingestion and  
pre-processing

2.4.1 Data ingestion

As mentioned above, the GSMA found that the ideal 
source of data is via an official API from the data 

provider. Typically, there will be a need to develop a 
bespoke software application to read the data from 
the source and form a local dataset.

When obtaining data from IoT devices it is often  
the case that the manufacturer provides suitable  
mechanisms (typically in the form of a  
well-structured API) to access to the data.  
Simpler IoT devices will often send their data to the  
manufacturer’s cloud storage system which often 
provides dedicated APIs to allow the data to be read 
along with consent management solutions allowing 
the device owner to agree to the data being shared. 
More complex IoT devices may allow data to be 
stored directly to a database or using a cloud service 
API so that the data can be pushed directly to  
analysis platforms.

In the case that an API is not available it may be 
necessary to develop a custom web crawler, a piece 
of code or automated script, to crawl selected web 
pages on the internet and store the data content 
locally. Meaningful data can be extracted by parsing 
the page content and mined by using certain  
statistical algorithms. However, since the design of 
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the page labels of each website is different, it usually 
requires data engineers to have special knowledge 
and skills to write tailored scripts. In Python, the 
most popular framework for web scraping is called 
‘BeautifulSoup’ which can be used to parse page 
content. However, as noted earlier the web  
scraping technique is not usually as efficient as an 
API, generally requires much more development 
time and effort to get working, and requires much 
higher maintenance as any change to the underlying 
web site operation or layout can cause the scraping 
code to stop working.

As part of the project, the GSMA obtained air quality 
data from two different types of IoT devices. The first 
of these being a portable air quality IoT sensor unit 
‘SMAQ’ from Urban Clouds11 and the second being a 
fixed air quality IoT solution from Libelium.12

 

urban clouds SMaQ

The Urban Clouds ‘Spatial Mapping Air Quality’  
unit is a battery powered sensor unit measuring  
various pollutants. This has a GSM/GPRS modem 
sending data to a cloud storage platform provided 

by Urban Clouds. This cloud storage platform offers 
API services allowing the recorded pollutant data to 
be read by customer systems for further analysis or 
ingestion into machine learning based applications.

 

Figure 2.4: Urban Clouds SMAQ Unit

Urban Clouds provide a customer dashboard which 
allows data to be visualised or downloaded in a CSV 
format.

11 https://urbanclouds.city/outdoor-air-quality/
12 https://www.the-iot-marketplace.com/libelium-air-quality-index-iot-vertical-kit

Figure 2.4.1 Spatial mapping of air pollution using 152.9m x 152.9m tiles 
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An example Python script to download data using 
the APIs provided by the Urban Clouds platform is 
available here: https://gist.github.com/GSMADevel-
oper/a0eeb9c3fe7dd1fed7566c13429d8991

The SMAQ data downloaded then looks like the 
following

CO DeviceID DeviceName IAQ Latitude Longitude NO2 O3 Observed PM1 PM10 Resp

0 5931530171c03a5219a7b929 SMAQ_0004 51.451504 0.0338 2 0 19/06/2018 08:49 1 2 2

0 5931530171c03a5219a7b929 SMAQ_0004 51.451504 0.0339 3.8 0 19/06/2018 08:48 0 3 1

0 5931530171c03a5219a7b929 SMAQ_0004 51.451504 0.0339 0 0 19/06/2018 08:48 1 3 2

0 5931530171c03a5219a7b929 SMAQ_0004 51.451504 0.0339 0 0 19/06/2018 08:47 1 3 3

0 5931530171c03a5219a7b929 SMAQ_0004 51.451504 0.0339 0 0 19/06/2018 08:47 0 3 1

0 5931530171c03a5219a7b929 SMAQ_0004 51.451504 0.0339 0 0 19/06/2018 08:47 1 1 1

0 5931530171c03a5219a7b929 SMAQ_0004 51.451504 0.0339 12.6 0 19/06/2018 08:46 1 2 2

0 5931530171c03a5219a7b929 SMAQ_0004 51.451604 0.0339 6.9 0 19/06/2018 08:46 1 1 1

0 5931530171c03a5219a7b929 SMAQ_0004 51.451604 0.0339 17.1 0 19/06/2018 08:45 1 2 2

0 5931530171c03a5219a7b929 SMAQ_0004 51.451604 0.0339 74.4 0 19/06/2018 08:45 1 3 3

0 5931530171c03a5219a7b929 SMAQ_0004 51.451604 0.0339 34.4 0 19/06/2018 08:45 1 3 3

0 5931530171c03a5219a7b929 SMAQ_0004 51.451604 0.0339 57.8 0 19/06/2018 08:44 2 5 4

0 5931530171c03a5219a7b929 SMAQ_0004 51.451504 0.0339 159.5 0 19/06/2018 08:44 2 6 4

0 5931530171c03a5219a7b929 SMAQ_0004 51.451504 0.0339 0 0 19/06/2018 08:43 2 3 3

0 5931530171c03a5219a7b929 SMAQ_0004 51.451504 0.0339 0 0 19/06/2018 08:43 1 3 3

0 5931530171c03a5219a7b929 SMAQ_0004 51.451504 0.0339 0 0 19/06/2018 08:43 1 2 2

0 5931530171c03a5219a7b929 SMAQ_0004 51.451504 0.0339 7.3 0 19/06/2018 08:42 1 2 2

0 5931530171c03a5219a7b929 SMAQ_0004 51.451504 0.0339 47.7 0 19/06/2018 08:42 2 3 3

88.5 5931530171c03a5219a7b929 SMAQ_0004 51.451504 0.0339 0 0 19/06/2018 08:41 2 4 4

309.7 5931530171c03a5219a7b929 SMAQ_0004 51.451096 0.0329 0 6.7 19/06/2018 08:41 2 8 4

675.1 5931530171c03a5219a7b929 SMAQ_0004 51.450504 0.0309 0 2 19/06/2018 08:41 2 5 5

1186 5931530171c03a5219a7b929 SMAQ_0004 51.451404 0.0333 2.8 6.3 19/06/2018 08:40 7 11 11

282.3 5931530171c03a5219a7b929 SMAQ_0004 51.452704 0.035899 9.1 6 19/06/2018 08:40 6 10 9

73.2 5931530171c03a5219a7b929 SMAQ_0004 51.453 0.0354 22.5 9.6 19/06/2018 08:40 2 3 3
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Libelium air Quality Iot Kit

The Libelium unit is a sophisticated IoT solution 
comprising a gateway unit which relays information 
over a 3G/4G connection to a cloud service or  

database, the gateway unit then connects locally to 
one or more remote monitoring sensor units.

Figure 2.5: Libelium – Air Quality IoT Kit

In our deployment at the GSMA offices in London, 
we used the database connectivity option of the  
Libelium gateway unit to store data directly to a 
cloud hosted MySQL database. Data rows were 
stored as in the following example, note that several 
database records (rows) form a single timed group. 
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id id_wasp id_s frame
_type

frame sensor value timestamp sync raw parser 
_type

MeshliumI

340422 Sep-01 426 6 77 TC 25.79 31/07/2018 13:04 0 noraw 1 meshliumfb40

340421 Sep-01 426 6 77 HUM 32.84375 31/07/2018 13:04 0 noraw 1 meshliumfb40

340420 Sep-01 426 6 77 PRES 100668.72 31/07/2018 13:04 0 noraw 1 meshliumfb40

340419 Sep-01 426 6 77 CO 0.20719433 31/07/2018 13:04 0 noraw 1 meshliumfb40

340418 Sep-01 426 6 77 NO2 0.05636322 31/07/2018 13:04 0 noraw 1 meshliumfb40

340417 Sep-01 426 6 77 O3 0.00705144 31/07/2018 13:04 0 noraw 1 meshliumfb40

340416 Sep-01 426 6 77 SO2 0 31/07/2018 13:04 0 noraw 1 meshliumfb40

340415 Sep-01 426 6 77 PM1 1.36 31/07/2018 13:04 0 noraw 1 meshliumfb40

340414 Sep-01 426 6 77 PM2_5 2.03 31/07/2018 13:04 0 noraw 1 meshliumfb40

340413 Sep-01 426 6 77 PM10 2.12 31/07/2018 13:04 0 noraw 1 meshliumfb40

340412 Sep-01 426 6 76 TC 24.49 31/07/2018 12:49 0 noraw 1 meshliumfb40

340411 Sep-01 426 6 76 HUM 37.464844 31/07/2018 12:49 0 noraw 1 meshliumfb40

340410 Sep-01 426 6 76 PRES 100665.11 31/07/2018 12:49 0 noraw 1 meshliumfb40

340409 Sep-01 426 6 76 CO 0.21957237 31/07/2018 12:49 0 noraw 1 meshliumfb40

340408 Sep-01 426 6 76 NO2 0.1346853 31/07/2018 12:49 0 noraw 1 meshliumfb40

340407 Sep-01 426 6 76 O3 0 31/07/2018 12:49 0 noraw 1 meshliumfb40

340406 Sep-01 426 6 76 SO2 0 31/07/2018 12:49 0 noraw 1 meshliumfb40

340405 Sep-01 426 6 76 PM1 1.1999999 31/07/2018 12:49 0 noraw 1 meshliumfb40

340404 Sep-01 426 6 76 PM2_5 1.8 31/07/2018 12:49 0 noraw 1 meshliumfb40

340403 Sep-01 426 6 76 PM10 2.06 31/07/2018 12:49 0 noraw 1 meshliumfb40

340402 Sep-01 426 6 75 TC 24.79 31/07/2018 12:34 0 noraw 1 meshliumfb40

340401 Sep-01 426 6 75 HUM 34.171875 31/07/2018 12:34 0 noraw 1 meshliumfb40

340400 Sep-01 426 6 75 PRES 100659.11 31/07/2018 12:34 0 noraw 1 meshliumfb40

340399 Sep-01 426 6 75 CO 0.18457577 31/07/2018 12:34 0 noraw 1 meshliumfb40

340398 Sep-01 426 6 75 NO2 0.2356804 31/07/2018 12:34 0 noraw 1 meshliumfb40

340397 Sep-01 426 6 75 O3 0 31/07/2018 12:34 0 noraw 1 meshliumfb40

340396 Sep-01 426 6 75 SO2 0 31/07/2018 12:34 0 noraw 1 meshliumfb40

340395 Sep-01 426 6 75 PM1 0.87 31/07/2018 12:34 0 noraw 1 meshliumfb40

340394 Sep-01 426 6 75 PM2_5 1.4699999 31/07/2018 12:34 0 noraw 1 meshliumfb40

340393 Sep-01 426 6 75 PM10 1.65 31/07/2018 12:34 0 noraw 1 meshliumfb40
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2.4.2 Data pre-processing

Often when a data source is read it will be realised 
that there are various ‘quality’ issues with that data 
such as 

 \ Certain individual attributes might not be   
 reported at an expected interval;

 \ Certain whole records might not be reported at  
 an expected interval;

 \ Certain sub-feeds produce different  
 combinations of attributes e.g. in London not   
 all air quality monitoring stations measure the  
 same types of pollutants;

 \ The data feed might represent ‘missing’  
 attributes in different ways e.g. ‘0’ might not   
 mean a zero reading but instead a missed  
 reading, or there might be an odd value such  
 as ‘-99’ that means the reading should not be   
 used. 

Incomplete or incorrect data records may produce 
significant bias in generating training models and 
some algorithms are particularly sensitive to the 
presence of outliers in data which may result in 
poor prediction results.  As a rule of thumb, in any 
data science project at least 80 per cent of the time 
and effort will be spent in wrestling the data into a 
correct and usable format. Less than 20 per cent of 
the time is typically spent applying the fully prepared 
data to a process such as machine learning.  
The pre-processing step is often highly bespoke  
to the data source and typically involves  
bespoke software development for automated 
processing and/or dedicated manual pre-processing 
steps before subsequent steps (data cleaning etc.) 
can be applied.

2.4.2.1 Data cleaning

This step involves removing invalid records, filling 
in (when practical) missing values, resolving data 
inconsistencies, identifying or removing outliers, 
smoothing noisy data, and correcting erroneous 
data. 

 \ Incomplete data 

Data is not always available due to it being missing 
at the source of collection or deletion on purpose 
caused by inconsistency with other recorded data. 

Missing data is usually left blank in the record, or 
sometimes noted as specific characters such as ‘NA’
or ‘-99’/’999’ in the raw data set. Normally, the 
simplest method to deal with missing data is just 
deleting the whole of the associated record or 
records. This is a practical method when there are 
only a very small portion of observations with  
missing values and the missing values are distributed 
completely at random. Sometimes, however, it might 
be useful to fill in the missing data rather than totally 
deleting the records to avoid introducing bias.  
Often missing values can be replaced with the mean 
value or the most frequent value of the attribute for 
the dataset assuming each attribute follows some
distribution. One sophisticated method,  
interpolation, tries to run a regression model based 
on available data and fill the missing values by some 
predicted results. In general, methods for handling 
incomplete data depend on the types of the missing 
pattern and usually need data scientist to  
understand the reason behind and analysing the 
distribution of the missing values.

It is recommended that data scientists closely 
inspect every data source to check for the quality, 
completeness and range of all input parameters so 
that decisions can be made regarding the strategies 
for dealing with quality issues in the data set.

In the case of the air quality study in Taiwan 
conducted by the GSMA and FET, it was seen that 
there was a significant nine per cent improvement in 
the prediction accuracy by applying the combination 
of both removing missing values from the air  
quality data and the population data plus linearly  
interpolating the weather data.

FET applied linear interpolation techniques to  
weather station data for Taiwan, for temperature, 
pressure and wind speed. Linear interpolation was 
not, however, used for wind direction since the  
variability of wind direction was considered likely  
to introduce ambiguity into the learning data.  
As an example of linear interpolation where there 
was a missing value for temperature at the hour 
t+1 but data was available for hour t and hour t+2, 
a simple averaging method was used where the 
temperature readings for hour t and hour t+2 hours 
were summed and then the sum divided by 2 to 
provide an estimated reading for hour t+1.
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 \ Noisy data 

Noisy data generally refers to data containing errors 
or outliers. A simple quick visual check of the  
dataset may help detect some apparent errors e.g. 
a negative -10 figure for wind speed.  Most of the 
time, data checking involving the range checking and 
validity or legitimacy checking which can be realized 
by using a basic visual checking first but ideally an 
automated method to identify anomalies would be 
used with input from domain knowledge. 

For example, in the open source weather data set 
used in the air quality study, a temperature below 
-50 degree and wind speed below 0 are detected 
as errors and treated like missing values. In addition, 
in the open source air quality data set, all pollutant 
values below 0 are identified as errors.  We have  
also seen some NO2 values as extreme as 2036  
ug/m3 from some mobile IoT devices which would 
be accepted into a machine learning model with the 
risk of skewing the accuracy of its model. This shows 
the importance of domain knowledge in verifying the 
range of input parameters. 

2.5 Data transformation,  
normalisation, consolidation and 
derivation

Data transformation, normalisation, consolidation 
and derivation is an important process for preparing 
the raw data into a specific format to meet the input 
requirements of the machine learning algorithms.  
This process correlates the input data sets and the 
final data analysis you want to achieve, typically 
handling issues such as where the raw data is usually 
not in the correct format for feeding into machine 
learning algorithms. Therefore, tailored scripts or 
code are usually needed to develop to support the 
bespoke requirements of the transformation process 
for a particular problem and data sets. 

In the use case of the air quality study, several trans-
formation, consolidation and derivation techniques 

were made on the raw air quality and weather data 
to prepare for the prediction algorithms. Here we will 
share some useful techniques when dealing with an 
air quality or weather data set.

2.5.1 Data transformation

The various transformations applied to the air quality 
and weather data included:

 \ Unit conversion
 
In order to compare the level of the results, it is 
advised to unify the unit of each measured variable. 
For example, in the air quality dataset, the unified 
unit chosen is micrograms per cubic metre (ug/m3) 
for each pollutant so that comparison with the  
European Commission or World Health  
Organization air quality standards is much more 
convenient.  Not all data sources provide inputs 
using this unit, instead providing measures as Parts 
Per Billion (PPB) which was found to be less useful in 
machine learning models than micrograms per cubic 
metre. A python code snippet for conversion of NO2 
from PPB to ug/m3 is shared below:

https://gist.github.com/GSMADeveloper/84d0adb7b
5d88d0e32dc512299573272

Certain machine learning algorithms work best on 
normalised data (see below) and it is important to 
implement unit conversion before normalisation.

 \ Coding transformation

For some machine learning algorithms, it is required 
to transform non-numeric variables to numeric 
values. For example, in the weather dataset, if you 
have a qualitative attribute similar to ‘weathertype’, it 
can be coded into numeric values. The code snippet 
can be found here:

https://gist.github.com/GSMADeveloper/84d0adb7b
5d88d0e32dc512299573272
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 \ Other ad hoc transformations

In the input data set for weather data, the raw data 
from the open database source for wind is reported 
as a wind speed in meters/second and wind  
direction either in cardinal or degree representation.  
We theorised that this would not be useful to the 
machine learning models. Also, if the wind  
direction is reported in cardinal direction, for 
example N, NNE, NE, etc., we theorised it would be 
advisable to convert it from cardinal to degrees first 
and then combine with the wind speed parameter to 
generate two wind vectors resolved to the northern 
and eastern direction respectively.  The code for this 
conversion is shared below. By using this function, 
wind speed and wind direction will be transformed 
into two new ‘real’ numeric variables which can be 
fed into the prediction algorithms easily for future 
modelling. The code snippet can be found here:

https://gist.github.com/GSMADeveloper/05cfd6ac7
d2ab06ae6f8b1c40ea9f204

2.5.2 Data normalisation

When the original data is comprised of attributes 
with different units or scales, normalisation may be 
helpful to rescale the attributes to fall within a  
small, specified range. Many machine learning 
algorithms as mentioned below can benefit from 
the normalising process. The common normalisation 
methods are divided into three categories:  

 \ Min-max normalisation:  
 
 Attributes are often scaled into the range   
 between [0, 1]. This technique is often used in   
 neural networks and algorithms based on   
 Euclidean distance such as KNN.

 \ Z-score normalisation: 
 
 When an attribute is assumed to follow a  
 Gaussian distribution, it is also possible to  
 transform the attribute with mean of 0 and   

 standard deviation (sd) of 1 by using the  
 formula:

 
 
 Z-score normalisation technique is often been  
 found useful in ridge regression, logistic  
 regression and linear discriminant analysis.

 \ Normalisation by decimal scaling:

 This technique tries to move the decimal point  
 of values of certain attribute. 

 Where j is obtained by finding the largest   
 number in the range of the attribute and then   
 counting the number of digits in the largest   
 number. 

In the use case of air quality study, normalisation 
methods were trialed both on air quality data  
and weather data e.g. ‘Barometric Pressure’ in 
millibars was divided by 1000.0. However, no 
improvements on prediction results by implementing 
normalisation technique were seen for the decision 
tree-based algorithms which were ultimately  
selected for the prediction models due to their  
leading performance.

2.5.3 Data consolidation and derivation

The air quality data retrieved from the London Air 
website is provided as structured JSON data as an 
array of records where each record has multiple 
key value pairs. Data in this structure cannot be 
fed into the machine learning algorithms directly. 
Therefore, the next step is to convert the cleansed 
and optionally normalised data into a 2D matrix with 
row dimension as the number of observations and 
column dimension as the number of features.

Since the data for the air quality and weather 
normally come from different sources and weather 
is an important factor for air quality prediction, a 

new value =
old value - min

max - min

new value =
old value - mean

sd

new value =
old value

10 j
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necessary step is joining the two data sets into one. 
Both the air quality data and weather data pulled 
from the open source for Greenwich, London are on 
an hourly basis from year 2012 to 2017. In this case, 
the joining process is pretty straight forward. The air 
quality data set and the weather data set were joined 
together by the timestamp value. Geographically, as 
there was data available from four weather stations 
across the London area, for each air quality station, 
all of data from the four weather stations were joined 
with the air quality data along the date/time  
dimension.

When joining data sets which have different time 
dimensions or geographical levels, they need to 
be aggregated into a common time measurement 
period or into different geographical  
administrative levels for the purpose of query, 
reporting, data visualisation or further intelligent 
data analysis. Particularly, when cross combing data 
from mobile IoT devices which generally give  
‘real-time’ readings at a granularity of seconds or 
minutes, it is essential to firstly pre-process and 
aggregate the raw data before joining with the other 

context data sets. For example, in the experiment 
with the SMOG Mobile for the air quality study, the 
data obtained from the mobile for NO2, O3, PM10/
PM2.5 are as detailed as minute level. Whereas, the 
air quality data published by the UK government is 
usually reported on an hourly basis which is widely 
accepted by industry as a common reporting  
interval.  To associate the two datasets for  
comparison or for complementary data analysis 
purpose, aggregation is necessary.

The final step before feeding the joined data into the 
selected machine learning algorithm is derivation.  
In the case of air quality the initial analysis had  
determined the buildup of poor air quality over 
preceding days and therefore it was decided to feed 
near term historical data into the air quality model. 
Specifically it was decided to train the machine 
learning model to predict the air quality at the 
current hour (t) given the air quality measurement 
and weather factors at the previous 1 day (t-24) and 
2 days (t-48). A simple example of the data can be 
seen below:

Data
records num

no2D1
(t-24)

no2D2
(t-48)

current
temperature at t

temperatureD1
(t-24)

temperatureD2
(t-48)

no2 - result (for
prediction at t)

1 56.4 50.1 8.6 4 5.7 39.5

2 38.5 23.7 24.7 20.7 19.2 18.7

3 15.8 8.8 14.8 14 13.8 6.2

4 27.5 11.7 7.1 2.6 8.7 22.3

5 63.7 92.8 9.2 1.8 5.6 48.6

Table 2.5 Sample illustration of the input data format

So here is a simple demo of the result after deriva-
tion of the data matrix. To predict the NO2 result at 
time t and compare with the actual NO2 result on 
7th column, day-1 and day-2 inputs of NO2 as well 
as day-1 and day-2 temperature for the respective 
hour of day need to be shifted on the same row. The 
detailed input parameters of the final data matrix fed 

into the ML learning algorithms are generalized as 
below and a sample input data file is share on github 
for a detailed look:

https://gist.github.com/GSMADeveloper/fc8bdbeb7f
38a59bd460f81819db5f85#file-inputdata_gr9-txt
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 \ Current temperature at time (t), temperature at  
 previous 24 hours (t-24), temperature at  
 previous 48 hours (t-48), average temperature  
 over the past 48 hours

 \ Current barometric pressure at time (t),  
 barometric pressure at previous 24 hours (t-24),  
 barometric pressure at previous 48 hours (t-48),  
 average barometric pressure over the past  
 48 hours

 \ Current wind speed at time (t), wind speed at   
 previous 24 hours (t-24), wind speed at previous  
 48 hours (t-48)

 \ Current Eastern and Northern wind vectors   
 at time (t), Eastern and Northern wind vectors  
 at previous 24 hours (t-24), Eastern and  
 Northern wind vectors at previous 48 hours   
 (t-48). (methods to get the two vectors were   
 already discussed in Section 2.3) for each of the  
 nearby weather stations

 \ Current weather type at time (t)
 \ Pollutant level at previous 24 and 48 hours   

 respectively, (t-24), (t-48)
 \ The difference (delta) between the NO2 level at  

 previous 24 and 48 hours
 \ Day of week at time (t), coding into 0, 1, 2, 3,  

 4, 5, 6
 \ Hour of day at time (t), coding into 0, 1, 2, …, 23
 \ Is holiday or not, coding into 0 or 1
 \ Is Saturday or not, coding into 0 or 1
 \ Is Sunday or not, coding into 0 or 1
 \ Is weekday or not, coding into 0 or 1

(Note that date and time were not included in the 
input data because it was felt this could lead to 
‘overfitting’ i.e. the machine learning model  
learning that the NO2 measure at a specific date/
time would be a specific value rather than creating 
a more generalised model. Instead date/time were 
used to derive other parameters e.g. day of week, 
hour of day.)

The general process for development of machine 
learning is to take the input data (‘features’) and 
result targets (‘labels’) and divide into a training data 
set and a test data set. This allows the performance 
of the machine learning algorithm to be evaluated 
using data in the testing data set that has not been 
seen before. The aim of this is to evaluate if the 

machine learning algorithm has learned a  
‘generalised’ method, or has simply learned the 
results it needs to generate for a specific set of  
input data. In python, there is a function named 
“train_test_split” which can be called to  
automatically split the input data into training  
and testing data sets. A code snippet for this can be 
found here:

https://gist.github.com/GSMADeveloper/0aafb43791
c460ad6e2b18f4c1d32804
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3. MacHInE LEarnInG 

The complexity in traditional computer programming is in the code (programs that people 

write). In machine learning, algorithms (programs) are in principle simple and the complexity 

(structure) is in the data. Is there a way that we can automatically learn that structure? That 

is what is at the heart of machine learning. 

        ---- Andrew Ng

As stated by Andrew Ng, in machine learning,  
algorithms are in principle simple and the  
complexity exists in the data. So, this section  
focuses on the methods applied to the use case of  
air quality study in Greenwich, London and Taiwan  
area on applying and optimising machine learning  
technique to the air quality and weather data sets. 

For the initial Greenwich study, the GSMA had  
determined that machine learning could be applied 
to the task of predicting air quality for the near 
future based on historical air quality and weather 
data and a short-term weather forecast. The GSMA 
also hoped to include mobile network analytics into  
the machine learning models at a later date, as  
eventually was done with FarEasTone in Taiwan.

Machine learning finds connections between data 
that are often not known by the people training the 
models, and there are various processes that need to 
be applied as part of getting the best result.

Measurement of accuracy of algorithms

Having prepared the data ready for machine learning 
the next step is to select and optimise the machine 
learning algorithm best suited to the air quality  
problem. There are many algorithms to choose from, 
and for any new problem there is a need to evaluate 
the optimal choice of algorithm and the settings for 
that algorithm to produce the best result.

An important part of the process of maximising 
performance of machine learning is ‘objectively’ 
evaluating the performance of the algorithm and 

settings. R-squared is a frequently used statistical 
index to measure how well different machine  
learning algorithms perform. 

R-squared measures the proportion of variability in 
the output variable Y that can be explained using the 
model built from the input data X.  The best  
prediction result is when R-squared is equal to 1. 
When R-squared is equal to 0, it means the machine  
learning model makes a constant prediction with  
the expected value of the output variable Y  
(i.e. this is a poor result as the output is effectively  
independent of input values). Additionally,  
R-squared can be negative when the model 
performs worse than a random prediction.  

R-squared is defined as:

Where RSS is the residual sum of squares:

And TSS is the total sum of squares:

The goal therefore of choosing and tuning a  
machine learning algorithm is to get as close
as possible to an R2 value of 1.0.

R2 = 1 -
RSS

TSS

(y_true - y_ predict)2Ʃ

(ytrue - mean of _y_true)2Ʃ
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3.1 selection of the preferred 
machine learning algorithm

There are many machine learning algorithms  
available, the result of decades of academic research 
and development. There is, however, no guidance  
as to what machine learning algorithm suits a  
particular new application area and so the GSMA 
first, and then Far Eastone, subsequently sought to 
objectively compare algorithm performance in order 
to select the best for the air quality prediction.

An initial screening was run feeding the same  
data set through a range of machine learning 
algorithms to determine the R2 result. The results 
below compare different algorithms and show that 
so called ‘ensemble-based’ methods highlighted * 
below performed far better than other methods for 
this particular problem. Sample code snippets for 
calling different algorithms can be found here: 

https://gist.github.com/GSMADeveloper/168e90ccdf
1589836978144d60eabcf6

Note in the table 3.1 the highest performance  
algorithms are variations of ‘Decision Trees’.  
A decision tree is essentially a set of simple  
decisions which can be employed sequentially on 
input parameters – such as ‘is today a Sunday’ or ‘Is 
the air temperature over five degrees’.  Additional 
performance is obtained by the machine learning 
algorithm creating many such decision trees on 
subsets of input parameters and then combining the 
results. This is known as ‘ensemble learning’ and was 
found to exhibit good performance in the air quality 
model. The main idea of such ensemble learning is to 
average the output from complex models to reduce 
the variance so as to improve the overall prediction 
performance.

 \ Bagged Decision Tree

This is the simplest form of the ensemble learning 
method. To apply bagging technique to decision 
trees, we normally construct B regression trees by 
generating B bootstrapped training sets and then 
average the B results to reduce the high variance 
of each tree. For a detailed explanation refer to 
“Bagging”, Ryan Tibshirani17.

 \ Random forest

Random forest is based on the bagging of  
decision tree mentioned above, but when building 
each individual decision tree, it will randomly choose 
a subset of attributes at each split instead of using 
the whole attribute sets. So by doing this, in each 
split, weak predictors will have more chance to be 
considered rather than always queuing after those 
strong predictors. Plus, the correlation between the 
trees built in the ensemble is decreased which  
will further reduce the total variance. A detailed  
algorithm explanation could be found in the 
“Random Forest” algorithm18.
 

trialled Methods r-SQuareD 
reSuLt

Linear regression 0.343

neural net 0.4822

Support Vector regression (Linear) 0.3384

decision tree 0.3368

Bagged decision tree13 0.6546

random Forest14 0.7683

Extra tree15 0.8078 

Gradient Boosting16 0.8498

13 http://www.stat.cmu.edu/~ryantibs/datamining/lectures/24-bag.pdf
14 http://pages.cs.wisc.edu/~matthewb/pages/notes/pdf/ensembles/RandomForests.pdf
15 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.65.7485&rep=rep1&type=pdf
16 http://www.cse.chalmers.se/~richajo/dit865/files/gb_explainer.pdf
17 http://www.stat.cmu.edu/~ryantibs/datamining/lectures/24-bag.pdf
18 http://pages.cs.wisc.edu/~matthewb/pages/notes/pdf/ensembles/RandomForests.pdf

Table 3.1 Prediction results with different ML 
algorithms
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 \ Extra Tree

Extra tree is short for ‘Extremely Randomized Trees’, 
which is, as the name implies, a further randomness 
on top of Random Forest. The Extra-Trees algorithm 
builds an ensemble of regression trees by not only 
randomly selecting attributes for each split but also 
randomly selecting the cut point for each attribute 
instead of choosing the best threshold. The other 
main difference is it uses the whole learning sample 
rather than a bootstrap to grow the trees. The extra 
randomness introduced on top of Random Forest 
can help reduce more variance in building a  
complicated forecast model.

 \ Gradient boosting

As listed in the table 3.1, among all of the ensemble 
methods, gradient boosting gives the best  
prediction result in terms of 24 hour air quality 
forecast capability. The main difference between 
gradient booting and bagged methods is that unlike 
fitting a single large tree to the data, it learns slowly 
and at each iteration adds only a bit of the new tree 
into the prediction rule in order to improve the  
residuals.  To avoid overfitting, gradient boosting 
usually build small trees determined by depth of tree. 
So in this way, the model can be built incrementally 
and it has a chance to improve the areas where it 
does not perform well during the building process. 

3.2 optimisation of the machine 
learning results (greenwich)

As discussed above, the gradient boosting algorithm 
was selected as the best performing algorithm for  
air quality prediction. 

In Python the Gradient Boosting Regressor is part  
of the ‘scikit-learn’ library. Code snippets for  
invoking the gradient boosting algorithm can be 
found here:  

https://gist.github.com/GSMADeveloper/dbe8fd683
9b41bf15fce510a0a1ed832#file-gradientboost-py

The above function call shows the parameters used 
to optimise the performance of the machine  
learning algorithm. Whilst there is no programming 
as such required for execution of machine learning 
algorithms there are various factors that affect the 
performance and a key step in obtaining the best 
performance is choosing good values for the  
various parameters that can be tuned for the 
particular machine learning algorithm.

The process to choose the parameters is essentially 
iterative and involves choosing different parameter 
values, one parameter at a time, and checking if 
the R2 value improves or decreases. A methodical 
approach was used first by the GSMA and  
subsequently by Far EasTone, varying the parameter 
values tried and ending up for the GSMA with the 
above choices.

Explanations about some these parameters for the 
gradient boost algorithm:

 Ô n_estimators: number of iterations to  
  perform. The default value is 100, but since  
  the air quality data set is quite large across 5  
  years, a larger value such as 10000 was   
  found to yield a better prediction accuracy.

 Ô max_features: the maximum number of   
  features at each split (of the tree). When set  
  to ‘auto’, it equals to the number of features  
  we feed into the model.

 Ô max_depth: The maximum depth of each   
  individual tree built. As mentioned in  
  Section  3.3, a simple tree normally gives   
  better result. For the air quality case a   
  recommendation was made to choose a  
  value between 1 and 10 according to the  
  input data, and a depth of 4 was found to be  
  good for the London air quality data.    
  The parameter can be varied for other  
  situations (different cities with different  
  factors affecting air quality) to achieve the  
  best performance.

 Ô learning_rate: this parameter controls the  
  pace of the learning and is usually a small   
  number between 0.1 and 0.001. A very small  
  learning rate can require a very large  
  number of iterations which means a longer  
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  time to train so there is a balance to be  
  chosen between training speed and  
  accuracy. For the London air quality case   
  the value of 0.0875 was found to provide 
  good accuracy with a reasonably fast  
  learning rate.

 Ô Loss: The loss function describes how  
  far the model’s prediction result is from   
  the expected. ‘ls’, referring to least square,  
  was chosen for the air quality study though  
  other loss functions were tried.

 Ô Criterion: the function to measure the  
  quality of a split. The default “fried 
  man_mse”, which is the mean squared error  
  with improvement score by Friedman, was  
  used in the model and found to perform well  
  against other criterion functions.

 Ô Detailed explanation of other parameters  
  can be found in Gradient Boosting for  
  regression19.

3.2.1 results for 24 hour no2 prediction in 
greenwich, london

There are nine air quality stations in Greenwich area. 
By using Gradient Boosting, the 24 hour prediction 
accuracy for each station are listed below:

In general, all of the R-squared results of the nine 
stations are above 0.8 which means the average 
error rate represented by RMSE(Rooted Mean 
Square Error)/Y_mean(Mean of Y value) is around 25 
per cent. The results show that gradient boosting is a 
robust prediction method giving very good 24 hour 
NO2 forecasting capabilities in advance with  
accuracy rate of 75 per cent. It is also noted that a 
further experiment extended to 75 more air quality  
monitoring stations covering the whole Greater 
London area beyond the nine stations in Greenwich 
area shows a good average R2 result of 0.82, which is 
significant to show the robustness of the  
prediction method.

An example scatter plot of the predicted NO2 vs the 
actual NO2 value is shown below for the monitoring 
station GR9 and shows a good cluster of actual and 
predicted readings with good proportionality:

The visualisation for the prediction result at air  
quality station GR9 is plotted below: 

code of air Quality Station r-SQuareD reSuLt

Gr8 0.8299

Gr9 0.8558

Gr4 0.8479

Gn0 0.8311

Gn2 0.8282

Gn3 0.8411

Gn4 0.8369

Gr5 0.8360

Gr7 0.8431

19 http://scikitlearn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html#sklearn.ensemble.GradientBoostingRegressor

Table 3.2 Prediction results of NO2 level in 
Greenwich

Figure 3.1 Predicted NO2 result vs Actual NO2 level

Figure 3.2 Prediction result at GR9 site
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By comparing the actual NO2 level plotted in blue 
in figure 3.2 and the predicted NO2 level plotted in 
yellow, we can see that there is a high coincidence 
between the yellow and blue curves. It shows that 
the prediction result by using this method can  
generally replicate the actual daily NO2 level of 
changes and especially can give the best result 
during the periods when the changes of NO2 level 
are smooth. Some sudden NO2 changes are still  
difficult to capture especially those high spike cases. 
For example the blue spike circled in red is much 
higher than its predicted NO2 level.

3.2.2 results for 24 hour pM2.5 prediction 
in greenwich, london

There are nine air quality stations in Greenwich area. 
By using Gradient Boosting, the 24 hour prediction 
accuracy for each station are listed below:

Compared with NO2, the R-squared value for PM2.5 
is slightly lower on average than the previous results. 
This is in line with our expectations since we  
identified in the data analysis report [7], the nature 
of particulate matter formation is more complex than 
the gas NO2 and it has a wider variety of factors that 
influence this (not just combustion that is largely
responsible for NO2). As well as weather effects and 
road traffic and other combustion sources, PM2.5 
can also be affected by local industrial pollutions and 
longer-range  transport from mainland Europe.

3.3 extension of the model with  
far eastone (taiwan)

In a follow-up collaboration with Far EastTone  
in Taiwan, the joint work, led by Dr Hau Chen Mike 
Lee, Executive Vice President of FET and supported 
by the GSMA, showed that all of the methods 
discussed in this document can be readily replicated 
to geographies with different environmental  
challenges. In addition, Far EasTone were able  
to demonstrate that mobile operators have the  
opportunity to improve the air quality forecast by 
adding people and traffic predictors determined 
from their mobile network mobility dataset.  

This section will talk through the initial results 
obtained by replicating the GSMA Greenwich 
Machine Learning Model in three cities of Taiwan,  
the optimization process on top of the basic model, 
methods to extract population density from mobile 
network, as well as the added value from mobile 
data.

3.3.1 initial results in taiwan area

Twenty air quality stations in three cities in Taiwan 
area were selected for the study. The same  
gradient boosting model chosen for Greenwich, 
London was applied, like-for-like, on a Taiwan data 
set that broadly had the same available air quality 
and weather parameters as for London. The initial 
prediction results for the three cities are listed below:

code of air Quality Station r-SQuareD reSuLt

Gr9 0.7889

Gr4 0.8293

Gn0 0.7833

Gn2 0.8365

Gn3 0.8158

Table 3.3 Prediction results of PM2.5 in  
Greenwich

cities in taiwan number of air
Quality Stations

range of rsquared
result

taichung 5 0.55-0.67

Kaohsiung 9 0.58-0.69

taipei 6 0.67-0.8

Table 3.4 Prediction results for three cities in Taiwan
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We can see from the table above that R-squared 
results for Taichung and Kaohsiung were initially 
lower, at a level of 0.6, compared with Greenwich 
results which were generally over 0.8. In terms of 
demographic distribution, economic activity and 
geographic and geomorphic conditions, Taipei is 
considered most similar to London, both are low level 
areas without mountains and both are metropolitan 
area without major industrial pollution sources  
(such as power plant). The result in Table 3.4 for 
Taipei already reflects this analysis.

However, Far EasTone were keen to optimise the 
prediction performance for all three cities in Taiwan.

3.3.2 optimisation for taiwan

The location type of the nine air quality stations  
in Greenwich, London are shown in the figure  
below:

Across Greenwich, only one site, (GN2) is an  
industrial site while the others are either suburban 
site or roadside sites. Reviewing the results of table 
3.2, GN2 has the lowest R-squared value among 
the nine stations which reflects the similar results in 
Taiwan. Therefore, inspired from this analysis, four 
power plants were identified in the Taichung and 
Kaohsiung areas and hourly power plant emission 
data were added as inputs to the machine  
learning process using data obtained from the 

Taiwan government’s public website. It was added as 
a supplementary predictor to the air quality predic-
tion models for Taichung and Kaohsiung.

In addition, other optimisation methods described 
in the previous sections were also implemented, 
such as deleting ‘NA’ (not available) values in the air 
quality data set, using interpolation methods to fill 
empty cells in the weather data set, and also tuning 
of the gradient boosting algorithm parameters as 
described previously.  
 
By applying all of these methods, the overall  
prediction performance was successfully improved 
by around 15% for the R-squared measure to a level 
of 0.8 and above – so broadly matching the results 
for Greenwich and demonstrating the possibility  
to replicate the same methods in other cities of  
the world.

3.3.3 application of mobile network data

A key goal when starting this work was to identify 
the potential use of mobile data analytics to improve 
the prediction accuracy for air quality. Whilst the 
public data sets clearly provided a good amount of 
macro level input on air quality this starts from an 
‘effect’ and we wanted to see if mobile network data 
could model a ‘cause’ i.e. population density, the 
presence of people in their homes/ workplaces and/
or the travel modes of people to workplaces and 
their later return home. Mobile operators clearly  
have a unique mobile network utilisation dataset  
to mine, and some operators are applying their  
analytics teams to various government and  
commercial challenges. We wanted to see if it was 
possible for operators to provide a specific  
intelligence service such as the air quality  
forecasting service using mobile network data. 

From the previous air quality data analysis shared  
in20, we determined that the primary NO2 emissions  
in big cities are from a combination of road  
transportation and other sources of combustion  
(e.g. commonly used gas fired heating in London). 
Our aim was to have another predictor  

Sitetype Industrial Roadside Suburban

Figure 3.3 Geolocation of air quality stations in 
Greenwich 

20 GSMA, IoT Big Data, Greenwich Air Quality Proof of Concept Data Analysis v1.0
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approximating the road traffic activity which could 
be added into the prediction model. Mobile network 
data was expected to be the right candidate to  
realise this. 
 

Far EastTone successfully extracted population 
density and population change information from 
mobile network data aiming to imitate the presence 
and movement of the people and road traffic.

 Figure 3.4 Demo of the grid of squares

The basic process assessed, within a one-kilometre 
radius of each air quality station, an aggregated 
count of distinct mobile users (essentially, IMSI 
count) occupying each 250*250 meters square 
within the circular area. This was used to calculate 
the total active, distinct, users for each grid during 
each hour of the day. It is important to mention that 
the information extracted from the mobile network 

is aggregated and anonymised information about 
users in general rather than identifying individual 
subscriber data, therefore the whole process is 
totally anonymous and maintains the privacy of 
individuals in line with regulations protecting use of 
personal data. An example of how FET aggregated 
population estimate near an air quality monitor site is 
illustrated as follows:

population on each air Quality station per hour preparation

Sum each grid as one feature

each grid as a feature

Imsi count from cell sites

2016/11/09-2017/10/31
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The process estimated users in each 250mx250m 
grid square from network registration data.  
Using the Shalu air quality monitoring site, there is an 
association of corresponding grid ids forming a list. 
Then instead of using the active user count in each 
(250mx250m) grid square as an individual feature, 
the active user count for the list of all grid squares 
within 1km radius of the Shalu air quality station is 
summed and forms a single feature. In this example, 

the total sum of registered users in 51 grid squares 
was used as a feature for the machine learning  
algorithm.

Example population density data derived from the 
FET mobile network can be seen in the table below. 
Mobile network user counts are aggregated over 
hourly periods rather than identifying individuals.

site_eng
_name time_interval Grid

1
Grid

2
Grid

3
Grid

4
Grid

5
Grid

6

S* 09/11/2016 07:00 37 117 122 188 388 27

S* 09/11/2016 08:00 102 289 335 405 818 43

S* 09/11/2016 100 305 346 440 874 62

S* 09/11/2016 10:00 102 297 406 472 932 60

Table 3.5 Sample data from FET mobile network
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Visual exploration methods were a useful tool in analysing air quality and weather data and 

presenting the final prediction results. There is a detailed exploratory data analysis report 

shared in The Greenwich Air Quality Proof of Concept Data Analysis21 with various visual 

plots generated from the open source air quality and weather data with Tableau, R or  

Python. This section is a summary of the useful types of graphs used in this air quality  

proof of concept project.

4 GrapHS and VISuaLISatIonS 
oF anaLytIcS rESuLtS

21 GSMA, IoT Big Data, Greenwich Air Quality Proof of Concept Data Analysis v1.0
 

4.2 time plot

Figure 4.1 time plot of NO2 value

Both air quality and weather data are time-series 
data. Therefore, conventional plots such as line plots 

are usually used for a general preview of the air  
quality value along a time line.
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4.2 statistical plot

Figure 4.2 Detailed statistical comparison of site type

Bar plot marked with a numerical number gives a 
clear contrast when making a statistical comparison 
among different categories of data. It can be read 
easily from this figure that the average  

concentrations of different pollutants of NO2, O3, 
PM10, and PM2.5 across the roadside sites are ranked 
highest while those at suburban site are ranked the 
lowest with those at the industrial site in the middle.

4.3 plots of time patterns

Figure 4.3 NO2 and PM10 weekly-hourly Pattern
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 \ Plots of relationship among variables
 
The relationship between variables can be visualised 
through scatter plots like below:

 
 

By examining the scatter plot above between NO2 
and O3, it has already been identified which was also 
scientific proved later by theory study there is an 
anti-correlated relationship between NO2 and O3. 
The findings of relationship identified through scatter 
plot can be used as reference for further statistical 
study.

4.4 spatial plot

Geovisualisation of the pollutant value on a map can 
give an intuitive representation of the distribution 
of the pollution which can help identify the hotspot 
of the most polluted area. For example, the figure 
below plots the NO2 measurements from the  
Smogmobile concentrating on a map of  
Greenwich area.

It can be seen clearly identified that NO2 values 
across the major roads experiencing significant 
pollutant. 

The figure above gives good snapshot geographical 
representation of the air pollution level. When having 
vast volume of data collected over long period, 
another way to visualise the pollutant data is by tiling 
the map into squares like 150meter by 150 meter 
below. The figure below is a representation of the 
Smogmobile data collected over 14 weeks with 17.6 
million measurement points. Each square represents 
the average value aggregated from all the data 
points falling into that square.

Figure 4.4 NO2 vs O3

Figure 4.5 Map illustration of the mobile route and 
NO2 values

Figure 4.6 Grid level Map illustration of pollutants



Air Quality Monitoring with IoT Big Data
 

32

A heat map is also a common tool in geovisualising 
air quality data. For example, the heat map below 
is generated from a satellite data set which gives an 
overall view of the distribution of NO2 across whole 
London area.

The heat map can help visualise the trend and  
movement of the pollutants across a large 
geographical area. Reading from the figure above, 
the major road network such as the M25 can be 
clearly identified and it also shows an elevated levels 
of NO2 heading eastwards from central London out 
into the suburban and even rural areas of Kent and 
Essex. The impact of pollution is not limited in local 
area but propagated large scale.

Figure 4.7 Heat map of NO2 satellite measurement
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