
gsma.com/IoTSecurity

Common
Implementation
Guide to

Using the SIM
as a ‘Root of Trust’
to Secure IoT
Applications

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 1 of 53

Common Implementation Guide to Using the SIM as a
‘Root of Trust’ to Secure IoT Applications

Version 1.0

03 December 2019

This is a Non-binding Permanent Reference Document of the GSMA

Security Classification: Non-confidential

Access to and distribution of this document is restricted to the persons permitted by the security classification. This document is confidential to the

Association and is subject to copyright protection. This document is to be used only for the purposes for which it has been supplied and

information contained in it must not be disclosed or in any other way made available, in whole or in part, to persons other than those permitted

under the security classification without the prior written approval of the Association.

Copyright Notice

Copyright © 2019 GSM Association

Disclaimer

The GSM Association (“Association”) makes no representation, warranty or undertaking (express or implied) with respect to and does not accept

any responsibility for, and hereby disclaims liability for the accuracy or completeness or timeliness of the information contained in this document.

The information contained in this document may be subject to change without prior notice.

Antitrust Notice

The information contain herein is in full compliance with the GSM Association’s antitrust compliance policy.

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 2 of 53

Table of Contents

1 Introduction 4

1.1 Overview 4

1.2 Scope 4

1.3 Intended Audience 4

1.4 Definition of Terms 5

1.5 Abbreviations 5

1.6 References 6

1.7 Conventions 7

2 IoT Scenarios that Leverage the SIM for IoT Security 8

2.1 Scenario 1 (UICC manufactured with asymmetric keys generated at

personalisation step) 8

2.2 Scenario 2 (eUICC with on-board asymmetric key generation, signing

certificate) 10

2.3 Scenario 3 (PSK#1: UICC manufactured and pre-loaded with set of key-

loading keys for application owner to manage their own keys 12

2.4 Scenario 4 (PSK#2: Trusted third party manages transport and application

security on behalf of application owner) 14

2.5 Scenario 5 (PSK#3: Trusted third party manages security, derived on a per-

batch basis, on behalf of application owner) 17

2.6 Scenario 6 (Application Certificate Provisioning) 20

2.7 Scenario 7 (GBA) 21

3 Solution 1 - Use of SIM Applet 21

3.1 Solution Architecture 21

3.2 Functional Description of the Building Blocks 23

3.3 Interface Description 29

4 Solution 2 – Use of GBA 34

4.1 Solution Architecture 34

4.2 Functional Description 35

4.3 Procedures 36

4.4 Interface Description 39

Annex A Example of Alternate Solution Architecture (Informative) 40

A.1 Example Blockchain Back End Architecture 40

Annex B Example of Device <-> Applet Interface Implementations

(Informative) 43

B.1 Platform Security Architecture (PSA) APIs 43

B.2 AT Command Interface Examples 44

Annex C Scenario Examples Elaborated for Interface 4 (Informative) 47

C.1 Scenario 1 (UICC Manufactured with asymmetric keys generated at

personalisation step) 47

C.2 Scenario 2 (eUICC with on-board asymmetric key generation, signing

certificate) 49

Annex D Plant UML Files for Scenario Sequence Diagrams 52

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 3 of 53

D.1 Plant UML Files for the Section 2 Sequence Diagrams. 52

D.2 Plant UML Files for the Annex C Sequence Diagrams 52

Annex E Document Management 53

E.1 Document History 53

4.5 Other Information 53

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 4 of 53

1 Introduction

1.1 Overview

The GSMA’s IoT Programme has investigated how to leverage existing mobile network

operator assets to secure IoT services. One of the key assets we have considered is the

SIM and this has led to the publication of a whitepaper and a case study. The whitepaper

“Solutions to Enhance IoT Authentication Using SIM Cards (UICC)” [1] describes the

potential capability to use the SIM to secure IoT services and the case study “Leveraging the

SIM to Secure IoT Services” [2] describes four mobile network operator proof-of-concepts

demonstrations that prove the concepts outlined in the whitepaper are feasible.

This guide defines a common way for IoT applications to use the capabilities of the SIM to

enhance the security of several commonly used internet protocols. The internet protocols to

be covered as a priority within the document will include Transport Layer Security (TLS),

Datagram Transport Layer Security (DTLS) and the 3GPP Generic Bootstrapping

Architecture (GBA). The use of Public Key Mechanisms and Pre-Shared Key (PSK)

mechanisms for credential establishment are within the scope of work.

More precisely, this guide investigates, and defines, the following:

• A simple microcontroller API that IoT client applications can use to access the secure

capabilities of the SIM when using TLS, DTLS and GBA protocols to secure an IP

connection to an IoT service platform.

• The properties of a common SIM application where the credentials (e.g. certificates /

keys) associated with TLS or DTLS mutual authentication protocols can be stored

and used by the IoT application.

• A common way for IoT service providers to initially provision (i.e. one time), and

potentially update (i.e. dynamic management) their internet security credentials (e.g.

certificates / keys) and policies within the SIM using over-the-air management

capabilities.

1.2 Scope

• The guide leverages existing SIM and SIM OTA standards only - it does not look to

develop any new SIM / OTA standards or new core technical capabilities.

• This guide is applicable for both UICC and eUICC.

• For simplicity the guide focuses on single eUICC profile scenarios only, and on how

to enhance the security of some existing, commonly deployed, internet protocols

within low complexity IoT devices.

• The guide focuses on cellular (3GPP) based devices with UICC (i.e. GSM, UMTS,

NB-IoT and LTE, LTE-M1, 5G NR) only.

• This guide is compatible with GSMA SGP.02 [3] and/or SGP.22 [4]

1.3 Intended Audience

Technical experts working within mobile network operators, SIM solution providers, IoT

device vendors, IoT service providers and IoT developers.

https://www.gsma.com/iot/resources/solutions-enhance-iot-authentication-using-sim-cards-uicc/
https://www.gsma.com/iot/resources/case-study-sim-secure-iot-services/
https://www.gsma.com/iot/resources/case-study-sim-secure-iot-services/

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 5 of 53

1.4 Definition of Terms

Term Description

eUICC

A removable or non-removable UICC which enables the remote and/or local

management of Profiles in a secure way. NOTE: The term originates from

"embedded UICC".

UICC A secure element platform specified in ETSI TS 102 221.

1.5 Abbreviations

Abbreviation Description

3GPP 3rd Generation Project Partnership

5G 5th Generation

AEAD Authenticated Encryption with Associated Data

AKA Authentication and Key Agreement

ANSSI Agence Nationale de la Sécurité des Systèmes d'Information

APDU Application Protocol Data Unit

API Application Programming Interface

AuC Authentication Centre

BSF Bootstrapping Server Function

BSI Bundesamt für Sicherheit in der Informationstechnik

CA Certificate Authority

CSR Certificate Signing Request

DTLS Datagram Transport Layer Security

ECA Enrolment Certificate Authority

ECC Elliptic Curve Cryptography

ECDH Elliptic Curve Diffie-Hellman

ECDHE Elliptic Curve Diffie-Hellman Ephemeral

ECDSA Elliptic Curve Digital Signature Algorithm

EID eUICC Identifier

ETSI European Telecommunications Standard Institute

GBA Generic Bootstrapping Architecture

GBA_ME Generic Bootstrapping Architecture Mobile Equipment

GBA_U Generic Bootstrapping Architecture USIM

GSM Global System for Mobile

GSMA GSM Association

HKDF Hash-based Key Derivation Function

HMAC Hash-based Message Authentication Code

HSM Hardware Security Module

HSS Home Subscriber Server

ICCID Integrated Circuit Card Identifier

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 6 of 53

Abbreviation Description

IoT Internet of Things

IP Internet Protocol

ISIM IP Multimedia Subscriber Identify Module

KDF Key Derivation Function

KMS Key Management System

LTE Long Term Evolution

MAC Message Authentication Code

ME Mobile Equipment

MSISDN Mobile Station International Subscriber Directory Number

NAF Network Application Function

NB-IoT Narrow Band Internet of Things

NIST National Institute for Science and Technology

NR New Radio

OBKG On Board Key Generation

OBU On Board Unit

OTA Over The Air

PKI Public Key Infrastructure

PRF Pseudorandom Function

PSA Platform Security Architecture

PSK Pre-Shared Key

REST Representational State Transfer

RNG Random Number Generator

RSA Rivest / Shamir / Adleman

SIM Subscriber Identity Module

TLS Transport Layer Security

UMTS Universal Mobile Telecommunications Service

USIM UMTS Subscriber Identify Module

1.6 References

Ref
Document
Number Title

[1] -
Solutions to Enhance IoT Authentication Using SIM

Cards (UICC). <LINK>

[2] - Leveraging the SIM to Secure IoT Services. <LINK>

[3] GSMA SGP.02
Remote Provisioning Architecture for Embedded UICC

Technical Specification <LINK>

[4] GSMA SGP.22
RSP Technical Specification <LINK>

https://www.gsma.com/iot/wp-content/uploads/2016/11/cl_iot_authenticate_report_web_11_16.pdf
https://www.gsma.com/iot/wp-content/uploads/2018/10/Case-Study-Leveraging-the-SIM-to-Secure-IoT-Services.pdf
https://www.gsma.com/newsroom/wp-content/uploads/SGP.02-v4.0.pdf
https://www.gsma.com/newsroom/wp-content/uploads/SGP.22_v2.2.pdf

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 7 of 53

Ref
Document
Number Title

[5] RFC 2119
Key words for use in RFCs to Indicate Requirement

Levels <LINK>

[6] - Java Card Platform Specification <LINK>

[7] - GlobalPlatform Technical Overview <LINK>

[8] ETSI 102 241
Smart Cards; UICC Application Programming Interface

(UICC API) for Java Card™ <LINK>

[9]
NIST Special

Publication 800-57

Part 1 Revision 4

Recommendation for Key Management Part 1: General

<LINK>

[10] BSI TR-02102-2

BSI "Cryptographic Mechanisms: Recommendations and

Key Lengths: Use of Transport Layer Security (TLS)"

Version: 2019-1 <LINK>

[11]
ANSSI SDE-NT-35-

EN/ANSSI/SDE/NP
ANSSI Security Recommendations for TLS <LINK>

[12] RFC5246
The Transport Layer Security (TLS) Protocol Version 1.2

<LINK>

[13] RFC8446
The Transport Layer Security (TLS) Protocol Version 1.3

<LINK>

[14] RFC5869
HMAC-based Extract-and-Expand Key Derivation

Function (HKDF) <LINK>

[15] GSMA IOT.05 <LINK to be added once the document is published>

[16] 3GPP TS 33.220
Generic Authentication Architecture (GAA); Generic

Bootstrapping Architecture (GBA) <LINK>

[17] 3GPP TS 27.007 AT command set for User Equipment <LINK>

[18] -
u-blox cellular modules AT commands manual

<LINK>

[19] -
Platform Security Architecture Resources

<LINK>

[20] -
PKI Basics - a Technical Perspective

<LINK>

1.7 Conventions

The key words "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", and "MAY" in this

document SHALL be interpreted as described in RFC 2119 [5].

https://www.ietf.org/rfc/rfc2119.txt
https://www.oracle.com/java/technologies/java-card-tech.html
https://globalplatform.org/specifications/technical-overview/
https://www.etsi.org/deliver/etsi_ts/102200_102299/102241/11.01.00_60/ts_102241v110100p.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-2.pdf;jsessionid=2D1656F49B1FED9A3C74C26DF0E18210.2_cid360?__blob=publicationFile&v=9
https://www.ssi.gouv.fr/uploads/2017/02/security-recommendations-for-tls_v1.1.pdf
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc5869
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2280
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=1515
https://www.u-blox.com/sites/default/files/u-blox-CEL_ATCommands_%28UBX-13002752%29.pdf
https://pages.arm.com/psa-resources
http://www.oasis-pki.org/pdfs/PKI_Basics-A_technical_perspective.pdf

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 8 of 53

2 IoT Scenarios that Leverage the SIM for IoT Security

A set of example scenarios is provided below. This is not intended to be an exhaustive list of

all possible usage scenarios.

2.1 Scenario 1 (UICC manufactured with asymmetric keys generated at

personalisation step)

In this scenario, data from an IoT device is secured using an asymmetric key pair

(public/private keys) that is installed onto a UICC at the time of manufacture.

Smartco

SIMco
MobileComm

Provides:
• UICC & Applet

Provides :
• UICC
• IoT security applet

containing private key

Reseller

Provides:
• Smart Video Camera

PUB

IoT Security
Applet

PRI

PUB PRI

Customer
(Izzy)

Provides:
• Smart Video Camera

PUB

Certificate
Authority

CA Cert

Client Cert

Client Cert

Server Cert

PUB

Figure 1: Relationship Between Actors in Scenario 1

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 9 of 53

Figure 2: Flow of Events for Scenario 1

‘MobileComm”, a mobile network operator, procures a batch of UICCs from “SIMco” a UICC

vendor. When the UICCs are securely personalised for MobileComm at SIMco’s factory, an

IoT security applet is installed onto each UICC. One or more randomised private keys are

installed within the IoT security applet, depending upon the prospective usage, as part of the

personalisation process. The private keys never leave the personalisation area within the

factory. The public key (i.e. certificate or raw public key) corresponding to each private key is

shared with MobileComm.

MobileComm has a commercial relationship with “Smartco”, an IoT service provider selling

cellular connected video cameras, for the supply of connectivity and security services.

MobileComm supplies UICCs to Smartco. MobileComm also provides Smartco with a copy

of the public key that corresponds to the IoT security applet on each UICC.

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 10 of 53

Smartco installs MobileComm UICCs into its security camera products at its distribution

centre. Smartco provisions the public key for each camera/UICC combination onto its

service platform. The cameras are then shipped to a reseller.

The reseller sells a camera to a customer called ‘Izzy’. Izzy takes the camera home and

switches on the camera.

The camera connects to MobileComm’s mobile network. The network authenticates the

UICC in the camera. The camera establishes an internet connection to Smartco’s service

platform and initiates a mutual authentication procedure to establish a secure (D)TLS

connection with the service platform. The device side (D)TLS mutual authentication steps

are performed using the key previously provisioned within the IoT security applet. At the end

of the mutual authentication procedure, secure IP communication can take place between

the camera and cloud service platform.

The camera is now connected to the service platform and Izzy can use the camera.

2.2 Scenario 2 (eUICC with on-board asymmetric key generation, signing

certificate)

In this scenario, data from an IoT device is secured using on-board key generation of

asymmetric (public/private) keys and a certificate is installed onto the eUICC “over-the-air”

by the mobile network operator.

MeterCo

SIMco

Provides :
• M2M eUICC

EnergyCo

Provides:
• Smart Meter
• M2M eUICC

IoT Security
Applet

PRI

Certificate
Authority

PUB

MobileComm

Provides:
• eUICC Profile
• IoT Security Applet

containing Client Cert

Client CERT

Server CERT
CA Cert

Provides:
• Signed

Client Cert

Provides:
• Signed Server Cert

Client CERT

Figure 3: Relationships Between Actors for Scenario 2

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 11 of 53

Figure 4: Flow of Events for Scenario 2

‘MeterCo”, a smart meter vendor, procures a batch of certified industrial grade M2M eUICCs

from “SIMco”, an eUICC vendor. At their factory, MeterCo solders an eUICC into each of

their cellular connected smart meter products. MeterCo sells a batch of smart meters to their

customer EnergyCo – an energy provider.

EnergyCo has a commercial relationship with MobileComm, a mobile network operator, to

connect their smart meters to the MobileComm network and for the provision of additional

security services.

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 12 of 53

When an EnergyCo smart meter is installed into a building and switched on for the first time,

it is provisioned with a MobileComm eUICC profile and IoT security applet. Once the profile

is installed and activated, the smart meter securely authenticates and registers to the

MobileComm network. Once registered, MobileComm securely requests, over-the-air, the

IoT security applet to generate a public/private key pair. The IoT security applet sends the

public key to MobileComm. MobileComm generates a certificate signing request to a

Certificate Authority chosen by EnergyCo. MobileComm provisions the signed certificate and

trusted CA certificate into the IoT security applet.

The smart meter establishes an IP connection to EnergyCo’s service platform and initiates a

mutual authentication procedure to establish a secure (D)TLS connection with the service

platform. The device side (D)TLS mutual authentication steps are performed using the IoT

security applet within the eUICC.

The smart meter is now connected to the service platform and can send meter readings to

EnergyCo.

During the lifetime of the smart meters MobileComm, acting on the request of EnergyCo, can

revoke and renew the credentials stored within each smart meter – for example when a

smart meter is moved or at end-of-life of a meter.

2.3 Scenario 3 (PSK#1: UICC manufactured and pre-loaded with set of key-

loading keys for application owner to manage their own keys

In this scenario, data from an IoT device is secured using two symmetrical pre-shared keys

that are preloaded onto the UICC at point of manufacture – a ‘transport key’ to secure the

transport of the data by the mobile network operator and an ‘encryption key’ to keep the

payload data private from the mobile network operator.

MeterCo

SIMco

MobileComm

Provides:
• eUICC profile order

Provides :
• eUICC
• eUICC profile
• IoT security applet

containing keys

Provides:
• Encrypt

Key

Provides:
• Network Subscription
• Key Management Service

EnergyCo

Provides:
• Smart Meter

Trans

RED

Enc

Trans

Enc

IoT Security
Applet

Trans Enc

RED

Provides:
• Transport Key

BLK

BLK

Figure 5: Relationships Between Actors for Scenario 3

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 13 of 53

Figure 6: Flow of Events for Scenario 3

MeterCo, a smart meter vendor, procures a batch of UICCs from SIMco, a UICC

manufacturer vendor.

SIMco provides a profile for the MobileComm operator and an IoT security applet.

SIMco generates a root AES-128 key (BLACK KEY) for each UICC and derives a set of keys

from it:

• TransportKEY = KDF(BLACK-KEY, transport_usage_code)

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 14 of 53

• EncryptKEY = KDF(BLACK-KEY, encrypt_usage_code)

(provided the Black key is stored within the IoT security applet new keys could be

added as needed)

The usage codes are suitable numeric or text strings.

SIMco provides only the TransportKEY, along with the ICCIDs/EIDs to MobileComm running

a KMS (Key Management System) or to a separated KMS operator trusted by MobileComm.

The KMS is a part of the IoT security service.

At their factory, MeterCo solders an UICC into each of their cellular connected smart meter

products. MeterCo sells a batch of smart meters to their customer EnergyCo – an energy

provider, informing SIMco to supply EnergyCo with the EncryptKEYs associated to the

Smart Meter UICCs.

EnergyCo has a commercial relationship with MobileComm, a mobile network operator, to

connect their smart meters to the MobileComm network and for the provision of KMS

services or it has a commercial relationship with MobileComm and a separated KMS

operator trusted by MobileComm.

EnergyCo generates at least one AES-128 key (RED KEY) for each smart meter purchased,

encrypts it with the EncryptKEY and delivers this ciphered content, along with the ICCID/EID

to its KMS provider (MobileComm or a separated KMS operator). The KMS provider maps

the ciphered content to the tuple {ICCID/EID, TransportKEY, ciphered content}. The KMS

provider can upload the ciphered content to the smart meter, but cannot access the

information that will be exchanged between meters and EnergyCo.

When an EnergyCo smart meter is installed into a building and switched on for the first time,

it securely authenticates and registers to the MobileComm network and it is provisioned by

the KMS operator with the RED_KEY, by downloading the ciphered content, and decrypting

it with the TransportKEY. The RED_KEY can now be used by the Smart Meter to securely

connect to EnergyCo.

When the smart meter establishes an IP connection to EnergyCo’s service platform, it

establishes a (D)TLS connection using a key (EKEY) derived from RED KEY. It sends during

(D)TLS handshake the PSK identity to allow the EnergyCo service platform to recreate on

the server side the same ephemeral key (EKEY) derived by the smart meter.

The smart meter is now connected to the service platform and can send meter readings to

EnergyCo.

During the lifetime of the smart meters, the KMS provider, acting on the request of

EnergyCo, can replace the RED KEY using the mechanism above.

2.4 Scenario 4 (PSK#2: Trusted third party manages transport and

application security on behalf of application owner)

In this scenario, we protect the data generated by an IoT device using a symmetrical pre-

shared key stored on the SIM and encryption/decryption service provided by a mobile

network operator or Key Management Service provider.

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 15 of 53

MeterCo

SIMco

MobileCommKeyCo

Provides:
• eUICC profile order

Provides :
• eUICC
• eUICC profile
• IoT security applet

containing Root Key

Provides:
• Root Key

Provides:
• Network Subscription

Provides:
• Key

Management
Service

EnergyCo

Provides:
• Smart Meter

BLACK

RED

REDBLACK

IoT Security
Applet

BLACK

Figure 7: Relationships Between Actors for Scenario 4

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 16 of 53

Figure 8: Flow of Events for Scenario 4

The steps are as follows:

MeterCo, a smart meter vendor, procures a batch of UICCs from SIMco, a UICC

manufacturer.

SIMco provides eUICCs to MeterCo, each provisioned with an eUICC profile for the

MobileComm operator and an IoT security applet.

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 17 of 53

SIMco generates a root AES-128 key (BLACK KEY) for each UICC and provides this key to

MobileComm running a Key Management Service or to a separated KMS operator, KeyCo,

trusted by MobileComm. The entity providing the KMS maps the ICCID/EID of the UICC to

the corresponding BLACK KEY.

SIMco personalises the IoT security applet associated with each UICC with the BLACK KEY.

At their factory, MeterCo solders an UICC into each of their cellular connected smart meter

products. MeterCo sells a batch of smart meters to their customer EnergyCo – an energy

provider.

EnergyCo has a commercial relationship with MobileComm, a mobile network operator, to

connect their smart meters to the MobileComm network and for the provision of a KMS (or it

has a commercial relationship with MobileComm and a separated KMS provider “KeyCo”

trusted by MobileComm).

EnergyCo generates a root AES-128 key (RED KEY) for each smart meter purchased and

delivers this key to its KMS provider. The KMS provider maps the RED KEY to the tuple

{ICCID/EID, BLACK KEY}.

When an EnergyCo smart meter is installed into a building and switched on for the first time,

it securely authenticates and registers to the MobileComm network.

The smart meter establishes a (D)TLS protected connection to EnergyCo’s service platform

and sends to the EnergyCo service platform the meter readings encrypted using a key

(EKEY) derived from the BLACK KEY. Along with the encrypted meter readings the

necessary data is also provided to allow the recreation on the server side of the key (EKEY)

derived by the smart meter (including ICCID/EID).

EnergyCo sends the encrypted payload to the KMS provider.

The KMS provider derives a key (EKEY) from the BLACK KEY using the material provided,

decrypts the encrypted payload received from EnergyCo using the derived key, re-encrypts it

with a new key (EKEY’) derived from the RED KEY and sends it back to EnergyCo together

with the material to allow the recreation on the EnergyCo side of the new ephemeral key

(EKEY’).

EnergyCo derives the new key (EKEY’) from the RED KEY and the material provided and

therefore can decrypt the meter readings.

During the lifetime of the smart meters the KMS provider, acting on the request of EnergyCo,

can replace the RED KEY.

2.5 Scenario 5 (PSK#3: Trusted third party manages security, derived on a

per-batch basis, on behalf of application owner)

In this scenario, we protect the data generated by an IoT device using a pre-shared key to

derive common symmetrical ephemeral keys on both the IoT device and the server side.

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 18 of 53

MeterCo

SIMco
MobileComm

IoT Security
Service

Provides:
• eUICC profile

order

Provides :
• eUICC
• eUICC profile
• IoT security applet

containing derived Key

Provides:
• Network

Subscription

Provides:
• Key Handler Service

EnergyCo

Provides:
• Smart Meter

BMK

BMK
BMK

Provides:
• Batch

Master
Key

ioT Security
Applet

eUK

eUK

Figure 9: Relationships Between Actors for Scenario 5

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 19 of 53

Figure 10: Flow of Events for Scenario 5

EnergyCo, an energy provider, would like to set-up a network of connected Smart Energy

Meters. It plans to procure a batch of meters from MeterCo, a smart meter vendor.

EnergyCo also establishes a commercial relationship with MobileComm, a mobile network

operator, to connect the smart meters to their mobile network. EnergyCo will also establish a

commercial relationship with an IoT security service provider of choice to help manage the

fleet.

MeterCo, as part of their manufacturing process, procures a batch of certified eUICC’s from

SIMco (eUICC manufacturer), with the indication of MobileComm for the IoT connectivity.

SIMco provides a profile for the MobileComm operator and an IoT security applet. Upon

ordering, SIMco generates a secret key BMK (Batch MASTER KEY), suitable for robust

symmetric secrecy. It then personalizes each eUICC with a UICC KEYs, eUK, where eUK is

derived from the BMK using a secure Key Derivation Function (KDF):

• eUK = KDF (“MeterCo” || “batch” || ICCID || .. , BMK)

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 20 of 53

SIMco ships the personalized eUICC to MeterCo. At the factory, MeterCo solders an eUICC

into each of its cellular connected smart meter products. MeterCo sells the batch of smart

meters to their customer EnergyCo, informing SIMco. Following that, SIMco securely sends

the BMK and the list of ICCIDs sent in the last shipment to EnergyCo.

EnergyCo shares this information with MobileComm running an IoT security service, or to a

separate IoT security service trusted by EnergyCo. The IoT security service sets up a PSK

Key Handler service.

When an EnergyCo smart meter is installed in a building and switched on for the first time, it

connects to the MobileComm network.

The smart meter establishes an IP connection to EnergyCo’s service platform and initiates a

(D)TLS connection with PSK authentication, with a list of only PSK ciphers in the ClientHello

message. The client sends the following “PSK identity”:

• “MeterCo” || “batch” || ICCID

IoT Service Provider Key Handler validates the identity of the connecting meter, and

calculates the symmetric key eUK, that is used to complete the (D)TLS handshake with PSK

authentication. The smart meter is now connected to the service platform and can send

meter readings to EnergyCo securely.

During the lifetime of the smart meters the IoT security service Provider, acting on behalf of

EnergyCo, can change the Key.

Possible option: A very constrained device may not be capable of sustaining (D)TLS with

PSK authentication. In such a case, only an IP link is set-up, on top of which a password

based authentications, such as SCRAM (RFC5802), or simpler challenge-response

authentication (PAP, CHAP) using the “PSK Identity” as user, and the Key as password.

2.6 Scenario 6 (Application Certificate Provisioning)

In addition to the X.509 certificate for (D)TLS authentication that was provisioned on its

eUICCs by the UICC manufacturer, EnergyCo uses an additional certificate for application-

level authentication. EnergyCo uses a certificate authority to sign both device and server

certificates. EnergyCo’s server application has previously been provisioned with its own

server certificate.

EnergyCo’s IoT client application, using the IoT device middleware, requests onboard key

generation of a new public/private key pair within the IoT security applet. It generates a

certificate signing request for the public key, and it requests the IoT security applet to sign a

portion of that request using the private key. The client application sends the CSR to

EnergyCo’s server, which forwards it to their certificate authority. The CA returns the signed

client certificate. EnergyCo’s IoT server application sends the new client certificate, its own

server certificate, and possibly the CA’s self-signed certificate to the IoT client application.

The IoT client application, via the IoT device middleware, stores these to the IoT security

applet.

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 21 of 53

The IoT client application and IoT server application are now able to perform mutual

authentication using the application certificates stored in the IoT security applet and the HSM

within the server.

2.7 Scenario 7 (GBA)

“MobileComm”, a mobile network operator, has commercial relationship with “VehicleMan”, a

vehicle manufacturer. MobileComm provides cellular connectivity to VehicleMan’s OBUs (On

Board Units), as well as secure communication tunnels between OBUs and VehicleMan’s

application platforms. VehicleMan operates a ECA (Enrolment Certificate Authority) server

for the provisioning of enrolment certificate to vehicles, which allows vehicle devices to

securely connect to application servers.

“OBUCo”is the OBU supplier for VehicleMan. With OBUs equipped on each vehicle, they

can communicate with other terminals or application platforms through cellular networks to

achieve V2X services like vehicle navigation, vehicle monitoring, etc.

MobileComm delivers configured UICCs to VehicleMan in batches. VehicleMan then

assembles a UICC onto the OBU of each vehicle. Before delivering OBUs to end users

(could be vehicle manufacturers or vehicle users), VehicleMan binds the vehicle ID with

OBU device ID as well as the mobile subscriber identity (MSISDN) associated with the UICC

and configures the OBU with the IP address of the ECA server.

After each OBU gets access to the cellular network provided by MobileComm, it connects to

the ECA server in order to obtain the enrolment certificate. As there are no provisioned

security credentials on the OBU initially, the ECA server cannot identify and authorize the

OBU, thus it requires the OBU to do authentication by means of GBA. The OBU triggers a

bootstrapping procedure using GBA and the core network of MobileComm starts the

authentication of the OBU. With successful authentication results obtained, MobileComm

generates a session key for the ECA server and the OBU for the use of setting up an end-to-

end secure tunnel. Via this secure tunnel, the OBU sends generated enrolment certificate

public key and the device ID to the ECA server, in order to apply for the enrolment

certificate. The ECA server signs the enrolment certificate accordingly and the OBU can use

the secure tunnel for downloading it.

Similarly, OBUs are able to obtain other certificates or credentials from VehicleMan’s

application platforms using GBA, in order to achieve initial provisioning of other services.

There is no need for OBUs to pre-provision certificates or pre-shred keys at the production

line.

3 Solution 1 - Use of SIM Applet

3.1 Solution Architecture

3.1.1 Architecture Diagram

This section defines the functional architecture required to support the solution. The basic

building blocks of the architecture consist of the functions to be performed and the roles

performing the functions.

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 22 of 53

IoT Server
Application

IoT Device
Middleware

CA*

IoT Security
Applet

IoT Client
Application

Out of Scope

Interface in Scope

IoT Security
Service

Io
T

 D
e
v
ic

e
 O

E
M

Io
T

 S
e

rv
ic

e

P
ro

v
id

e
r

C
e
rt

if
ic

a
te

A

u
th

o
ri

ty
(s

)

1

2

6*

5

Out of Scope (Optional)

3

IoT Server
Middleware

Io
T

 A
p
p
le

t
O

w
n
e
r

4

S
e
rv

e
r

/
C

lo
u
d

7*

* If applicable to the scenario

Figure 11: Architecture of Solution 1 (Use of SIM applet)

The architecture shows the following interfaces:

3.1.2 IoT Client Application <> IoT Device Middleware Interface (Out of

scope)

This interface allows the IoT device middleware to expose security functions to the IoT client

application. See informative Annex B.

3.1.3 IoT Device Middleware <> IoT Security Applet Interface (In-Scope)

Enables the IoT device middleware to communicate with the IoT security applet on the

UICC. This interface is in scope because there are expected to be many different IoT device

providers and many different IoT security applet providers. For a successful ecosystem to

develop it is essential that the IoT device middleware and IoT security applet can interface

using a common API.

3.1.4 IoT Security Applet <> IoT Security Service Interface (Out of Scope)

This interface enables the IoT security applet to be managed (i.e. to perform the

loading/update/deletion of credentials within the applet) by the IoT security service. This

interface is out of scope, as this interface will reuse existing APIs such as those defined by

ETSI, 3GPP and GlobalPlatform for Over-the-Air SIM management or GSMA for remote SIM

provisioning. Alternatively, if the credential management operations are taking place within a

secure SIM production environment, proprietary APIs may be used.

3.1.5 IoT Security Service <> IoT Server Middleware Interface (In Scope)

Some use cases require an exchange of information between the IoT security service and

the IoT server middleware. This interface is in scope as there are expected to be many

different IoT security service providers and many different IoT server middleware providers.

For a successful ecosystem to develop, it is essential that these two entities can interface

using a common API.

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 23 of 53

3.1.6 IoT Server Middleware <> IoT Server Application Interface (Out of

Scope)

This interface allows the IoT server middleware to expose security functions to the IoT

server application. This interface is out of scope as de-facto security APIs exist and are

already implemented by for most server/cloud providers.

3.1.7 IoT Server Middleware <> CA Interface (Out of Scope)

To support the public certificate based use cases in this document, an interface may exist

between the IoT server middleware and a Certificate Authority.

This interface is out of the scope of this document as there are a relatively few number of

CAs and APIs to these CAs are already well defined.

3.1.8 IoT Security Service <> CA Interface (Out of Scope)

To support the public certificate based use cases in this document, an interface may exist

between the IoT security service and a Certificate Authority.

This interface is out of the scope of this document as there are a relatively few number of

CAs and APIs to these CAs are already in place.

3.2 Functional Description of the Building Blocks

3.2.1 IoT Client Application

Functional Requirements for the IoT Client Application (Solution 1)

A1 The IoT client application shall securely communicate to an IoT server application

using the flows described in this document.

A2 The IoT client application shall initiate mutual authentication between the IoT device

and the IoT server.

A3 The IoT client application shall have an interface to the device middleware.

3.2.2 IoT Device Middleware

Functional Requirements for the IoT Device Middleware (Solution 1)

B1
The IoT device middleware shall be able to mutually authenticate with the IoT server

middleware using the flows described in this document.

B2 The IoT device middleware shall implement a (D)TLS stack.

B3
The IoT device middleware provides an API to the IoT client application to establish

(D)TLS connection(s) using the IoT security applet.

B4
The IoT device middleware shall implement the (D)TLS functions which are not

mandatory within the IoT security applet to establish a successful (D)TLS session.

B5 The IoT device middleware shall send commands to the IoT security applet.

B6

The IoT device middleware shall support an interface to the IoT security applet on the

UICC. This interface shall use the APDU based protocol defined in section 3.3.1 of

this document.

B7 The IoT device middleware shall support at least one cryptographic hash operation.

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 24 of 53

B8 The IoT device middleware shall be able to generate (D)TLS session keys.

B9 The IoT device middleware shall be able to verify server certificates.

3.2.3 IoT Security Applets

Two applets are defined in this section:

• IoT Security Applet Type 1

• IoT Security Applet Type 2

IoT Security Applet Requirements (Solution 1)

C1
IoT Security Applet Type 1 shall satisfy IoT Security Feature Set 1 (as defined in

section 3.2.3.1) and optionally satisfy IoT Security Feature Set 2 (as defined in section

3.2.3.2).

C2 IoT Security Applet Type 2 shall satisfy IoT Security Feature Set 2 (as defined in

section 3.2.3.2).

3.2.3.1 IoT Security Applet Feature Set 1

This feature set satisfies asymmetric scenarios 1 and 2 from section 2 of this document.

This feature set optionally satisfies scenarios 3, 4 and 5 from section 2 of this document.

General Requirements

D1
The applet shall enable the IoT device middleware to securely perform the mutual

(D)TLS authentication to an IoT service provider server by supporting X509 and

asymmetric keys security scheme.

D2
The considered (D)TLS version shall be version 1.2 & 1.3.

D3
The capabilities of the applet shall be discoverable by the IoT device middleware.

D4

The IoT security applet shall enable credential life cycle management from an IoT

security service. These credentials shall be independent of any credentials managed

by the device.

D5

The IoT security applet may enable credential life cycle management by the IoT client

application. These credentials shall be independent of any credentials managed by the

IoT security service.

D6
Not to conflict with reserved channels (i.e. LC0 reserved for telecom operations), the

IoT security applet can operate on a dedicated logical channel.

D7
The IoT security applet shall be agnostic from which physical interface is used to

communicate with the UICC.

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 25 of 53

D8
The IoT security applet shall only use APIs defined by JavaCard [6], GlobalPlatform [7]

and ETSI 102 241 [7].

D9
The IoT security applet shall provide a list of the available PKI credentials (label and

reference).

Cryptographic Requirements

E1 The applet shall enable signature generation and verification using:

• ECDSA with the following curves: NIST P-256. Minimum key length for ECC

keys shall be 256bits.

Other ECC curves may be supported – such as brainpoolP256r1 and Curve25519. The
minimum key size shall be 256 bits.

E2 The applet should enable signature generation and verification using:

• RSA keys: 2048bits (or more) for RSA (cf. NIST SP.800-57 [9], BSI TR-02102-

2 [10] and ANSSI SDE-NT-35/ANSSI/SDE/NP [11]).

and signatures using RSASSA PKCS1 V1.5 and RSASSA PSS.

E3

The applet shall provide storage of client credentials: X509 certificate & associated
private key:

• X509 certificate stored as plain files (Binary)

• Private key is stored in dedicated key objects

• Multiple key pairs and certificates must be considered.

E4

The applet shall provide storage of server and issuer credentials:

• X509 certificates are stored as plain files (Binary)

or

• Public key is stored in dedicated key objects.

Multiple certificates must be considered.

E5 The applet shall ensure certificates and associated private/public keys can be named

and paired with a given unique label per UICC.

E6 The applet shall enable the device to establish a (D)TLS connection with Ephemeral

scheme for key agreement using ECDHE and signatures using ECDSA.

Security Services provided by the IoT security applet to the IoT device middleware

F1
The applet shall provide cryptographically secure pseudo-Random Number Generation

(RNG) service. See: RFC5246 [12] Annex D.1 or RFC8446 [13] Annex C.1.

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 26 of 53

F2

The applet shall enable signature generation and signature verification service for the

TLS handshake. Various signature modes might be supported among which:

• Hash and padding is done externally (by the device), signature generation or

verification done by the applet.

• Hash, padding and signature generation or verification done by the applet.

F3
The applet shall enable server certificate validation

F4 The applet shall provide a service to compute ECDHE shared secrets (TLS1.2 & TLS

1.3).

F5 The applet shall provide a service to compute master secrets for pre-shared symmetric

keys combined with ECDHE (TLS1.2).

F6 The applet shall provide a service to compute early secrets and handshake secrets

(TLS1.3).

F7 The applet shall provide an OBKG service to generate ECDH ephemeral keys for the

TLS handshake.

Provisioning and Remote Management by IoT Security Service

G1
The applet shall support key pair provisioning at the factory with or without certificates

G2
The applet shall support OBKG requests from an administration server. The public key

is returned to the administration server, with optionally CSR generated by applet.

G3

The applet shall support:

• Injection of certificates from an administration server

• Deletion and revoking of keys (private/public) and certificates from an

administration server

G4

The applet shall allow the establishment of a remote management session at any time.

During a remote management session, the applet shall not block requests from the IoT
device middleware.

During a remote management session, the applet shall respond to the IoT device
middleware with an error if a credential used for the requested operation is in the process
of being updated.

The applet shall make it possible for the device to know that a remote management
session has completed.

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 27 of 53

Local Provisioning and Management (if supported)

H1 The applet shall support OBKG requests from the device. The public key is returned to
the device, optionally along with a certificate signing request.

H2

The applet shall support:

• Injection/storage of certificates from the device

• Update/replacement of stored certificates that were generated by the device

• Deletion of key pairs and certificates that were generated by the device

H3
The applet shall ensure certificates are signed by a trusted CA before the certificate is
stored within the applet

H4
If a CSR is generated at the applet, it shall be additionally signed using one of remotely
provisioned key in the applet dedicated to this usage. CSR and attestation signature
along with reference of key used for signing shall be returned in the response.

3.2.3.2 IoT Security Applet Feature Set 2

This feature set satisfies symmetric scenarios 3, 4 and 5.

General Requirements

I1
The applet shall enable the IoT device middleware to securely perform the mutual
(D)TLS authentication to an IoT service provider server by supporting PSK (pre-shared
keys) security scheme.

I2 The applet shall enable the IoT device middleware to compute shared secrets keeping
long term keys secret.

I3
The considered (D)TLS version shall be version 1.2 & 1.3.

I4
The capabilities of the applet shall be discoverable by the IoT device middleware.

I5 The IoT security applet shall enable symmetric key life cycle management from a IoT
security service.

I6 Not to conflict with reserved channels (i.e. LC0 reserved for telecom operations), the
IoT security applet can operate on a dedicated logical channel.

I7 The IoT security applet shall be agnostic from which physical interface is used to
communicate with the UICC.

I8 The IoT security applet shall provide a list of the available PSK credentials (label and
object reference).

I9 The IoT security applet shall not allow the modification, deletion or retrieval of the PSK
credentials through the device to applet interface.

I10 The IoT security applet shall only use APIs defined by JavaCard [6], GlobalPlatform [7]
and ETSI 102 241 [8].

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 28 of 53

Security Services provided by the IoT security applet to the IoT device middleware

J1
The applet shall support mutual authentication based on PSK as specified in section 2
of RFC4279 for TLS1.2 and sections 4.2.11 and 7.1 for TLS1.3

J2

The applet shall provide storage for a minimum of 4 PSKs (and respective PSK-Identity):

• PSK with length up to 512 bits. (For recommended minimum PSK lengths see
[3], [4] and [5]).

• PSK-Identity.

J3
The applet shall ensure the IoT device middleware can use object reference of a PSK
and PSK-Identity to use associated services.

J4
The applet shall support a PRF service (RFC5246 [12]) for the purpose of shared secrets
computation (TLS1.2).

J5
The applet shall support a HKDF service (RFC5869 [14]) for the purpose of shared
secrets computation (TLS1.3).

Provisioning and Remote Management by IoT Security Service

K1
The applet shall support PSK and respective PSK-identity provisioning at factory.

K2

The applet shall support:

• Injection of PSK and respective PSK-Identity from the IoT security service.

• Deletion of PSK and respective PSK-Identity from the IoT security service.

K3

The applet shall allow the establishment of a remote management session at any time.

During a remote management session, the applet shall not block requests from the IoT
device middleware.

During a remote management session, the applet shall respond to the IoT device
middleware with an error if a credential used for the requested operation is in the process
of being updated.

The applet shall make it possible for the device to know that a remote management
session has completed.

3.2.4 IoT Security Service

Functional Requirements for the IoT Security Service (Solution 1)

L1 The IoT Security service shall provide the IoT client application credentials to the IoT

service middleware to allow (D)TLS communication.

L2 The IoT Security service shall be able to securely set up credentials within the IoT

security applet.

L3 When setting up asymmetric credentials the IoT security service may use the services

of a certificate authority.

L4 The IoT Security service shall be able to securely manage the lifecycle of the client

and server credentials within the IoT security applet.

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 29 of 53

L5 The IoT Security service shall be provisioned with all necessary credentials that have

been provisioned into the IoT security applet at the factory.

L6 The IoT Security service shall securely communicate with the IoT security applet over

the air

L7 The IoT Security service shall know the UICC identifier associated with the IoT security

applet.

L8 The IoT Security service shall provide a secure interface to the IoT server middleware.

L9 The IoT Security service shall know the IoT service provider associated with the IoT

security applet.

L10 The IoT Security service shall provision the server certificate to the IoT security applet.

L11 The IoT Security service may be able to act as a registration authority to request a

certificate from a certificate authority (CA).

3.2.5 IoT Server Middleware

Functional Requirements for the IoT Server Middleware (Solution 1)

M1
The IoT server middleware will enable the IoT server application to perform the security
procedures defined in section 3.3 of this document (for example performing a (D)TLS
connection establishment handshake).

M2
The IoT server middleware will manage the public and private credentials associated
with the IoT server application and the public credentials associated with the IoT client
application.

M3
The IoT server middleware uses the IoT security service to manage the IoT service
provider’s credentials within the IoT security applet.

M4
If initiating or renewing PKI credentials the IoT server middleware may use the services
of a certificate authority, by acting as a registration authority.

M5
The IoT server middleware has an interface to the IoT security service.

M6 The IoT server middleware may provide an interface to the IoT security service to
receive a certificate from a certification authority connected to IoT server middleware.

3.2.6 IoT Server Application

Functional Requirements for the IoT Server Application (Solution 1)

N1
The IoT server application uses the security services provided by the IoT server
middleware to manage (D)TLS connections.

N2
The IoT server application shall have an interface to the IoT server middleware.

3.3 Interface Description

3.3.1 IoT Device Middleware <-> IoT Security Applet Interface (Normative)

The IoT device middleware to IoT security applet interface (interface 2) is defined in the

GSMA document IOT.05 [15]

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 30 of 53

3.3.2 IoT Server Middleware <-> IoT Security Service Interface (Informative)

Interface 4, which represents the relationship between the IoT security service and the IoT

server middleware, comprises a set of REST APIs representing groups of services provided

by the IoT security service or IoT server middleware, as depicted below:

IoT Security

Service

IoT Server

Middleware

• Target Applet

Configuration Service

• Card Provisioning

Service

• Credential Mgmt

Service

• Trust Store Service

• Credential

Establishment Service

• CA Certificate

Request Service

• Get PSK Data Service

Services offered by IoTSS and IoTSM

Figure 12: Depiction of IoT Server Middleware <-> IoT Security Service API

This section provides an informative description of the services to be provided on this

interface. A normative specification of the REST APIs and associated object models will be

provided in a future version of this document.

3.3.2.1 Services provided by IoT Security Service

The IoT security service provides the following services that may be used by the IoT server

middleware.

 Target Applet Configuration Service

This service defines operations to manage or view the Target Applet Configuration. A target

applet configuration depicts the contents and structure of a card in the field. It can also be

defined offline and provisioned to IoT security service after which it may be managed using

these services.

A target applet configuration can be overridden by a newer version of it, if compatible.

The target applet configuration service exposes the following APIs:

• Get Target Applet Configuration List: Request list of target applet configuration

associated to the account

• Get Target Applet Configuration: See target applet configuration information and its

assignment to card/group

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 31 of 53

• Delete Target Applet Configuration: Remove a target applet configuration that is not

assigned to any card/group

• Create Target Applet Configuration: Request to add a new target applet configuration

• Update Target Applet Configuration: General updating a target applet configuration is

not supported to avoid complex tracking of history however, it can be made

activate/inactive through this API.

• Apply Target Applet Configuration: Make a card ready with the target applet

configuration. Create structure inside applet according to the Target Applet

Configuration.

 Card Provisioning Service

The IoT security service provides this API to allow the IoT server middleware to maintain the

list of cards that it will manage through the IoT security service. This service is intended to

be used for establishing card ownership and providing information which will be used once

those associated cards come online or request credentials.

The ownership may be proven using any proprietary mechanism agreed between the IoT

security service and the IoT card owner. IoT security service upon receiving and validating

such information will associate these cards to the IoT server application and will perform

lifecycle operations accordingly.

Deleting a card or multiple cards mean the IoT card owner no longer wants to manage those

cards using the IoT security service. The IoT security service may then delete all records

and remove them from a managed cards list as per its procedures and policies.

All the card operations are performed on a card group.

A card group is assigned a target applet configuration which in turn is valid for each card in

the group. The IoT security service uses this information to manage cards accordingly. For

example, it uses this information to generate credentials when a client is connected and

requests for it using the label or identifier.

The following operations are supported:

• Get Card Group List: See list of card groups that have been defined for this account

• Get Card Group: See list of cards assigned to a certain group and group properties

like target applet configuration

• Delete Card Group: Remove a card group which doesn’t have any cards assigned.

• Create Card Group: Request to add a new card group

• Update Card Group: Update a card group with updated list of cards and properties.

This includes associating or un-associating target applet configuration to the group

 Credential Management Service

This service is used to manage credentials in the IoT security applet. The service may be

called directly without first calling the card provisioning service. In such case, implementation

will require establishing ownership of cards as well.

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 32 of 53

The credential services list has operations defined for creating new credential as well. This

service is used for a situation where IoT server middleware is responsible to proactively

create credentials instead of the IoT security service getting triggers from elsewhere.

The following operations are supported:

• Create Card Credential – request symmetric or asymmetric credential from device

• Request CSR – request certificate signing request based on an asymmetric

credential

• Request Credential Status – return transaction status

• Update Card Credential – update credential e.g. block/unblock, can also be used for

updating externally generated certificate

• Remove Card Credential – remove credential from server and optionally also from

client if accessible

• Get Card Credential – this can be used for already set up credential

• Get Card Credentials – return list of credentials in a card

 Trust Store Service

This service is used to manage all trusted data inside the IoT security applet. The IoT server

application can use these services to manage the IoT security applet trust store directly or by

using an IoT server middleware.

This service is used by an IoT server middleware to store the server certificate, other

security data or device configuration settings.

 Supported Operations

The following operations are supported:

• Get Trust Store Data List: See list of all data stored in applet trust store. This could be

filtered by a query parameter

• Get Trust Store Data: See a data stored in applet trust store using identifier. This

could be filtered by a query parameter

• Delete Trust Store Data: Remove a data entry from applet trust store

• Add Trust Store Data: Request to add new data in applet trust store

• Update Trust Store Data: Modify data in applet trust store

• Get Transaction Status: Get status of earlier requested operation for applet trust store

data i.e. Delete, Add, Update operations

3.3.2.2 Services provided by IoT server middleware

The IoT server middleware provides the following services that may be used by the IoT

security service.

 Credential Establishment Service

This service is used to communicate client credentials in the field and associated information

(such as a device identifier and/or ICCID/EID) to the IoT server application (or IoT server

middleware) by the IoT security service. A credential represents a key on the IoT security

applet, either an X.509 certificate corresponding to a private key or a symmetric key.

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 33 of 53

The IoT security service invokes this API to inform the IoT server middleware of the creation,

update, and deletion of client credentials. In addition, the IoT security service may query the

IoT server middleware about the existence of supporting information for a credential.

When an IoT solution provider orders UICCs from a mobile network operator (or indirectly

through a reseller), the order is fulfilled through the physical delivery of UICCs and the

corresponding delivery of the credentials (symmetric or PKI) that may have been provisioned

during UICC manufacturing. This information may be configured in the IoT server

middleware in one of two ways:

1. The mobile network operator may provide the credentials in some offline form (e.g., a

file) to the IoT server application. In such a case, this service is not invoked online by

the IoT security service. Instead, the IoT server application (or an administrator who

operates the IoT solution) would invoke this API to configure these credentials.

2. As part of the fulfilment of the purchase by the mobile network operator, an instance

of the IoT security service offered by the mobile network operator may be associated

to an instance of the IoT server middleware. The IoT security service would then invoke

this API to configure the credentials in the IoT server middleware. It may also invoke

this API to report changes to the credential (update, removal) at later points in its

lifetime.

The following operations are supported:

• Add/Get/Update/Delete Device Group: Manage a collection of devices/cards

associated with an IoT application

• Add/Get/Update/Delete Device Record: Manage an individual card/device with a

device group and its credential(s) (asymmetric or PSK)

• Add/Get/Update/Delete Group Record: Manage a group of cards/devices with related

credentials (e.g., same signing CA for all certs)

 CA Certificate Request Service

This service provides a means for the IoT security service to send certificate signing

requests through the IoT server middleware to its certificate authority (i.e., when the

certificate authority is connected to the IoT server middleware through interface 6 rather than

to the IoT security service through interface 7). The following operation is supported:

• Get Certificate: A Request certificate based on CSR generated by the client

 Get PSK Data Service

This service provides a means for the IoT security service to obtain a pre-shared key value

from the IoT server middleware for provisioning a specified PSK key within one of the

managed cards. The following operation is supported:

• Get PSK Data: service to request PSK from IoT server middleware

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 34 of 53

4 Solution 2 – Use of GBA

The authentication infrastructure of mobile network operators, including the 3GPP

Authentication Centre (AuC), the USIM or the ISIM, and the 3GPP AKA protocol run

between them, is a valuable asset for mobile network operators. It not only ensures the

mutual authentication between subscribers and the mobile network, but could be leveraged

to enable third party application providers to authenticate their users, as well as establish

shared keys between them to securely communicate. With this infrastructure, 3GPP has

defined GBA (Generic Bootstrapping Architecture) [16], providing the bootstrapping of

application security

4.1 Solution Architecture

The diagram below defines the general functional architecture required to support the GBA

solution.

At the network side, BSF (Bootstrapping Server Function) is a network element under the

control of a mobile network operator, which is defined in 3GPP TS 33.220 [16]. BSF and IoT

device middleware mutually authenticate each other based on the 3GPP AKA protocol,

afterwards the BSF generates a session key that is applied between the IoT client

application and IoT Application Server. The IoT Application Server is the network element

using GBA to set up secure communication tunnels between the IoT client and the server,

which is defined as NAF (Network Application Function) in 3GPP TS 33.220 [16]. After the

bootstrapping has been completed, the IoT client application and IoT Application Server run

an application specific protocol based on those session keys generated in the GBA

procedure. The HSS is a mobile network operator’s network element defined in [16], which

stores the set of all user security settings used in GBA.

IoT Application
Server/NAF

IoT device
middleware

SIM

IoT client
application

Out of Scope

Interface in Scope

Io
T

 D
e
v
ic

e
 O

E
M

Io
T

 S
e
rv

ic
e

P
ro

v
id

e
r

1

2

5

BSF

S
IM

 v
e
n
d
o
r

M
N

O

HSS

3

4

6

Figure 13: Architecture Diagram for Solution 2 (GBA)

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 35 of 53

The architecture shows the following interfaces:

4.1.1 IoT Client Application <> IoT device middleware (In-scope)

This interface allows the transmission of a session key generated in SIM (GBA_U) or IoT

device middleware (GBA_ME) to an upper layer IoT client application, for the future use of

secure tunnel establishment between the IoT client application and an IoT application server.

This interface could be seen as a multivendor interface as the developers of IoT applications

are assumed to be different from IoT device vendors, thus it has to be defined to ensure

multivendor interoperability. Besides, there are also many different IoT device middleware

vendors and different OS vendors running IoT applications, thus this interface is in scope

and it is essential that IoT device middleware vendors can provide a common API for IoT

applications.

4.1.2 IoT Device Middleware<>SIM (Out of Scope)

IoT device middleware uses the APDU protocol to forward parameters for AKA protocol to

SIM via this interface. This interface is specified by ISO (APDU protocol), as well as by

3GPP (interface between UICC and ME), thus this interface is out of scope of this document.

4.1.3 IoT Device Middleware<>BSF (Out of Scope)

The interface enables GBA bootstrapping procedure, triggering mutual authentication

between IoT device and the network. Since this interface is the same as the Ub interface

defined by 3GPP [16], it is out of scope of this document.

4.1.4 IoT Client Application <>IoT Application Server/NAF (Out of Scope)

IoT Client Application initiates the bootstrapping procedure using this interface and also

triggers the IoT Application Server/NAF to fetch session keys from BSF. This interface is

specified as Ua interface in 3GPP [16], thus it is out of scope.

4.1.5 BSF <> IoT Application Server/NAF (Out of Scope)

This interface is used for NAF to fetch session keys from BSF, in order to further provide a

third party application server with these session keys generated by a mobile network

operator. Since this interface is specified in 3GPP [16] as Zn, it is out of scope of this

document.

4.1.6 BSF <>HSS (Out of Scope)

This interface is used for BSF to fetch authentication vectors from the HSS to accomplish the

authentication procedure. This interface is specified in 3GPP [16] as Zh, therefore it is out of

scope of this document.

4.2 Functional Description

Detailed functional descriptions and requirements of BSF, IoT Application Server (NAF),

HSS, as well as SIM are documented in 3GPP TS 33.220, where both GBA_U and GBA_ME

mechanisms are included. The IoT device middleware and the IoT client application are

together deemed as ME by 3GPP, however, they are separate blocks in this document, in

order to provide multivendor interoperability. The following subsections detail the functional

descriptions of the IoT device middleware and the IoT client application.

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 36 of 53

4.2.1 IoT Device Middleware

Functional Requirements for the IoT Device Middleware (Solution 2)

A1 The IoT device middleware shall support the GBA bootstrapping procedure, involving

mutual authentication with a BSF and generation of a session key Ks. In case of

GBA_U the generation and storage of Ks is handled by the SIM, and in case of

GBA_ME the generation and storage of Ks is handled by IoT device middleware.

A2 If GBA_ME is used, the IoT device middleware shall derive the key Ks_NAF from Ks

as specified in 4.5.2[1] and pass Ks_NAF to the IoT client application.

A3 IoT device middleware shall be able to derive more than one Ks_NAF from one Ks in

order to use them towards different IoT applications servers when required.

A4 If GBA_U is used, IoT device middleware shall transmit Ks_ext_NAF from the SIM to

the IoT client application.

A5 IoT device middleware shall delete all GBA related keys and corresponding

information when conditions in 4.4.11in 3GPP TS 33.220[16] are met.

4.2.2 IoT Client Application

Functional Requirements for the IoT Client Application (Solution 2)

B1 IoT client application shall interact with the IoT Application Server / NAF to agree

whether to use shared keys obtained by means of the GBA

B2 Once the IoT client application and the IoT Application Server / NAF have established

that they want to use GBA then every time the IoT client application wants to interact

with the IoT Application Server /NAF, it follows the steps of using the bootstrapped

security association procedure of GBA.

B3 IoT client application uses Ks_(ext)NAF to set up a secure tunnel between IoT device

and IoT application server after the bootstrapping security association procedure of

GBA.

B4 IoT client application shall delete all GBA related keys and corresponding information

when conditions in 4.4.11in 3GPP TS 33.220[16] are met.

4.3 Procedures

4.3.1 General Procedures of GBA

The detailed procedure of GBA follows 3GPP TS 33.220 [16]. This document gives an

outline of the general 3-step procedure of GBA, specifically highlighting the division of IoT

device middleware and IoT client application on the terminal side, as well as interactions

between them, which are not specified by 3GPP.

4.3.2 Initiation of Bootstrapping

Before communication between the IoT client application and the IoT Application Server can

start, they first have to agree whether to use GBA. When an IoT client application wants to

interact with the IoT Application Server, but it does not know if the IoT Application Server

requires the use of shared keys obtained by means of the GBA, the IoT client application

may contact the IoT Application Server for further instructions.

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 37 of 53

NAF/IoT Application
Server

IoT client
application

1. Request

2. Bootstrapping initiation required

Figure 14: Initiation of Bootstrapping

1. The IoT client application starts communication with the IoT Application Server without

any GBA-related parameters.

2. If the IoT Application Server requires the use of shared keys obtained by means of the

GBA, it replies with a bootstrapping initiation message.

4.3.3 Bootstrapping Procedure

When an IoT client application wants to interact with an IoT Application Server, and it knows

that the bootstrapping procedure is needed, it shall first perform a bootstrapping

authentication. The IoT client application notifies the IoT device middleware to trigger the

bootstrapping procedure.

BSF

IoT device
middleware

1. Request (user identity)

3. 401 Unauthorized

WWW -Authenticate:

Digest (RAND, AUTN delivered)

HSS

2. BSF retrieves AV

SIM

5. RES 6. Request Authorization:

Digest

7. Check RES, Ks=CK

||IK

8. 200OK (B-TID, Key

lifetime)

9. Storage of Ks and B-TID for later use;

GBA_U: Ks stored in SIM

GBA_ME: Ks stored in IoT device

middleware

4. RAND,AUTN

Figure 15: Bootstrapping Procedure

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 38 of 53

1. IoT device middleware sends an HTTP request towards the BSF.

2. The BSF retrieves the complete set of GBA user security settings and one

Authentication Vector (AV, AV = RAND||AUTN||XRES||CK||IK) from the HSS.

3. BSF forwards the RAND and AUTN to the IoT device middleware in HTTP 401

message (without the CK, IK and XRES).

4. The IoT device middleware forwards RAND and AUTN to the SIM, via APDU based

protocol.

5. The SIM checks AUTN to verify that the challenge is from an authorised network, then

calculates CK, IK and RES. In the case of GBA_U the SIM stores Ks, which is the

concatenation of CK and IK. In the case of GBA_ME, CK and IK are delivered to the

IoT device middleware that calculates Ks. The SIM returns RES to the IoT device

middleware.

6. The IoT device middleware sends another HTTP request, containing the Digest AKA

response to the BSF.

7. The BSF authenticates the IoT device middleware by verifying the Digest AKA

response. In order to bind the subscriber identity to the keying material, a bootstrapping

transaction identifier (B-TID) is also generated by BSF.

8. BSF sends a 200 OK message, including a B-TID, to the IoT device middleware to

indicate the success of the authentication. In addition, in the 200 OK message, the BSF

shall supply the lifetime of the key Ks.

9. After receiving 200 OK from the BSF B-TID is stored with the Ks for later use. In case

of GBA_ME the IoT device middleware handles the storage. In case of GBA_U, the IoT

device middleware sends a message to notify the SIM.

4.3.4 Procedure Using the Bootstrapped Security Association
Before the communication between the IoT client application and the IoT Application

Server/NAF can start, the IoT client application and the IoT Application Server/NAF first have

to agree whether to use shared keys obtained by means of GBA. If the IoT client application

does not know whether to use GBA with this IoT Application Server/NAF, it uses the

Initiation of Bootstrapping procedure described in clause 4.3.2.

Once the IoT client application and the IoT Application Server/NAF have established that

they want to use GBA then every time the IoT client application wants to interact with a IoT

Application Server/NAF the following steps are executed.

In GBA_U case, the IoT client application and the IoT Application Server/NAF have to agree,

which type of keys to use, Ks_ext_NAF or Ks_int_NAF, or both. The selection of keys and

detailed key derivation can be referred in 3GPP TS 33.220 [16]. If used the Ks_ext _NAF is

sent to the IoT client application. In GBA_ME case, the Ks_NAF is provided to the IoT client

application when available. The following steps are specified in clause 4.5.3/5.3.3 in 3GPP

TS 33.220 [16].

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 39 of 53

NAF/IoT
Application Server

IoT device
middleware

GBA_U case: Ks_ext_NAF

BSFSIM

IoT client
application

Follows procedures of 4.5.3(GBA_ME) or
5.3.3(GBA_U) in 3GPP TS 33.220 [1]

GBA_ME case:
Ks_NAF

Figure 16: Bootstrapping Usage Procedure

Once the bootstrapping usage procedure is completed, the purpose of bootstrapping is

fulfilled as it enabled the IoT client application and IoT Application Server/NAF to securely

communicate. The IoT client application can start the communication with the IoT Application

Server/NAF using the keys Ks_(ext/int)_NAF, as required.

4.4 Interface Description

4.4.1 IoT Client Application <-> IoT Device Middleware

This interface is used to parse Ks_(ext/int)_NAF and corresponding parameters from IoT

device middleware to the IoT client application. When the IoT client application invokes the

GBA functionality in the SIM via the IoT device middleware, this interface can be achieved

using AT commands or any other protocols.

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 40 of 53

Annex A Example of Alternate Solution Architecture (Informative)

The use cases described within this document assume the use of a typical PKI backend

architecture, such as the architecture described within the OASIS document “PKI Basics - a

Technical Perspective” [20].

Alternate backend architectures could be considered and are described in this informative

annex.

A.1 Example Blockchain Back End Architecture

According to the same principles described in the document, an additional backend

architecture could be implemented to provide secure services (e.g. data encryption, digital

signature etc.) for IoT based on a Blockchain concept. This alternative solution leverages the

same requirements for the SIM/device interfaces and could be a different implementation

with the same level of security compared to a traditional PKI as end to end encryption is

provided and the Blockchain is the reference to store and retrieve the keys of the solution. In

some conditions, the Blockchain could be adopted for the notarization of collected data from

the remote sensors.

Figure 17: Example of Blockchain Back-end Architecture

In order to understand the components of the solution we can refer to Figure 18 below,

where the whole system architecture is provided.

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 41 of 53

Figure 18: Example System Architecture

Two different domains are highlighted:

• The “3rd Party IoT Service Provider domain”, comprising e.g. Service Provider’s

remote systems used to analyze collected IoT data and the Service Provider’s

security infrastructure.

• The “Mobile Network Operator Domain”, comprising IoT Service Platform and

Service Provisioning front end. This domain includes also the device with the SIM as

the remote component of the service where data are collected/encrypted and

transmitted towards the Service Provider’s domain in a secure mode.

A Blockchain is used to share trusted public keys. The trust of public keys could be assured

e.g. by creating one X.509 certificate for each domain, “3rd Party IoT Service Provider” and

“Mobile Network Operator”, and using it to sign public keys data before storing them in

blockchain (in such way, the signature assures that a specific public key was published by a

specific domain owner).

We can explore provisioning phase starting from the Secure IoT Service Provisioning

front end which could be a web app able to collect all data required during service

provisioning on a new SIM card or for update key material in SIM card or blockchain. The

front end app provides inputs for the IoT Service Platform (which is composed by the

Secure Service Provisioning Platform and the OTA SIM Management Platform).

Service Provisioning Platform starts the provisioning and update processes: it provides a

commands sequence to the OTA SIM Management Platform and interfaces with the

blockchain for public key management, while the OTA SIM management platform performs

Remote Applet Management, Remote File Management and provides support and API for

binary SM-MT / SM-MO management.

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 42 of 53

Service Provisioning Platform and the OTA SIM Management Platform, are both involved in

key material initialization and distribution in the whole system.

• Service Provisioning Platform provides API to Service Front End in order to acquire

both information about SIM card to be provisioned and the User’s Public Key.

• OTA Platform is the means to securely interact with SIM-Cert Applet. Via the OTA

Platform, the Service Provisioning Platform can send User’s Public Key to target SIM

Card, invoke On Board Key Generation procedure and get the Device’s Public Key.

The IoT device (which could be enabled with different sensors) shall be equipped with the

target SIM card.

The SIM is the trusted core of the solution as it will contain the IoT security applet, as

described in the normative sections of this document, with computing cryptographic

mechanisms able to encrypt or sign, depending upon service requirements, the data

collected by the device itself.

The IoT security applet provides the following features:

• Generation of Cryptographic Key Pair for digital signature service and Export of

Public Key component

• Import of Third Party’s Public Key, to be used for data encryption

• Encrypting of IoT device data

• Digital signature of IoT device data

The final IoT App will run on the IoT device’s application processor (e.g. collecting data) and

call the SIM applet cryptographic API (i.e. a library used to simplify the interaction with the

cryptographic applet on the SIM card) before sending secured data to the Service Provider’s

IoT System.

In the Service Provider Domain, a Key Secure Storage system, which securely manages the

Service Provider’s private keys, should be included. It could be realized using a Hardware

Security Module (HSM), enhanced with blockchain connection for public keys management.

The Blockchain implementation could have different purposes and it is linked to the

commercial choices:

• public keys management: to allow the exchange of secure keys for the solution

• IoT data storage for the notarization of collected data where required

The entire solution has the following mandatory requirements which are already part of this

document:

• SIM Applet shall be installed and used on SIM card equipped with ECC cryptographic

accelerators as described in section 3.2.3.1

• Modem integrated in the IoT device shall provide support for an API (for example the

AT+CSIM command – see Annex B) and Card Application Toolkit.

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 43 of 53

Annex B Example of Device <-> Applet Interface Implementations

(Informative)

B.1 Platform Security Architecture (PSA) APIs

The PSA Cryptographic API (Crypto API) [19] provides an interface to modern cryptographic

primitives on resource-constrained devices. The interface is user-friendly, while still providing

access to the primitives used in modern cryptography. It does not require that the user have

access to the key material. Instead, it uses opaque key handles.

The interface is scalable and modular in line with application requirements expressed in

section 3.2.2 and for providing a consistent way of addressing the applications as specified

in section 3.2.3.

PSA’s modularity is such that you should not pay for a functionality that you do not need.

You can choose between the applications described in section 3.2.3.1 and 3.2.3.2

depending on the targeted cloud infrastructure. Larger devices implement larger subsets of

the same interface, rather than different interfaces, thus implementing only the necessary

APIs required.

Because this specification is suitable for very constrained devices, including those where

memory is very limited, all operations on unbounded amounts of data allow multipart

processing, as long as the calculations on the data are performed in a streaming manner.

This means that the application does not need to store the whole message in its memory at

one time.

The interface does not expose the representation of keys which are securely stored in the

SIM and protects intermediate data, except when required for interchange. This allows

developers to choose optimal data representations.

The interface is designed to be as user-friendly as possible, given the aforementioned

constraints on suitability for various types of devices and on the freedom to choose

algorithms.

The API provides everything needed to establish TLS connections on the device side:

asymmetric key management inside a key store, symmetric ciphers, MAC, HMAC, message

digests, and AEAD.

Figure 19 demonstrates how an application can call the PSA APIs to leverage the crypto

functions supported by the applications specified in section 3.2.3.1 and 3.2.3.2 in an easy

way, abstracting the developer from all of the intermediate drivers, hardware layers and the

complexity of coding APDU commands.

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 44 of 53

Application

PSA user-facing API

PSA driver model

Embedded OS
Crypto

PSA driver adapter

hardware driver

RTOS

IoT Security Applet

OS specific parts

bus

Thin layer for PSA to hardware conversion

Full-featured hardware driver

Handles bus communication

Removed on ultra-constrained
devices

APDU interface

Figure 19: Leveraging PSA APIs to Access the IoT Security Applet

A full set of developer documentation on PSA and the relevant APIs are available online.

See reference [19].

B.2 AT Command Interface Examples

The vast majority of SIMs today are physically connected to the cellular baseband modem.

Although that may change in the future, currently the use of AT Commands tunnelled

through the modem is a common way for an IoT device to interact with the SIM.

The (D)TLS stack can be executed in several configurations within IoT devices, depending

on the type of device, the application requirements and designer needs. Two common cases

are envisaged, with sub-options:

Case A: The (D)TLS stack is executed inside the device. The (D)TLS stack can be:

1. A separate module, using some commercial, open source, or custom implementation.

This configuration may be chosen to reduce the development time, reuse an existing

tested and/or certified module, or for other reasons not relevant for this document.

We could refer to this configuration as a “full” middleware implementation.

2. A software module completely integrated into the IoT client application. This

configuration may be chosen to have a highly optimised software (size, performance),

or other specific needs not relevant for this document.

We could refer to this configuration as a “light” middleware implementation.

Case B: The (D)TLS stack is executed inside the cellular baseband modem. In such cases,

the IoT device can exploit the modem’s computing power, and a well-tested (D)TLS

implementation, reducing the computing burden on the rest of the IoT device.

Note: That in either case, the lower level stack will interact with the SIM and/or

modem using AT Commands, but for slightly different purposes:

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 45 of 53

• In Case A: the AT Commands allow direct access to the IoT security services offered

by the SIM. The interaction with the SIM services is essentially similar for A.1 and

A.2.

• In Case B: the AT Commands will be directed to the cellular baseband modem to

manage the (D)TLS connection, with the exception of some specific services that

must be addressed directly to the SIM (e.g. services not related to (D)TLS

management).

Cases A and B are shown diagrammatically below. For the sake of brevity we will refer

generically to “IoT device middleware” for both “full” and “light” middleware implementations,

as this does not affect the AT command behaviour.

IoT Device
Middleware

IoT Security
Applet

IoT client
application

1

2

Not managing the
(D)TLS sessions

Supporting AT
commands to

establish (D)TLS
sessions

Exchange APDUs

Modem
interface

IoT Device
Middleware

IoT Security
Applet

IoT client
application

1

2
Exchange APDUs

Managing the
(D)TLS sessions,

producing AT
commands to

interact with IoT
Security Applet

Modem
interface

Case A Case B

Figure 20: Example Configurations

In sections B.2.1 and B.2.2 we provide an example of the AT commands that might be used

for Case A and Case B.

B.2.1 AT Command Example for Case A: IoT client application and IoT device

middleware managing the (D)TLS session

In this scenario the IoT client application and IoT device middleware is able to manage the

(D)TLS protocol stack and so it uses the modem only as a proxy to reach the IoT security

applet.

3GPP TS 27.007 [17] AT commands exposed by the IoT Middleware can be used to

exchange APDUs between the IoT client application and the IoT security applet. For

example, in the “u-blox cellular modules AT commands manual” [18] you will find the

following commands described:

• For services that require a single APDU, the following commands can be used:

o 16.1: Generic SIM access +CSIM AT command

o 16.2: Restricted SIM access +CRSM AT command

http://0.0.0.18/

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 46 of 53

• For services that requires more than one APDU the logical channel commands can

be used:

o 16.8: Open logical channel +CCHO AT command

o 16.9: Close logical channel +CCHC AT command

o 16.10: Generic UICC logical channel access +CGLA AT command

o 16.11: Restricted UICC logical channel access +CRLA AT command

In the example of u-blox cellular modules, for +CSIM, +CRSM, +CGLA and +CRLA the max

length of the command is 255 characters and the max length for the response is 500 bytes.

Other examples can be found based on other cellular modules.

B.2.2 AT Command Example for Case B: IoT client application delegates the

(D)TLS session to the modem

In this scenario the IoT client application delegates the (D)TLS session management to the

cellular baseband modem with the purpose to create secure TCP sockets on which to

exchange data securely. AT commands can be used for that purpose. As this set of

commands is not fully standardised, please refer to the AT command list of the specific

modem for the technical details.

As an example, u-blox modems support this mode of operation, as described in “u-blox

cellular modules AT commands manual” [18]. There the following commands are described:

• 25.3: Create a TCP socket +USOCR AT command

• 25.4: TLS mode configuration +USOSEC AT command

• 26.1.2: TLS certificates and private keys manager +USECMNG AT command

• 26.1.3: TLS security layer profile manager +USECPRF AT command

• 25.9: Connect socket +USOCO AT command

• 25.10: Write socket data +USOWR AT command

• 25.12: Read socket data +USORD AT command

• 25.7: Close socket +USOCL AT command

In the example of u-blox cellular modules, the combination of settings defined in

+USECMNG and +USECPRF drives which APDUs will be exchanged between the IoT

device middleware and the IoT security applet when the +USOCO AT command is called

and so when the end to end TLS session has to established.

The DTLS session establishment can be managed in a similar way but with a different set of

AT commands.

http://0.0.0.18/

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 47 of 53

Annex C Scenario Examples Elaborated for Interface 4

(Informative)

C.1 Scenario 1 (UICC Manufactured with asymmetric keys generated at

personalisation step)

In this scenario, the applets and their initial credentials are installed during SIM

personalisation in the factory. This information is passed through an offline channel (such as

a file transfer) to the IoT solution provider (SmartCo), so there is no online interaction

between the IoT security service in this process. (The IoT security service may participate in

the applet configuration and creation of the offline/file data.) The communication of the

device credentials to the IoT server middleware may be performed using the interface 4 API

by an entity such as an administrator at SmartCo:

Figure 21: Realisation of Interface 4 for Scenario 1

The following sequence diagram illustrates how this could be accomplished. This is based

upon the sequence diagram for scenario 1 in section 2.1 with the following elaborations:

• A new actor called “CamCo” is added to represent the manufacturer of the devices (in

this case, security cameras) used by SmartCo, along with steps representing the

purchase of these devices

• The actor for SmartCo is represented by two entities: an “administrator” actor

representing the human(s) who perform the configuration steps at SmartCo and the

IoT server middleware used by the SmartCo solution.

• The flow distinguishes the units provided by SIMco to SmartCo (SIM cards) from the

devices SmartCo purchases from CamCo and sells through the Reseller to the

Customer.

• Step 10 is represented by three sub-steps

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 48 of 53

Figure 22: Scenario 1 Flow, Elaborated for Interface 4

Initially (steps 0.1 and 0.2) SmartCo purchases N devices (security cameras).

The ordering and personalisation of the SIMs (steps 1 through 7) proceeds as described in

[1].

At step 8, MobileComm delivers N SIM cards to SmartCo. In addition, at step 9 it delivers

information about those SIM cards, notably including the certificates they contain, to

SmartCo.

At step 10 SmartCo prepares the devices and provisions them in its server. Its devices may

be organised into one or more groups for administrative reasons. If the N new devices will be

part of a new group, then it creates the device group on the IoT server middleware (step

10.1).

SmartCo has received N devices at step 0.2, N SIM cards at step 8, and the information

about the certificates on those cards at step 9. For each of the N devices, a SIM card is

inserted into the device (step 10.2) and a device record is added to the IoT server

middleware that defines the relationship between the device and the certificate on its SIM

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 49 of 53

card (step 10.3). The IoT server middleware now has the information it requires to

authenticate each device when it performs the (D)TLS handshake at step 15.

The remainder of the steps proceed as described in section 2.1.

C.2 Scenario 2 (eUICC with on-board asymmetric key generation, signing

certificate)

In this scenario, eUICCs are installed in devices at the time the devices are manufactured,

but they do not contain operational profiles and security applets. Assuming it is an M2M

eUICC compliant with SGP.02, it does contain a profile for bootstrap purposes.1

The operational profile, security applet, and credentials are provisioned when the device is

first switched on. In order for MobileComm to prepare the eSIM profiles, it needs to know the

EIDs of all of the devices. In order for MobileComm’s IoT security service to provision the

security applets, an interface to EnergyCo’s IoT Service Middleware must be established,

including the EnergyCo’s certificate authority. Finally, in order to report the creation of

credentials on each device, the IoT security service needs to know the mapping between the

eUICC cards and the smart meter devices, i.e., it needs to know the EID and device

identifier of each device.

Figure 23: Realisation of Interface 4 for Scenario 2

The following sequence diagram illustrates how this could be accomplished. This is based

upon the sequence diagram for scenario 2 in section 2.2 with the following elaborations:

• The actor for MobileComm is represented by three entities: its HSS and other

network authentication infrastructure, its eUICC provisioning components (e.g., SM-

DP and SM-SR), and its IoT security service

1 An eUICC compliant with SGP.22 might contain a provisioning profile, or alternatively the device

might use some other method for bootstrap connectivity, such as Wi-Fi. Elaboration of those

alternatives is left as an exercise for the reader.

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 50 of 53

• The actor for EnergyCo is represented by two entities: an “administrator” actor

representing the human(s) who perform the configuration steps at EnergyCo and the

IoT server middleware used by the EnergyCo solution.

• The flow assumes that the units ordered from SIMco are eUICCs and distinguishes

the eUICCs and their associated unique eUICC identifiers (EIDs).

• A number of steps in [1] are further elaborated with sub-steps in this flow.

Figure 24: Scenario 2 Flow, Elaborated for Interface 4

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 51 of 53

Initially the relationship between EnergyCo and MobileComm is established, including the

establishment of interface 4 between MobileComm’s IoT security service and EnergyCo’s

IoT server middleware. This process includes the exchange of server FQDNs and

credentials for mutual authentication. In addition, it includes the certificate authority that the

IoT security service will use to sign all of MobileComm’s certificates.

At step 1, MeterCo orders N eUICCs from SIMco. These eUICCs contain a bootstrap profile

(assumed here to be for MobileComm), but do not contain operational profiles or security

applets. SIMco provides the eUICCs (step 2) to MeterCo and their bootstrap IMSI/K pairs to

MobileComm.

MeterCo solders each eUICC into a device (step 2.2) and provides N devices (each with a

soldered eUICC) to EnergyCo (step 3).

Depending upon how it organizes its device information, EnergyCo may wish to create a

new device group on its IoT server middleware or may simply add the new devices to an

existing group (step 3.1). EnergyCo creates a card group in the IoT security service,

specifying the Target Applet Configuration and the IoT server middleware device group to

which these cards are associated. It then provides information about each card in the group

(the card identifier, e.g., EID, and the associated device identifier).

Later, when a device is switched on for the first time, it attaches and authenticates to the

MobileComm network using the bootstrap eSIM profile (steps 4 and 5), which SIMco

provisioned during eUICC manufacturing. MobileComm provisions an operational profile

(step 6.1) to the eUICC and its IoT security service provisions a security applet within that

profile (step 6.2). IoT security service then configures security applet (step 6.3) as per the

Target Application Configuration defined in step 3.2. It generates required containers and

fills them with the fixed or initialization data as necessary.

At step 7, according to the Target Application Configuration for this card, the IoT security

service instructs the applet within the eUICC to generate a public/private key pair and

receives the public key in response (step 8). It creates a certificate signing request using this

public key (and perhaps other information such as the device identifier associated with this

EID) and sends the CSR to the certificate authority (step 9). (Depending upon the

configuration of interface 4, it may contact the certificate authority directly or may request the

CSR through the IoT server middleware.) The CA creates the signed certificate and returns it

to the IoT security service (step 10).

After receiving the client certificate, the IoT security service adds a device record on the IoT

server middleware that defines the relationship between the certificate and the device

identifier (step 10.1). It also installs both the signing certificate and the individual device

certificate in the security applet on the eUICC (step 11).

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 52 of 53

Annex D Plant UML Files for Scenario Sequence Diagrams

This annex contains the Plant UML files for the sequence diagrams found in this document.

D.1 Plant UML Files for the Section 2 Sequence Diagrams.

Scenario 5.txt Scenario 4.txt Scenario 3.txt Scenario 2.txt Scenario 1.txt

D.2 Plant UML Files for the Annex C Sequence Diagrams

This section contains the UML for the sequence diagrams found in section 2 of this

document.

scenario1.puml scenario2.puml

GSM Association Non-confidential

Official Document IoT.04 - Common Implementation Guide to Using the SIM as a ‘Root of Trust’ to

Secure IoT Applications

V1.0 Page 53 of 53

Annex E Document Management

E.1 Document History

Version Date Brief Description of

Change

Approval

Authority

Editor /

Company

V1.0

3rd

December

2019

Version 1 of the document. Technology Group
Ian Smith,

GSMA

4.5 Other Information

Type Description

Document Owner GSMA IoT Programme

Editor / Company Ian Smith, GSMA

It is our intention to provide a quality product for your use. If you find any errors or omissions,

please contact us with your comments. You may notify us at prd@gsma.com

Your comments or suggestions & questions are always welcome.

mailto:prd@gsma.com

