# **ERGY** POWER SYSTEMS

The ESP5 Vanadium Redox Flow Battery

GSMA / GPM Workshop Dar Es Salaam, 13<sup>th</sup> August 2014

24th June 2014

## What can Vanadium Redox offer the Telecoms market? **IMERGY** POWER SYSTEMS

Vanadium Redox Energy Storage Systems offer hybrid power and CDC solutions for installations where grid power is either unreliable or not available.

It is a compelling alternative to either lead acid or Li-ion battery technologies to optimise OPEX and TCO savings



## **Imergy Company Overview**

- Privately held developer of Redox Flow Batteries and **Energy Storage solutions** 
  - Based in Silicon Valley, Founded in 2006
  - 89 staff in USA and India  $\succ$
- World class, proven, executive leadership team with global >experience at Fortune 500 companies
- Storage systems from 2.5kW to 10MW >
- General deployment to support 2-10 hours of full load  $\succ$
- Commercial kW class product sales in India and Africa with over 100 years field operating experience
- Cost-down and go-to-market strategy, leveraging the  $\succ$ partnership approach. Product guality and cost focus
- Extensive IP portfolio and know-how with 20 patents  $\succ$

Imergy Confidential - No Redistribution or Reproduction Permitted © 2014 Imergy Power Systems, Inc.



3



## 1. Telecoms Power

## **Telecom Applications**

There are two distinct opportunities where IMERGY's Energy Storage Platform reinforces an OPEX reduction strategy by maximising fuel reduction and optimising energy efficient systems:

- Off Grid Sites, firming power from DG, Solar and Wind Power Sources
- Weak Grid Sites, as the primary back-up power solution





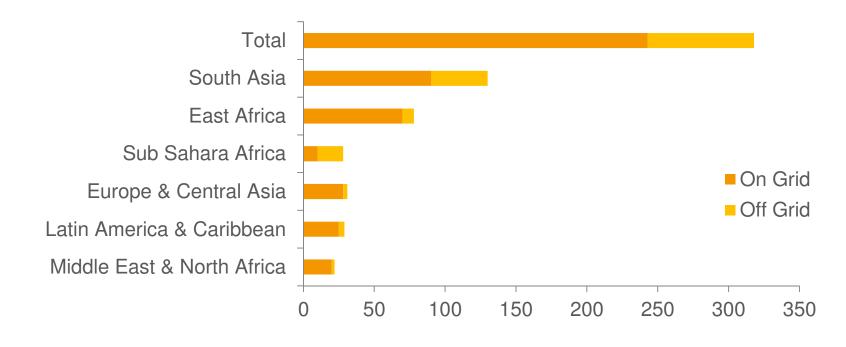
## **OPEX Increasing**

Many new base stations, particularly in developing nations, are not be able to connect to a reliable electricity grid and rely on generator and solar power

Costs of extending the grid to power off-grid base stations can be enormous, the operator must usually pay for the grid extension

Diesel generators are the preferred off-grid power source, however...

- Costly to run, ~ \$45k per year O&M for a 5kW site
- Remote maintenance is difficult and expensive
- > USD diesel prices are escalating with respect to local currency
- > Political uncertainty destabilising oil prices
- Many legacy off grid sites now have ROI over 10 years
- Small number of off grid sites accounts for large proportion of OPEX






## Solutions for Operators with "Off Grid" Sites

IMERGY POWER SYSTEMS

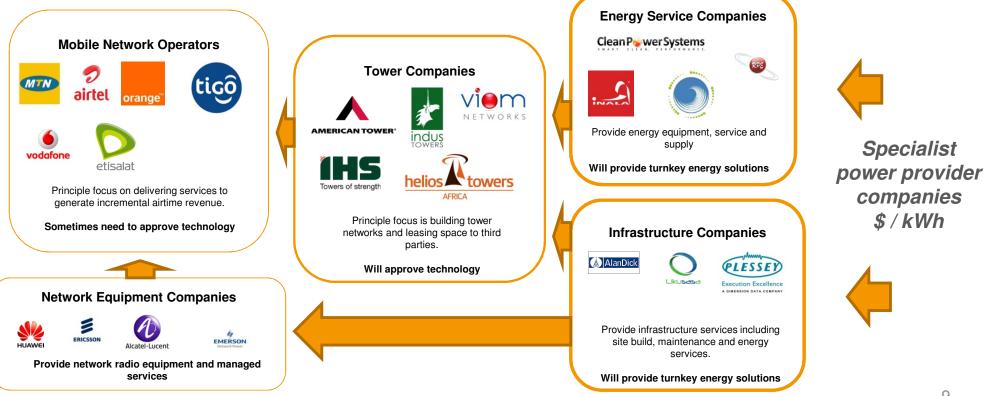
An estimated 75,000 new off-grid sites out of a total of 300,000 sites, will be built <u>each year</u> in developing countries from 2013 (GSMA)



Number of New Build Sites (,000)

## **Countries with "Weak Grids"**

**IMERGY**POWER SYSTEMS

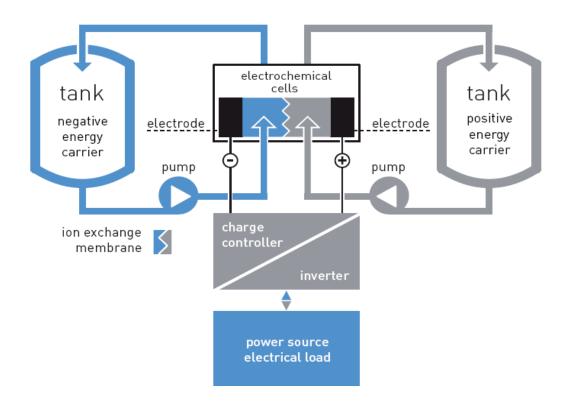

| Economy                         | Number of electrical<br>outages in a typical<br>month | Duration of a typical<br>electrical outage<br>(hours) | Average Outage per<br>Day (hours) | Percent of firms owning or sharing a generator | Proportion of electricity from<br>a generator (%) |
|---------------------------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------|------------------------------------------------|---------------------------------------------------|
| Iraq (2011)                     | 41                                                    | 41.9                                                  | 18.6                              | 80.9                                           | 41.2                                              |
| Congo, Rep. (2009)              | 21.5                                                  | 29.6                                                  | 14.2                              | 89.6                                           | 48.1                                              |
| Central African Republic (2011) | 29                                                    | 7.2                                                   | 6.8                               | 86.1                                           | 13.4                                              |
| Guinea (2006)                   | 31.5                                                  | 6.3                                                   | 6.5                               | 59.9                                           | 35.4                                              |
| Nigeria (2007)                  | 25.2                                                  | 7.8                                                   | 6.4                               | 85.6                                           | 52.1                                              |
| Chad (2009)                     | 19.6                                                  | 7.5                                                   | 4.8                               | 75.5                                           | 52                                                |
| Congo, Dem. Rep. (2010)         | 20                                                    | 6.7                                                   | 4.4                               | 41.6                                           | 9.4                                               |
| Gambia, The (2006)              | 21                                                    | 6.1                                                   | 4.2                               | 63.9                                           | 20.7                                              |
| Afghanistan (2008)              | 15                                                    | 8.4                                                   | 4.1                               | 71.1                                           | 50.5                                              |
| Albania (2007)                  | 33.9                                                  | 3.6                                                   | 4.0                               | 81                                             | 21.5                                              |
| Sierra Leone (2009)             | 13.7                                                  | 8.8                                                   | 4.0                               | 69.7                                           | 25.5                                              |
| Uganda (2006)                   | 10.7                                                  | 9.7                                                   | 3.4                               | 28.9                                           | 8.9                                               |
| Burundi (2006)                  | 10.7                                                  | 9.1                                                   | 3.2                               | 41.9                                           | 10.7                                              |
| Kosovo (2009)                   | 39.1                                                  | 2                                                     | 2.6                               | 88.7                                           | 15                                                |
| Senegal (2007)                  | 11.5                                                  | 6.1                                                   | 2.3                               | 55.4                                           | 13.5                                              |
| Pakistan (2007)                 | 31.7                                                  | 2.1                                                   | 2.2                               | 20.1                                           | 6                                                 |
| Bangladesh (2013)               | 64.5                                                  | 0.9                                                   | 2.2                               | 62.9                                           | 14.2                                              |

#### Use energy storage technology as the primary back-up for power outages rather than diesel generators

## **African Telecoms Power Infrastructure**

IMERGY POWER SYSTEMS

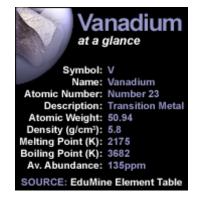
*In developing market, telecoms operators are outsourcing passive network infrastructure build and management to Tower Companies, who in turn outsource power provision to specialist companies.* 




# **ERGY** POWER SYSTEMS

# 2. Flow Battery Storage Technology

## Flow Battery Energy Storage Technology


## IMERGY POWER SYSTEMS



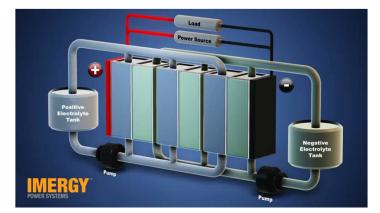
- A Flow Battery is an energy storage device where power and energy are independent
- Power is derived from "Electrochemical Cells" or "Cell Stacks"
- Electrolyte held in separate tanks stores the Energy
- Pumps circulate electrolyte through the Cell Stacks which converts electrochemical energy into electricity. And vice versa.
- Control system manage the electrolyte circulation
- Flow battery technologies are mainly distinguished by electrolyte composition
  - Vanadium Redox
  - Fe Cr
  - Zn Br

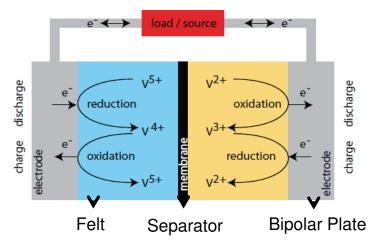
## Why Vanadium? The "Miracle Metal"...

**IMERGY** POWER SYSTEMS








- Used primarily for steel hardening
- · Widely available in large quantities.
- Mined naturally as an ore. Also recovered from steelmaking slag, and coal or oil combustion exhaust ash.
- · Vanadium based electrolyte
  - Does not burn, operates cold and is a non-poisonous fluid per UN regulations. No permitting issues.
  - Completely reusable
  - Low incremental cost for additional hours of storage
- Comes in four charge states: V<sup>+2</sup>, V<sup>+3</sup>, V<sup>+4</sup>, V<sup>+5</sup>. No cross contamination for flow batteries
- Using <u>only</u> Vanadium in the electrolyte has competitive advantages in terms of operating cost, system life, maintenance, and safety.

## Vanadium Redox Energy Storage Technology

IMERGY POWER SYSTEMS





Imergy Confidential - No Redistribution or Reproduction Permitted © 2014 Imergy Power Systems, Inc.

#### Robust

- Unlimited cycles: at any state of charge
- Long system life: 10+ years
- Operates up to 50 °C
- Scalable
  - Power & Energy decoupled
  - From minutes to 10+ hours storage
- Lowest levelised cost of energy storage
  - Electrolyte lasts over 25 years
  - Vanadium extracted from mining waste product, slag
  - Imergy ESP uses separator, not an expensive membrane
  - <\$500/kWh system cost achievable within 3 years</p>
- Integrated
  - Self contained power electronics, remote monitoring control and energy management system
- Strong IP
  - 20 issued and allowed patents

## **New kW Class ESP5 Product with Flextronics**

**IMERGY**POWER SYSTEMS



#### **IMERGY ESP-SERIES SYSTEM SPECIFICATIONS**

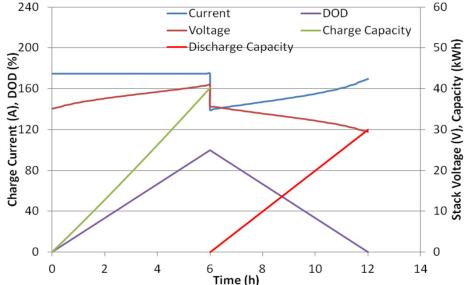
| Output Power                     | 5 kW (option 2.5kW) (peak 7kW)                                               |
|----------------------------------|------------------------------------------------------------------------------|
| Energy Capacity                  | 10/15/20/25/30 kWh                                                           |
| Cycle Life                       | Unlimited or 10 + years                                                      |
| Discharge : Charge Ratio         | Up to 1 : 1                                                                  |
| Ambient Temperature Range        | -5°C to +50°C                                                                |
| Charge Voltage Range             | 54.5 VDC ±1.5 VDC                                                            |
| Output Voltage Range             | 49.5 VDC ±1.5 VDC                                                            |
| Duty Cycle                       | Continuous                                                                   |
| DC Efficiency                    | 75% (RTE)                                                                    |
| Monitoring                       | Integrated Comm System (ICS), SMS, GPRS,<br>USB, Optional MODBUS over TCP/IP |
| Maintenance                      | Preemptive via ICS – one site visit/year                                     |
|                                  |                                                                              |
| Physical Dimensions              |                                                                              |
| Footprint                        | 2.7 m2                                                                       |
| Dimensions (W x D x H)           | 2.20 x 1.22 x 2.15 m                                                         |
| Shipping Weight                  | 770 kg                                                                       |
| Total System Weight              | 1800-3000 kg                                                                 |
| Certification                    | IP55                                                                         |
| 5 Year Warranty, 10 Year Extende | d Warranty available                                                         |
|                                  |                                                                              |

## Vanadium Redox USP 1 : Unlimited Cycle Life

#### USP

- > There is no impact on performance due to the number of cycles
- Life expectancy is 10+ years
- > You can use the full capacity (100% DoD) with no impact on performance
- > Partially charge or discharge the battery to any state of charge with no impact on performance
- > There is very low maintenance

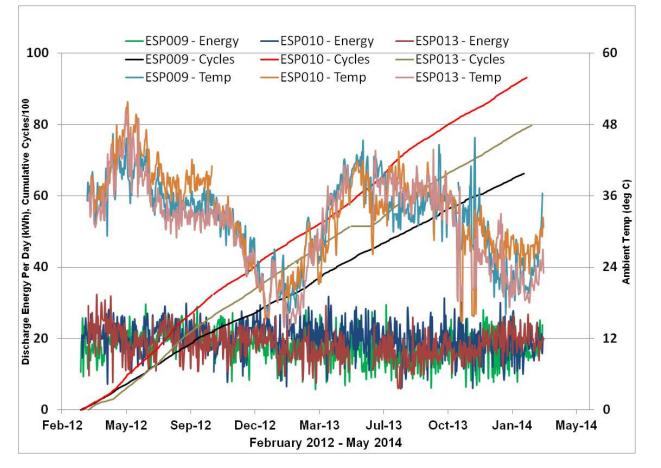
#### **Benefit**


- > You do not have to replace the battery every 2 years unlimited cycles
- You do not have to oversize the battery capacity use 100% of its capacity
- You do not have to charge to 100% capacity after each cycle fast charge ideal for weak grid
- Maintenance costs are very low



## Vanadium Redox USP 2 : Charging and Discharging

#### USP


- > The ESP has a straight line charge profile no long "float" charge time
- Power and energy independent and scalable
- Operating temperature up to of 50 degrees
- **Large overload capacity on both charge and discharge**



#### **Benefit**

- The fast charge profile means less generator run time
- You size the ESP to capture as much spare generator power as possible
- You can increase power and capacity as the load profile increases
- No need to cool the ESP, no parasitic power loss

#### Imergy ESP: Temperature vs. Performance / Feb 2012 – May 2014



Imergy Confidential - No Redistribution or Reproduction Permitted © 2014 Imergy Power Systems, Inc.

- Daily data for 2 years operation
- > Over 7,000 cycles in each ESP
- Stable output (Discharge Energy per Day)
- High temperature tolerance (2 summers outdoors in Northern India)

## Vanadium Redox USP 3 : Packaged Solution

#### USP

- > The ESP is a fully packaged solution
- It has its own built in generator controller based on capacity (flexible setting)
- > It has a built in RMS package that can either be used independently or integrated to third party RMS
- > It comes with a standard warranty of 5 years, which can be extended to 10 years

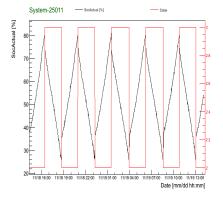
#### **Benefit**

- > No additional racks, connector or cables required
- No need for an additional hybrid battery controller lowers equipment cost.
- Dual mode CDC + UPS
- > No need for independent battery RMS lowers equipment cost
- > No hidden cost. Known price for 5 or 10 years
- ROI under 2 years, OPEX saving and TCO is significantly better than lead acid (even TPPL)



Imergy Confidential – No Redistribution or Reproduction Permitted © 2014 Imergy Power Systems, Inc.

## **Monitoring and Analysis**


## IMERGY POWER SYSTEMS

#### **Online Monitoring Web Page**

| Hengane Spice Piles    |                    |          |           |       |      |      |     |      |      |                  |     | 🏫 🕫 🚺 = Geogle    | P 🖬 + +                |
|------------------------|--------------------|----------|-----------|-------|------|------|-----|------|------|------------------|-----|-------------------|------------------------|
|                        | April 1995         |          |           |       |      |      |     |      |      |                  |     |                   |                        |
| place .                |                    |          |           |       |      |      |     |      |      |                  |     |                   | Cattles About Lage     |
| Miller Sensorvillov    |                    |          |           |       |      |      |     |      |      |                  |     |                   |                        |
| GRES - CRES THE INN    | Comr Lot Das       | Dret 1   | Waring    | 06    | 24   |      | -   |      |      |                  |     |                   | sad the 2014-04-14 14: |
| system state           |                    | Eq. Vall | Inglammat | MK(%) | 18   | 16   | 148 | 1044 | 1041 | <b>Exp Mates</b> | 110 | streamenty.       |                        |
| CARD-GLASSING FURISA   | organ ungan        | 5.4.8    | 4.84      | -     | - 65 |      |     |      |      | 1093             | 1   |                   | 200 December 1         |
| P\$P\$ 2.5 66000 3.m   | Datage             | # # P    | 11.79     | 40%   | 0.0  | 0.0  | .04 | 24   | 0.00 | 0.85             |     | Based B           |                        |
| CERC-22-CODEL Fample/  | ant capito         | 52.634   | 20.64     |       | ON I |      |     |      |      | 6965             | 1   | Tamingette        |                        |
| PARCON COST 2 No.4     | Datage             |          | 16.00     | 00%   |      |      | 174 | 0.00 | 1998 | 1984             |     | II (8(41)         | CNC2                   |
| CERT-22-CERT) Disigan  | Carging            | \$2,625  | \$6.13    | -     |      | 05   |     |      |      | 6965             |     |                   |                        |
| PARTON COLT France     | ins Dalage         |          | PL/BR     | 2074  |      |      |     |      |      | 199.5            |     |                   |                        |
| CSP3-2,5-66820 Velocit | unional Cladiarana | ≪.551    | 10,090    | -     |      |      |     |      | 017  | 082              | 1   | and the beauty    |                        |
| ARREST TAR             | (free proj         | 94.441   | Nuce      | 27%   |      |      |     |      |      | 1193             |     | ALT VARIA ICA -   | 100                    |
| CSP3 2.5 (002) Alter   | Fortho             | \$3,251  | 158       | 100%  | CN.  |      | 07  | 277  | 007  | 0152             |     | 201 2040404050003 | 90                     |
| INFORTHER BOARD        | lar charges        | 8.471    | 1640      | 70%   |      | - 05 |     |      |      | 1093             |     | ALE ALEGATERADES  | 1948                   |
| 1575 2.5 (0134 Emaile) | ante del Sim       | 10.75    | 27.601    | 6194  | 077  | 077  | 07  | 277  | 087  | 215              |     |                   |                        |
|                        | oreasing .         | 202.0    | 1.2.4     | 100%  | 45   |      |     |      |      | 3493             |     |                   |                        |
| 1575 2.5 68185 Durit   | of Determ          | **       | 21.993    | 244   | 07   | 0.4  | 0.4 | 377  | 1999 | 215              |     |                   |                        |
|                        |                    |          |           | _     |      |      |     |      |      |                  |     | to a Westing      |                        |
| Holen                  |                    |          |           |       |      |      |     |      |      |                  |     |                   |                        |
| n.e.                   |                    |          |           |       |      |      |     |      |      |                  |     |                   |                        |

All working ESPs can be monitored through Imergy's Live monitoring Web Page which also shows current status and highlights error/warnings of systems

#### **Graphical Analysis Tool**

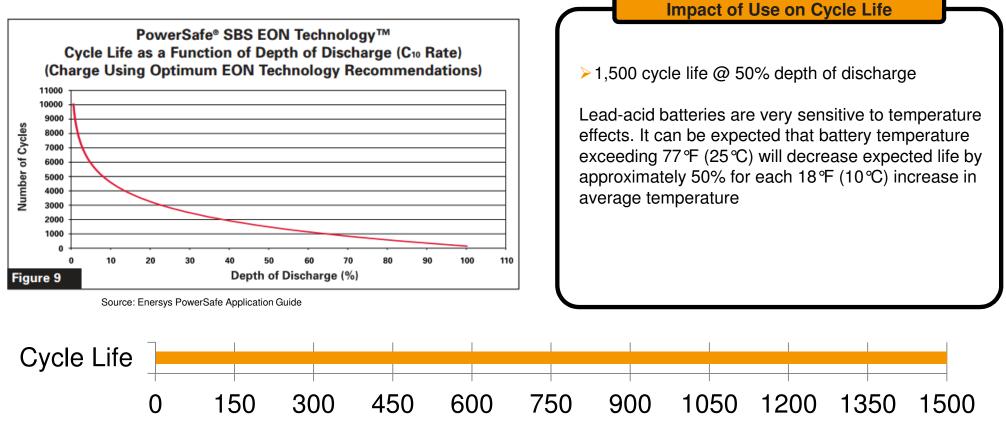


Graphical Analysis tool is a tool to analyze ESP's any of the parameter for any period

#### **Report Generator Tool**

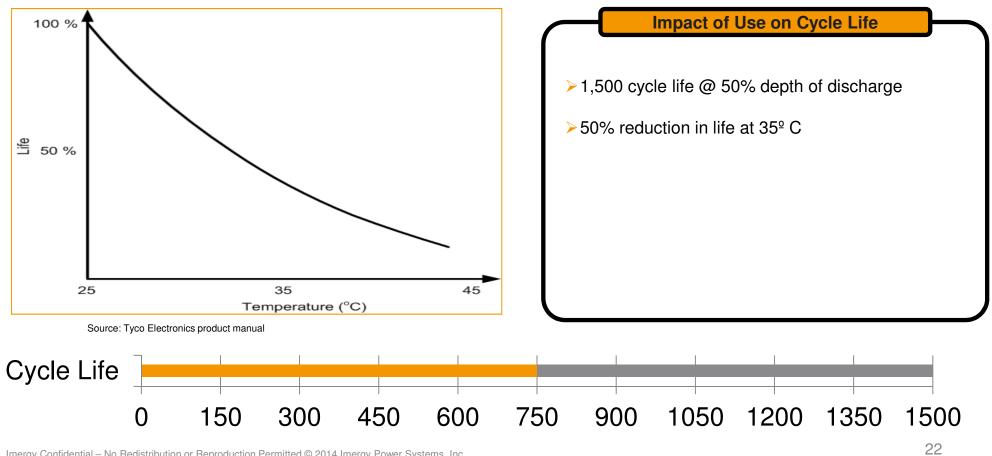


| 1   | ESPNO | POWER-SOURCE | STATE     | SOC-START     | SOC-END          | START-TIME     | END-TIME          | CHARGE-DG       | FLOAT-DG       | TOTAL-DG     | CHARGE-EB       | FLOAT-EB       | TC |
|-----|-------|--------------|-----------|---------------|------------------|----------------|-------------------|-----------------|----------------|--------------|-----------------|----------------|----|
| 191 | 25010 | ALLOF        | DISCHARGE | 85            | 64               | 5/8/2012 22:10 | 5/8/2012 23:10    |                 |                |              |                 |                |    |
| 192 | 25010 | EB           | CHARGE    | 66            | 87               | 5/8/2012 23:12 | 5/8/2012 23:58    |                 |                |              | 0:46:16         |                |    |
| 193 | 25010 | EB           | FLOAT     | 89            | 89               | 5/8/2012 23:59 | 5/8/2012 23:59    |                 |                |              |                 | 0:00:0         | J  |
| 194 |       |              |           |               |                  |                |                   |                 |                |              |                 |                |    |
| 195 |       |              |           |               |                  |                |                   |                 |                |              |                 |                |    |
| 196 | ESPNO | SITE-ID      | SITE-NAME | CHARGE-CYCLES | DISCHARGE_CYCLES | START-DATE     | END-DATE          | TOTAL-CHARGE-DG | TOTAL-FLOAT-DG | TOTAL-DG-RUN | TOTAL-CHARGE-EB | TOTAL-FLOAT-EB | TC |
| 197 | 25010 |              | Juan      | 89            | 87               | 5/2/2012 0:00  | 2012-5-9 00:00:00 | 23:30:25        | 00:00:00       | 23:31:50     | 41:01:35        | 10:29:37       | 51 |
| 198 |       |              |           |               |                  |                |                   |                 |                |              |                 |                |    |


Report Generator tool generates ESPs performance report between any date interval as selected by user with selected parameters as needed to generate reports by NOC, Engineering and Customer use.

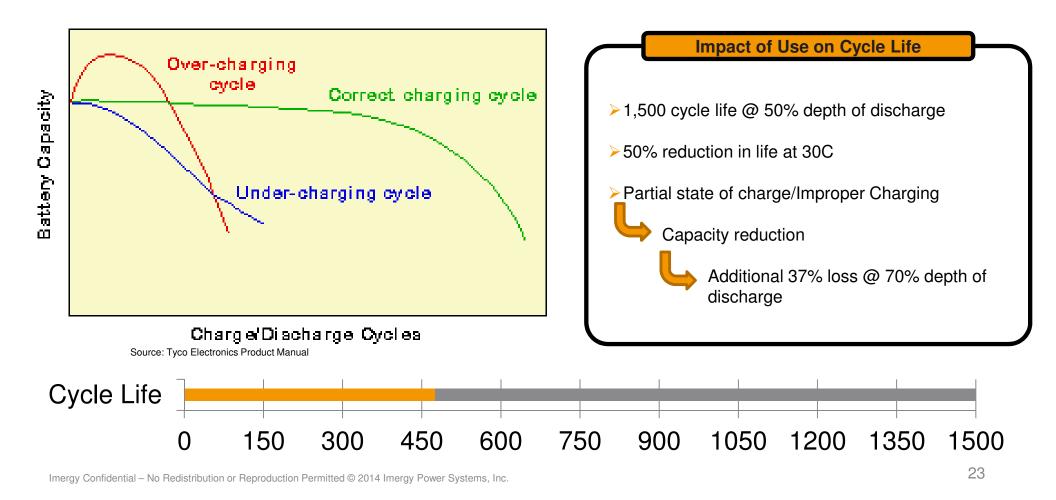


# 3. Competitive Analysis


## **Lead-Acid Battery Limitations**

### IMERGY POWER SYSTEMS

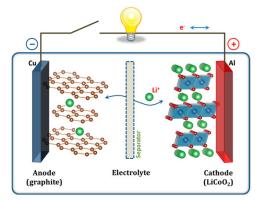



## **Lead-Acid Battery Limitations**

## IMERGY POWER SYSTEMS



## **Lead-Acid Battery Limitations**





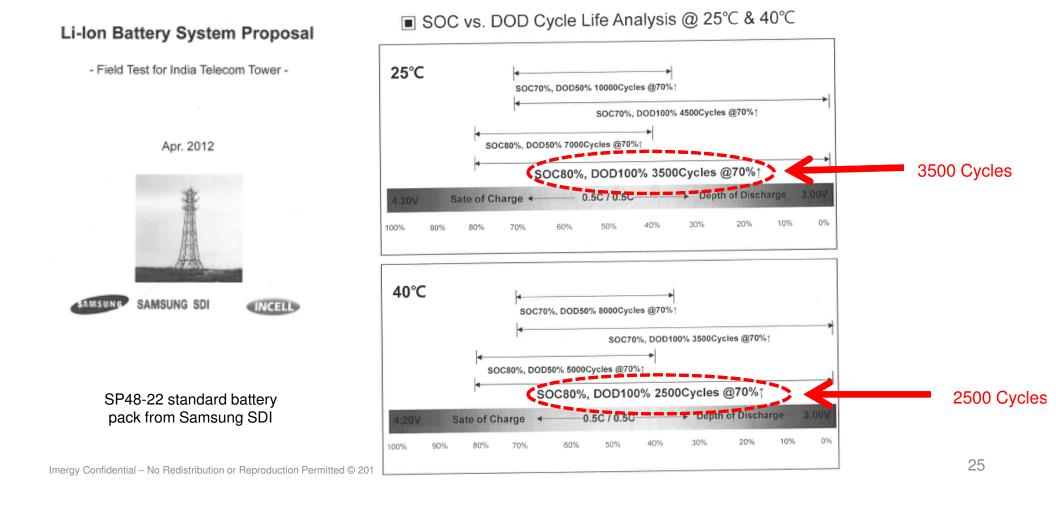

## **Li-ion Batteries**

- High energy density and improved cycle life makes them a good choice for many small consumer applications
- The main issue with this material is safety in large installations, when abused it can release large amount of energy, potentially resulting in fire
- Li lon systems are very sensitive to abuse and do not tolerate operation outside a very narrow and firm operating regime. Excursions outside this regime, typically due to BMS failures, have very quickly led to a fire situation.
- It is imperative to integrate a high quality Battery Management System to ensure safety. This effectively doubles the price of a Li-Ion battery system (INTELEC 2013).

Imergy Confidential - No Redistribution or Reproduction Permitted © 2014 Imergy Power Systems, Inc.



Schematic illustration of the first Li-ion battery (LiCoO2/Li+ electrolyte/graphite)




## IMERGY POWER SYSTEMS

24

## Samsung-INCELL: SoC Vs. DoD





## **IESP vs Other Flow Batteries**

IMERGY POWER SYSTEMS

| Key Attributes                                                             | lmergy<br>Redox | Zn-Br*       | VRFB<br>Sulfuric** | Fe-Cr*** |
|----------------------------------------------------------------------------|-----------------|--------------|--------------------|----------|
| Liquid storage with no solid state issues                                  |                 | ⊗            |                    |          |
| Cycle life                                                                 |                 | ⊗            |                    | θ        |
| Fast charge                                                                | $\checkmark$    | 8            | θ                  | θ        |
| Lifecycle cost                                                             | $\checkmark$    | 8            |                    | θ        |
| High temperature (50C) operation                                           | $\checkmark$    | 8            | 8                  | θ        |
| Undesired side reactions: H2, O2, solid deposition, precipitation, gassing | V               |              | 8                  | 8        |
| Energy & power density                                                     |                 | $\checkmark$ | θ                  | 8        |
| Fully decoupled energy storage and power                                   |                 | ⊗            |                    |          |

\* Zn-Br: Primus, Redflow, ZBB, Premium Power

\*\* V-Sulfuric: Prudent, Gildemeister/Cellstrom, Galaxy \*\*\* Fe-Cr: Enervault

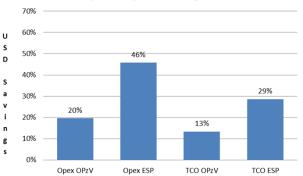


# 4. Performance Results

## **Fuel Consumption – Diesel Generator**



|        | Fuel C | Consum | nption | for di | fferent | loads        |              |        |            |            |     |
|--------|--------|--------|--------|--------|---------|--------------|--------------|--------|------------|------------|-----|
| Load   | 0%     | 25%    | 50%    | 75%    | 100%    |              | 0.60         | Fuel   | Consumptio | on Vs Load |     |
| 15 kVA | 1.1    | 2.04   | 2.98   | 3.91   | 4.85    | L/Hr         | 0.50<br>0.50 |        |            |            |     |
|        |        | 0.54   | 0.40   | 0.35   | 0.32    | L/Hr/kW Load | - 0.45       |        |            |            |     |
| 25 kVA | 1.2    | 2.76   | 4.33   | 5.89   | 7.45    | L/Hr         | ≥ 0.40       |        |            |            |     |
|        |        | 0.44   | 0.35   | 0.31   | 0.30    | L/Hr/kW Load | 노<br>노 0.35  |        |            |            |     |
| 30 kVA | 1.3    | 3.18   | 5.05   | 6.93   | 8.80    | L/Hr         | 0.30         |        |            |            |     |
|        |        | 0.42   | 0.34   | 0.31   | 0.29    | L/Hr/kW Load | 0.25         |        |            |            |     |
| 40 kVA | 1.4    | 3.90   | 6.40   | 8.90   | 11.40   | L/Hr         | 0.20         |        |            |            |     |
|        |        | 0.39   | 0.32   | 0.30   | 0.29    | L/Hr/kW Load |              | 25%    | 50%        | 75%        | 100 |
| 50 kVA | 1.5    | 4.63   | 7.75   | 10.88  | 14.00   | L/Hr         |              |        | DG         | Load       |     |
|        |        | 0.37   | 0.31   | 0.29   | 0.28    | L/Hr/kW Load |              | 15 KVA | KVA 30 KV  | /A40 KVA   | 50  |


# There are a number of sites that do not run dummy loads. The fuel consumption saving outweighs the decrease in asset life caused by coking

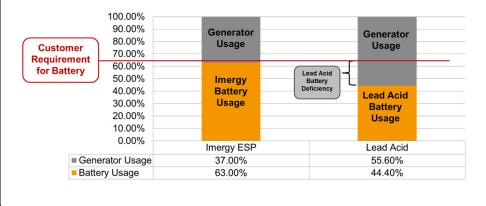
## **Off Grid performance comparison – Nigeria**

## **IMERGY**POWER SYSTEMS

| Off Grid Site solution Diesel and<br>Battery    | Dual Generator                                                                                                                                                                             | Deep Cycle OPzV Solution                                                                                                                                                                                                                                                                                                         | Deep Cycle ESP5 Solution                                                                                                                                                                                                                                                                                       |  |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Principle of operation                          | Two Diesel Generators run 24 / 7<br>alternating every 12 hours @ approx<br>25% load, which is very inefficient, so<br>dummy loads are often added to reduce<br>carbon build up and damage. | Generators charges OPzV battery and<br>provides power to the site for part of the<br>day, thus running at around 85% load.<br>Generator turns off when battery fully<br>charged. OPzV can only be discharged to<br>50% DoD, and has cycle life of around 1500<br>cycles. Cooling required to maintain 25<br>degrees environment. | Generator fast charges ESP and<br>provides power to the site for part of the<br>day, thus running at around 85% load.<br>Generator turns off when ESP is fully<br>charged. ESP can be fully discharged<br>and has unlimited cycle life. No battery<br>cooling required therefore lower average<br>site loading |  |
| Average Site Loading, kW                        | 4                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                              |  |
| Generator Power (kW)                            | 12                                                                                                                                                                                         | 12                                                                                                                                                                                                                                                                                                                               | 12                                                                                                                                                                                                                                                                                                             |  |
| Spare Generator Power for Charging              | 8                                                                                                                                                                                          | 7                                                                                                                                                                                                                                                                                                                                | 8                                                                                                                                                                                                                                                                                                              |  |
| Available Battery Energy Capacity @ 48V (Ah)    | 0                                                                                                                                                                                          | 600                                                                                                                                                                                                                                                                                                                              | 625                                                                                                                                                                                                                                                                                                            |  |
| Charge time per cycle, h                        | N/A                                                                                                                                                                                        | 12                                                                                                                                                                                                                                                                                                                               | 5.00                                                                                                                                                                                                                                                                                                           |  |
| Discharge time per cycle, h                     | N/A                                                                                                                                                                                        | 5.76                                                                                                                                                                                                                                                                                                                             | 7.5                                                                                                                                                                                                                                                                                                            |  |
| Charge time : Discharge time ratio              | N/A                                                                                                                                                                                        | 208%                                                                                                                                                                                                                                                                                                                             | 67%                                                                                                                                                                                                                                                                                                            |  |
| Daily run time of diesel (hours)                | 24                                                                                                                                                                                         | 16.22                                                                                                                                                                                                                                                                                                                            | 9.60                                                                                                                                                                                                                                                                                                           |  |
| Number of cycles per day                        | n/a                                                                                                                                                                                        | 1.35                                                                                                                                                                                                                                                                                                                             | 1.92                                                                                                                                                                                                                                                                                                           |  |
| US\$ cost per liter of diesel                   | 1                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                              |  |
| Average fuel consumption per site (litres/h)    | 2                                                                                                                                                                                          | 2.64                                                                                                                                                                                                                                                                                                                             | 3.2                                                                                                                                                                                                                                                                                                            |  |
| Annual diesel consumption per site per (litres) | 17,520                                                                                                                                                                                     | 15,626                                                                                                                                                                                                                                                                                                                           | 11,213                                                                                                                                                                                                                                                                                                         |  |
| Fuel Delivery costs per site/ annum             | 1500                                                                                                                                                                                       | 1014                                                                                                                                                                                                                                                                                                                             | 600                                                                                                                                                                                                                                                                                                            |  |
| Total Cost of diesel per annum US\$             | \$19,020                                                                                                                                                                                   | \$16,639                                                                                                                                                                                                                                                                                                                         | \$11,813                                                                                                                                                                                                                                                                                                       |  |
| O&M costs per annum on DG and batteries         | \$10,512                                                                                                                                                                                   | \$7,103                                                                                                                                                                                                                                                                                                                          | \$4,205                                                                                                                                                                                                                                                                                                        |  |
| Total Annual OPEX Cost                          | \$29,532                                                                                                                                                                                   | \$23,742                                                                                                                                                                                                                                                                                                                         | \$16,018                                                                                                                                                                                                                                                                                                       |  |
| Total percentage Annual OPEX saving             |                                                                                                                                                                                            | 20%                                                                                                                                                                                                                                                                                                                              | 46%                                                                                                                                                                                                                                                                                                            |  |
| Generator life in years before replacement      | 2.57                                                                                                                                                                                       | 3.80                                                                                                                                                                                                                                                                                                                             | 6.42                                                                                                                                                                                                                                                                                                           |  |
| CAPEX replacement cost Diesel engine US\$       | \$12,000                                                                                                                                                                                   | \$12,000                                                                                                                                                                                                                                                                                                                         | \$12,000                                                                                                                                                                                                                                                                                                       |  |
| Battery or stack life to replacement            | 5                                                                                                                                                                                          | 3.0                                                                                                                                                                                                                                                                                                                              | 14.3                                                                                                                                                                                                                                                                                                           |  |
| Initial Battery Hybrid System Cost              | \$1,000                                                                                                                                                                                    | \$10,000                                                                                                                                                                                                                                                                                                                         | \$21,000                                                                                                                                                                                                                                                                                                       |  |
| Replacement Cost                                |                                                                                                                                                                                            | \$5,000                                                                                                                                                                                                                                                                                                                          | \$3,500                                                                                                                                                                                                                                                                                                        |  |
| Battery Replacement cost (amortised)            | \$1,000                                                                                                                                                                                    | \$0                                                                                                                                                                                                                                                                                                                              | \$0                                                                                                                                                                                                                                                                                                            |  |
| TCO INCLUDING initial CAPEX                     | \$104,612                                                                                                                                                                                  | \$90,697                                                                                                                                                                                                                                                                                                                         | \$74,659                                                                                                                                                                                                                                                                                                       |  |
| TCO percentage savings                          |                                                                                                                                                                                            | 13%                                                                                                                                                                                                                                                                                                                              | 29%                                                                                                                                                                                                                                                                                                            |  |

#### Diesel Hybrid Opex Saving and TCO




| Input Paramet              | ers              |        |
|----------------------------|------------------|--------|
| Site Load                  | 4                | kW     |
| Generator Rating           | 15               | KVA    |
| Fuel Consumption @33% Load | <mark>. 2</mark> | l/hr   |
| Fuel Consumption @66% load | 2.64             | l/hr   |
| Fuel Consumption @90% load | 3.2              | l/hr   |
| OPzV Capacity              | 1200             | Ah     |
| ESP Capacity               | 30000            | kWh    |
| ESP Efficiency             | 75%              | %      |
| тсо                        | 3                | Years  |
| Cost OPzV Hybrid           | 10000            | USD    |
| Replacement Cost OPzV      | 5000             | USD    |
| Cost ESP Hybrid            | . 21000          | USD    |
| Replacement Cost ESP       | 3500             | USD    |
| OPzV Charge Time           | 12               | Hours  |
| OPzV DoD                   | 50%              | %      |
| Fuel                       | 1                | USD    |
| OPzV Life                  | 1500             | Cycles |
| ESP Life                   | 10000            | Cycles |

## **Case Studies**

## **IMERGY**POWER SYSTEMS

#### African: Diesel + Storage

- Off-grid telecom site reliant on diesel gensets
- Imergy ESP replaced lead acid hybrid system
- Average ambient temperature of 35C 48C
- Diesel genset cycle operated at peak load for maximum efficiency
- 63% reduction in diesel generator use compared to 44% reduction from VRLA



Imergy Confidential - No Redistribution or Reproduction Permitted © 2014 Imergy Power Systems, Inc.

#### India: Weak Grid Sites

- Three Indian telecom sites originally installed with valve-regulated lead acid (VRLA) batteries & diesel gensets
- Imergy ESP acted as backup power source in event of grid-outage, genset charges battery and supports telecom tower
- Average ambient temperature 28C 35C
- Real-world fuel savings between 41% and 94%
- Payback period <2 years</li>

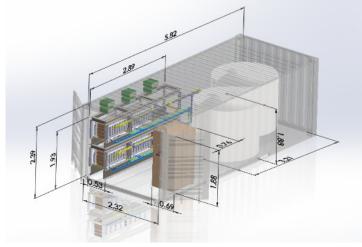
| Site | Grid<br>Availability | Monthly<br>Fuel<br>Pre-ESP | Monthly<br>Fuel<br>Post-ESP | Monthly<br>Fuel<br>Savings<br>(Litres) | Monthly<br>Fuel<br>Savings (%) | Annual Fuel<br>Savings (\$) |
|------|----------------------|----------------------------|-----------------------------|----------------------------------------|--------------------------------|-----------------------------|
| 1    | 5.8 hr/day           | 926 L                      | 547 L                       | 379 L                                  | 41%                            | \$6,822                     |
| 2    | 16.0 hr/day          | 552 L                      | 128 L                       | 424 L                                  | 77%                            | \$7,632                     |
| 3    | 19.4 hr/day          | 495 L                      | 29 L                        | 466 L                                  | 94%                            | \$8,388                     |
|      |                      |                            |                             |                                        |                                |                             |

## **Uninterruptible Power Supply for Data Centers**

**IMERGY**POWER SYSTEMS



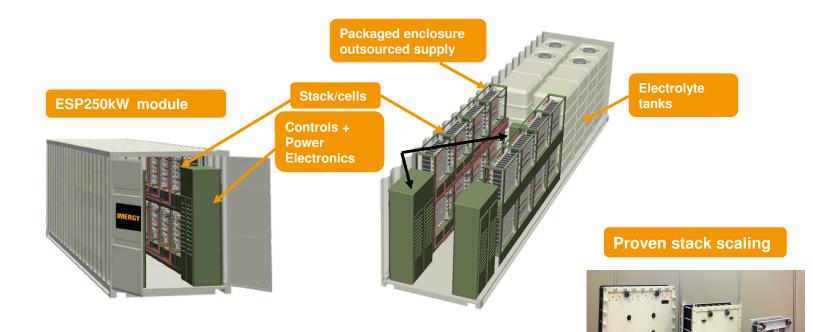
"Data centers could turn microgrid markets upside down" - Navigant Research


#### A must-have for mission-critical operations

- Battery storage helps protect against service interruptions that result from brownouts or power failures
- Technology is a critical asset for data centers, hospitals and other facilities that cannot tolerate service outages
- Battery storage offer additional operational benefits
  - Drive energy savings
  - Free up square footage
  - Potential to environmental hazards
- Several industrial giants have already focused on the data center power storage market, including ABB and General Electric

## **ESP30 Containerized Module & Specifications**

**IMERGY**POWER SYSTEMS





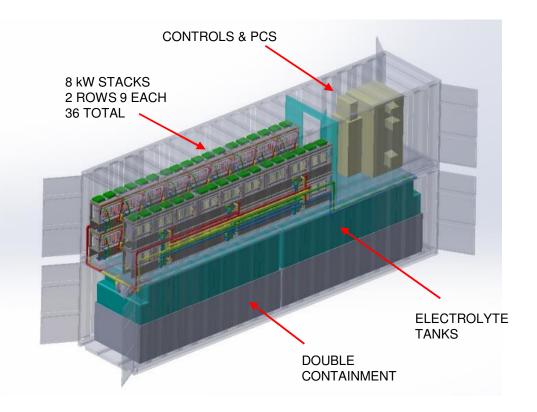

| Parameter                                                       |                                        | Rating                            | Comments                                                            |
|-----------------------------------------------------------------|----------------------------------------|-----------------------------------|---------------------------------------------------------------------|
| Power rating output                                             | DC kW<br>AC kW: 380 to 480V<br>50/60Hz | 40<br>30                          | Excludes pulse capability<br>Excludes pulse capability              |
| Response time AC                                                | -100% to 100% output                   | <50ms                             | Communication latency effects excluded                              |
| Apparent Power                                                  | kVA                                    | PF +-0.7 to +-1                   | Selectable                                                          |
| Weight                                                          | kg                                     | 16,725                            | Includes electrolyte                                                |
| Dimensions                                                      | H x W x L (m)                          | 2.8 x 2.2 x 5.8                   | Container                                                           |
| Cycles                                                          |                                        | 100,000                           | No limit. Based on life only                                        |
| DC DC efficiency                                                |                                        | 75%                               | Measured at constant current over 20% duty cycle                    |
| Storage duration                                                |                                        | 1 to 6 hours                      | A function of electrolyte tank selection                            |
| Charge power maximum                                            | kW AC                                  | 40                                | Adjustable                                                          |
| Discharge power maximum                                         | kW AC                                  | 30                                | Excludes pulse capability                                           |
| Capacity range                                                  |                                        | 0 to 100%                         | No life impacts                                                     |
| Communications interface                                        |                                        | Modbus/TCPIP                      | Multiple including CANBUS in<br>multiple strings                    |
| Ambient operating conditions                                    |                                        | -20 to 55 Celsius                 | Conditioned space not required                                      |
| Altitude                                                        |                                        | 2000m                             | AC derated based on PCS and<br>transformer                          |
| Cooling                                                         |                                        | Air cooled                        |                                                                     |
| Relative humidity                                               |                                        | 0-95%                             |                                                                     |
| Availability figure                                             |                                        | 99.16%                            | Single module EAR and FOR data available on request                 |
| Self discharge                                                  | %/day                                  | 0.010%                            |                                                                     |
| Stack replacement                                               |                                        | 10 years                          | In accordance with O&M<br>procedures at a % of module<br>first cost |
| Noise level dBa 1 meter                                         |                                        | <70dBa                            |                                                                     |
| Warranty                                                        | standard                               | 5 years                           |                                                                     |
|                                                                 | extended                               | 10 years                          |                                                                     |
| Start up from Battery support<br>mode to grid connected         |                                        | < 45 seconds                      |                                                                     |
| Transition between Grid and is                                  | slanded modes                          | <100ms                            |                                                                     |
| General:<br>The system is designed with<br>following standards: | intent to comply with the              | IEE1547, IEEE519,<br>UL1741, CE   | System will certified by April 2015                                 |
| Containerized electrolyte cont                                  | ainers                                 | Determined by HOURS<br>of storage |                                                                     |

#### The Future: Imergy's Technology is Modular and Scalable and Includes Power Electronics and Software as a Solution

IMERGY POWER SYSTEMS



Lowest LCOE for large-scale applications requiring long discharge time, fast charging, and long cycle life


## **ESP250 Containerized Module & Specifications**

**IMERGY**POWER SYSTEMS

Comments

Excludes pulse capability

Excludes pulse capability



| Response time AC                                        | -100% to 100% output | <50ms                           | Communication latency effects excluded                        |
|---------------------------------------------------------|----------------------|---------------------------------|---------------------------------------------------------------|
| Apparent Power                                          | kVA                  | PF +-0.7 to +-1                 | Selectable                                                    |
| Weight                                                  | kg                   | 13,720                          | Excludes electrolyte                                          |
| Dimensions                                              | H x W x L (m)        | 2.8 X 2.1 X 11.2                | Container                                                     |
| Cycles                                                  |                      | 100,000                         | No limit. Based on life only                                  |
| DC DC efficiency                                        |                      | 75%                             | Measured at constant current over 20% duty<br>cycle           |
| Storage duration                                        |                      | 1 to 8 hours                    | A function of electrolyte tank selection                      |
| Charge power maximum                                    | kW AC                | 290                             | Adjustable                                                    |
| Discharge power maximum                                 | kW AC                | 250                             | Excludes pulse capability                                     |
| Capacity range                                          |                      | 0 to 100%                       | No life impacts                                               |
| Communications interface                                |                      | Modbus/TCPIP                    | Multiple including CANBUS in multiple strings                 |
| Ambient operating conditions                            |                      | -20 to 55 Celsius               | Conditioned space not required                                |
| Altitude                                                |                      | 2000m                           | AC derated based on PCS and transformer                       |
| Cooling                                                 |                      | Air cooled                      |                                                               |
| Relative humidity                                       |                      | 0-95%                           |                                                               |
| Availability figure                                     |                      | 99.16%                          | Single module EAR and FOR data available<br>on request        |
| Self discharge                                          | %/day                | 0.010%                          |                                                               |
| Stack replacement                                       |                      | 10 years                        | In accordance with O&M procedures at a % of module first cost |
| Noise level dBa 1 meter                                 |                      | <70dBa                          |                                                               |
| Warranty                                                | standard             | 5 years                         |                                                               |
|                                                         | extended             | 10 years                        |                                                               |
| Start up from Battery support mode to grid<br>connected |                      | < 45 seconds                    |                                                               |
| Transition between Grid and islanded modes              |                      | <100ms                          |                                                               |
| General:                                                |                      |                                 |                                                               |
| The system is designed with intent to comply standards: | with the following   | IEE1547, IEEE519,<br>UL1741, CE | System will certified by April 2015                           |
| Containerized electrolyte containers                    |                      | Determined by HOURS of storage  |                                                               |

Rating

290

250

DC kW

AC kW: 380 to 480V 50/60Hz

Parameter

Power rating output

## **USP 4 : Warranty, Financing and Pricing**

#### USP

- The ESP has a standard 5 year performance warranty that can be extended to 10 years
- IMERGY can offer split Capex / Opex financing solutions where the electrolyte element is leased on a 5 year monthly payment basis
- Typical cost of 1 x 5kW / 30khW complete system is \$750/kWh (48VDC)
- Typical cost of a 1 x 30kW / 200kWh complete system is \$650/kWh (240VAC, 3 Phase, Microgrid)
- Typical cost of a 1 x 250kW / 1MWH complete system is \$500/kWh (480VAC, 3 Phase, load shifting, peak shaving, wind firming)



Imergy Confidential - No Redistribution or Reproduction Permitted © 2014 Imergy Power Systems, Inc.



Thank you