
GSM Association Non-confidential
Official Document MM.01 - MM App Security Best Practices

V1.0 Page 1 of 25

MM App Security Best Practices
Version 1.0

29 June 2018

This is a White Paper of the GSMA

Security Classification: Non-confidential
Access to and distribution of this document is restricted to the persons permitted by the security classification. This document is confidential to the
Association and is subject to copyright protection. This document is to be used only for the purposes for which it has been supplied and
information contained in it must not be disclosed or in any other way made available, in whole or in part, to persons other than those permitted
under the security classification without the prior written approval of the Association.

Copyright Notice
Copyright © 2018 GSM Association

Disclaimer
The GSM Association (“Association”) makes no representation, warranty or undertaking (express or implied) with respect to and does not accept
any responsibility for, and hereby disclaims liability for the accuracy or completeness or timeliness of the information contained in this document.
The information contained in this document may be subject to change without prior notice.

Antitrust Notice
The information contain herein is in full compliance with the GSM Association’s antitrust compliance policy.

GSM Association Non-confidential
Official Document MM.01 - MM App Security Best Practices

V1.0 Page 2 of 25

Table of Contents

1 Introduction 3
1.1 Overview 3
1.2 Scope 3
1.3 Definition of Terms 3
1.4 References 4
1.5 Executive Summary 4
1.6 Objectives and methodology 5
1.6.1 Security Principles 6
1.6.2 Authentication 6
1.6.3 Access Control 6
1.6.4 Integrity 6
1.6.5 Confidentiality 7
1.6.6 Assumptions and restrictions 7

2 Introduction to smartphone app components and architecture 7
2.1 The End-to-End Security Principle 8

3 Authentication and Data Confidentiality 9
3.1 Considerations on TLS 9
3.2 Server Authentication 10
3.2.1 Deploying TLS on Servers 13
3.3 Common Pitfalls 13
3.4 Client (end user equipment) Authentication 14
3.5 User Authentication 16

4 Access Control 19
4.1 Protection of User Credentials and Sensitive Information 21

5 Technical Recommendations Summary 22
6 Conclusions 24
Annex A Document Management 25

A.1 Document History 25
A.2 Contributing authors and owners 25

GSM Association Non-confidential
Official Document MM.01 - MM App Security Best Practices

V1.0 Page 3 of 25

1 Introduction

1.1 Overview
This document provides guidelines on best security practices for smartphone mobile money
apps.

1.2 Scope
The guidelines described in this document are meant to raise industry awareness and
understanding of security issues mobile money providers may face when deploying
smartphone applications pre-loaded or available via download.

1.3 Definition of Terms

Term Description
CA Certification Authority – A trusted entity that issues digital certificates

DFS Digital Financial Systems

IMSI International Mobile Subscriber Identity - Unique number for identifying a GSM
subscriber on a mobile phone network.

ITU
International Telecommunications Union –a specialized agency of the United
Nations (UN) that is responsible for issues that concern information and
communication technologies

NIST National Institute of Standards and Technology - a non-regulatory agency of
the United States Department of Commerce.

RC4 Rivest Cipher 4 - a stream cipher

SHA Secure Hash Algorithms - A family of cryptographic hash functions published
by the National Institute of Standards and Technology (NIST)

SSL Secure Sockets Layer – A cryptographic protocol for secure Internet
communication replaced by TLS

STK SIM Application Toolkit - Set of commands programmed into the SIM to build
up an interactive exchange between a network application and the end user

TCP/IP Transmission Control Protocol (TCP) and the Internet Protocol (IP) – A set of
communications protocols used on the Internet

TLS
Transport Layer Security – A cryptographic protocol for secure Internet
communication

USSD
Unstructured Supplementary Service Data –
A GSM signalling protocol

GSM Association Non-confidential
Official Document MM.01 - MM App Security Best Practices

V1.0 Page 4 of 25

1.4 References
Ref Title

[1]
Reaves et al., “Mo(bile) Money, Mo(bile) Problems: Analysis of Branchless Banking Applications in the
Developing World”, 24th USENIX Security Symposium, August 12–14, 2015
https://www.usenix.org/node/190885

[2]
GSMA Intelligence Report on smartphones,
https://www.gsmaintelligence.com/research/2017/02/smartphones-now-account-for-half-the-worlds-
mobile-connections%20%20/600/

[3] ITU X.805 : Security architecture for systems providing end-to-end communications
https://www.itu.int/rec/T-REC-X.805-200310-I/en

[4] Architecture of secure mobile financial transactions in next generation networks. ITU-T Study Group 13,
January 2011 https://www.itu.int/itu-t/recommendations/rec.aspx?rec=Y.2741

[5] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-End Arguments In System Design. ACM Trans.
Comput. Syst. 2, 277-288, 1984.

[6] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2. Internet
Engineering Task Force. RFC 5246, 2008.

[7] J. Salowey, A. Choudhury, and D. McGrew. AES Galois Counter mode (GCM) Cipher Suites for TLS.
Internet Engineering Task Force. RFC 5288, 2008.

[8] L. K. Gray. Date Change for Migrating from SSL and Early TLS., 2015.
https://blog.pcisecuritystandards.org/migrating-from-ssl-and-early-tls

[9] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. Internet Engineering Task Force.
Internet Draft, 2017

[10] Android. Security with HTTPS and SSL., 2017. https://developer.android.com/training/articles/security-
ssl.html

[11] G. Chen. The Power of Smartphone Interfaces for Mobile Money. CGAP Blog, 2016.
http://www.cgap.org/blog/power-smartphone-interfaces-mobile-money

[12]
T. Novais. Companion cards & mobile money: Industry landscape, insights and considerations. GSMA,
2016 https://www.gsma.com/mobilefordevelopment/programme/mobile-money/companion-cards-
mobile-money-industry-landscape-insights-and-considerations

[13] Mobile Connect: Mobile high-security authentication. GSMA, 2016 https://www.gsma.com/identity/wp-
content/uploads/2016/10/MC_high-security-authentication_Sep-16.pdf

[14]
“Android phones rooted by “most serious” Linux escalation bug ever”, Dan Goodin, Ars Technica,
October 24, 2016. https://arstechnica.com/information-technology/2016/10/android-phones-rooted-by-
most-serious-linux-escalation-bug-ever/

[15]
Mobile App Collusion Can Bypass Native Android Security”, Michael Mimoso, Kaspersky ThreatPost,
October 6, 2016. https://threatpost.com/mobile-app-collusion-can-bypass-native-android-
security/121124/

1.5 Executive Summary
Mobile money services took off at a time when mobile devices became widely available for
the low-income population. Providers took advantage of the ubiquitous text and USSD
message capabilities of those devices to provide an interactive menu for mobile money
transactions. In 2007, M-Pesa in Kenya reached scale by delivering a sound business

https://www.usenix.org/node/190885
https://www.gsmaintelligence.com/research/2017/02/smartphones-now-account-for-half-the-worlds-mobile-connections%20%20/600/
https://www.gsmaintelligence.com/research/2017/02/smartphones-now-account-for-half-the-worlds-mobile-connections%20%20/600/
https://www.itu.int/rec/T-REC-X.805-200310-I/en
https://www.itu.int/itu-t/recommendations/rec.aspx?rec=Y.2741
https://blog.pcisecuritystandards.org/migrating-from-ssl-and-early-tls
https://developer.android.com/training/articles/security-ssl.html
https://developer.android.com/training/articles/security-ssl.html
http://www.cgap.org/blog/power-smartphone-interfaces-mobile-money
https://www.gsma.com/mobilefordevelopment/programme/mobile-money/companion-cards-mobile-money-industry-landscape-insights-and-considerations
https://www.gsma.com/mobilefordevelopment/programme/mobile-money/companion-cards-mobile-money-industry-landscape-insights-and-considerations
https://www.gsma.com/identity/wp-content/uploads/2016/10/MC_high-security-authentication_Sep-16.pdf
https://www.gsma.com/identity/wp-content/uploads/2016/10/MC_high-security-authentication_Sep-16.pdf
https://arstechnica.com/information-technology/2016/10/android-phones-rooted-by-most-serious-linux-escalation-bug-ever/
https://arstechnica.com/information-technology/2016/10/android-phones-rooted-by-most-serious-linux-escalation-bug-ever/
https://threatpost.com/mobile-app-collusion-can-bypass-native-android-security/121124/
https://threatpost.com/mobile-app-collusion-can-bypass-native-android-security/121124/

GSM Association Non-confidential
Official Document MM.01 - MM App Security Best Practices

V1.0 Page 5 of 25

proposition to underbanked customers, paving the road for investment on digital financial
services in many regions of the world.

The enabling mobile technology has evolved significantly since then and devices turned into
“smartphones”, gaining more processing power, bigger screens and Internet access, still at
affordable prices. Mobile pay-as-you-go Internet access also became part of the service
offered by mobile operators. Mobile money providers, understanding opportunities
accessible by the new ecosystem created by smartphones, began offering smartphone
applications for their customers.

With regards to security, an essential asset for digital financial system providers, enhanced
capabilities offered by smartphones pose opportunities and also potential threats. Internet
access and open operational systems on smartphones can yield potential attackers
compromising user data. However, the same operational systems also have a built-in set of
tools to safeguard attacks, and Internet access allows applications to be upgraded promptly.

Mobile money providers have different levels of knowledge when it comes to leveraging
adequate security on smartphone applications. A study published in 2015 by the University
of Florida [1] showed lack of consistent security implementation principles for mobile money
smartphone applications, raising the need to establish a common set of best practices
amongst providers.

The document presented here, a joint effort between the GSMA and the University of
Florida, aims to raise awareness on mobile money providers on security issues faced when
developing smartphone applications, providing an initial set of safeguard recommendations.
The principles revolve around a set of readily available security tools, which also includes
good security protection levels.

Technology decision makers should use this document to guide technical teams or external
developers to consider the recommendations. Technical experts can use and implement
various sections or use the reference table provided at the end of the document for
implementing a checklist on recommended best practices.

1.6 Objectives and methodology
Mobile money services have enabled financially underserved populations to safely store and
transact money in digital form. However, despite evolution on internal IT systems from
mobile money providers, the customer-facing interface remained until recently displayed on
what is labelled today as feature phones devices that are able to handle basic cellular
communication on voice calls, text messages (SMS) and Unstructured Supplementary
Service Data (USSD) text strings. Notably from 2015, smartphones, or mobile devices with
bigger screens, more processing power and Internet access, became an adoption trend in
low- and middle-income countries, given decreasing device costs and greater access to
mobile broadband [2] .Mobile money providers have quickly reacted to this trend by offering
downloadable or preloaded applications for smartphones. As of November 2017, over 25%
of the 276 mobile money providers registered by the GSMA tracker offer smartphone apps,
and a clear upward trend is noted.

GSM Association Non-confidential
Official Document MM.01 - MM App Security Best Practices

V1.0 Page 6 of 25

The use of smartphone-based mobile money apps has an additional potential benefit of
vastly improving the security of mobile users. Conversely, if best practices for designing and
implementing smartphone apps are not employed, serious security issues can result. The
goal of this report, a joint work between the GSMA and the Computer and Information
Science and Engineering Department at the University of Florida, is to identify best practices
to address security issues within smartphone apps for mobile money and to provide mobile
money operators, developers, and network providers with the tools that can be used to
assure the security of their mobile money systems.

1.6.1 Security Principles
In order to evaluate the mobile money smartphone architecture with regards to criteria for
security, both standards from regulators and other organizations were examined, as well as
using work and expertise developed by the University of Florida on analysing the
deployments of mobile money systems. ITU X.805 security dimensions [3] were used as a
starting point. That work is aimed at regulators and considers the entirety of the Digital
Financial Systems (DFS) infrastructure, with general recommendations for security, while in
contrast, this report focuses specifically on smartphone apps for mobile money systems and
is designed to be more technical and prescriptive in terms of recommendations. Thus, some
of the security dimensions expressed in ITU X.805 and the security levels described in ITU-T
Y.2741 [4] are a good starting point but are best tailored for the specifics of the smartphone
environment and supporting server infrastructures found in mobile money deployments.

In particular, focus is given on the following security criteria:

1.6.2 Authentication
Authentication is methods of confirming the identities of communicating identities. In this
work, authentication is considered within the mobile money server that clients connect with
(generally done through use of the Transport Layer Security, or TLS, network protocol) and
methods by which the client identifies itself (which often relies on a combination of user
credentials and those provided by the device itself).

1.6.3 Access Control
The ITU-T X.805 [3] document is specific to network security, and thus defines access
control as “protection against unauthorized use of network resources.” A more expansive
view of access control is described in this document to consider unauthorized access not
only over a network, but on servers and smartphones themselves, e.g., potentially
unauthorized access to processes executing mobile money functionality or to the data that is
used by these applications.

1.6.4 Integrity
Integrity is protection of the correctness and accuracy of data. Because integrity of
information is vital to system security, it is particularly important and for ease of exposition,
rather than creating a section of the report devoted strictly to issues of integrity, threats to
data integrity are discussed in the context of authentication and access control, where
failures to supply required protections can cause integrity threats to arise.

GSM Association Non-confidential
Official Document MM.01 - MM App Security Best Practices

V1.0 Page 7 of 25

1.6.5 Confidentiality
Confidentiality is the protection of data from unauthorized disclosure. Confidentiality and
integrity are both goals that are enforced through access control and authentication
mechanisms (e.g., access control can prevent exfiltration of sensitive data, which is a breach
of confidentiality), mechanisms by which confidentiality during communication of data
between smartphone and mobile money server can be maintained are specifically described
throughout the authentication section.

Other security criteria such as availability (i.e., resistance to denial of service) and privacy
(i.e., protection of information from observation of activity) are worthy goals but are
secondary in consideration to the security elements listed above.

1.6.6 Assumptions and restrictions
The principles above were moderated by considerations on the mobile money ecosystem, in
particular trade-offs between usability and risks, limitations from entry-level smartphones,
costs related to implementations and impact on IT staff resourcing.

For the smartphone, recommendations are based on the Android mobile operating system,
as most entry and mid-level smartphones are based on this platform.

Finally, there is an assumption that Internet connection is available to the customer at
speeds and latency levels compatible for mobile applications demanding low bandwidth,
either through cellular network access or through Wi-Fi connections (public hotspots, home
connections etc.).

2 Introduction to smartphone app components and architecture

Figure 1: End-to-end security message flow

With regards to the smartphone app infrastructure, the major components are shown in the
figure above. The handset (i.e., the smartphone) comprises of the physical platform for a
user to interact with the mobile money application that executes on the smartphone. The
handset can contain elements that aid in securing the platform, such as trusted execution
environments and support for biometric authentication, both discussed in further detail
below.

GSM Association Non-confidential
Official Document MM.01 - MM App Security Best Practices

V1.0 Page 8 of 25

Smartphones support the installation of a SIM card, an integrated circuit chip designed to
store the International Mobile Subscriber Identity (IMSI) number and its related key, in order
to all mobile operators to identify and authenticate subscribers. It is possible that the SIM
can contain a secure element that can also provide security rooted within the hardware, but
primarily, security for the handset platform comes from components within the smartphone.
Embedded SIM cards (eSIMs), which are integrated SIM chips that are not removed from
the handset but are configurable by operators, may be incorporated into future devices.

Deployed on the handset is the mobile money app, which provides the interface between a
user and the mobile money system they are using. Users can directly use the mobile money
app, which resides directly on the smartphone in the majority of deployments rather than on
the SIM card as in previous generations of mobile money phone deployments. The mobile
money app provides a user interface to facilitate mobile transactions, payments, and other
activities. Because of the importance of the activities that can be provided by the mobile
money app and the existence of software design and implementation vulnerabilities that are
often found in application code, this is a particularly target for attackers.

In smartphone apps, communication occurs over the TCP/IP network, connecting to a
mobile base station over the Radio channel for further transit through the mobile provider
network.1 While this channel between the handset and the base station may be encrypted,
smartphones support encryption directly between the device and the mobile money provider
as described below in the discussion regarding the End-to-End Security Principle.

Data received by the base station may further pass through an Internet gateway for
transmission through the mobile provider’s internal network. The provider network provides
transit connectivity for information originating at the handset as well as the gateway to
external providers and the mobile money system. This end point is where the mobile money
provider’s servers are located, which process the information that originated at the handset.
The security of these operations is reliant on the authenticity of the client as well as
configuration of the servers.

2.1 The End-to-End Security Principle
The principle of end-to-end security goes back decades as a principle of designing computer
systems and networks [5]. This means that it is possible to enforce properties of
authentication, integrity, and confidentiality for all information that passes between the end
device being used for a mobile money transaction and the back-end server that processes
the transaction, without information being re-processed, decrypted and re-encrypted, or
otherwise modified by intermediaries. Feature phones were able to provide end-to-end
security provided cryptographic SIM Toolkit (STK) applications could be made available on
the SIM Card.

1 In TCP/IP deployments, it is also possible that mobile transactions can occur over Wi-Fi rather than through the
cellular network. While some smartphone apps may still potentially make use of encrypted SMS messages to
communicate to the mobile money provider, such deployments are not the focus of this analysis.

GSM Association Non-confidential
Official Document MM.01 - MM App Security Best Practices

V1.0 Page 9 of 25

Low-end smartphones are able to provide end-to-end security guarantees at the operational
system level, because of their ability to support symmetric and asymmetric cryptography
using a wider combination of security algorithms. This means mobile money providers can
ensure end-to-end security regardless of the underlying network transport and possible
limitations on access to SIM Card memory.

3 Authentication and Data Confidentiality
Authentication and data confidentiality are at the centre of secure communication.
Confidentiality is considered by many to be the original security problem, and much of the
history of cryptography revolves around the challenge of ensuring that only authorized
parties can gain access to the contents of a message.

Thankfully, there are many strong and freely available encryption techniques that allow any
two communicating devices to guarantee2 the security of their communications.

3.1 Considerations on TLS
Correctly deploying cryptography is a non-trivial problem. However, the computer security
research and standards communities have made significant efforts to make the use of
encryption easier. The most important contribution in this space is the widespread availability
of the Transport Layer Security (TLS) protocol. TLS emerged from the Secure Sockets Layer
(SSL) standard, which originated in the 1990s. Many refer to SSL/TLS interchangeably;
however, the protocols themselves exist in different versions and are not compatible with
each other. Because TLS represents the more modern of the two standards (SSL
development ceased in the early 2000s), references will be exclusively related to it with
regards to best practices.

TLS provides a scaffolding through which the communications of applications can be made
secure. It provides for the validation of server identity (via the use of X.509 certificates),
agreement on the use of specific cryptographic algorithms, the establishment of
cryptographic keys and the application of these keys to preserve the confidentiality and
integrity of all messages. Each one of these steps must be performed in a secure fashion, or
the confidentiality of communications may be put at risk.

Significant effort has also been put into making TLS highly performant. While earlier versions
SSL/TLS certainly increased the processing requirements of both servers and client devices,
the most modern version of TLS (v1.2)3 includes many optimizations that minimize its costs.
As such, while many argued against the use of SSL/TLS in the 1990s because of

2 Guarantees in cryptography are generally promised through the lens of “computational infeasibility”. That is, an
adversary with access to massive computing power (e.g., multiple world-class supercomputers) should not be
able to decrypt a message for many thousands of years despite having significant resources.
3 TLS 1.3 has been released as a standard; however, there do not yet exist any widespread adoptions. It is
expected that in the coming years, best practice will shift from v1.2 to v1.3 for reasons of improved performance
and security.

GSM Association Non-confidential
Official Document MM.01 - MM App Security Best Practices

V1.0 Page 10 of 25

performance overhead, such a claim holds essentially no weight in the modern smartphone
ecosystem.

Finally, unlike the feature phone, all modern smartphones come equipped with TLS 1.2 and
a selection of strong encryption algorithms. While more traditional web services may need to
run older versions of TLS because of legacy applications (e.g., old email clients that have
not been updated), the modern smartphone ecosystem lacks such legacy systems and
should use the most up-to-date version of TLS.

Given that TLS is not patent encumbered and that free libraries are available in virtually
every operating system, there is little practical reason not to run TLS v1.2.

It is possible to perform secure communications without TLS; however, by using a reference
protocol available on virtually every operational system, many of the most difficult tasks are
handled invisibly to the developer, providing fewer places where errors can be made (and
data confidentiality compromised). Most critically, if an application developer decides not to
use TLS, they should have to justify which desired security properties they were unable to
achieve without the use of their own protocol.

3.2 Server Authentication
Because of the ability to use cryptographic libraries on low-end smartphone devices, server
authentication becomes considerably more feasible. As stated, TLS is capable of providing
server authentication, meaning that client devices (e.g., smartphones) can authenticate the
server that they are connecting to (the usual method by which authentication on the Internet
occurs, and what is responsible for the “green lock” icon in web browsers).4

The most recent form of the TLS protocol currently in common use is TLS 1.2, which was
developed in 2008 [6] but has seen some changes in recommended cipher suite
deployment. Within TLS, authentication occurs through presentation of a digital certificate by
the server, which contains the server name, the certificate authority (CA) that signs the
certificate (thus attesting to its authenticity) and the public key of the server. If the public key
of the certificate has been pre-installed within the mobile device then it can verify the
certificate chain offline, otherwise the mobile device can look up CA’s key online. It is
strongly recommended that certificates offered by the server not be expired and that they are
signed by a CA, not self-signed, since those cannot be effectively validated by the
smartphone.

Recommendation R1:Ensure that TLS certificates presented by mobile money servers
are not expired.

An innovation within TLS v1.2 compared to earlier versions was the support for ciphers that
support authenticated encryption, notably Galois/Counter Mode (GCM) and Counter with
CBC-MAC (CCM) mode supported as modes of encryption for the Advanced Encryption

4 TLS also supports mutual authentication, whereby not only are servers authenticated to clients, but clients are
also authenticated to servers. Typically this requires clients to provide certificates to servers and is a far less
commonly used mode of operation for TLS, so we do not discuss it further in this report.

GSM Association Non-confidential
Official Document MM.01 - MM App Security Best Practices

V1.0 Page 11 of 25

Standard (AES) symmetric cipher [7]. Compared to other encryption modes, these provide
not just encryption (and hence, confidentiality) of data as it is transmitted between the
smartphone and server, but also an authentication tag for each transmitted piece of
encrypted data; the use of a message authentication code demonstrates that only the
smartphone or the server, who share a symmetric key, could have generated the encrypted
data. The means by which the symmetric key negotiation occurs is through a Diffie-Hellman
key negotiation at the beginning of the TLS handshake between smartphone and server; a
session key is generated through this negotiation that is only used for the duration of the
TLS communication, where the duration of the session lifetime can be negotiated by the
server.

The important things to note here with regards to authentication is that the selection of
authenticated encryption ciphers provides better overall security for data than modes that
only enforce encryption. Thus it is recommended with regards to TLS v1.2 that when
possible, the server should accept TLS handshakes from clients that advertise support of the
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 cipher suite. Using an encryption cipher with
a longer key lengths such as AES-256 is possible but may cause performance overhead that
may nullify the small benefits of increased collision resistance, as there are no currently-
known major attacks against AES-128. The use of SHA-384 is acceptable but may cause
increased overhead compared to SHA-256.5 Therefore at this time it is recommended that
AES-128 and SHA-256 will suffice but mobile operators should be aware that in the future
such assumptions may change. SHA-384 is based on the SHA-3 algorithm, which is also
recommended for use.

While authenticated encryption provides additional guarantees, certain versions of
smartphones may not support GCM mode. Therefore, additionally accepting ciphers that do
not provide authenticated encryptions is recommended, such as
TLS_DHE_RSA_WITH_AES_128_CBC_SHA, which provides support for cipher block
chaining (CBC) mode, a well-known mode of operation for assuring confidentiality.

Recommendation R2:Include support for TLS cipher suites that provide authenticated
encryption to maximize security. Also include support for ciphers that do not provide
authenticated encryption for maximum compatibility with clients.

Recommendation R3:Hashing should be performed with the SHA-256 or SHA-3
algorithms, notably SHA-384.

Note: In all examples above, RSA, representing the use of RSA-2048 public key
encryption, is used. It is recommended to use RSA-2048 preferably. While
Elliptic Curve-based options exist and provide shorter key lengths, they may

5 Theoretical attacks against SHA-256 show that it is potentially vulnerable to a length extension attack, where an
attacker uses the hash of a message and the length of that message to add information into the message and
successfully calculate a new hash. By contrast, SHA-384 is not susceptible to this attack. However, the length
extension attack in SHA-256 not known to be practically deployable at this time, and the increased overhead of
using larger key lengths may not justify the small potential security benefit.

GSM Association Non-confidential
Official Document MM.01 - MM App Security Best Practices

V1.0 Page 12 of 25

be patent encumbered in some jurisdictions, and may therefore need to be
selectively applied.

With regards to the negotiation of the session key, there are varying modes of Diffie-Hellman
key exchange that are supported by TLS 1.2. It is strongly recommended to use ephemeral
Diffie-Hellman, characterized by cipher suites that begin with the prefix TLS_DHE_. In this
mode, security parameters are not fixed but are newly generated for different runs of the
TLS protocol. This ensures that public keys are different per session and provides the
security property of perfect forward security, which guarantees that even if the server’s key is
compromised, past sessions and the transmitted data are not similarly compromised. This
would prevent an adversary who has captured past traffic from being able to use the
compromised key to read all of this information.

The other modes of Diffie-Hellman are fixed and anonymous. Fixed Diffie-Hellman
negotiation, characterized by cipher suites that begin with the prefix TLS_DH_, are not
optimal. They require that the server’s certificate contain the public parameter used for Diffie-
Hellman negotiation, which never change, and prevents the ability to guarantee perfect
forward security. The mode of anonymous Diffie-Hellman, characterized by cipher suites that
begin with the prefix TLS_DH_anon, is not recommended. It leaves the key negotiation
subject to a man-in-the-middle attack, where a malicious adversary that can capture
communications from the smartphone (e.g., a malicious Wi-Fi access point or a rogue base
station) can pose as the server, while passing credentials from the phone to the real server,
and hence gaining knowledge of the session key and hence the ability to read and modify all
communications.

Recommendation R4:For TLS connections, make use of ephemeral Diffie-Hellman
modes for performing key exchange.

It is strongly recommended that all mobile money systems adopt TLS v1.2 as a standard for
ensuring authentication. Previous versions of the TLS standard contain cipher suites and
other practices that can be weak or are subject to exploit. It is also essential that TLS
implementations be kept up to date, as implementation errors can lead to widespread
attacks such as key exposure. These recommendations are consistent with those from the
Payment Card Industry Security Standards Council (PCI SSC), who have mandated the
retirement of all versions of TLS prior to v1.2 by the end of June 2018 [8].

Recommendation R5:Use TLS v1.2 to secure the communication between mobile
money clients and back-end servers.

To ensure compliance with current best practices, it is recommended that mobile money
providers and developers use services such as the Qualys SSL Server Test,6 a free online
service that tests properties of servers to determine how they are configured and what
versions and types of TLS cipher suites are supported, assigning a letter grade to the
service based on vulnerabilities exposed.

6 https://www.ssllabs.com/ssltest/

https://www.ssllabs.com/ssltest/

GSM Association Non-confidential
Official Document MM.01 - MM App Security Best Practices

V1.0 Page 13 of 25

Recommendation R6:Use independent TLS testing services to assure the correct
server configuration.

Mobile money providers should also be aware of the upcoming TLS v1.3 protocol, which
exists as a draft standard as of November 2017 [9]. This version of TLS will remove
cryptographic ciphers that are deprecated or otherwise susceptible to attack and will speed
up communication between clients and servers through the removal of round trips during
protocol handshakes. Providers should watch developments closely and consider deploying
support for TLS v1.3 once it becomes commonly available as it has positive implications for
both security and performance.

3.2.1 Deploying TLS on Servers
For mobile money services that are not currently making use of TLS, there are a number of
steps that should be followed to successfully deploy the protocol. The first step is to
configure the user-facing web server to make use of TLS, which can be done through the
web server configuration. A self-signed certificate can be used to test the configuration, but
the important next step would be to purchase a certificate from a certificate authority, unless
the mobile operator is a CA authority in itself. For most deployments, sharing a single
certificate and associated key across multiple servers that are load balancing and serving
content for the same domain is sufficient.

The CA/Browser Forum, representing the major certificate authorities and web browser
providers, voted in early 2017 to limit the lifetime of a certificate to 825 days,7 and it is
recommended that any newly issued certificates do not exceed this lifetime. Shorter
certificate validity periods ensure that valid certificates can remain in compliance with
guidelines and recommendations that may change in the future, as well as reducing the
number of outdated certificates that may contain vulnerabilities. It is also important to ensure
all certificates are replaced prior to their expiration date.

Extended Validation purports to offer stronger guarantees of server identity but the degree to
which these additional guarantees are necessary in practice is still an open question. The
recommendation is that standard certificate purchases are sufficient.

Recommendation R7:Ensure that new issued certificates are limited in lifetime to 825
days.

3.3 Common Pitfalls
There are many ways in which cryptographic algorithms (and the protocols that use them)
can be poorly applied or even misused. Such mistakes can quickly remove all guarantees of
confidentiality and render user data vulnerable to recovery by an attack. Below is a list of the
most common dangerous misconfigurations usually observed in the mobile money space for
SSL/TLS:

7 https://cabforum.org/2017/03/17/ballot-193-825-day-certificate-lifetimes/

https://cabforum.org/2017/03/17/ballot-193-825-day-certificate-lifetimes/

GSM Association Non-confidential
Official Document MM.01 - MM App Security Best Practices

V1.0 Page 14 of 25

• Failure to Authenticate: The use of X.509 certificates provides a basis for identifying
the party with whom a smartphone application is speaking. Smartphone operating
systems properly check to see that new TLS connections include a valid X.509
certificate. However, many applications override this check. It is believed that this
behaviour is a result of attempts to silence errors during the testing process, and
there exist many copies of such insecure code on public discussion boards.

Failure to determine if a certificate is valid means that an attacker can inject their own
certificate into a communication stream, and the smartphone will accept this
certificate as valid for the mobile money provider with whom they were attempting to
speak. As such, the smartphone will create a secure connection to an attacker, and
then wilfully provide them with all their sensitive information.
Bypassing certificate validation and server authentication should never be done in
production code.

• Poor Algorithm/Mode Selection: The protections offered by TLS are only as good as
the encryption and hashing algorithms selected by the developers. While TLS
contains a wide selection of algorithms, not all options are necessarily considered
strong. For instance, the Data Encryption Standard (DES), was standardized in 1975
and deprecated (i.e., recommended against use) in 2005. Simply applying this
algorithm is not sufficient, and an adversary can now practically crack (“brute-force”)
such communications. A significant number of mobile money applications still allow
the use of DES in 2017, giving both these enterprises and the customers they serve a
false sense of security.

Other algorithms that should not be used include Triple DES (“3DES”), which was
deprecated in Fall of 2017 by the US National Institute on Standards and Technology
(NIST), and RC4. Moreover, even when strong ciphers are chosen, many applications
pick weak modes of encryption (e.g., Electronic Code Book – ECB) that weaken the
confidentiality guarantees of the encryption algorithm.

• Outdated SSL/TLS Deployments: TLS v1.2 is the industry standard for protecting
communications. However, older versions of the standard (SSL 2.0, SSL 3.0, TLS
1.0, TLS 1.1) are still run by many servers. These older versions not only offer
generally lower performance, but many are also vulnerable to attack. For instance,
SSL 3.0 is subject to downgrade attacks that allow an attacker to force the use of
either weak ciphers (e.g., DES40, DES, RC4) or the NULL cipher (i.e., no encryption).

3.4 Client (end user equipment) Authentication
On the device side, all of the above recommendations should be similarly applied to mobile
money apps.

Note: All versions of Android beginning with API level 16+ (Android 4.1 Jelly Bean,
released July 2012) have support for TLS 1.2, and it is enabled by default for
API level 20+ (Android 5.0 Lollipop, released November 2014). There are,
however, differences in the ciphers supported by different API levels. For

GSM Association Non-confidential
Official Document MM.01 - MM App Security Best Practices

V1.0 Page 15 of 25

example, authenticated encryption support through GCM mode is only
supported at API level 20+. Similarly, while the use of SHA-256 hashing is
recommended over SHA-1, SHA-256 is only supported as a cipher option for
API level 20+.

The Android Developer guides have extensive information regarding best practices relating
to building secure TLS sessions [10]. In particular, to ensure correct server authentication,
the app should be able to handle the verification of server certificates. Generally, this
validation will occur automatically in Android if a URL with an https:// prefix is specified as
long as the certificate authority (CA) is well known (i.e., its root certificate is pre-installed into
the smartphone). For instances when this is not the case, the HttpsURLConnection API
call can instruct the app to trust a set of CAs such that intermediate CAs that comprise a
certificate chain can be used.

Note: This operation will require the building of a KeyStore object that contains
the set of trusted CAs and a TrustManagerFactory object to store them
in.

This is essential to do if an SSLHandshakeException message is thrown (e.g., on account
of intermediate CAs requiring verification) and may differ from many sample solutions found
on the Internet that deal with this issue by recommending installing an empty
TrustManager object without a corresponding KeyStore; by following this incorrect
advice, the developer leaves the application open to an attacker generating a false certificate
that is not validated to originate from a trusted source by the app, allowing attackers to
capture and record all sensitive information sent across the TLS connection. To minimize
issues arising on the device, the server should ensure that if intermediate CA certificates are
required that the entire certificate chain ends when the TLS negotiation is requested.
Additionally, it is recommended that if the URL for the mobile money service is offered on
“toll-free” Internet navigation within a mobile operator, that the URL to allow the CA
validating the certificate for the site also be added to the toll-free list, so that the integrity of
the session can be assured.

Recommendation R8:Follow best practices for Android developers regarding server
certificate verification when setting up TLS connections from the mobile money app
on smartphones.

It is similarly important for the app to verify the proper host name of the server being
contacted, to ensure that the correct certificate is being presented to the app. This can
happen inadvertently as a result of misconfiguration on the server or as a side-effect of
virtual hosting being employed. In either event, the use of the Server Name Indication (SNI)
as a TLS extension (supported by default in TLS v1.2) allows the presentation of multiple
certificates on the same IP address, and contacting a server from the app using the
HttpsURLConnection call supports SNI by default for all versions of Android newer than
v2.3. There is thus no reason to override host name verification as virtually any exception
thrown can be dealt with using one of the methods above. Overriding verification can allow a
man-in-the-middle attack to occur and sensitive information to be compromised.

GSM Association Non-confidential
Official Document MM.01 - MM App Security Best Practices

V1.0 Page 16 of 25

Note: That when the certificate authority is not expected to change, the use of
certificate pinning is recommended, since it allows only the specified CA
certificate to be used for validating a connection rather than any root CA
certificate installed in the smartphone.

Otherwise, the trust model is such that a compromise in any root CA could result in forged
certificates that the smartphone will validate by default. Certificate pinning can be
implemented through APIs such as CertificatePinner, which provides an advantage
over using KeyStore objects discussed above as they allow not just the pinning of
certificates but of public keys (the SubjectPublicKeyInfo [SPKI] field in a certificate),
which can allow for certificate rotation that would not be otherwise possible if the certificate
itself was pinned.

Recommendation R9:Ensure that mobile money apps verify the name of the server
being contacted during TLS setup. Use certificate pinning if the CA is not expected to
change.

3.5 User Authentication
Authentication of the user is critical. Both the smartphone app and the underlying device
platform can play a role in establishing integrity of the user and the device that they are
using to perform mobile money transactions with.

As a starting point, smartphones offer richer user interface and user experience (UI/UX).
CGAP recently published a set of principles for UI/UX design [11] that mobile money app
developers should consider adhering to. In particular, ensuring visual cues and locally
relevant iconography are properly deployed can both have the benefit of improving
aesthetics and authentication. Additionally, a more familiar interface can help users
customers suspect and prevent other security vulnerabilities from happening (e.g., re-
direction to an incorrect server address).

The most popular and straightforward to deploy mechanism for facilitating user
authentication is through the use of a PIN or password. The smartphone environment
provides substantially richer interfaces that can allow for moving beyond digit-based PINs
that would be necessary on feature phones. This is beneficial for security since passwords
can use a substantially larger character space, vastly increasing the universe of possible
options for a password. However, it is anticipated that numeric passwords will still exist for
some time to come, particularly in the case where companion cards [12] (which generally
contain four-digit PINs) are linked with the same password as the mobile app. We thus
recommend that mobile apps provide the means to disallow easily guessable numeric
passwords, such as number sequences (e.g., “1234”), repeated digits (e.g., “1111”), user’s
date of birth, and other easily-retrievable data. Similarly, when alphanumeric passwords are
used, care should be taken within the app to disallow passwords that are easily guessable
(those that are subject to dictionary attacks) based on ease of compromise (i.e., creating a
blacklist of bad passwords and ensuring that users are not using one of these).

GSM Association Non-confidential
Official Document MM.01 - MM App Security Best Practices

V1.0 Page 17 of 25

However, in line with recent recommendations NIST about password use,8 it is
recommended that apps not force users to change passwords on a regular basis and that
apart from length requirements of 6 characters (or 8 if the password is numeric), no further
restrictions be placed on the password to be selected by the user (i.e., no minimum number
of digits, upper case characters, or special characters). While this recommendation may be
counter to past practice, it is consistent with studies that show people have limited abilities to
remember long and complex passwords and by forcing the constant changing of passwords,
people are more likely to have the password written down and easily accessible to
themselves (and potentially others) or to simply choose passwords that are not as strong as
they are capable of recalling themselves. Longer passwords are preferred and providing
users the options to input passphrases rather than passwords is recommended.

Recommendation R10:Disallow easily guessable PINs and passwords on mobile
money apps, but do not force users to change passwords on a regular basis.

Authentication of users can often be characterized in terms of three factors:

1. what you know;
2. what you have;
3. who you are.

Passwords and PINs are examples of factor (1), but deploying the other authentication
factors is becoming increasingly feasible for mobile devices. Factor (3) generally refers to
the use of biometrics for authentication and such mechanisms have become common on
mid-range and high-end smartphones. We anticipate that the cost of deploying these
functionalities on mobile devices will continue to decrease and user acceptance of these
features will continue to expand such that in a few years they will be predominant on all
mobile devices. The precise mechanism for biometric authentication may differ between
smartphone platforms (e.g., fingerprint scanners, face recognition systems) but all can
provide a second factor of authentication to users. In particular, Android 6.0 contains APIs
that support fingerprint authentication through the authenticate() method of the
FingerprintManager class. Such data can be stored in KeyStore objects as with key
material described above in our discussion of server authentication. The Android Keystore
system ensures that key material and other sensitive information (e.g., the fingerprint
credential) is not executed by the application itself but occurs as a system level process
such that the application never has to directly process this information, mitigating exposure
of this sensitive data.

Increasingly, smartphones are being deployed with hardware-backed secure components,
such as trusted execution environments (TEEs, e.g., ARM TrustZone) or secure elements
(SEs, e.g., deployed on SIM cards). Ensuring that sensitive information is stored in these
hardware-backed secure features is straightforward for the application developer, who can
use the KeyInfo.isInsideSecureHardware() API call in Android 6.0 and above to
easily make this determination.

8 https://pages.nist.gov/800-63-3/sp800-63b.html

https://pages.nist.gov/800-63-3/sp800-63b.html

GSM Association Non-confidential
Official Document MM.01 - MM App Security Best Practices

V1.0 Page 18 of 25

In many cases, current programs that leverage biometrics require the initial entering of a
password in addition to the biometric (e.g. a fingerprint) and subsequent authentication
requests will only ask for the biometric. It is important that both authentication factors be
presented initially. Because of the ease of use of biometrics, they also allow for more
continuous authentication, where any security-sensitive operations (e.g., performing a
money transfer) can be quickly authenticated without requiring the user to input their
password; such authentication around security-sensitive events is strongly recommended
regardless of the type of authentication that is being deployed. It is also strongly
recommended to require input of the second factor of authentication at periodic intervals to
ensure that the user is in possession of both credentials.

The third factor of authentication, factor (2) as described above, is determining the presence
of a token used as an authentication credential. This is made particularly easy with a
smartphone since it acts as the token itself.9 When combined with hardware-backed security
mechanisms such as trusted boot can enhance this trustworthiness. In Android 8.0,
interfaces exist to retrieve an ID attestation of the mobile device directly from secure
hardware, which can provide strong authentication guarantees regarding the device
properties (e.g., the ATTESTATION_ID_SERIAL and ATTESTATION_ID_IMEI variables
will securely retrieve the device’s serial number and the IMEI of all radios, respectively, from
a phone’s TEE. These mechanisms should be leveraged by application developers who can
build such support into applications for devices that support this secure hardware. We
anticipate that secure hardware will be increasingly deployed in all smartphones in the
future, and planning strategically to leverage this support for maximum protection of data will
only help current mobile money deployments.

Recommendation R11:Ensure that user authentication is required on mobile money
apps prior to performing security-sensitive operations.

Recommendation R12:When making use of biometrics as an authentication factor in
mobile money apps, ensure that a password or PIN is also initially presented.

Recommendation R13:Mobile money apps should make use of trusted hardware on
smartphones where such hardware is available to better secure sensitive information.

Another mechanism to support multi-factor authentication (1) and (2) where the smartphone
acts as a token-based credential is one where information is communicated directly to the
device from a server. In some cases this occurs through an SMS message to the phone;
however, we would recommend for smartphones that the use of SMS be avoided because of
the lack of confidentiality that SMS provides end-to-end;10 also note that any other app on
the smartphone that contains the RECEIVE_SMS Android permission would have the ability
to read all incoming SMS messages, including those intended for the mobile money

9 Other mechanisms such as hardware tokens plugged into the smartphone are also possible as an authenticator
and may provide additional protection, but are subject to loss and may impede the user experience, so are not
recommended for general use.
10 NIST no longer recommends the use of SMS as a second authentication factor; see
https://pages.nist.gov/800-63-3/sp800-63b.html

https://pages.nist.gov/800-63-3/sp800-63b.html

GSM Association Non-confidential
Official Document MM.01 - MM App Security Best Practices

V1.0 Page 19 of 25

application. Instead, we recommend apps that generate one-time passwords on the device
itself, such as Google Authenticator or the open-source FreeOTP provide strong notions of
end-to-end security and act out of band to the mobile money application.

Recommendation R14:Use smartphone-based authenticators for one-time passwords
rather than relying on SMS.

The GSMA has introduced Mobile Connect, an industry-led common authentication system11
that serves as a mechanism for ensuring strong authentication through a consistent API. In
this case, the credentials should still be stored through KeyStore objects as described
above, preferably those that leverage secure hardware within the smartphone. The benefit
of a solution such as Mobile Connect is the enhancement of interoperability for the mobile
money application, since multiple mobile operators can provide the authentication
credentials through the Operator Discovery phase of the protocol. Mobile Connect is also
designed to be used in its most secure fashion with smartphones containing TEEs [13].

Mobile Connect specifies four Levels of Assurance12 that provide progressively stronger
assurances of authentication. PIt is recommended for providers to implement API support
Level of Assurance 3. In the current term, MSISDN+PIN support is sufficient; however, given
the sensitivity of mobile money apps data, it is recommend mobile app developers closely
watch the evolution of the Mobile Connect API for completion of support for Level of
Assurance 4, when support for smartphone app authentication is fully built in.

Recommendation R15:Make use of standardized APIs such as the GSMA’s Mobile
Connect when developing mobile money apps.

4 Access Control
Mobile devices have access to a significant amount of sensitive user data. From account
information to login data, such data is tempting target for an attacker. App developers should
consider how to best protect this information and to consider not just the security of the app
but also the operating system and the underlying mobile platform that the app is to be
deployed upon, as different security postures may exist for different app environments.

The Android mobile operating system is the primarily focus in this document as it is the OS
platform for the vast majority of users of mobile money apps. Android itself is based on the
Linux operating system kernel, meaning that any vulnerabilities in Linux can also percolate
into Android. A prime example of this is the so-called “Dirty Cow” exploit, which leverages a
vulnerability that existed within Linux for nine years before being patched; soon after the
exploit was disclosed for Linux, it was developed to be able to exploit Android devices [14]. It
is thus recommended that app developers stay cognizant of threats to both the Linux kernel
and Android operating system and ensure that they work in conjunction with mobile network
operators to push operating system updates to phones capable of taking them; applications

11 https://www.gsma.com/identity/mobile-connect

12 https://developer.mobileconnect.io/level-of-assurance

https://www.gsma.com/identity/mobile-connect
https://developer.mobileconnect.io/level-of-assurance

GSM Association Non-confidential
Official Document MM.01 - MM App Security Best Practices

V1.0 Page 20 of 25

should also be written using defensive programming practices to attempt to mitigate
vulnerabilities should exploits occur.

Recommendation R16:Maintain awareness of vulnerabilities against the Android
operating system and the underlying Linux kernel, and what effect those exploits may
have on the security of mobile money apps.

App developers should exercise great caution with regards to where application data is
stored. As described in previous sections, the use of KeyStore objects is recommended for
sensitive information, as the operating system will handle information protection using
software mechanisms and, where available, hardware mechanisms. However, other
information not stored in the Android KeyStore should also be evaluated for its potential to
be used inappropriately and protected accordingly.

One of the issues that should be considered is the partition and information storage object
used for information relating to the mobile money app. For example, data in Android is often
stored in content providers, which manage access to local data stores on the smartphone. It
is recommended that if mobile money apps are to use ContentProvider objects, that
these objects not provide other applications with access to the object, i.e., within the
manifest for the app, marking android:exported=false to disable other applications
from accessing the ContentProvider. Shared content provider objects can provide an
unintentional means by which applications can share information and can provide
mechanisms for malicious apps to collude to steal information from sensitive data stores
used by the mobile money app [15].

If there is a need for multiple apps to share access to a ContentProvider used by the
mobile money app (e.g., a companion mobile wallet app), it is recommended that app
developers closely examine the flows of information to the ContentProvider. There must
be no pathway by which potentially sensitive information can leave the provider object and
used by another app with access to information from the ContentProvider without having
communication privileges to the mobile money app. Such a scenario would be possible if, for
example, a third-party app has permissions to access a companion mobile wallet app that
can access the same ContentProvider as the mobile money app. If such as flow was
possible then that third-party app would be able to potentially retrieve sensitive information
used by the mobile money app that it was not authorized to use. This can allow the third-
party application to also potentially pass the mobile wallet app information that is then placed
into the ContentProvider object and subsequently used by the mobile money app. In this
way, the third-party app would have the ability to influence the mobile money app’s activities
by indirectly providing it with data; this is known as a confused deputy attack. Ensuring that
these types of attacks do not occur is critical to the integrity of the mobile money application.

Recommendation R17:Use the Android Keystore for storing sensitive information and
avoid allowing access to databases where sensitive information is stored to
applications other than the mobile money app.

Another shared channel for information exists through placing information in external
storage. Regardless of whether the smartphone contains the ability to access external

GSM Association Non-confidential
Official Document MM.01 - MM App Security Best Practices

V1.0 Page 21 of 25

storage media (e.g., an SD card) or not, Android filesystems have the ability to partition all
accessible storage (including information that only resides on the phone’s internal data
stores) into internal and external storage. Once data is placed in external storage, it
becomes readable and writable to any other application that resides on the smartphone. It is
therefore recommended that data used by the mobile money app only be stored onto a data
storage area designated as internal storage. However, if any data is must retrieved from
external storage, it is strongly recommended that this data be subject to validation by the
mobile money app before it is used. It should be considered low integrity and potentially
malicious data and the app should ensure that the data conforms to the structure and
content that is expected.

The user of permissions should also be minimized to the minimum necessary for the app to
effectively function. This is an example of the principle of least privilege, which can protect
the information within the app. Importantly, it is recommended that app developers ensure
any information sent over inter-procedural calls does not include information that was
retrieved through request of a system permission.

Recommendation R18:Avoid the use of external storage for information stored in
mobile money apps and minimize the number of permissions required.

4.1 Protection of User Credentials and Sensitive Information
The certificate keys that are used to validate secure connections between the smartphone
and the mobile money server must be properly protected on the device. There are a number
of ways in which this can occur. It is recommended that the most secure way of achieving
secure storage of this information is through use of the Android KeyStore mechanism
described above.

Other mechanisms have been deployed in the past and can be used for legacy code with
some attention paid to security. For example, app developers may manage this data through
Android ContentProvider interfaces to secure data repositories placed in encrypted
storage. In legacy deployments where refactoring application code to use ContentProviders
is difficult, there are other alternatives. Data can be stored in hardcoded form on the device,
bundled inside the application. In this case, it is recommended that app developers ensure
data is properly managed since the certificate details, if they change, will need to be
accompanied by a corresponding change in the application that would have to be pushed to
consumer devices. Alternatively, the application can leverage trust on first use with regards
to the certificate information retrieve and store this data securely on the device. In this
manner, the application would not be responsible for distribution of the information, but it
then becomes particularly important to ensure the trustworthiness of the initial connection to
the server. Finally, a separate data store could be established on the smartphone and the
mobile money app could dynamically update this store over the air. In this case, it is also
critical to ensure the authenticity and the integrity of both the server and the data in flight
from the server to the app. If data is stored within the app itself, recommended practice is to
use techniques such as obfuscation to protect it. We note, however, that de-obfuscation can
be performed and determined attackers could potentially gain access to any sensitive data
embedded within the app.

GSM Association Non-confidential
Official Document MM.01 - MM App Security Best Practices

V1.0 Page 22 of 25

5 Technical Recommendations Summary
A summary of the recommendations made in this document are provided in the table below.
These recommendations are based on current best practices as supported by organizations
such as NIST and the consensus of the security community.

Ref Recommendation Type Remarks
R1 Ensure that TLS certificates

presented by mobile money
servers are not expired.

Highly
recommended

R2 Server administrators should
Include support for TLS cipher
suites that provide authenticated
encryption to maximize security.
Also include support for ciphers
that do not provide authenticated
encryption for maximum
compatibility with clients.

Recommended An example of a recommended
authenticated encryption mode is
TLS_DHE_RSA_WITH_AES_128
_GCM_SHA256. An example of a
recommended mode without
authenticated encryption is
TLS_DHE_RSA_WITH_AES_
128_CBC_SHA.

R3 Hashing should be performed with
the SHA-256 or SHA-3 algorithms,
notably SHA-384.

Recommended

R4 For TLS connections, make use of
ephemeral Diffie-Hellman modes
for performing key exchange.

Recommended These modes start with the prefix
TLS_DHE.

R5 Use TLS 1.2 to secure the
communication between mobile
money clients and back-end
servers.

Highly
Recommended

R6 Use independent TLS testing
services to assure the correct
server configuration.

Recommended

R7 Ensure that new issued certificates
are limited in lifetime to 825 days.

Recommended

R8 Follow best practices for Android
developers regarding server
certificate verification when setting
up TLS connections from the
mobile money app on
smartphones.

Highly
Recommended

R9 Ensure that mobile money apps
verify the name of the server being
contacted during TLS setup. Use
certificate pinning if the CA is not
expected to change.

Recommended

GSM Association Non-confidential
Official Document MM.01 - MM App Security Best Practices

V1.0 Page 23 of 25

Ref Recommendation Type Remarks
R10 Disallow easily guessable PINs

and passwords on mobile money
apps, but do not force users to
change passwords on a regular
basis.

Highly
Recommended

Minimum PIN/password lengths are
recommended as 6 characters for
an alphanumeric password and 8
digits for a numeric PIN.

R11 Ensure that user authentication is
required on mobile money apps
prior to performing security-
sensitive operations.

Highly
Recommended

R12 When making use of biometrics as
an authentication factor in mobile
money apps, ensure that a
password or PIN is also initially
presented.

Recommended

R13 Mobile money apps should make
use of trusted hardware on
smartphones where such
hardware is available to better
secure sensitive information.

Recommended

R14 Use smartphone-based
authenticators for one-time
passwords rather than relying on
SMS.

Recommended

R15 Make use of standardized APIs
such as the GSMA’s Mobile
Connect when developing mobile
money apps.

Recommended If using Mobile Connect,
applications should be built against
Level of Assurance 3 APIs.

R16 Maintain awareness of
vulnerabilities against the Android
operating system and the
underlying Linux kernel, and what
effect those exploits may have on
the security of mobile money apps.

Recommended

R17 Use the Android Keystore for
storing sensitive information and
avoid allowing access to
databases where sensitive
information is stored to
applications other than the mobile
money app.

Highly
Recommended

R18 Avoid the use of external storage
for information stored in mobile
money apps and minimize the
number of permissions required

Recommended If external storage is required,
ensure that apps fully validate input
from this storage area prior to use
within the app.

GSM Association Non-confidential
Official Document MM.01 - MM App Security Best Practices

V1.0 Page 24 of 25

6 Conclusions
This document provides a set of recommendations designed with the needs of mobile
providers and app developers in looking to deploy mobile money apps on the Android
operating system in mind, assuring the security of the communication between these apps
and the back-end servers that they connect to.

Good practices considered revolve around basic security principles readily available on the
underlying platforms and operating system, which could be common knowledge for most IT
developers. However, the recommendations set here should provide a checklist to ensure
providers satisfactorily fulfil the security principles on authentication, access control, integrity
and confidentiality,

It should be noted that these recommendations are far more focused on the technical details
to provide a tactical approach on implementation rather than on procedural elements. In
comparison, frameworks such as the US Sarbanes-Oxley Act and those from ISO can
provide value for general IT policies and practices but are far more general in nature and are
not tailored to the mobile money environment. The ITU issued recommendations for the DFS
ecosystem as well, but those recommendations are also more general and less technical in
nature and attempt to cover a broader spectrum of the digital financial services ecosystem.

While this document is designed with the needs of mobile providers and app developers in
looking to deploy mobile money apps on the Android operating system in mind, information
such as recommended cipher suites for TLS and recommendations on access to
permissions and storage will hold for other mobile operating systems as well such as Apple’s
iOS.

Finally, because these recommendations are technical and based on current best practices,
while they are designed to be forward-looking in nature, they are tailored to current
deployments. As such, it is possible that new exploits, vulnerabilities, and advances in
computer security may render some of these recommendations obsolete in the future. To
that end, the goal of the GSMA will be to update these recommendations in the future such
that it remains a valuable and current resource for any mobile provider planning to launch
smartphone-based mobile money systems.

GSM Association Non-confidential
Official Document MM.01 - MM App Security Best Practices

V1.0 Page 25 of 25

Annex A Document Management

A.1 Document History

Version Date Brief Description of Change Approval
Authority

Editor /
Company

1.0
07th
February
2018

Initial version TG and PLG Tiago Novais,
GSMA

A.2 Contributing authors and owners

Type Description
Document Owner GSMA Mobile Money Programme

External Contributor University of Florida, Computer and Information Science and
Engineering Department

Lead External Authors Kevin Butler and Patrick Traynor, UF

External reviewers Gareth Pateman, MFX Partners

Lead GSMA Reviewer Tiago Novais

GSMA reviewers Richard Murray, Sophia Hasnain

This document has additional contributions from Airtel, Millicom, MTN, Ooredoo. Oragne,
Telenor, Vodafone, Jazz (Mobilink) through feedback comments directly on this document or
at a workshop held at the GSMA offices on 01st of September, 2016.

It is our intention to provide a quality product for your use. If you find any errors or omissions,
please contact us with your comments. You may notify us at prd@gsma.com

Your comments or suggestions & questions are always welcome.

mailto:prd@gsma.com

	1 Introduction
	1.1 Overview
	1.2 Scope
	1.3 Definition of Terms
	1.4 References
	1.5 Executive Summary
	1.6 Objectives and methodology
	1.6.1 Security Principles
	1.6.2 Authentication
	1.6.3 Access Control
	1.6.4 Integrity
	1.6.5 Confidentiality
	1.6.6 Assumptions and restrictions

	2 Introduction to smartphone app components and architecture
	2.1 The End-to-End Security Principle

	3 Authentication and Data Confidentiality
	3.1 Considerations on TLS
	3.2 Server Authentication
	3.2.1 Deploying TLS on Servers

	3.3 Common Pitfalls
	3.4 Client (end user equipment) Authentication
	3.5 User Authentication

	4 Access Control
	4.1 Protection of User Credentials and Sensitive Information

	5 Technical Recommendations Summary
	6 Conclusions
	Annex A Document Management
	A.1 Document History
	A.2 Contributing authors and owners

