

 Security Design and Implementation Guidelines

GSMA Mobile Money API

This is a Non-binding Permanent Reference of the GSMA

Security Classification: Non-Confidential

Access to and distribution of this document is restricted to the persons permitted by the security classification. This document is confidential

to the Association and is subject to copyright protection. This document is to be used only for the purposes for which it has been supplied

and information contained in it must not be disclosed or in any other way made available, in whole or in part, to persons other than those

permitted under the security classification without the prior written approval of the Association.

Copyright Notice

Copyright © 2020 GSM Association

Disclaimer

The GSM Association (“Association”) makes no representation, warranty or undertaking (express or implied) with respect to and does not

accept any responsibility for, and hereby disclaims liability for the accuracy or completeness or timeliness of the information contained in

this document. The information contained in this document may be subject to change without prior notice.

Antitrust Notice

The information contain herein is in full compliance with the GSM Association’s antitrust compliance policy

GSM Association Non-Confidential

Security Design and Implementation Guidelines

Status: Release 2/51 Version: 1.8

Table of Contents

1 INTRODUCTION .. 4

1.1 Overview ... 4

1.2 Scope ... 4

1.3 Intended audience .. 4

1.4 Conventions .. 4

1.5 Objectives and Methodology .. 4

1.6 High-Level Architecture .. 6

1.7 Security concepts ... 6

1.7.1 Security properties .. 7

1.7.2 Security services ... 7

1.8 Threat Model considerations .. 10

1.9 Mobile Money APIs Actors ... 11

1.10 Common OAuth 2.0 terms .. 12

1.11 Glossary & Abbreviations ... 13

1.12 References ... 15

2 SECURITY DESIGN OPTIONS SUMMARY ... 17

3 API CLIENT – API GATEWAY AUTHENTICATION – SECURITY DESIGN 18

3.1 Solution overview ... 18

3.2 API Gateway Authentication using TLS server authentication 19

3.3 API Client Authentication using TLS mutual authentication ... 19

3.4 API Client Authentication at HTTP level ... 20

3.4.1 API Client Authentication and authorisation using OAuth 2.0 Client Credentials

grant type .. 20

3.4.2 API Client Authentication using HTTP Basic authentication 22

3.4.3 API Client Authentication based on API key ... 23

4 END-USER AUTHENTICATION – SECURITY DESIGN .. 24

4.1 Solution overview ... 24

4.1.1 Overview of OpenID Connect protocol .. 24

4.2 End-user authentication by API Gateway .. 25

4.2.1 Authorisation request for authenticating end-user .. 27

4.2.2 Usage of Access Token .. 29

4.3 Delegated end-user authorisation .. 30

4.3.1 OAuth 2.0 Token Introspection.. 31

4.3.2 Introspection request attributes ... 32

GSM Association Non-Confidential

Security Design and Implementation Guidelines

Status: Release 3/51 Version: 1.8

4.4 End-user authentication using username and PIN ... 33

5 DATA PROTECTION – SECURITY DESIGN .. 34

5.1 TLS - Application Data Protocol ... 34

5.1.1 Data Encryption and Authenticity .. 34

5.1.2 TLS Version and Algorithm considerations ... 34

5.1.3 Session keys randomness .. 37

5.2 Javascript Object Signing and Encryption (JOSE) ... 37

5.2.1 JSON Payload Encryption (JWE) .. 38

5.2.2 JSON Payload Signature (JWS) ... 38

5.2.3 Algorithm considerations ... 38

5.2.4 CEK Key Randomness .. 39

5.3 Basic data integrity and authenticity check .. 40

5.4 Protection of sensitive request parameters – Query / URI Path variables 40

6 API BEST PRACTICES ... 41

6.1 Auditing/Monitoring ... 41

6.1.1 Logging .. 41

6.1.2 Monitoring/Reporting ... 41

6.2 Communication ... 43

6.2.1 Transport ... 43

6.2.2 Data encryption ... 43

6.2.3 Storage of cryptographic keys and credentials ... 44

6.3 Identity Management .. 45

6.3.1 Authentication and session management ... 45

6.3.2 Authorisation.. 46

6.4 Validating RESTful services ... 47

6.4.1 Input validation .. 47

6.4.2 Output encoding .. 47

6.4.3 Error handling .. 48

ANNEX A REST SECURITY STANDARD OVERVIEW .. 49

ANNEX B DOCUMENT MANAGEMENT .. 50

GSM Association Non-Confidential

Security Design and Implementation Guidelines

Status: Release 4/51 Version: 1.8

1 Introduction

1.1 Overview

This document provides guidelines for secure design and implementations of both API Client

and API Gateway specified by the Mobile Money API specification.

1.2 Scope

This Mobile Money Security Design and Implementation Guidelines document focuses on the

different authentication and data protection layers (confidentiality and integrity) that must be

implemented by the backend server interfaces for the establishment of secure channels

between the API Client and the API Gateway.

User authentication by a third party OIDC/OAuth 2.0 Identity Provider (IDP) and general best

practices to allow a secure monitoring of the implemented Mobile Money APIs and to protect

user privacy are also documented.

The rules and policies to be applied by the authorisation service as well as the application

layers between the users and the client API and the implementation of the business functions of

the mobile money platform are not within the scope of this document.

1.3 Intended audience

This security design is targeted for Mobile Money providers, platform vendors, third party

service providers and other industry partners to guide them in implementing, setting up, and/or

deploying a Mobile Money Platform compliant to the GSMA harmonized Mobile Money API.

1.4 Conventions

The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”,

“recommended”, “may”, and “optional” in this document are to be interpreted as described in

RFC2119 [24].

1.5 Objectives and Methodology

The Mobile Money environment is fragmented with each platform vendor offering their own API.

For this reason, the GSMA has defined a RESTful harmonized Mobile Money API to

standardize the connection between API Clients (e.g. Merchants, Aggregators, Utility

Companies, Other Mobile Money platforms) and the Mobile Money Platforms.

With this harmonized Mobile Money API, the GSMA aims to provide easy and secure building

blocks and rapid partner on-boarding and interoperability between multiple Mobile Money

solutions.

GSM Association Non-Confidential

Security Design and Implementation Guidelines

Status: Release 5/51 Version: 1.8

This introduces additional intermediary logical or physical connector components in the existing

Mobile Money ecosystem on both Client and Platform sides.

To minimize the increase of business and technical risks induced by those new components

(i.e. new attack vectors) on the Mobile Money system, it is important that those components are

developed, deployed and operated respecting good up-to-date secure coding, configuration and

operation practices.

The main purpose of this document is to provide design and implementation guidance to

developers and integrators of both API Client and API Gateway components, to minimize risks.

To achieve that, this document recalls state-of-the-art best practices for backend and RESTful

API development and deployment, and focuses more on guidance for those following specific

security services that should be implemented:

1. Client / Server authentication: TLS handshake and HTTP Basic or OAuth2.0 (e.g.

secure channel between API Client and API Gateway, between API Gateway and a

Mobile Money Platform, and, between a Mobile Money Platform and the API Gateway

for callbacks)

2. End-user authentication: Open ID Connect and other relevant methodologies

3. Data protection services: TLS application data encryption and authenticity, and, JSON

encryption (JWE) and signature (JWS)

Section 1 presents the purposes of this document and the high-level risk-based approach. In

this sense, it recalls the main security properties, services and mechanisms that must be

considered. It also recalls contextual information related to the business of mobile money and

financial services (e.g. high business level threat modeling) as well as to the technologies

implemented in Mobile Money APIs. It also gives a high-level overview of the Mobile Money

APIs deployment architecture with main components and communication interfaces and

channels.

Section 2 summarizes and ranks the security design options described later in sections 3-5 of

this document. They are the only ones to be considered when implementing the Mobile Money

API specification version 1.1.

Section 3 defines security guidelines for implementing the client / server authentication at

different layers: TLS at the transport level and OAuth 2.0 [22] at the HTTP applicative level.

Section 4 details the security methods to be implemented for securely authenticating end-users.

It captures various scenarios for authenticating end-users using industry standard protocols for

authentication– OAuth 2.0 [22] and OIDC [27] along with custom authentication models to

support existing username/MSISDN and PIN based credentials.

Section 5 provides state-of-the-art guidance to implement data encryption and data authenticity

and integrity at both TLS / application data protocol level and, applicative RESTful API level

(a.k.a. “Message Level Security”) with JOSE, JSON encryption (JWE) and JSON signature

(JWS). These recommendations also relate to the state-of-the-art in terms of key management

especially for secret and private keys, choice of algorithms and mode of operations. It provides

a ranking of encryption algorithms according to three classification levels: banned, acceptable

and recommended.

GSM Association Non-Confidential

Security Design and Implementation Guidelines

Status: Release 6/51 Version: 1.8

Section 6 recalls the state-of-the-art generic security best practices when implementing RESTful

APIs, providing guidance on other security controls that must be considered for such backend

implementations.

1.6 High-Level Architecture

Figure 1: Solution overview including interfaces

Interface 1: The interface between the API Client and the API Gateway

This interface is the interface which is in scope in this security design and for which integrity

and confidentiality are considered. The security design covers the transport layer security on

this interface as well as application level authentication and authorization.

Interface 2: Connection from API Gateway to Mobile Money platform

This connection is the proprietary interface for the connection to the existing Mobile Money

platform. This connection depends on the vendor chosen for the Mobile Money platform.

Interface 3: Interface between the Mobile Money platform and end-user

For authentication within some use cases the Mobile Money platform might request the end-

user to provide an authentication. This interface could be IP based or be using protocols like

USSD.

Interface 4: Interface between the end-user and the API Client

In some use-cases the end-user will communicate to the API Client. This interface can be

digital, but it can also be different in the case of smaller shops.

1.7 Security concepts

The following table summarises the key security concepts and associated properties.

API Client MNO

Mobile Money
Platform

GatewayApplication

End user

API

1 2

34

API

GSM Association Non-Confidential

Security Design and Implementation Guidelines

Status: Release 7/51 Version: 1.8

1.7.1 Security properties

Security Property Description

Confidentiality "Property that information is not made available or disclosed to

unauthorized individuals, entities, or processes” [12]

Integrity Property that information is not modified (created, deleted, or updated)

by unauthorised individuals, entities, or processes

Authenticity Property that information is originating from an authenticated source

and hasn’t been altered.

Availability Property of being able to be used for a service or obtain for information

by authorised individuals, entities, or processes

Non-repudiation Property that issued actions or transactions cannot later be denied by

their issuer

Auditability Property of systems to be able to be audited or monitored by producing

evidences on the processing of their critical functionalities

Traceability Property for a data to be followed during its lifecycle to track all its

access and changes

1.7.2 Security services

1.7.2.1 Data confidentiality protection

The adapted mean to protect the confidentiality of data from being disclosed to unauthorised

individuals, entities or processes is Encryption.

It can be used to protect sensitive data in persistent storage (e.g. in a DB or in a hard disk file),

in temporary storage (e.g. in RAM at runtime), as well as in transit (e.g. between network

components or when exchanged inter processes).

The reverse operation of Encryption is Decryption.

In respect with the Kerckhoffs’s principle (“A cryptosystem should be secure even if everything

about the system, except the key, is public knowledge”) modern encryption relies generally on

public algorithms.

We can distinguish two families of encryption: symmetric encryption (e.g. AES) and asymmetric

(e.g. RSA) encryption. Usually, primarily for performance reasons, symmetric encryption is used

to encrypt data and sometimes keys while asymmetric encryption is limited to encrypt keys

only.

Encryption / Decryption rely on the use of cryptographic keys (shared secret for symmetric and

public / private for asymmetric) that have to be managed (i.e. be generated, stored, used,

erased and exchanged if needed) with due care, especially both secret and private keys that

have to be kept secret (i.e. not accessible and not predictable) from unauthorised individuals,

entities and processes.

To protect those keys and their use, according to both the isolation and least privilege

principles, access control mechanisms have to be implemented and processes that use them

must be isolated as much as possible.

Notes

GSM Association Non-Confidential

Security Design and Implementation Guidelines

Status: Release 8/51 Version: 1.8

1. Particular attention must be paid to asymmetric encryption and key agreement that are,

by construction, vulnerable to Man In The Middle attacks. For this reason, both require

to be processed in a fully authenticated context.

2. To be unpredictable, the keys must be generated by processes using unbiased random

generators and with state-of-the-art sizes to embed enough entropy.

1.7.2.2 Data integrity protection

Different means exist to protect the integrity of data. All consist in computing a datagram from

the entirety of the correct data before its storage or sending which can be recomputed and

checked at the time of its re-reading or its reception. This so as to detect any unintentional or

intentional modification of the data during its storage or transfer.

Unintentional modification detection can rely on simple CRC or message digest (a.k.a. hash

functions) mechanisms, while intentional malicious detection cannot, unless to encrypt the

integrity datagrams or protect them against tampering. This because CRC and message digest

algorithms are public.

Adapted means to protect against intentional malicious modification of data are Message

Authentication Code (MAC) and Digital Signature that both assume the use of cryptographic

keys. That way, individuals, entities, and processes that are not authorised to use the keys

cannot compute nor guess any integrity datagram from the maliciously modified data.

Message Authentication Code are generally constructed from other cryptographic primitives

such as Message Digest with HMAC and, Block Ciphers with specific mode of operations, e.g.

CBC-MAC or GMAC.

Both the MAC computation and MAC verification processes always rely on the use of a same

shared secret key that have to be managed (i.e. be generated, stored, used, erased and

exchanged or agreed) with due care to be kept secret and not predictable from unauthorised

individuals, entities and processes.

Digital Signature is based on the use of asymmetric cryptography generally combined with the

use of a hash function to reduce the size of data to be signed.

The signature generation uses a private key that only the signer (individual, entity or process)

knows or can use, while the signature verification uses the corresponding public key that

everyone knows.

Notes: Particular attention must be paid to both Digital Signature and key agreement for MAC if

used, being based on asymmetric cryptography they are both vulnerable to Man In The Middle

attacks. For this reason, both require to be processed in a fully authenticated context.

1.7.2.3 Data authenticity protection

Means adapted to protect the authenticity of data are the same as the one used to protect its

integrity from malicious intentional modification, i.e. Message Authentication Code and Digital

Signature.

In both cases, the verification process ensures that the individual, entity or process that

generated the authenticity datagram was authorised to access or use the secret or private key.

GSM Association Non-Confidential

Security Design and Implementation Guidelines

Status: Release 9/51 Version: 1.8

As these means require to be processed in a fully authenticated context, since the keys are not

compromised, they provide in addition to data authenticity protection a service of authentication

of its source.

1.7.2.4 Service availability protection

The availability of a system is measured in percentage of time or occurrence when it is up and

accessible compare to when it is down or inaccessible. E.g. a system with 99.999 % of

availability is supposed to be down less than 5 minutes and 16 seconds per year, in that case

we talk of high availability.

Protecting the availability of a service is definitively one of the most difficult tasks in security.

This requires the implementation of a large number of logical, physical and organizational

security controls (e.g. making regular backups and defining recovery plans and rollback

procedures plans, implementing system redundancy, defining key parameter indicators to be

permanently monitored by operations, implementing permanent functional testing and heart bit,

defining sanity verification criteria and procedure, running business continuity exercises, audit,

regular vulnerability scanning, IDS/IPS, SIEM, etc…)

Service disruptions can occurs due to power outages, hardware failures, and system upgrades

but also malicious attacks. Especially on a public API, these attacks can vary from an attacker

planting malware in the system to a highly organized distributed denial of service (DDoS)

attack. DDoS attacks are hard to eliminate fully, but with a careful design their impact can be

minimized.

In most cases, DDoS attacks must be detected at the network perimeter level—so, the

application code doesn’t need to worry too much. But vulnerabilities in the application code can

be exploited to bring a system down.

In terms of design and logical protections developers must consider scalability or elasticity and

self-testing for critical functions (e.g. authentication), avoiding potential single point of failure,

contingency management (capability to deal positively with whatever occurs using whatever

resources are available), minimising the attack surface (interfaces exposed to untrusted

components), performing negative and security testing on exposed entry points before going to

production.

1.7.2.5 Identification service

Identification is the ability of a system to get information about an identity, an identifier (e.g. a

login name). In other words, an identification service is a service which allows to determine an

identity by an identifier.

1.7.2.6 Authentication service

An authentication service is a process by which a system determines that users are who they

claim to be.

GSM Association Non-Confidential

Security Design and Implementation Guidelines

Status: Release 10/51 Version: 1.8

As a corollary, it consists for users to prove their identity to a system via one or more

authentication factors.

The main factors of authentication (i.e. evidence that can prove the user identity) are the

following:

 Something the user is the only one to know (e.g. a secret such that a password or a

PIN)

 Something the user is the only one to possess (e.g. a cryptographic key on a smart

device, a passport)

 Something inherent to the user (e.g. a biometric characteristic: a fingerprint, a

behavioural measurement, iris or voice recognition)

 Something the user know how to do

Over http, a successful authentication can be carried by a session cookie or an identity token

(e.g. ID Token in Open ID Connect protocol).

1.7.2.7 Authorisation service

Authorisation is a process that determines what resources, data and services, can and cannot

be accessed by authenticated users.

In other words, authorisation happens after authentication and is for a system the ability to grant

and control user rights to access resources according to their identity.

Over http, authorisation can be carried by an access token used by the system to control the

access to resources (e.g. Access Token in OAuth 2.0 framework).

1.8 Threat Model considerations

The most important assets for the Mobile Money API are the following:

 transaction data (non-repudiation, authenticity)

 Mobile Money set of services defined by APIs (availability, integrity)

 users PII (privacy)

 API Client credentials (confidentiality)

 API Gateway private key (confidentiality, authenticity)

 Call back URLs (authenticity)

Main threats and feared events at the business level are:

 Credential interception (e.g. authentication asset e.g. login/password, API key or
authorisation tokens)

 End-User / transaction data disclosure (privacy)

 API abuse (e.g. if any use cases vulnerable by design, or vulnerable technological
bricks)

 Abuse call back URLs

 Malicious modification of transaction data

The main technical threats to be considered are as follows:

GSM Association Non-Confidential

Security Design and Implementation Guidelines

Status: Release 11/51 Version: 1.8

Threat Mitigations

Intercepting API request and obtaining

OAuth2 token

 TLS to encrypt token

 Put short expiry time for OAuth2 token

POST /transactions API: Intercept

request and amend transaction parties

to move e-money to a fraudulent actor

Sign Payload (JOSE) making it impossible to tamper

with payload

JSON deserialization issues Use JOSE to prevent tampering of payload

 On server side restrict use of non-standard
deserialization packages

 Regularly scan vulnerabilities

 Put in place a strong patch management

Capturing of sensitive information in

the URL, e.g. /msisdn/+44xxxxxxxxxx

or /email/user@example.com

Use encryption in URL

POST /links API:

Intercept request and amend the URI

part (e.g. /links/msisdn/+44xxxxxxxxxx)

containing the target link to another

account of a bad actor. This would

enable the bad actor to ‘pull’ funds

using the established link

Use encryption in URL

Intercept API and modify X-Callback-

URL header to direct API response to

a bad actor

TLS to encrypt request headers

Invalid curve attack on JWE encrypted

payload to decipher data.

(https://auth0.com/blog/critical-

vulnerability-in-json-web-encryption/)

 Do not use a vulnerable library

 Perform vulnerability scanning

 Put in place a strong patch management

1.9 Mobile Money APIs Actors

Actor Description

API Client The backend system of the clients of the API. These will be systems from e.g.

Merchants, Aggregators, Utility Companies.

API Gateway The API Gateway is the entry point for API Clients to connect to the Mobile

Money Platform. This API Gateway is the layer of harmonization standardized

by the GSMA at this moment to provide a generic interface for API Clients

across different Mobile Money Platform vendors.

Relying Party A Relying Party can either be API Client and API Gateway and integrates with

3rd party IDP or OAuth 2.0 authorisation server for authenticating and

authorising end-user. Some examples of 3rd party IDP are GSMA’s Mobile

Connect, Facebook Connect, Google IDP etc.

End-user User performing mobile money transactions on the consumption device and

who will be authenticated on the authentication device as per the proposed

security models in this document.

mailto:/email/user@example.com
https://auth0.com/blog/critical-vulnerability-in-json-web-encryption/
https://auth0.com/blog/critical-vulnerability-in-json-web-encryption/

GSM Association Non-Confidential

Security Design and Implementation Guidelines

Status: Release 12/51 Version: 1.8

Actor Description

OIDC compliant

Identity Provider

The entity providing the authentication and identity services for authenticating

end-users, e.g. GSMA’s Mobile Connect, Facebook Connect, Google IDP.

Consumption

Device

This is the device where the user is consuming the service from the SP. This

can be any Internet connected device, e.g. a mobile device, a laptop, table,

smart TV etc. The access network used by this device can be any if it can

initiate an HTTP(S) interaction.

Authentication

Device

This is the device where the end-user is authenticating or providing

authorisation. This device is always a mobile device, connected to the mobile

network.

Consent Device The consent device is the logical device through which the end-user provides

consent to the IDP system, e.g. providing consent to debit wallet account in

case of P2P transfer.

Authenticator Authenticators are the authentication mechanism used by 3rd party IDP to

authenticate the user. Some examples of authenticators are USSD

Authenticator, SIM Applet Authenticator, Smartphone App Authenticator.

1.10 Common OAuth 2.0 terms

Actor Description

Resource owner An entity capable of granting access to a protected resource. When the

resource owner is a person, it is referred to as an end-user. API Client plays

this role in the case of GSMA Mobile Money API.

Resource

server

The server hosting the protected resources, capable of accepting and

responding to protected resource requests using OAuth access tokens. API

Gateway is a resource server responsible for OAuth token validation to

process API requests. API Gateway interacts with its authorisation server for

OAuth token validation.

Authorisation

server

The authorisation server is implemented in compliance with the OAuth 2.0

specification, and it is responsible for validating authorisation grants and

issuance of access tokens that give the client access to the protected

resources on the resource server. It should be possible to configure "token

endpoints" on API Gateway, in which case the API Gateway takes on the role

of authorisation server. Alternatively, the API Gateway can use a third-party

OAuth 2.0 compliant authorisation server.

Client

Credentials

grant type

The client credentials grant type can be used as an authorisation grant when

the authorisation scope is limited to the protected resources under the control

of the client. Client credentials are used as an authorisation grant typically

when the client is acting on its own behalf (the client is also the resource

owner) or is requesting access to protected resources based on an

authorisation previously arranged with the authorisation server. This is the

recommended grant type for authenticating API Client to API Gateway.

Authorisation

code grant type

Considered the most secure grant type. Before the authorisation server

issues an access token, the RP must first receive an authorisation code from

the resource server. In this flow, 3rd party app opens a browser to the

resource server’s login page. On successful log in, the app will receive an

authorisation code that it can use to negotiate an access token with the

authorisation server. This grant type is considered highly secure because the

GSM Association Non-Confidential

Security Design and Implementation Guidelines

Status: Release 13/51 Version: 1.8

Actor Description

client app never handles or sees the user's username or password for the

resource server. This grant type flow is also called "three-legged" OAuth. This

is one of the recommended grant type for authenticating end-users to API

Gateway.

Access token Access tokens are credentials used to access protected resources. An

access token is a string representing an authorisation issued to the client.

The string is usually opaque to the client. Tokens represent specific scopes

and durations of access, granted by the resource owner, and enforced by the

resource server and authorisation server.

Protected

resource

Data owned by the resource owner. In case of GSMA Mobile Money API, the

protected resources are identified by API resources URL.

Access token

scope

The access token endpoint allows the client to specify the scope of the

access request using the “scope” request parameter. In turn, the

authorisation server uses the “scope” response parameter to inform the client

of the scope of the access token issued. The value of the scope parameter is

expressed as a list of space-delimited, case-sensitive strings. The strings are

defined by the authorisation server. This parameter can be used by API

Gateway to control the access to different resources. It should be possible to

group the API set into individual product set each identified by a “scope”

value. The API Gateway can decide to assign these scope values to specific

API Clients based on policy and licensing rules thereby enforcing

authorisation of endpoints.

1.11 Glossary & Abbreviations

Abbreviation Description

AES Advanced Encryption Standard

AEAD Authenticated Encryption with Associated Data

API Application Programming Interface

BAM Business Activity Monitoring

CA Certificate Authority

CEK Content Encryption Key

Consent Agreement that SP can use the attributes they're requesting

Consent Device The device through which the user provides consent for the sharing or

validation of attributes

Consumption

device

The device through which the user is accessing and consuming mobile

money service

CRL Certificate Revocation List

DDoS Distributed Denial of Service

ECDHE Elliptic Curve Diffie Hellman Ephemeral

ECDSA Elliptic Curve Data Signature Algorithm

GCM Galois Counter Mode

GSMA GSM Association

HTTP(S) Hypertext Transfer Protocol (Secure)

Identity Token Provides a set of metadata regarding the Authentication to the SP. This

includes the PCR, authenticator used, Level of Assurance etc.

GSM Association Non-Confidential

Security Design and Implementation Guidelines

Status: Release 14/51 Version: 1.8

Abbreviation Description

IDS Intrusion Detection System

IETF Internet Engineering Task Force

IP Internet Protocol

IPS Intrusion Prevention System

IV Init Vector

JOSE JavaScript Object Signing and Encryption

JSON JavaScript Object Notation

JWA JSON Web Algorithm

JWE JSON Web Encryption

JWK JSON Web Key

JWS JSON Web Signing

JWT JSON Web Token

KPI Key Performance Indicator

MAC Message Authentication Code

MITM Man-in-the-middle attack - is an attack where the attacker secretly relays and

possibly alters the communication between two parties who believe they are

directly communicating with each other

MLS Message-Level Security - focuses on ensuring the integrity and privacy of

individual messages, without regard for the network

MMP Mobile Money Platform

MNO Mobile Network Operator

OIDC OpenID Connect

OWASP Open Web Application Security Project

PCR Pseudonymous Customer Reference

PII Personally Identifiable Information

PKI Public Key Infrastructure

REST Representational State Transfer

RFC Request for Comments

RSA Asymmetric Encryption algorithm named after inventors: Rivest, Shamir,

Adleman

RP Relying Party (The application/service that needs the authentication and

identity services). It can either be API Client or API Gateway.

Scope Pre-defined collection of attributes that are logical to group together either for

sharing or for simplifying policy management

SHA Secure Hash Algorithm

SIEM Security Information and Event Management

SLA Service Level Agreement

SP Service Provider

SSL Transport Layer Security is based on Secure Sockets Layer (SSL) - The SSL

use to be the industry accepted standard protocol for secured encrypted

communications over TCP/IP

TLS Transport Layer Security, is the usual "first line of defense", as securing the

transport mechanism itself

XML Extensible Markup Language

UMA User Managed Access

USSD Unstructured Supplementary Service Data

VPN Virtual Private Network

GSM Association Non-Confidential

Security Design and Implementation Guidelines

Status: Release 15/51 Version: 1.8

1.12 References

Ref. Title Author Date

[1] RFC7515 - JSON Web Signature (JWS) IETF 05-2015

[2] RFC7516 - JSON Web Encryption (JWE) IETF 05-2015

[3] RFC7517 - JSON Web Key (JWK) IETF 05-2015

[4] RFC7518 - JSON Web Algorithms (JWA) IETF 05-2015

[5] RFC7519 - JSON Web Token (JWT) IETF 05-2015

[6] RFC7520 - Examples of Protecting Content Using JSON Object

Signing and Encryption (JOSE)

IETF 05-2015

[7] RFC4648 - The Base16, Base32, and Base64 Data Encodings IETF 10-2006

[8] RFC5246 - The Transport Layer Security (TLS) Protocol Version

1.2

IETF 08-2008

[9] REST Security Cheat Sheet

https://cheatsheetseries.owasp.org/cheatsheets/REST_Security

_Cheat_Sheet.html

OWASP 04-2015

[10] RESTful Service Best Practices, Recommendations for Creating
Web Services
https://raw.githubusercontent.com/tfredrich/RestApiTutorial.com/master
/media/RESTfulBesPractices-v1_1.pdf

Todd

Fredrich

04-2012

[11] NIST Special Publication 800-122: Guide to Protecting the

Confidentiality of Personally Identifiable Information (PII)

NIST 04-2010

[12] ISO/IEC 27000:2014: Information technology -- Security

techniques -- Information security management systems --

Overview and vocabulary

ISO 2014

[13] ICT guidelines for TLS:

https://english.ncsc.nl/publications/publications/2019/juni/01/it-

security-guidelines-for-transport-layer-security-tls

Dutch

Ministry

of Safety

and

Justice

01-2020

[14] PayPal security guidelines and best practices

https://developer.paypal.com/docs/classic/lifecycle/info-security-

guidelines/

PayPal

[15] JSON Threat Protection Policies

https://docs.mulesoft.com/api-manager/2.x/policy-mule3-json-

threat

MuleSoft

[16] JSON Threat Protection policy

http://docs.apigee.com/api-services/reference/json-threat-

protection-policy

APIGEE

[17] JSON Threat Protection SAP

HANA

[18] Quota policy

https://github.com/apigee-127/a127-documentation/wiki/Quota-

reference

Will

Witman

08-2015

https://cheatsheetseries.owasp.org/cheatsheets/REST_Security_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/REST_Security_Cheat_Sheet.html
https://raw.githubusercontent.com/tfredrich/RestApiTutorial.com/master/media/RESTfulBesPractices-v1_1.pdf
https://raw.githubusercontent.com/tfredrich/RestApiTutorial.com/master/media/RESTfulBesPractices-v1_1.pdf
https://english.ncsc.nl/publications/publications/2019/juni/01/it-security-guidelines-for-transport-layer-security-tls
https://english.ncsc.nl/publications/publications/2019/juni/01/it-security-guidelines-for-transport-layer-security-tls
https://developer.paypal.com/docs/classic/lifecycle/info-security-guidelines/
https://developer.paypal.com/docs/classic/lifecycle/info-security-guidelines/
https://docs.mulesoft.com/api-manager/2.x/policy-mule3-json-threat
https://docs.mulesoft.com/api-manager/2.x/policy-mule3-json-threat
http://docs.apigee.com/api-services/reference/json-threat-protection-policy
http://docs.apigee.com/api-services/reference/json-threat-protection-policy
https://github.com/apigee-127/a127-documentation/wiki/Quota-reference
https://github.com/apigee-127/a127-documentation/wiki/Quota-reference

GSM Association Non-Confidential

Security Design and Implementation Guidelines

Status: Release 16/51 Version: 1.8

Ref. Title Author Date

[19] Spike Arrest Quick Start

https://github.com/apigee-127/a127-documentation/wiki/Spike-

Arrest-Quick-Start

Will

Witman

03-2015

[20] SANS Institute InfoSec Reading Room - Four Attacks on OAuth

- How to Secure Your OAuth Implementation

https://www.sans.org/reading-

room/whitepapers/application/attacks-oauth-secure-oauth-

implementation-33644

SANS

[21] RFC7617 – Basic HTTP Authentication Scheme IETF 09-2015

[22] RFC6749 - The OAuth 2.0 Authorisation Framework IETF 10-2012

[23] RFC6750 - The OAuth 2.0 Authorisation Framework: Bearer

Token Usage

IETF 10-2012

[24] RFC2119 - Key words for use in RFCs to Indicate Requirement

Levels

S.

Bradner

03-1997

[25] OWASP Top Ten Project –

https://owasp.org/www-project-top-ten/

OWASP 2017

[26] OWASP Cryptographic Storage Cheat Sheet -

https://cheatsheetseries.owasp.org/cheatsheets/Cryptographic_

Storage_Cheat_Sheet.html

OWASP 08-2016

[27] OpenID Connect

“An interoperable authentication protocol based on the OAuth 2.0
family of specifications” available at

http://openid.net/specs/openid-connect-core-1_0.html

https://openid.net/specs/openid-connect-basic-1_0.html

IETF 11-2014

[28] RFC8443 – The Transport Layer Security (TLS) Protocol

Version 1.3

IETF 08-2018

[29] Draft-ietf-oauth-jwt-bcp-07 – JSON Web Token Best Current

Practices

https://tools.ietf.org/html/draft-ietf-oauth-jwt-bcp-07

IETF 10-2019

[30] ETSI GS NFV-SEC 022 V2.7.1 (2020-01) Network Functions

Virtualisation (NFV) Release 2; Security; Access Token

Specification for API Access

ETSI 01-2020

[31] Mozilla guidelines for TLS and OIDC (Browser session oriented)

https://wiki.mozilla.org/Security/Server_Side_TLS

https://infosec.mozilla.org/guidelines/iam/openid_connect.html

Mozilla

[32] RFC6125 - Representation and Verification of Domain-Based

Application Service Identity within Internet Public Key

Infrastructure Using X.509 (PKIX) Certificates in the Context of

Transport Layer Security (TLS)

IETF 03-2011

https://github.com/apigee-127/a127-documentation/wiki/Spike-Arrest-Quick-Start
https://github.com/apigee-127/a127-documentation/wiki/Spike-Arrest-Quick-Start
https://www.sans.org/reading-room/whitepapers/application/attacks-oauth-secure-oauth-implementation-33644
https://www.sans.org/reading-room/whitepapers/application/attacks-oauth-secure-oauth-implementation-33644
https://www.sans.org/reading-room/whitepapers/application/attacks-oauth-secure-oauth-implementation-33644
https://owasp.org/www-project-top-ten/
https://cheatsheetseries.owasp.org/cheatsheets/Cryptographic_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cryptographic_Storage_Cheat_Sheet.html
http://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-basic-1_0.html
https://tools.ietf.org/html/draft-ietf-oauth-jwt-bcp-07
https://wiki.mozilla.org/Security/Server_Side_TLS

GSM Association Non-Confidential

Security Design and Implementation Guidelines

Status: Release 17/51 Version: 1.8

2 Security Design Options Summary

This section summarizes and ranks the security design options described in this document.

They are the only ones that should be considered when implementing the Mobile Money API

specification version 1.1.

The use of TLS is mandatory as it provides the primary layer of protections for both parties’

authentication and data in transit.

TLS can be implemented following four options ranked by increasing strength:

1. Server authentication without PFS (i.e. RSA encryption for key exchange)

2. Server authentication with PFS (i.e. DHE like key agreement)

3. Mutual (Client / Server) authentication without PFS

4. Mutual (Client / Server) authentication with PFS

For API Client authentication by the API Gateway at HTTP level, the use of OAuth2.0 Client

Credentials grant type, is strongly recommended.

OAuth2.0 Client Credentials grant type can be implemented following four options ranked by

increasing strength:

1. Alone

2. By combining and binding it with authentication by API Key

3. By combining and binding it with TLS Client authentication X509 certificate

4. By combining and binding it with both authentication by API Key and TLS Client

authentication X509 certificate

End-user authentication can be performed following three options ranked by increasing strength

1. By username/password sent to the Mobile Money Platform (End-user credentials

known by API Client)

2. OIDC/OAuth2.0 authentication by an IDP either hosted by the API Gateway or a 3rd

Party (End-user credentials never known by API Client)

In addition to data in transit message authentication offers by TLS, authenticity and integrity of

sensitive data can be enhanced at the HTTP level by one of those two options ranked by

increasing strength:

1. Basic data integrity and authenticity check

2. JSON Signature (JWS)

In addition to data in transit encryption offers by TLS, the confidentiality of sensitive data should

be enhanced at the HTTP level by implementing JSON Encryption (JWE).

GSM Association Non-Confidential

Security Design and Implementation Guidelines

Status: Release 18/51 Version: 1.8

3 API Client – API Gateway Authentication –

Security Design

3.1 Solution overview

The API Gateway is the end point of the TLS secure channel to be established over interface 1

(see Figure 1) by API Client instances acting as TLS clients. The API Gateway is responsible

for hosting valid server certificates for TLS server authentication by clients. It is also responsible

for decrypting request data (messages) and to verify data authenticity and integrity.

At the API level, the API Gateway is in charged to authenticate API Client instances and when

implemented, to provide them with OAuth2.0 authorisation tokens (both Access Token and

Refresh Token).

The Mobile Money Platform is responsible for end-user authentication and authorisation -

whether this entity is allowed to access, create or modify the information, e.g. Transaction,

Quotation.

In some cases The Mobile Money platform authenticate users by itself using own proprietary

authentication means, in some cases it can delegate the authentication of users to an

OIDC/OAuth2.0 Identity Provider (see Figure 5) hosted or public (e.g. GSMA’s Mobile Connect,

Facebook Connect, Google IDP, etc…)

Security services Responsible component

TLS server authentication of the API Gateway API Client

Message encryption API Client

Message integrity and authenticity tag computation API Client

API Client authentication API Gateway

API Client authorisation API Gateway

Message decryption API Gateway

Message integrity and authenticity verification API Gateway

User authentication MM Platform or OIDC IDP

User authorisation MM Platform

Table 1: Responsibilities of components

It is not possible to establish an end to end secure channel from the API Client to the Mobile

Money Platform as the gateway needs to be able to read the data to perform the mapping of the

data elements to the format used by the Mobile Money Platform which depends on choices

made by the vendor that delivered the platform. During this mapping it would be possible to

change the data. This is why the API Gateway and mapping functionality should be performed

in a trusted system. However, if the Mobile Money Platform allows it, it is recommended to

establish a TLS link on interface 2 between the API Gateway and the Mobile Money Platform

(see Figure 1). If so, the proprietarily remapped messages would be protected.

GSM Association Non-Confidential

Security Design and Implementation Guidelines

Status: Release 19/51 Version: 1.8

3.2 API Gateway Authentication using TLS server

authentication

Server-side TLS authentication occurs during the TLS Handshake protocol. It allows a client to

authenticate the server it is connecting to.

According to the result of this authentication the client refuses or accepts to go further in the

establishment of a secure channel connection with the server and the setting up of a shared

pre-master-secret used to generate a master-secret and secret keys for message encryption

and MAC computation (2 for the client, 2 for the server).

Server-side authentication takes generally place when the server provides its public certificate

for authentication to the client.

The TLS layer of the client is then in charge of authenticating the server by verifying the

following points:

1- One of the certificate’s common names in the subject or in the subjectAlternativeNames

match the domain name of the URL

2- The complete certificate chain is available and rely upon a trusted CA

3- The current date is in the certificate validity period

4- The certificate has not been revoked, checking a CRL (local or uploaded) or asking the

OCSP responder specified in the certificate

5- The certificate signature is valid (using the public key of the issuer certificate)

6- Repeat verification from 3 to 5 for each certificate in the server certificate chain

To enforce API Gateway server certificate verification the API Client TLS and applicative layers

can use a certificate pinning method to validate twice the server certificate or the trusted CA

certificate on top of the server certificate chain.

3.3 API Client Authentication using TLS mutual

authentication

The TLS handshake protocol always allows clients to authenticate servers, e.g. it is the usual

case for websites exposed over the Internet, where clients need to trust they are connecting to

genuine servers but servers are not able to know every potential client so do not care about

authenticating them.

In some cases, especially when servers want to limit their exposure at HTTP level to trusted

clients only, these servers can also require clients to authenticate during the TLS handshake.

This is called TLS mutual authentication.

In a TLS mutual authentication, during the handshake protocol the server presents to the client

not only its server certificate but also a certificate request message with a list of issuing CA it

trusts for this domain. The client authenticates the server the same way as seen previously, and

in addition, sends back its client certificate and a digital signature (Certificate Verify) generated

with the associated private key. The server verifies the signature using the public key in the

client certificate, if the verification succeed, it proves the client can use the private key.

To enrol API Clients within the API Gateway, the certificate belonging to the API Client should

be enrolled within the API Gateway. This can either be performed by operating a PKI and

issuing the certificates from the API Gateway or by creating a trust store of certificates that are

issued by a public CA.

GSM Association Non-Confidential

Security Design and Implementation Guidelines

Status: Release 20/51 Version: 1.8

In both cases it is important that the certificate is linked to the API Client and known within the

API Gateway.

The certificates of API clients enrolled in the API Gateway should be maintained and if the API

Client is no longer trusted than the certificate should be blacklisted inside the API Gateway (in

the case issued by a public CA) or placed on a Certificate Revocation List (CRL) in case the

certificate was issued by a CA for the Mobile Money Platform.

When setting up a connection the certificate from the API Client should always be validated,

including validation of the chain, and may not be present on the CRL (cf. previous subsection).

The API Client should validate the certificate of the API Gateway, including validation of the

chain, and may not be present on the CRL (cf. previous subsection).

3.4 API Client Authentication at HTTP level

At HTTP level, the GSMA strongly recommends the implementation of OAuth 2.0 Client

Credentials Grant type over TLS for API Client authentication to the API Gateway.

Optionally, API Client authentication at HTTP level can be improved by adding to the OAuth 2.0

Authentication and authorisation layer an identification of the API Client by using an API KEY.

Note: This API Client authentication could be strengthened at the TLS level by implementing

client authentication, described just before. In that case, a binding between both TLS and HTTP

API Client identification information (e.g. X509 API Client certificate and API Client username

via the provided access token).

3.4.1 API Client Authentication and authorisation using OAuth 2.0 Client

Credentials grant type

The GSMA Mobile Money API utilises OAuth 2.0 authorisation framework (RFC 6749 [22]) for
API Client authentication and authorisation. OAuth 2.0 is a standard way of allowing a third-
party application (API Client) to obtain limited access to an HTTP service i.e., protected
resources. The generic OAuth 2.0 flow is as follows:

GSM Association Non-Confidential

Security Design and Implementation Guidelines

Status: Release 21/51 Version: 1.8

Client

Resource
Owner

Authorisation
Server

Resource
Server

Authorisation request

Authorisation grant

Authorisation grant

Access token

Access token

Protected resource

Figure 2: OAuth 2.0 standard flow

3.4.1.1 Issuance of Access Token using OAuth 2.0 Client Credentials grant type

The API Gateway is responsible for exposing an additional token endpoint over TLS connection

as defined in OAuth 2.0 specifications (RFC 6749 [22]). The API Client requests an access

token using only its client credentials as per client credentials grant type OAuth flow. These

credentials are pre-shared as per Mobile Money platform provider’s policy with API Clients. The

client credentials grant type must only be used by protected and confidential clients. The client

credentials flow is illustrated below:

API Client API Gateway
1. Client Authentication

2. Access token

GSM Association Non-Confidential

Security Design and Implementation Guidelines

Status: Release 22/51 Version: 1.8

Figure 3: OAuth 2.0 client credentials flow

1. The API Client requests the access token from the token endpoint passing base64

encoded client credentials in basic authorisation header.

2. The API Gateway is responsible for performing API Client authentication. If valid, API

Gateway interacts with its authorisation server to issue an access token response

containing the access token, expiry time and optional scope values.

For example, the API Client makes the following HTTP request to API Gateway over TLS:

 POST /token HTTP/1.1

 Host: server.example.com

 Authorisation: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW

 Content-Type: application/x-www-form-urlencoded

 X-API-Key: czZCaGRSa3F0MzpnWDFmQmF0M2JW88jw66

 grant_type=client_credentials

The Authorisation header is constructed by concatenating the client’s credentials with ‘:’ and
applying base64 encoding.

On successful authentication of API Client, the API Gateway responds with an access token
response. For example:
 HTTP/1.1 200 OK

 Content-Type: application/json;charset=UTF-8

 Cache-Control: no-store

 Pragma: no-cache

 {

 "access_token":"2YotnFZFEjr1zCsicMWpAA",

 "token_type":"example",

 "expires_in":3600

 }

3.4.1.2 Usage of Access Token

The API Client is responsible for passing the received access token to every API call as a

bearer token in the “Authorisation” request header field as per RFC 6750 [23]. The API

Gateway is responsible for validating the token with its authorisation server, and if valid, check

that the client is allowed to invoke the protected resource based on the access token scope

value. It should return appropriate HTTP response codes in case of invalid access token

(expired or revoked) or invalid scope.

For example:

 GET /resource HTTP/1.1

 Host: server.example.com

 Authorisation: Bearer mF_9.B5f-4.1JqM

 X-API-Key: czZCaGRSa3F0MzpnWDFmQmF0M2JW88jw66

3.4.2 API Client Authentication using HTTP Basic authentication

The HTTP Basic Authentication method defined in RFC7617 [21] is not a security method as it

results in the cleartext transmission of client’s username and password over the network.

GSM Association Non-Confidential

Security Design and Implementation Guidelines

Status: Release 23/51 Version: 1.8

For this reason, it is not recommended as a per request authentication mean by the GSMA.

3.4.3 API Client Authentication based on API key

With this option, the API Client has a pre-shared key(s) with unique identifiers. The key(s) are

shared as per Mobile Money platform provider’s policy with API Clients. One of the ways of

sharing the API key is through the API Gateway developer portal. Initial identity of the API

Client is confirmed by providing this identifier in an “X-API-Key” request header. If the

combination of API key and client credentials/OAuth access token is not correct, the request

must be rejected with an error code in the response and logged in an audit log.

It should be possible to revoke this key to stop a rogue API Client from accessing the API

Gateway.

Note: API Keys are assets that have to be managed (created, read, updated, stored, deleted

and used) with a level of protection equivalent to the one implemented for cryptographic keys

by both API Client and API Gateway.

I.e.:

 API Client should store it encrypted with an authenticity datagram at the persistent

storage level. It should decrypt it in memory at runtime (non-swappable if possible).

Ideally, it should verify its authenticity each time before using it and should cleanse the

memory before releasing any copy of it.

 API Gateway should generate API keys randomly with enough entropy to render them

not guessable. It should store them encrypted with an authenticity datagram at the

persistent storage level in DB (to mitigate the risk of data breach that would disclose

API Keys) and should strongly bind them to their related API Client. At runtime it should

decrypt it in memory (non-swappable if possible) and verify its authenticity each time

before using it. And, it should cleanse the memory before releasing any copy of it.

GSM Association Non-Confidential

Security Design and Implementation Guidelines

Status: Release 24/51 Version: 1.8

4 End-User Authentication – Security

Design

4.1 Solution overview

This section provides implementation guidelines on end-user authentication using different
security models. Some of the scenarios where the security models can be applied are:

1. Authentication and identification of end-user (debit party/credit party) to API

gateway/Mobile Money platform. For example: As part of initial login process, API

Gateway can authenticate the user using Authorisation Code flow1 and API Client in

turn retrieving the access token from API Gateway. The API Client can subsequently

pass the access token in API calls to API Gateway for validation purpose.

2. Authorisation consent from a debit party/account holder for a financial transaction. For

example: In the case of send money, cash out, buy goods; either API Gateway/API

Client can authenticate the debit party using 3rd party OIDC compliant IDP and retrieve

the consent proof (access token) and passing the access token to API Gateway in the

API call.

3. End-user consent to share their MSISDN and in-turn identifying their wallet account.

For example: In case of an ecommerce checkout, the merchant server can authenticate

the user using a 3rd party IDP and acquire consent to share their MSISDN. The consent

proof (access token) can then be passed to API Gateway who can validate the token

and retrieve the MSISDN to identify the wallet account.

4. Third party developer has developed an app to enable customers to send money. It

should not be possible for customers to enter their credentials (MSISDN + PIN) into the

app and pass it in Mobile Money API. Instead, the API Gateway should prompt the user

to authenticate using Mobile Money platform credential mechanism (MSISDN + PIN)

and if successfully authenticated, API Gateway issues an access token to the app. The

app can supply the access token in Mobile Money API to API Gateway.

The security design proposes the following security models for authenticating end-users:

1. End-user authentication by API Gateway using OAuth 2.0/OIDC Authorisation Code

Flow

2. Delegated end-user (debit party) authorisation using 3rd party OIDC compliant IDP

3. End-user authentication using username and PIN

4.1.1 Overview of OpenID Connect protocol

It is recommended that any 3rd party IDP used for authorising users should be OIDC compliant.
Some of the popular OIDC compliant IDPs are GSMA’s Mobile Connect, Facebook Connect
and Google IDP etc.
OpenID Connect (OIDC) [27] is an identity layer on top of OAuth 2.0 [22] that provides an
authentication context for the end-user in the form of Who, When, How etc. in a JWT based
claims set [ID Token].

1 Also known as 3 legged OAuth flow

GSM Association Non-Confidential

Security Design and Implementation Guidelines

Status: Release 25/51 Version: 1.8

The key functionality provided are:

 Pseudonymous Identity (claims assertion) /Authentication of end-user [ID Token]

 JSON/REST-like API for authentication and basic profile sharing [UserInfo]

OpenID Connect provides an additional token [ID Token] along with the OAuth 2.0 access
token. The ID Token is represented as a JWT and contains a claim set related to the
authentication context of the subject. The JWT can be a plaintext JWT or cryptographically
protected JWT – represented as signed JWT using JWS [JSON Web Signature] or as
encrypted using JWE [JSON Web Encryption].
The security design recommends use of the OIDC Authorisation Code flow for the following
reasons:

 Tokens not revealed to the User Agent

 RP must be authenticated
o client_secret is used in Authorisation Code flow to retrieve access and ID

tokens

 Usage of refresh token possible

4.2 End-user authentication by API Gateway

The GSMA Mobile Money API utilises industry standard OAuth 2.0/OIDC authorisation
framework for end-user authentication. Please note that the authorisation server can be
embedded inside API Gateway depending on the implementation of API Gateway or it can be a
separate authorisation server hosted by a 3rd party. The authorisation server must be either
OIDC or OAuth 2.0 compliant.
It utilises Authorisation Code flow/three legged OAuth flow for authenticating end-users. Please
see section 1.10 for definition of Authorisation Code flow. This flow is considered to be highly
secure as Mobile Money credentials of end-users are never requested directly by API Client.

Some of the advantages of using OAuth 2.0/OIDC authorisation framework are:

1. Use of industry standard protocols for authenticating users thereby avoiding build of

bespoke solutions.

2. Use of OIDC compliant IDP providers means support for wide array of advanced

authentication mechanisms including PIN and Biometrics2.

3. Single integration model for API Client to authenticate end-users.

4. More secured as end-user credentials are never captured in API Client assets3 directly.

5. The use of access token allows time bound/one time access, if required.

A high-level component view of various actors and flow of information is illustrated below:

2 Finger scan or Facial recognition or Iris scan
3 Website or apps

GSM Association Non-Confidential

Security Design and Implementation Guidelines

Status: Release 26/51 Version: 1.8

Figure 5: End-user authentication by API Gateway

The process for authenticating end-user and retrieving access token can be broken down into
following steps:

1. End-user initiates authentication request on the consumption device’s user agent.
2. The user agent sends an authorisation request to authorisation server for

authenticating end-user passing client_id, redirect_uri, state and other parameters in
the request. See section 4.2.1 for details.

3. Authorisation server initiates end-user authentication process as per Mobile Money
platform’s authentication mechanism. The authorisation server can authenticate the
end-user by presenting an authentication page either in consumption device or
separate authentication device. The actual implementation is left to the Mobile Money
platform provider.

4. User is prompted to provide credentials either in consumption device or separate
authentication device.

5. The authentication device generates an authentication response and returns to the
authorisation server.

6. Authorisation server validates authentication response and returns a temporary
authorisation code to RP server indirectly as a redirect through user agent. See section
4.2.1.1 for details.

7. RP server receives the authorisation code in the redirect URL. It extracts the
authorisation code from the redirect URL’s query parameter.

8. RP server exchanges the authorisation code to retrieve access token and optional ID
Token with authorisation server. RP server will provide its client credentials in token
API request to retrieve the tokens. See section 4.2.1.2 for details.
Please note that if the authorisation server is not OIDC compliant, then it will only return
access token. The advantage of using ID Token is to allow the RP to retrieve additional
identity claims like MSISDN etc.

9. Authorisation server validates the authorisation code and client credentials, generates
new access token and ID Token and returns to RP server.

10. RP server passes end-user’s access token to API Gateway in API requests as a
custom header value. See section 4.2.2 for details.

Mobile Money Platform

User

«user agent»

Consumption

Dev ice

OIDC

API

Payment

API

API Client Serv er

OIDC

API

Payment

API

POST: introspect

access token

«api gateway»

Mobile Money API

GatewayPayment API

POST: introspect

access token

«authenticator»

Authentication

Dev ice

«OIDC/OAuth ...

Authorisation

serv er

OIDC/OAuth 2.0

7. Redirect: AuthZ code

11. Validate access token

1. Authenticate

5. AuthN response

8.POST: access token request with

AuthZ code

6. HTTP 302 Redirect: AuthZ code

10. Payment API + access token, ID Token

3. Initiate AuthN request

4. Authenticate and provide

consent

9. access token + ID Token

2. GET: AuthZ code

GSM Association Non-Confidential

Security Design and Implementation Guidelines

Status: Release 27/51 Version: 1.8

11. API Gateway validates the access token with authorisation server before processing
the API request.

4.2.1 Authorisation request for authenticating end-user

API Client’s user agent will send authorisation request to the authorisation server’s
‘authorisation endpoint’, using HTTP GET or POST.
Communication to the authorisation server endpoint MUST use TLS. The request parameters
are added using query string serialization. The prompt parameter in the request must be “login”.

Sample Request:
POST /authorise HTTP/1.1

Host: server.example.com

Content-Type: application/x-www-form-urlencoded

response_type=code&

client_id=s6BhdRkqt3

&redirect_uri=https%3A%2F%2Fclient.example.org%2Fcb

&scope=openid

&state=af0ifjsldkj

&nonce=n-0S6_WzA2Mj

&prompt=login

&login_hint=<MSISDN>

The authorisation server validates authorisation request and returns a HTML payload

for authenticating the user. The actual authentication mechanism (MSISDN + PIN or

Biometrics4 or something else) is dependent on the downstream Mobile Money

platform. It should also be possible for the authorisation server to perform out of band

authentication using separate authenticators5. The authenticators can also act as

consent device for displaying authentication prompt to the user. The actual

implementation of authentication mechanism adopted by authorisation server is out of

scope from this document.

4.2.1.1 Authorisation response

Authorisation server will generate authorisation code after authenticating the end-user.

It will return the authorisation code using redirect to the RP server6 at the redirect_uri.

Sample Response:
HTTP/1.1 302 Found

Location:https://server.sp.com/authorised?Code=AsdsdsMKDsd&stat

e=af0ifjsldkj

4.2.1.2 Issuance of tokens using Authorisation Code flow

RP server7 makes a token request by presenting its authorisation code to the token endpoint

exposed by authorisation server. The grant type value must be “authorisation_code”, as

described in section 4.1.3 of OAuth 2.0 [22].

4 Finger scan or Facial recognition or Iris scan
5 USSD authenticator, SIM Applet authenticator, Smartphone App Authenticator
6 API Client
7 API Client

GSM Association Non-Confidential

Security Design and Implementation Guidelines

Status: Release 28/51 Version: 1.8

The RP server sends the parameters to the token endpoint using the HTTP POST method and

the form serialization, as described in section 4.1.3 of OAuth 2.0 [22]. Communication to the

authorisation server endpoint MUST use TLS.

The Authorisation Code flow is illustrated below:

API Client

API Gateway

Authorisation
Server

API Gateway

Authorisation request

Authorisation grant

Authorisation grant

Access token

Access token

Protected resource

Figure 4: OAuth 2.0 Authorisation Code flow

1. The API Client requests the access token from the token endpoint of authorisation

server passing base64 encoded client credentials in basic authorisation header. The

request parameters includes grant type value, authorisation code received in section

4.2.1.1 and redirect URI value. These parameters are passed “x-www-form-urlencoded”

values.’

GSM Association Non-Confidential

Security Design and Implementation Guidelines

Status: Release 29/51 Version: 1.8

2. The authorisation server validates client credentials of RP server and if valid, returns an

access token response containing the access token, refresh token, expiry time and

optional ID Token.

Sample token request:
POST /token HTTP/1.1

Host: server.example.com

Content-Type: application/x-www-form-urlencoded

Authorisation: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW

grant_type=authorisation_code&code=SplxlOBeZQQYbYS6WxSbIA

 &redirect_uri=https%3A%2F%2Fclient.example.org%2Fcb

Sample successful access token response:
HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store
Pragma: no-cache

{
 "access_token": "SlAV32hkKG",
 "token_type": "Bearer",
 "refresh_token": "8xLOxBtZp8",
 "expires_in": 3600,
 "id_token":

"eyJhbGciOiJSUzI1NiIsImtpZCI6IjFlOWdkazcifQ.ewogImlzc

yI6ICJodHRwOi8vc2VydmVyLmV4YW1wbGUuY29tIiwKICJzdWIiOiAiMjQ4Mjg5

NzYxMDAxIiwKICJhdWQiOiAiczZCaGRSa3F0MyIsCiAibm9uY2UiOiAibi0wUzZ

fV3pBMk1qIiwKICJleHAiOiAxMzExMjgxOTcwLAogImlhdCI6IDEzMTEyODA5Nz

AKfQ.ggW8hZ1EuVLuxNuuIJKX_V8a_OMXzR0EHR9R6jgdqrOOF4daGU96Sr_P6q
 Jp6IcmD3HP99Obi1PRs-cwh3LO-

p146waJ8IhehcwL7F09JdijmBqkvPeB2T9CJ
 NqeGpe-

gccMg4vfKjkM8FcGvnzZUN4_KSP0aAp1tOJ1zZwgjxqGByKHiOtX7Tpd

QyHE5lcMiKPXfEIQILVq0pc_E2DzL7emopWoaoZTF_m0_N0YzFC6g6EJbOEoRoS

K5hoDalrcvRYLSrQAZZKflyuVCyixEoV9GfNQC3_osjzw2PAithfubEEBLuVVk4
 XUVrWOLrLl0nx7RkKU8NXNHq-rvKMzqg"
 }

4.2.2 Usage of Access Token

The API Client will be responsible for passing user’s access token received in section 4.2.1.2 to

every API call as a custom header value. The API Gateway will be responsible for validating the

token with its authorisation server, and if valid, allow the processing of the API request. It

should return appropriate HTTP response codes in case of invalid access token (expired or

revoked).

For example:

GSM Association Non-Confidential

Security Design and Implementation Guidelines

Status: Release 30/51 Version: 1.8

 GET /resource HTTP/1.1
 Host: server.example.com
 Authorisation: Bearer mF_9.B5f-4.1JqM
 X-User-Bearer: czZCaGRSa3F0MzpnWDFmQmF0M2JW88jw66

4.3 Delegated end-user authorisation

There are scenarios that require debit party/account holder authentication to authorise a

payment transaction. For example: In the case of Send Money, Cash Out, Buy Goods etc., it

should be possible for the API Gateway to directly authenticate the debit party as described in

section 4.2 or allow the API Client to use a 3rd party OIDC compliant IDP to authenticate the

debit party and pass the access token as consent proof8 to API Gateway in the API request.

This allows the API Gateway to validate the access token using token introspection endpoint

described in section 4.3.1. On successful validation, it should continue processing the payment

request. The focus of this section is delegated authorisation of debit party/account holder using

a 3rd party IDP.

Some of the advantages of delegated authorisation model are:

1. Use of industry standard protocols for authorising users thereby avoiding build of

bespoke solutions.

2. Single integration model to support multiple 3rd party IDP providers.

3. User’s credentials are never passed in API request thereby reducing risk and fraud.

4. The use of access token allows time bound/one time access, if required.

5. Allows API Gateway to verify the consent proof before proceeding with payment

transaction. The consent proof can also provide audit trail as it contains exact

timestamp of providing consent and mechanism used for authenticating the user.

6. The consent proof provides non-repudiation of payment transaction.

7. Use of OIDC compliant IDP providers means support for wide array of advanced

authentication mechanisms including PIN and Biometrics9.

8. Streamlined UX flow as the user is not required to authenticate separately with Mobile

Money platform, resulting in fewer steps to complete a payment transaction.

A high-level component view of various actors and flow of information is illustrated below:

Figure 5: Delegated user authorisation

1. User initiates payment request (For ex: Send Money) with API Client.

8 access token
9 Finger scan or Facial recognition or Iris scan

User

API Client Serv er

«3rd party»

3rd party IDP

OIDC API

«api gateway»

Mobile Money API

Gateway

6. Validate access token

5. Process payment API +

access token

3. Prompt the user to

authenticate and provide

consent for payment

transaction

1. Process payment

4. access

token

2. Initiate consent flow

GSM Association Non-Confidential

Security Design and Implementation Guidelines

Status: Release 31/51 Version: 1.8

2. API Client uses 3rd party IDP to authenticate the user and authorise the payment

transaction.

3. 3rd party IDP prompts the user to authenticate and provide consent for the payment

transaction.

4. On successful user authentication and consent, 3rd party IDP issues an access token

and ID Token to API Client.

5. API Client invokes Mobile Money payment API passing the access token, ID Token and

introspection endpoint URL of 3rd party IDP.

6. API Gateway validates the access token by invoking introspection endpoint URL. The

introspection endpoint is a protected endpoint requiring API Gateway to pass its client

credentials or bearer token when invoking this endpoint. 3rd party IDP returns meta-

information of the access token if the token is still valid10. API Gateway can optionally

introspect the ID Token to retrieve identity claims like MSISDN etc. It can also check

the level of assurance11 achieved by 3rd party IDP when authenticating the user before

continuing with payment processing flow with downstream Mobile Money platform.

Please note that user must be registered with 3rd party IDP in order to authenticate and provide

consent. Also, API Gateway should have client relationship with 3rd party IDP in order to invoke

the introspection endpoint.

4.3.1 OAuth 2.0 Token Introspection

The token introspection endpoint allows a resource server12 to query OAuth 2.0 authorisation

server to determine the active state of an access token and to retrieve meta-information about

this token. This method can be used by RP13 to convey information about the authorisation

context of the token from the authorisation server to the protected resource. In the context of

Mobile Money APIs as illustrated in section 4.3, API Client can pass user’s access token and

introspection endpoint URL of 3rd party IDP server to API Gateway allowing the gateway to

validate the access token by invoking the introspection endpoint URL and passing the access

token as "application/x-www-form-urlencoded" data. The successful response contains meta-

information about the token.

The endpoint also requires some form of client authorisation to access this endpoint. The

calling client14 can authenticate using the mechanisms described in section 2.3 of OAuth 2.0

[22] or by passing a separate OAuth2.0 access token as bearer token.

The following is a non-normative example request:

POST /introspect HTTP/1.1
Host: server.example.com
Accept: application/json
Content-Type: application/x-www-form-urlencoded
Authorisation: Bearer 23410913-abewfq.123483

token=mF_9.B5f-4.1JqM&token_type_hint=access_token

10 Not expired or revoked
11 acr_value attribute in ID Token
12 API Gateway
13 API Client
14 API Gateway

GSM Association Non-Confidential

Security Design and Implementation Guidelines

Status: Release 32/51 Version: 1.8

4.3.2 Introspection request attributes

The protected resource15 calls the introspection endpoint using an HTTP POST

request with parameters sent as "application/x-www-form-urlencoded" data

Parameter Required category
in spec

Description

token

Mandatory The string value of the token.

 For access tokens, this is the "access_token"
value returned from the token endpoint

 For refresh tokens, this is the "refresh_token"
value returned from the token endpoint

token_type_hint

Optional A hint about the type of the token submitted for
introspection. The possible values are:

 “access_token” if the token is of type access
token

 “refresh_token” if the token is of type refresh
token

Table 2: Introspection request attributes

4.3.2.1 Introspection response attributes

The authorisation server responds with a JSON object in “application/json” format with

the following top-level members:

Attribute Required category
in spec

Description

scope

Optional A JSON string containing a space-separated
list of scopes associated with this token, in
the format described in section 3.3 of 012
[22]

client_id

Optional Client identifier for the RP that requested this
token

username

Optional User’s username

token_type

Optional Type of token as defined in section 5.1 of
OAuth 2.0 [22]

exp Optional The expiration time after which the access
token MUST NOT be accepted for
processing. The format is the number of
seconds from 1970-01-01T0:0:0Z as
measured in UTC until the date/time
specified.

iat Optional The time of issue of access token. The
format is the number of seconds from 1970-
01-01T0:0:0Z as measured in UTC until the
date/time specified.

nbf Optional Timestamp indicating when the access token
is not to be used before. The format is the
number of seconds from 1970-01-01T0:0:0Z
as measured in UTC until the date/time
specified.

sub Optional Subject identifier of the user (PCR)

aud Optional The intended audience for the access token.

It is an array of case-sensitive strings. It

15 API Gateway

GSM Association Non-Confidential

Security Design and Implementation Guidelines

Status: Release 33/51 Version: 1.8

MUST contain the client_id of the RP/Client,

and MAY contains identifiers of other

optional audiences.

If there is one audience, the aud value MAY

be a single case sensitive string OR an array

of case sensitive strings with only one

element. An implementation MUST support

both scenarios.

iss Optional Issuer Identifier. It is a case-sensitive HTTPS

based URL, with the host. It MAY contain the

port and path element (Optional) but no

query parameters.

jti Optional Access token string identifier

Table 3: Introspection response attributes

4.4 End-user authentication using username and

PIN

There is a legacy option in some of the existing Mobile Money platforms that allows API Client

to capture user’s credentials16 directly in their own assets17 and pass it to Mobile Money

platform securely in the API payload. This is not a recommended option but is still provided in

this document to support existing implementation requiring minimum changes.

Some of the drawbacks of this option are:

1. User’s credentials are known to API Client resulting in increased fraud due to possibility

of altering the credentials.

2. API Gateway and Mobile Money platform is unable to receive explicit consent from the

user thereby potentially increased customer service complaints and financial liability.

3. API Client has to support multiple authentication models for different Mobile Money

platform providers.

Some of the recommendations to support this option are:

1. This option should only be used in scenarios where the user is directly controlled by

Mobile Money Platform. For example: if the user is using Mobile Money platform’s

website or app directly and needs to authenticate.

2. User’s MSISDN is passed in API and should be encrypted as defined in section 5.4.

3. The PIN is encrypted at source using pre-shared API key and symmetric encryption

algorithm. The API key and algorithm details are shared during the provisioning of API

Client.

4. Use of custom header in the API request to pass encrypted PIN.

16 MSISDN and PIN
17 Website or app

GSM Association Non-Confidential

Security Design and Implementation Guidelines

Status: Release 34/51 Version: 1.8

5 Data Protection – Security Design

5.1 TLS - Application Data Protocol

5.1.1 Data Encryption and Authenticity

During the handshake protocol the client and the server set up securely a shared secret called

pre_master_secret, computed randomly by the client and sent to the server, or computed by

both client and server using a DH like key agreement algorithm.

On both sides, client and server compute first a master_secret using a pseudo random function

(PRF) taking as input a constant string and the three following parameters: pre_master_secret,

the client_random (random generated by the client and sent in the Client Hello message to the

server) and server_random (random generated by the server and sent in the Server Hello

message to the client).

Then, using the PRF function and another constant string, from master_secret, client_random

and server_random both client and server derive four session keys, and optionally if, as per

below recommendation, an Authenticated Encryption with Associated Data algorithm is chosen

for data encryption (e.g. AES GCM) two session init vectors (IV) :

 client_write_MAC_key

 server_write_MAC_key

 client_write_key

 server_write_key

 client_write_IV

 server_write_IV

If the encryption is not an AEAD (e.g. AES CBC), two keys are to be used by the client, the two

others by the server.

The write_MAC_key keys are for data authenticity and integrity, the write_key keys are for data

encryption.

If the encryption is an AEAD (e.g. AES GCM), the MAC keys are useless, and one key and one

IV are to be used by the client, the other key and IV by the server.

The write_key keys are for both data authenticity and integrity and data encryption, the write_IV

values are to be used as IV by the AEAD.

The encryption algorithm and the MAC algorithms are both determined by the cipher suite (see

below) negotiated during the handshake protocol.

5.1.2 TLS Version and Algorithm considerations

5.1.2.1 TLS Version

The latest version of TLS is v1.3.

TLS v1.2 and v1.3 are the ones recommended.

GSM Association Non-Confidential

Security Design and Implementation Guidelines

Status: Release 35/51 Version: 1.8

TLS v1.1 is still acceptable when some clients do not support TLS v1.2, but must be

deactivated as soon as every client supports it.

TLS v1.0 and all SSL versions 2.0 and 3.0 are banned and must be deactivated.

E.g. to configure the versions of SSL/TLS to be activated by apache, check, add or update

SSLProtocol line in the ssl.conf configuration file:

SSLProtocol all –SSLv2 –SSLv3 –TLSv1 –TLSv1.1

And to test if a specific version of SSL/TLS is active, we can use the s_client tool of openssl to

force the use of its specific version (-ssl2, -ssl3, -tls1, -tls1_1, -tls1_2). Here we check TLSv1.1:

 openssl s_client –connect server.example.com:443 –tls1_1

If the connection succeed then TLSv1.1 is still activated.

5.1.2.2 TLS Cipher Suites

Until version 1.2 of TLS the cipher suites are always constructed in one of two following ways:

 Construction

Pattern

Key MAC

computation

from CHF

1. TLS_w_x_WITH_y_z w = key agreement

algorithm for the

handshake protocol

x = authentication

algorithm for the

handshake protocol

y = encryption

algorithm with

operation mode for

the application data

protocol

z = message digest or

hash algorithm to be

use with HMAC for

message records

Example

ECDHE Elliptic-Curve

Diffie-Hellman

Ephemeral

ECDSA Elliptic-Curve

Digital Signature

Algorithm)

AES_128_GCM

Advanced Encryption

Standard 128 bits in

Galois Counter Mode

Example

SHA256

means

HMAC_SHA

256 is used

2. TLS_v_WITH_y_z v = key exchange and

authentication

algorithm for the

handshake protocol

when it is the same.

y = encryption

algorithm with

operation mode for

Usually RSA (Rivest

Shamir Adleman)

AES_128_GCM

Advanced Encryption

Standard 128 bits in

Galois Counter Mode

SHA256

means

HMAC_SHA

256 is used

GSM Association Non-Confidential

Security Design and Implementation Guidelines

Status: Release 36/51 Version: 1.8

the application data

protocol

z = the message

digest or hash

algorithm to be use

with HMAC for

message records

Note:

 If RSA is used for both key exchange and server authentication, the client is in charge

to compute the pre_master_secret and send it encrypted with the server public key to

the server

 If a key agreement algorithm is used (e.g. DHE or ECDHE) both the client and the

server participate in the computation of the pre_master_secret.

Forward Secrecy (FS), a.k.a. Perfect Forward Secrecy (PFS) is a property specific of key

agreement (e.g. ECDHE) that ensures session keys will not be compromised even if the server

private key is compromised.

Note: RSA for key exchange does not have this property. If server private key is compromised,

anyone who recorded the traffic can decrypt the exchanged pre_master_secret and have

access to both client and server random. For every recorded session he can then easily

compute the session keys.

Note: recommended key size for RSA is 2048-bits or longer.

Cipher suites that implement Authenticated Encryption (e.g. AES GCM) for application

data encryption and authenticity are highly recommended for at least two reasons:

1. The authenticity tag is computed from the encrypted data, if wrong, data is not

decrypted (good for security and for performances)

2. CBC mode of operation was often used before but is vulnerable by design to padding

oracle attacks (e.g. BEAST)

For that reason, the state-of-the-art recommended subset of the cipher suites [13] to be

supported by servers is:

 TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

 TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

 TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

 TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

 TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384

 TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256

 TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384

 TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256

 TLS_RSA_WITH_AES_256_GCM_SHA384

 TLS_RSA_WITH_AES_128_GCM_SHA256

GSM Association Non-Confidential

Security Design and Implementation Guidelines

Status: Release 37/51 Version: 1.8

The other cipher suites defined in the TLS 1.2 specification are acceptable, but shouldn’t be

supported if all clients support at least one cipher suite from the recommended subset above.

A specific cipher suite shall not be hard coded in the configuration. Instead, the protocol must

be allowed to negotiate the highest version automatically [14].

5.1.3 Session keys randomness

Session keys for application data authenticity and encryption are computed from multiple

random generated by both sides, client and server.

If those random are of bad quality (biased or with poor entropy) the session keys could be

easily guessed. To avoid that, the layer that implements TLS must be configured in such a way

as to use good random source (e.g. /dev/random or /dev/urandom on linux systems).

5.2 JavaScript Object Signing and Encryption

(JOSE)

JOSE is a set of IETF standards to enable cryptographic protection of JSON objects, but also

others type of objects, in fact, JOSE provides a general approach to signing and encryption of

any content. However, it is deliberately built on JSON and base64 encoding, RFC 4648 [7] , to

be easily usable in web applications.

The standards related to JOSE are listed in the following Table.

Standard Description How the standard is used on

interface 1

RFC

Reference

JSON Web

Signature

(JWS)

JSON objects with digital

signatures or Message

Authentication Codes (MAC)

JWS is used to sign the

payload of the message being

transmitted

RFC7515 [1]

JSON Web

Encryption

(JWE)

Encrypted JSON objects JWE is used to encrypt the

payload of the message

RFC7516 [2]

JSON Web

Keys (JWK)

Public and private keys (or

sets of keys) represented as

JSON objects

Is used to exchange the public

key used to sign the message

payload with JWS

RFC7517 [3]

JSON Web

Algorithms

(JWA)

Authorising a party to interact

with a system in a prescribed

manner

JWA is used to specify which

algorithm is used for JWS and

JWE

RFC7518 [4]

JSON Web

Token (JWT)

Is a compact, URL-safe

means of representing claims

to be transferred between

two parties Describes

representation of claims

encoded in JSON and

protected by JWS or JWE

JWT is currently not used on

interface 1 but can be used to

transport OAuth tokens in

future implementations. It is

possible to encrypt and sign a

JWT with JWE and JWS.

RFC7519 [5]

GSM Association Non-Confidential

Security Design and Implementation Guidelines

Status: Release 38/51 Version: 1.8

Table 4: Standards related to JOSE

JOSE has similar function to the XML Signature and XML Encryption standards, to provide

message-level protection of message confidentiality, authenticity and integrity. Examples of

protecting content using JSON Object Signing and Encryption can be found in RFC7520 [6].

5.2.1 JSON Payload Encryption (JWE)

Asymmetric encryption is used to exchange a symmetric CEK (Content Encryption Key). This

CEK is encrypted with the public key of the receiving party to ensure that only the receiving

party will be able to decrypt the CEK. From this moment on both parties are in the possession

of the CEK. This Content Encryption Key can be used for the remainder of the session using a

symmetric algorithm.

5.2.2 JSON Payload Signature (JWS)

The payload of the messages sent to the GSMA Mobile Money API need to be signed by the

private key belonging to the certificate of the API Client which must be enrolled within the API

Gateway of the Mobile Money platform. This ensures integrity of the messages exchanged from

the API Client to the API Gateway.

5.2.3 Algorithm considerations

For JOSE the algorithms are defined in JWA as specified in RFC 7518 [4].

5.2.3.1 JWE Algorithms

For JWE one of the following algorithms must be applied to exchange the CEK:

 Key Agreement with Elliptic Curve Diffie-Hellman Ephemeral Static, as described in

section 4.6 from [4]:

o ECDH-ES+A256KW: ECDH-ES using Concat KDF and CEK wrapped with

"A256KW" (recommended)

o ECDH-ES+A192KW: ECDH-ES using Concat KDF and CEK wrapped with

"A192KW" (recommended)

o ECDH-ES+A128KW: ECDH-ES using Concat KDF and CEK wrapped with

"A128KW" (recommended)

 Key Encryption with AES GCM, as described in section 4.7 from [4]:

o A256GCMKW: Key wrapping with AES GCM using 256-bit key (recommended)

o A192GCMKW: Key wrapping with AES GCM using 192-bit key (recommended)

o A128GCMKW: Key wrapping with AES GCM using 128-bit key (recommended)

 Key Encryption with RSAES OAEP, as described in section 4.3 from [4]:

o RSA-OAEP-256: RSAES OAEP using SHA-256 and MGF1 with SHA-256

(recommended)

o RSA-OAEP: RSAES OAEP using default parameters (acceptable)

 Key Encryption with RSAES-PKCS1-v1_5, as described in section 4.2 from [4]:

o RSA1_5: RSAES-PKCS1-v1_5 (banned)

GSM Association Non-Confidential

Security Design and Implementation Guidelines

Status: Release 39/51 Version: 1.8

Notes:

 When using ECDH-ES key agreement, the length of the output key is the one in the

algorithm name (in bits). E.g. ECDH-ES+A128KW output 128-bits of agreed shared

secret

 Recommended size for RSA is 2048-bits or longer keys

For the CEK one of the following algorithms must be applied:

 AES_CBC_HMAC_SHA2 Algorithms, as described in section 5.2 from [4]:

o A256CBC-HS512: AES_256_CBC_HMAC_SHA_512 (acceptable)

o A192CBC-HS384: AES_192_CBC_HMAC_SHA_384 (acceptable)

o A128CBC-HS256: AES_128_CBC_HMAC_SHA_256 (acceptable)

 Content Encryption with AES GCM, as described in section 5.3 from [4]:

o A256GCM: AES GCM using 256-bit key (recommended)

o A192GCM: AES GCM using 192-bit key (recommended)

o A128GCM: AES GCM using 128-bit key (recommended)

5.2.3.2 JWS Algorithms

For JWS one of the following algorithms must be applied:

 Digital Signature with ECDSA, as described in section 3.4 from [4]:

o ES512: ECDSA using P-512 and SHA-512 (recommended)

o ES384: ECDSA using P-384 and SHA-384 (recommended)

o ES256: ECDSA using P-256 and SHA-256 (recommended)

 Digital Signature with RSASSA-PSS , as described in section 3.5 from [4]:

o PS512: RSASSA-PSS using SHA-512 and MGF1 with SHA-512

(recommended)

o PS384: RSASSA-PSS using SHA-384 and MGF1 with SHA-384

(recommended)

o PS256: RSASSA-PSS using SHA-256 and MGF1 with SHA-256

(recommended)

 Digital Signature with RSASSA-PKCS1-v1_5, as described in section 3.3 from [4]:

o RS512: RSASSA-PKCS1-v1_5 using SHA-512 (banned)

o RS384: RSASSA-PKCS1-v1_5 using SHA-384 (banned)

o RS256: RSASSA-PKCS1-v1_5 using SHA-256 (banned)

Note: recommended size for RSA is 2048-bits or longer keys.

5.2.4 CEK Key Randomness

CEK keys are assumed to be random and not predictable. If the random are of bad quality

(biased or with poor entropy) the session keys could be easily guessed. To avoid that, the layer

that implements random generation must be configured in such a way as to use good random

source (e.g. /dev/random or /dev/urandom under linux).

GSM Association Non-Confidential

Security Design and Implementation Guidelines

Status: Release 40/51 Version: 1.8

5.3 Basic data integrity and authenticity check

It is not mandatory for a Mobile Money platform provider to implement JOSE technology stack

for achieving data integrity and authenticity. An alternate approach to achieve basic data

integrity, detection of timing issues and authenticity checks is by using the following request

headers. The API Client must calculate these values and set it in the corresponding headers.

These headers are optional and should only be used if JOSE is not used in a specific

implementation. The different request headers are listed in Table 5.

HTTP Header Name Description

X-Content-Hash SHA-256 hex digest of the request content (encrypted or plain)

Content-Length Length of request content - Requests having too long or non-

matching length are rejected

Date The date and time that the message was sent in HTTP-date

format including the time zone. One policy can be to reject the

requests having time deviation of more than ‘x’ minutes. It is the

responsibility of API Gateway to normalize the time to server’s

time zone for calculation purpose.

Table 5: Request headers for basic data integrity and authenticity check

5.4 Protection of sensitive request parameters –

Query / URI Path variables

It is important to protect sensitive request parameters passed to a GET resource. These

parameters can be passed either as query parameters or URI path variables.

For example:

1. MSISDN/{value}

2. /accounts/{accountIdentifier1}@{value1}${accountIdentifier2}@{value2}${accountIdentifier3}

@{value3}

The following strategy can be used by API Client to protect these parameters:

1. API Client encrypts URI path variables using the pre-shared API key with pre-shared

symmetric encryption algorithm. The API key and algorithm details are pre-shared during

the provisioning of API Client.

2. Use a request object in a POST that can be either signed (JWS) or encrypted (JWE) using

standard JOSE framework described in section 5.2.

GSM Association Non-Confidential

Security Design and Implementation Guidelines

Status: Release 41/51 Version: 1.8

6 API Best Practices
This chapter describes a collection of the common security practices that must be applied to

RESTful API and API Gateway platform. For these common best practices, the following

references have been used as a reference:

 OWASP REST Security Cheat Sheet [9].

 OWASP Top Ten [25]

 RESTful Service Best Practices [10]

 OWASP Cryptographic Storage Cheat Sheet [26]

Each section contains a table with a set of best practices encoded in the following way:

{BP_Category_number]

6.1 Auditing/Monitoring

6.1.1 Logging

An important aspect of building RESTful services in a complex distributed application is to

address logging functions, especially for the purpose of debugging production issues and

investigating eventual points of failure. With good logging practices you can detect security

issues. Keep in mind that PII (Personally Identifiable Information) [11] data should be handled

with care avoiding the logging of these types of information.

Table 6 - Best Practices Logging [BP_LOG]

Code Description

BP_LOG_1 A detailed consistent pattern should be applied to log messages across

service logs.

It is a good practice for a logging pattern to at least include the following: date

and current time, logging level, the name of the thread, the simple logger name

and the detailed message.

BP_LOG_2 It is important to anonymize sensitive data. It is important to mask or

anonymized sensitive data in production logs to protect the risk of

compromising confidential and critical PII information. Anonymization should

rely on a cryptographic message digest mechanism.

BP_LOG_3 Identifying the caller or the initiator as part of logs.

BP_LOG_4 Do not log payloads by default.

6.1.2 Monitoring/Reporting

Monitoring activities is useful to protect your application from some misuses or external attacks,

but also to keep track, with the help of a BAM (Business Activity Monitoring), of KPIs (Key

Performance Indicator) to verify the adherence to the SLA agreed with the stakeholders. API

Gateway can be used to monitor, throttle, and control access to the API. The following can be

done by a gateway or by the RESTful service:

 Monitor usage of the API and know what activity is good and what falls out of normal

usage patterns and implement appropriate reporting functionality

GSM Association Non-Confidential

Security Design and Implementation Guidelines

Status: Release 42/51 Version: 1.8

 Throttle API usage so that a malicious user cannot take down an API endpoint (DOS

attack) and can block a malicious IP address

Table 7 - Best Practices Monitoring [BP_MON]

Code Description

BP_MON_1 Use a monitoring system which can collect data to evaluate and to control

anomalous behavior, SLA and other statistics in the background.

It is a good practice to collect logs in a SIEM (Security Information and Event

Management), to discover some anomalous behavior and to detect some

attack patterns.

Collecting information in the right manner you could do the following

activities:

 Identity, Audit and Authenticate Administrator and 3rd Party Access

 Control and Audit of all privileged user access

 Logging, monitoring user access

 Track and Monitor all Access

 Access Policy and reporting for Forensics and Investigations on

incidents

 Continuous Security Training Awareness with Recording Message

 Remote Access Session Monitoring and Authentication to Servers

 Logging Access, Alert on Unauthorised Access to Sensitive systems

 Ports and Services Monitoring, Logging All Server and user activity

 Incident Response with Session Replay on Event logs

BP_MON_2 Should implement payload protection policy.

Malicious injection in the payload are mitigated using techniques described

in section 5.2.2. But the attackers can, for example, use recursive

techniques to consume memory resources and other techniques that can

compromise the availability of the services. In the optic of a layered

approach, the JSON threat protection policies help to protect applications

from such intrusions and possible damages. Some example of policy to

define are:

 Specifies the maximum number of elements allowed in an array.

 Specifies the maximum allowed containment depth, where the

containers are objects or arrays.

 Specifies the maximum number of entries allowed in an object

 Specifies the maximum string length allowed for a property name

within an object.

 Specifies the maximum length allowed for a string value.

Some useful reference are MuleSoft documentation [15], Apigee

documentation [16] and SAP HANA documentation [17].

BP_MON_3 Should implement protection policy to monitor the traffic against malicious

behavior (e.g. DOS Attack and spike arrest).

 Quotas [18] and rate limits control the number of connections apps

can make to the backend via the API

GSM Association Non-Confidential

Security Design and Implementation Guidelines

Status: Release 43/51 Version: 1.8

Code Description

 Spike arrest [19] capabilities protect against traffic spikes and denial-

of-service attacks

It is suggested to implement this feature using an API Gateway such as

Apigee, SAP API Management.

BP_MON_4 It is suggested to provide real-time monitoring capability or real-time API

health visibility.

Define and implement a list of KPI to monitor the API health status and

performance issue. Examples of KPI:

1. If you have more than 5 consecutive errors in the invocation of a

service raise an alert

2. If the call for a function takes more than a fixed period ex. 4 second.

6.2 Communication

6.2.1 Transport

Switching between HTTP and HTTPS introduces security weaknesses and the best practice is

to use TLS (HTTPS) by default for all the communication.

Table 8 - Best Practices Transport Communication [BP_TCOM]

Code Description

BP_TCOM_1 Data in transit. The use of TLS should be mandated and enforced,

particularly where credentials, updates, deletions, and any value

transactions are performed. TLS version 1.2 [8] or newer must be utilized.

6.2.2 Data encryption

Encryption should always be used to transfer data or sensitive information between API Client

and API Gateway.

Table 9 - Best Practices Transport Encryption [BP_TCRY]

Code Description

BP_ TCRY_1 PII and sensitive information in general should be encrypted (i.e. JSON

encryption [2]).

BP_ TCRY_2 Data at rest. It is necessary to prevent database bypass, which occurs when

an attacker threatens to gain access to sensitive data by targeting operating

system files and backup media. In this case he may avoid most database

authentication and auditing mechanisms. The most common way of

preventing this is encrypting the data-at-rest, i.e. whenever it is committed to

memory. This has the added benefit of also protecting against improper

decommission or theft of drives.

GSM Association Non-Confidential

Security Design and Implementation Guidelines

Status: Release 44/51 Version: 1.8

Code Description

BP_ TCRY_3 Message Authentication Code (MAC) should be used. When using Hash-

based message authentication code (HMAC) use SHA-2 and up, avoid SHA

and MD5.

BP_TCRY_4 Any PII and sensitive request parameters passed as query parameters or

path variables must be encrypted. Please see section 5.4 for more details.

6.2.3 Storage of cryptographic keys and credentials

Some of the best practices for cryptographic design and storage of cryptographic keys are

summarized below:

Table 10 - Best Practices for storage of crypto keys [BP_CRPS]

Code Description

BP_CPRS_1 All protocols and algorithms for authentication and secure communication

should be well vetted by the cryptographic community.

BP_CPRS_2 Ensure certificates are properly validated against the hostnames/users

i.e. whom they are meant for

BP_CPRS_3 Avoid using wildcard certificates unless there is a business need for it

BP_CPRS_4 Maintain a cryptographic standard to ensure that the developer

community knows about the approved cipher suites for network security

protocols, algorithms, permitted use, crypto periods and Key Management

BP_CPRS_5 Store a one-way and salted value of passwords - Use PBKDF2, bcrypt or

scrypt for password storage

BP_CPRS_6 Ensure that the cryptographic protection remains secure even if access

controls fail - This rule supports the principle of defense in depth. Access

controls (usernames, passwords, privileges, etc.) are one layer of

protection. Applicative encryption and MAC add an additional layer of

protection that will continue protecting the data even if an attacker

subverts the database access control layer

BP_CPRS_7 Ensure that any secret key is protected from unauthorised access

BP_CPRS_8 Store keys away from the encrypted data

BP_CPRS_9 Protect keys in a key vault

BP_CPRS_10 Document concrete procedures for managing keys through the lifecycle

BP_CPRS_11 Under PCI DSS requirement 3, you must protect cardholder data

BP_CPRS_12 Render PAN (Primary Account Number), at minimum, unreadable anywhere

it is stored

BP_CPRS_13 Protect any keys used to secure cardholder data against disclosure and

misuse.

As the requirement name above indicates, we are required to securely store

the encryption keys themselves. This will mean implementing strong access

control, auditing and logging for your keys. The keys must be stored in a

location which is both secure and "away" from the encrypted data. This means

key data shouldn't be stored on web servers, database servers etc.

Access to the keys must be restricted to the smallest number of users

possible. This group of users will ideally be users who are highly trusted and

GSM Association Non-Confidential

Security Design and Implementation Guidelines

Status: Release 45/51 Version: 1.8

Code Description

trained to perform Key Custodian duties. There will obviously be a

requirement for system/service accounts to access the key data to perform

encryption/decryption of data.

The keys themselves shouldn't be stored in the clear but encrypted with a

KEK (Key Encrypting Key). The KEK must not be stored in the same location

as the encryption keys it is encrypting.

6.3 Identity Management

The API Client and/or end-user should be authenticated and authorised prior to completing an

access control decision. All access control decisions should be logged.

6.3.1 Authentication and session management

Authentication validates if you are the right person who can login to the software system.

A RESTful API should be stateless. This means that request authentication should not depend

on cookies or sessions.

Table 11 - Best Practices Identity Management Authentication [BP_IMAU]

Code Description

BP_IMAU_1 Session-based authentication must be used, either by establishing a session

token via a POST or by using an API key as a POST body argument or as a

cookie. Username, passwords, session tokens, and API keys must not appear

in the URL.

BP_ IMAU_2 Protect session state.

Most Web services and APIs are designed to be stateless, with a state blob

being sent within a transaction. For a more secure design, consider using the

API key to maintain client state if the API is using a server-side cache. It's a

commonly used method in Web applications and provides additional security

by preventing anti-replay. Replay is where attackers cut and paste a blob to

become an authorised user. In order to be effective, include a time-limited

encryption key that is measured against the API key, date and time, and

incoming IP address

BP_ IMAU_3 All access control decisions shall be logged.

BP_ IMAU_4 Protect against replay attacks.

A replay attack (also known as playback attack) is a form of network attack

in which a valid data transmission is maliciously or fraudulently repeated or

delayed. This is carried out either by the originator or by an adversary who

intercepts the data and retransmits it, possibly as part of a masquerade

attack by IP packet substitution (such as stream cipher attack).

There are a lot of countermeasures that you can take in place that use a

time limited encryption key, keyed against the session token or API key, date

and time, and incoming IP address. For example, some mechanisms are

session tokens, one-time passwords, MAC (Message Authentication Code)

and time stamping.

GSM Association Non-Confidential

Security Design and Implementation Guidelines

Status: Release 46/51 Version: 1.8

Code Description

One common best practice mechanism, also used by OAuth is to have the

following combination:

 Nonce (number used once): It identifies each unique signed request

and prevent requests from being used more than once. This nonce

value is included in the signature, so it cannot be changed by an

attacker

 Timestamp: We can add a timestamp value to each request. When a

request comes with an old timestamp, the request will be rejected.

From a security standpoint, the combination of the timestamp value and

nonce string provide a perpetual unique value that cannot be used by an

attacker.

A useful reference is a SANS whitepaper: Four Attacks on OAuth - How to

Secure OAuth Implementation [20].

6.3.2 Authorisation

Authorisation validates if you are the right person to have access to the resources.

Table 12 - Best Practices Identity Management Authorisation [BP_IMAZ]

Code Description

BP_ IMAZ_1 Protect HTTP methods.

RESTful API often use GET (read), POST (create), PUT (replace/update) and

DELETE (to delete a record) methods. Not all of these are valid choices for

every single resource collection, user, or action. Make sure the incoming

HTTP method is valid for the session token/API key and associated resource

collection, action, and record.

BP_ IMAZ_2 Whitelist allowable methods.

For an entity the permitted operations should be defined. For example, a

GET request might read the entity while PUT would update an existing

entity, POST would create a new entity, and DELETE would delete an

existing entity. It is important for the service to properly restrict the allowable

verbs such that only the allowed verbs would work, while all others would

return a proper response code (for example, a 403 Forbidden).

BP_ IMAZ_3 Protect privileged actions and sensitive resource collections.

Not every user has a right to every web service. The session token or API key

should be sent along as a cookie or body parameter to ensure that privileged

collections or actions are properly protected from unauthorised use.

BP_ IMAZ_4 Protect against cross-site request forgery.

For resources exposed by RESTful web services, it's important to make sure

any PUT, POST, and DELETE request is protected from Cross Site Request

Forgery. Typically, one would use a token-based approach.

GSM Association Non-Confidential

Security Design and Implementation Guidelines

Status: Release 47/51 Version: 1.8

6.4 Validating RESTful services

When exposing RESTful service APIs, it is important to validate that the API behaves correctly.

6.4.1 Input validation

Table 13 - Best Practices Input Validation [BP_VALI]

Code Description

BP_VALI_1 Use a secure parser for parsing the incoming messages.

BP_VALI_2 It is suggested the using of strongly type techniques for incoming data. Limit

and define the permitted values for an input parameter.

BP_VALI_3 Validate incoming content-types. The service should never assume the

Content-Type. When is not present in the header the server should reject the

content with a generic 404 Not Found

BP_VALI_4 Validate response types. It is common for REST services to allow multiple

response type (in this case: application/json) and the client specifies the

preferred order of response types by the Accept header in the request. Do

not accept the request if the content type is not one of the allowable types.

Reject the request (ideally with a generic HTTP 404 Not Found response)

BP_VALI_5 Use some framework (e.g. Jersey) that enable validation constrains to be

enforced automatically at request or response time. This kind of framework

provide automatic validation after unmarshaling.

BP_VALI_6 To prevent abuse, it is standard practice to add some sort of rate limiting to

an API. RFC 6585 introduced a HTTP status code 429 Too Many Requests

to accommodate this. However, it can be very useful to notify the consumer

of their limits before they hit it.

6.4.2 Output encoding

Table 14 - Best Practices Output Validation [BP_VALO]

Code Description

BP_VALO_1 Send security headers. To make sure the content of a given resources is

interpreted correctly by the browser, the server should always send the

Content-Type header. The server should also send an X-Content-Type-

Options: nosniff to make sure the browser does not try to detect different

Content-Type than what is actually sent (can lead to XSS).

BP_VALO_2 JSON encoding. A key concern with JSON is preventing arbitrary JavaScript

remote code execution within the browser. When inserting values into the

browser DOM, strongly consider using .value/.innerText/.textContent rather

than .innerHTML updates, as this protects against simple DOM XSS attacks.

BP_VALO_3 XML as JSON should never be built by string concatenation. It should

always be constructed using an appropriate serializer. This should be useful

to be sure that the content is parsable and does not contain injected

elements.

GSM Association Non-Confidential

Security Design and Implementation Guidelines

Status: Release 48/51 Version: 1.8

6.4.3 Error handling

You must take in consideration that unhandled exceptions could reveal, to an attacker, useful

information about your API.

Table 15 - Best Practices Error Handling [BP_ERR]

Code Description

BP_ERR_1 Utilize error codes. It is highly recommended that error codes are returned

whenever an error is encountered. A cautionary note here is to not provide too

much information (such that it would provide an adversary an advantage).

Successful error codes/messages are a balance between enough information

and security.

GSM Association Non-Confidential

Security Design and Implementation Guidelines

Status: Release 49/51 Version: 1.8

Annex A REST Security Standard Overview

This section provides a brief overview of open security standards defined by the Internet

Engineering Task Force (IETF), the OpenID Foundation (OIDF), and other standards

organizations for securing RESTful web interfaces.

Table 16 – Open Security Standards for RESTful Interfaces

Standard Description

Transport Layer

Security (TLS)

IETF standard for secure communications between a client and

server, providing transport-layer encryption, integrity protection, and

authentication of the server using X.509 certificates (with optional

client authentication)

OAuth 2.0 IETF standard for an authorisation framework whereby resource

owners can authorise delegated access by third-party clients to

protected resources; OAuth enables access delegation without

sharing resource owner credentials, with optional limits to the scope

and duration of access

JavaScript Object

Notation (JSON)

Ecma18 standard text format for structured data interchange – not a

security standard per se, but a key component of several standards

listed here

JSON Web

Signature (JWS)

IETF standard for attaching digital signatures or Message

Authentication Codes (MAC) to JSON objects

JSON Web

Encryption (JWE)

IETF standard for encrypted JSON objects

JSON Web Keys

(JWK)

IETF standard for representing public and private keys (or sets of

keys) as JSON objects

JSON Web

Algorithms (JWA)

Specifies cryptographic algorithms to be used in the other JOSE

standards

JavaScript Object

Signing and

Encryption (JOSE)

Collective name for the set of JSON-based cryptographic standards

(JWS, JWE, JWK, and JWA)

JSON Web Token

(JWT)

IETF standard for conveying a set of claims between two parties in a

JSON object, with optional signature and encryption provided by the

JOSE standards

OpenID Connect 1.0 OpenID Foundation standard for identity federation based on OAuth

2.0, using JWT to convey signed and optionally encrypted identity

claims

User-Managed

Access (UMA)

Proposed IETF standard for an OAuth 2.0-based access

management protocol enabling resource owners to create access

policies authorising requesting parties to access their resources

through OAuth clients

Figure 6 below illustrates the dependencies among the security standards, with each standard

depending on the others that lie directly beneath it.

18 ECMA was originally an acronym standing for the European Computer Manufacturers Association, but
the organization changed its name in 1994 to Ecma International to reflect its global focus

GSM Association Non-Confidential

Security Design and Implementation Guidelines

Status: Release 50/51 Version: 1.8

Figure 6: REST Security Standard Dependencies

Annex B Document Management

Document information

Project Owner GSMA Inclusive Tech Lab, Mobile Money, Mobile for Development

Document Title GSMA Mobile Money API - Security Design and Implementation

Guidelines

File Name GSMA Mobile Money API - Security Design and Implementation

Guidelines1_8.docx

Key Words GSMA, Mobile Money, Harmonised API, Security Design

Classification Non-Confidential

Status Release

Distribution GSMA

Version history

Version Date Status Author

1.6 06-09-2016 Published GSMA

1.7 16-01-2020 Draft GSMA

1.8 31-03-2020 Published GSMA

Change history

Version Date Changes

1.6 06-09-2016 Final Published version of Document

1.7 16-01-2020 Internal Draft version of Document

Links and Template updated

1.8 31-03-2020 Final Published version of Document

1. Reshaped introduction, regrouping

considerations about main security

GSM Association Non-Confidential

Security Design and Implementation Guidelines

Status: Release 51/51 Version: 1.8

concepts, adding high-level threat model

considerations, updating and completed

reference table

Update to distinguish the concept of

authentication from the one of

authorization, but also remain how to

protect confidentiality, integrity and

authenticity of data, and availability of

services, and some other concepts.

Updated References subsection resolving

main invalid links and adding few relevant

references, TLS 1.3, documents from ETSI

and IETF.

2. Reshaped document plan, isolating data

encryption and authenticity / integrity in a

dedicated section

Restructured client and gateway

authentication scenarios and outlined

recommendations at different levels and

using different technologies, including

Layers 6 and 7. Detail the role of each

parties play in different kind of

authentication.

Updated TLS authentication describing

only the handshake protocol, not the

application data one with encryption and

MAC. These TLS subsections gives high

level recommendations on how to verify

X509 certificates.

3. Improved TLS description: handshake,

authentication, key generation and cipher

suites

4. Added a subsection dedicated to API Client

Authentication at the HTTP level (Basic,

API Key and OAuth).

5. A new section 5 has been added “Data

Protection – Security Design”, it recalls the

encryption and data authenticity and

integrity services to be implemented at

different levels (TLS, HTTP, JSON).

6. Section 6 “API Best Practices” updated in

a few points (E.g. HTTP 406 error)

7. All external references updated to latest

versions where applicable and updated

links provided.

