

GRQ Measurement Implementation Version 13.0 07 Feb 2024

Security Classification: Non-Confidential

Access to and distribution of this document is restricted to the persons permitted by the security classification. This document is subject to copyright protection. This document is to be used only for the purposes for which it has been supplied and information contained in it must not be disclosed or in any other way made available, in whole or in part, to persons other than those permitted under the security classification without the prior written approval of the Association.

Copyright Notice

Copyright © 2024 GSM Association

Disclaimer

The GSMA makes no representation, warranty or undertaking (express or implied) with respect to and does not accept any responsibility for, and hereby disclaims liability for the accuracy or completeness or timeliness of the information contained in this document. The information contained in this document may be subject to change without prior notice.

Compliance Notice

The information contain herein is in full compliance with the GSMA Antitrust Compliance Policy.

This Permanent Reference Document has been developed and is maintained by GSMA in accordance with the provisions set out in GSMA AA.34 - Policy and Procedures for Official Documents.

Table of Contents

1	Introduction	4
	1.1 Overview	4
	1.1.1 Scope	5
	1.1.2 Purpose	5
	1.2 GRQ Framework	6
	1.3 Scope and Purpose	7
	1.4 Definition of Terms	8
	1.5 Document Cross-References	10
2	Overview of roaming QoS monitoring methods	11
	2.1 End-to-end Active Testing and Monitoring	12
	2.1.1 Active probes	12
	2.1.2 Use of smartphone for QoS test	12
	2.1.3 Drive Testing and Monitoring	13
	2.2 Passive Monitoring	13
	2.2.1 Network related monitoring	13
	2.2.2 User, device, application layer Monitoring	15
	2.2.3 PROTOCOLS	16
3	Overview of Roaming QoS Parameters	17
	3.1 Voice QoS Parameters	20
	3.1.1 CS voice QoS parameters	20
	3.1.2 Voice CSFB QoS parameters	22
	3.1.3 VoLTE QoS parameters	23
	3.2 SMS QoS Parameters	26
	3.2.1 SMS over GSM, UMTS and LTE	26
	3.2.2 Voice 5G QoS parameters	26
	3.3 SMS SERVICE QoS Parameters	30
	3.3.1 SMS over GSM, UMTS and LTE	30
	3.3.2 SMS over IP	31
	3.3.3 SMS over 5G	31
	3.4 DATA SERVICE QoS Parameters	34
	3.4.1 GPRS / UMTS	34
	3.4.2 LTE data	36
	3.4.3 5G data	37
	3.5 VIDEO SERVICE QoS Parameters	40
	3.5.1 VILTE	40
	3.6 MIoT SERVICE QoS Parameters	45
	3.7 IPX SERVICE QoS Parameters – TO BE COMPLETED	49
4	QoS Parameter-Method Grid	50
	4.1 Circuit Switched	50
	4.1.7 5G	53
	To be completed to cover all parameters defined section 3.6	53
	4.1.8 GPRS / UMTS/LTE Applet Monitoring Specification	60

/ 1 ()	LTE Probe Test Specification	62
4.1.9	LTE Probe rest Specification	02
4.1.1) Volte/Vilte and SMSoIP	62
4.1.1	MIoT	62
to be	added	62
4.1.1	2 5G	62
To be	added to cover all parameters defined section 3.6	62
4.1.1	3 SMS, SMSoSGs and SMSoIP	63
4.1.1	Reporting of KPI from Passive Measurement by Applet	69
Annex A	GRQ KPI Thresholds	74
A.1	GRQ LTE KPI Thresholds	74
A.1 A.1.1	GRQ LTE KPI Thresholds LTE Data GRQ KPI Thresholds	74 74
A.1.1	LTE Data GRQ KPI Thresholds	74
A.1.1 A.2	LTE Data GRQ KPI Thresholds Voice CSFB and SMSoSGs GRQ KPI Thresholds	74 76
A.1.1 A.2 A.3 A.4	LTE Data GRQ KPI Thresholds Voice CSFB and SMSoSGs GRQ KPI Thresholds GRQ GSM/GPRS and UMTS KPI Thresholds	74 76 77

1 Introduction

Global Roaming Quality (GRQ) provides a neutral, objective, and proportionate framework for active testing, passive monitoring. Regular GRQ measurements assure end-to-end roaming services quality, thus enable GSMA members to get a global perspective on roaming quality.

By reducing roaming quality issues, reasonable quality levels can be assured, and customer satisfaction improved. The costs associated with customer complaints and fault resolution will also reduce.

1.1 Overview

This document describes the implementation procedures for measuring the quality of SMS, voice, data, video, and IoT roaming services end-to-end both in the bilateral and in the Roaming Hub scenarios. Parameters to measure quality of roaming services covers mobile technologies through 5G: the list of QoS parameters is made to provide the mobile operator ability to measure quality in different scenarios with different methods. The parameters list can be extended in the future. QoS parameters defined by this document cover QoS requirements for roaming service level agreement, when available. Other QoS parameters are defined to provide an extensive monitoring capability for mobile operator implementing a QoS monitoring solution.

The document consists of three main sections.

The first section details common Quality of Service (QoS) monitoring methods for use with the GRQ monitoring framework.

The second section provides an overview of the quality parameters used with the GRQ monitoring framework. These parameters are defined with details of calculations in GSMA PRD IR.42 [1].

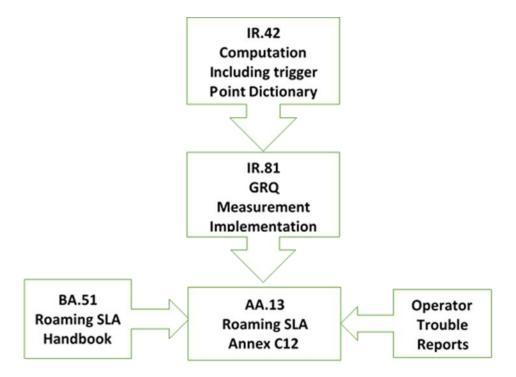
The third section provides detailed testing conditions for each parameter, method, and Visited Public Mobile Network/ Home Public Mobile Network (VPMN/HPMN) perspective.

A fourth section specifies the test trigger and measurement points for each test methods. As each section builds on the previous one, it is recommended to read all the sections in the given order.

1.1.1 Scope

This permanent reference document (PRD) provides the parameters, methods, and conditions necessary to perform end-to-end monitoring of roaming services according to the GRQ framework.

Other parameters may complement GRQ monitoring and other methods may be added in the future.


1.1.2 Purpose

This permanent reference document (PRD) provides the parameters, methods, and conditions necessary to perform end-to-end monitoring of roaming services according to the GRQ framework (oOther parameters may complement GRQ monitoring). The GSMA GRQ framework has been designed to standardize the parameters, measurement and implementation of roaming quality KPIs and to provide the guidelines and supporting information for operators to deploy those quality KPIs within end to end roaming SLAs.

This document is intended for mobile operators, roaming Hub Providers and vendors.

Operators will find information about the most important QoS parameters and common monitoring methods for end-to-end roaming QoS monitoring. Roaming Hub Providers will find information about the most important QoS parameters and common monitoring methods that can be natively measured/performed by roaming Hub Providers themselves.

1.2 GRQ Framework

Figure 1: Relation of GSMA PRD IR.81 to other PRDs in the GRQ Framework

Figure 1 depicts the GRQ framework and the relationship of GSMA PRD IR.81 with the other relevant GSMA PRDs. The GSMA GRQ framework has been designed to standardize the parameters, measurement and implementation of roaming quality KPIs and to provide the guidelines and supporting information for operators to deploy those quality KPIs within end to end roaming SLAs.

The framework consists of four PRDs and a trouble report database.

- GSMA PRD IR.42 contains the quality KPI definitions and calculations relevant for the global roaming
- GSMA PRD IR.81 (the present PRD) specifies the roaming quality KPI test methods, test implementations and the KPI thresholds for roaming
- GSMA PRD BA.51 provides the specific guidelines and advanced agreements to those operators wishing to establish an end-to-end Roaming Service Level Agreement (RSLA) either between themselves and/or through a Roaming Hub Provider.
- GSMA PRD AA.13 Annex C12 provides the basis for establishing Roaming Service Level Agreement between operators.

When this document is used by operators wishing to establish an end-to-end Roaming Service Level Agreement, GSMA PRD BA.51 is the Permanent Reference Document providing guidelines on how to implement the parameters that are to be measured with roaming partners.

1.3 Scope and Purpose

This permanent reference document (PRD) provides the parameters, methods, and conditions necessary to perform end-to-end monitoring of roaming services according to the GRQ framework.

This document is intended for mobile operators, roaming Hubbing Providers and vendors. Operators will find information about the most important QoS parameters and common monitoring methods for end-to-end roaming QoS monitoring. Roaming Hubbing Providers will find information about the most important QoS parameters and common monitoring methods that can be natively measured/performed by roaming Hubbing Providers themselves.

Vendors will find information about the most important QoS parameters and the necessary testing conditions providing for comparable monitoring results irrespective of the methods, vendors, and mobile operators involved.

1.4 Definition of Terms

Term	Description
5GC	5G Core network
ACD	Average Call Duration
AMF	Access & Mobility Function
ASR	Answer-Seize Ratio
AUSF	Authentication Server Function
CAMEL	Customized Applications for Mobile networks Enhanced Logic
CE	Coverage Enhancement
eDRX	Extended idle mode Discontinuous Reception
EN-DC	E-UTRA-NR Dual Connectivity
en-gNB	Enhanced gNB (a node providing NR user plane and control plane protocol terminations towards the UE and connected via the S1-U interface to the EPC and to the eNB via X2. Acts as the SN for EN-DC).
gNB	g-node 5G radio access station
GTP	GPRS Tunnelling Protocol
HPMN	Home Public Mobile Network
IMSI	International Mobile Subscriber Identity
ISDN	Integrated Services Digital Network
ISUP	ISDN User Part
KPI	(QoS) Key Performance Indicator
LBO-HR	Local Breakout HPMN Routing (roaming architecture)
LBO-VR	Local Breakout VPMN Routing (roaming architecture)
LTE	Long Term Evolution
LTE-M	Long-Term Evolution Machine Type Communications
LwM2M	Lightweight Machine to Machine
MAP	Mobile Application Part
MCG	Master Cell Group
MIoT	Mobile Internet of Things
MN	Master Node
MOS	Mean Opinion Score
MQTT	Message Queuing Telemetry Transport
MQTT-SN	MQTT for Sensor Networks
MSC	Mobile Switching Centre
MTU	Maximum Transmission Unit
NB-IoT	Narrowband IoT
NFV	Network Function Virtualisation
NR	New Radio (provided by gNB)
NSA	(5G) Non Stand-Alone
PCF	Policy Control Function

Term	Description	
PDD	Post-Dial Delay	
PSM	Power Save Mode	
PTW	Paging Time Window	
QoS	Quality of Service	
RSRP	Reference Signal Received Power	
SCG	Secondary Cell Group	
SMF	Session Management Function	
SN	Secondary Node	
SQI	Single Quality Indicator	
SRVCC	Single Radio Voice Call Continuity	
SS7	Signalling System 7	
SSI	Single Service Indicator	
S8HR	S8 Home-Routed (roaming architecture)	
STP	Signalling Transfer Point	
TAU	Tracking Area Update	
UDM	Unified data Function	
UPF	User Plane Function	
ViLTE	(conversational) Video over LTE	
VoLTE	Voice over LTE	

1.5 Document Cross-References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document. References are non-specific, i.e. referred to the latest version.

No.	Document	Description
[1]	GMSA PRD IR.42	Definition of Quality of Service parameters and their computation
[2]	ETSI TS 102 250-4	"Speech Processing, Transmission and Quality Aspects (STQ); QoS aspects for popular services in GSM and 3G networks; Part 4: Requirements for Quality of Service measurement equipment ".
[3]	ETSI TR 103 114	"Speech Processing, Transmission and Quality Aspects (STQ); QoS parameters and measurement methodology for smartphone".
[4]	3GPP TS 23.272	"Circuit Switched Fallback in Evolved Packet System; Stage 2"
[5]	3GPP TS 23.401	"GPRS Enhancements for E-UTRAN Access"
[6]	3GPP TS 29.272	"MME and SGSN related interfaces based on Diameter protocol"
[7]	3GPP TS 29.274	"Evolved General Packet Radio Service (GPRS) Tunnelling Protocol for Control plane (GTPv2-C); Stage 3"

No.	Document	Description
[8]	3GPP TS 29.281	"General Packet Radio System (GPRS) Tunnelling Protocol User Plane (GTPv1-U)"
[9]	GMSA PRD IR.65	IMS roaming and interworking guidelines
[10]	GMSA PRD IR.88	LTE Roaming Guidelines
[11]	GMSA PRD IR.92	IMS Profile for Voice and SMS
[12]	GMSA PRD IR.94	IMS Profile for Conversational Video Service
[13]	3GPP TS 34.229-1	Internet Protocol (IP) multimedia call control protocol based on Session Initiation Protocol (SIP) and Session Description Protocol (SDP); User Equipment (UE) conformance specification; Part 1: Protocol conformance specification
[14]	3GPP TS 36 508	Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access (E-UTRAN); Common Test Environments for User Equipment (UE) Conformance Testing
[15]	3GPP TS 36 523-1	Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Packet Core (EPC); User Equipment (UE) conformance specification; Part 1: Protocol conformance specification
[16]	ITU-T P.863	Perceptual Objective Listening Quality Assessment (POLQA)
[17]	ITU-T G.107.1	Wideband E-Model
[18]	ITU-T J.247	Objective perceptual multimedia video quality measurement in the presence of a full reference
[19]	3GPP TS 37.340	Evolved Universal Terrestrial Radio Access (E-UTRA) and NR; Multi-connectivity
[20]	GSMA PRD NG.113	5G ODTemplate
[21]	GSMA PRD NG.114	IMS Profile for Voice, Video and Messaging in 5GS
[22]	3GPP TS 28.554	5G end to end Key Performance Indicators
[23]	GSMA PRD BA.51	Roaming Service Level Agreement Guidelines
[24]	GSMA PRD IR.34	Guidelines for IPX provider networks

2 Overview of roaming QoS monitoring methods

Monitoring is a continuous method to measure the QoS on an on-going basis. It provides a statistical representation of end-user experience based on a sample of the roaming services provided. This is in contrast to ad-hoc tests, which are only giving a snap-shot of the QoS. Ad-hoc tests are typically more complicated and are not standardized. Ad-hoc tests are used for troubleshooting.

There are two general approaches to monitoring roaming QoS end-to-end.

The first approach generates test calls in the visited network using test subscriber identity module (SIM) cards from stationery or a moving test rig. This is referred to as 'active monitoring'.

The second approach monitors live roaming traffic signaling and IP traffic resulting from roaming subscriber activities in the visited network. This is referred to as 'passive monitoring', because this approach is non-intrusive. Roaming Hubbing Providers can natively perform some of these methods.

This document includes both approaches and contains details of the following common methods:

2.1 End-to-end Active Testing and Monitoring

- 2.1 1 Active probes
- 2.1.2 Smartphones
- 2.1.3 Drive Testing
- 2.2 Passive Monitoring
 - 2.2.1 Network related
 - 2.2.2 User, device application/crowd testing related

Additional methods may be added in the future.

2.1 End-to-end Active Testing and Monitoring

2.1.1 Active probes

The End-to-End Active Testing and Monitoring method deploys one or more stationary test rigs in the roaming destination. Each test rig contains one or more active Radio Frequency (RF) probes programmed to emulate subscriber behavior. Test calls are generated on the visited or on the home network using test SIM cards.

The active test probes typically support automated scheduled testing for on-going roaming service quality monitoring, as well as real-time testing for troubleshooting. An IP network is used to remotely control the probes and receive test results from the test rig. The test rigs often incorporate SIM multiplexing to centrally manage SIM resources and dynamically assign them to the active test probes.

2.1.2 Use of smartphone for QoS test

Instead of using RF probes as described under 2.1, smartphones can be used for active testing. These smartphones can be controlled via a programming interface providing the possibility to run exactly the same applications (Apps) as used by real subscribers. Also, parallel usage of different Apps is possible, enabling complex test scenarios similar to end user experience, also known as Quality of Experience (QoE).

Using smartphones, similar KPIs to the ones used in the scope of GRQ framework can be produced, while enriched with additional QoE related measurements.

2.1.3 Drive Testing and Monitoring

The Drive Testing and Monitoring method is similar to the End-to-end Active Testing and Monitoring method with the exception that the active probes are installed in vehicles (for example taxis or buses).

Given that monitoring is performed in different locations and potentially from a moving location, this method will give different results than stationary test rigs.

Drive Testing method focuses on the domestic environment because in roaming scenarios its use can be costly and impractical for continuous monitoring.

Drive testing in roaming scenarios could be more relevant in the future with new use cases.

2.2 Passive Monitoring

2.2.1 Network related monitoring

Passive Monitoring method uses non-intrusive high-impedance Signaling System number 7 (SS7) signaling probes to record selected protocol messages for further analysis. exampleAn example use would be with an SS7 data analysis and reporting tool.

It is noted that some Signal Transfer Points (STP)s enable the replication of signaling messages. They can send the replicates towards a network monitoring application. Such approach is also considered as a "passive monitoring" method.

The SS7 data analysis provides a real-time view of the network and service performance experienced by the roamers.

It is important to note that only monitoring of basic and mandatory protocols for GSM/GPRS roaming services have been considered, that is Mobile Application Part (MAP), Integrated Services Digital Network User Part (ISUP).

Similarly, Passive Monitoring may be applied on the IP traffic for monitoring the GPRS Tunneling Protocol (GTP) flows, as required for evaluating the QoS of the PS-domain. The approach taken may consist of implementing high-impedance probes or to apply a port mirroring on a network switch. In the latter case, it forces the switch to send a copy of all <u>network packets</u> seen on one switch port (or an entire Virtual LAN (<u>VLAN</u>)) to a network monitoring connection on another switch port. This is commonly used for network appliances that require monitoring of network traffic.

CAMEL is the embodiment of the Intelligent Networks (IN) concept for mobile networks. CAMEL is bilaterally and specifically enabled across networks by roaming partners. It is supported by the CAP protocol.

In this document, CAMEL Monitoring refers to passive probes monitoring CAP signaling.

The Passive Monitoring method extracts traffic directly from the core network focusing on both control and user plane roaming traffic. Unlike active testing, passive monitoring does not generate traffic to emulate subscriber behavior; instead, it passively monitors real traffic from inbound and outbound roaming users. In parallel, it can act complementary to active testing by offering test traffic visibility on multiple points in the network, thus, facilitating the evaluation of end-to-end roaming services quality as well as assisting on live troubleshooting through a drill-down approach.

Passive monitoring can be implemented through different approaches including network Test Access Point (TAP) and Switch Port ANalyzer (SPAN) techniques. Network TAPs can be further categorized to passive probes (e.g., passive optical splitters) and active probes, while SPAN is a technique where the network packets seen on a switch port are copied to a special SPAN port that is used for monitoring. Another categorization of passive monitoring techniques is between virtual TAPs (vTAPs), i.e., software-based solutions supporting diverse mirroring techniques (e.g., vSwitch and NIC mirroring), and physical TAPs (pTAPs), i.e., hardware-based solutions that are connected directly into the cabling infrastructure. The selection of the appropriate passive monitoring techniques depends on multiple factors such as the volume and the type of traffic, the underlying physical or virtual infrastructure as well as the vendor-specific capabilities.

There are a variety of core network interfaces to which the above passive monitoring techniques could be applied. Depending on the accessibility of those interfaces and the actual monitoring needs, interfaces in the IPX (interconnection of IP networks) or level (connections between elements of the same network) may be considered. IPX level gives the capability to monitor performance staying at distance from the core network premises. On the other hand, passive monitoring domestically in VPMN or HPMN gives the advantage of delivering holistic view of network performance due to multiple interfaces and protocols that can be captured in parallel. Along with the interfaces that are directly used in 5GS and EPS roaming scenarios, (such as S8, S6a, S9, N9 and N32), passive monitoring can be applied to additional reference points are user location, device model, application category, etc., used for the assessment of roaming quality.

Considering the latest technologies of 5G, LTE and VoLTE that dominate modern networks, passive monitoring may give access to the following protocols. For convenience, there is a split of protocols in the categories of UP (user plane) and CP (control plane).

- UP protocols per core network technology 5G, LTE: GTP-U VoLTE: RTP
- CP protocols per core network technology 5G: HTTP2/JSON (SBI), only for domestic: NGAP, PFCP LTE: GTP-C, Diameter, only for domestic: S1AP VoLTE: SIP

Deep Packet Inspection (DPI) on the traffic of monitored core network interfaces enables detailed assessment of roaming performance. Important information elements included in packets of milestone procedures/operations should be logged and processed to support ladder diagrams, KPIs and further analytics regarding provided services.

CP traffic is either non-encrypted or encrypted with the relative decryption keys obtained by other interfaces captured in the network. On the other hand, most UP traffic is encrypted with keys exclusively shared between server and individual subscriber. Thus, DPI cannot extensively apply, blocking the direct calculation of KPIs related to customer experience, e.g., video playout quality, web page download time. In that case, ML and AI algorithms can

be leveraged to infer key quality indicators and evaluate user experience without being hampered by encryption.

2.2.2 User, device, application layer Monitoring

2.2.2.1 Use Applets in SIMs for QoE Monitoring

Javacard Applets installed in the subscribers' SIMs can be used to measure their Quality of Experience. By aggregation of QoE data from individual Applets, a measure of device performance and serving network performance can be achieved per the quality measurements/KPI of the GRQ framework.

Using API in SIM Application Toolkit as standardized through 3GPP and ETSI, a Javacard Applet can acquire performance related data from host retail mobile phones and IoT devices, package it into data structures that describe service received and transmit it to server-side aspects that further process the data into management reporting.

As the SIM is present where the subscriber uses a network, JavaCard reporting covers service measurements in both Home and Visited networks. The type of services measured includes Radio Access Network performance, voice quality, and the number of attempts to use Packet data and Network Rejections. Measurements are qualified by;

The identity of the subscriber

The device used at the time of measurement

The Time-of-Day when a service was measured

The serving network identify addressed by Cell Global ID (CGI)

Service-related cause codes transmitted to the User Equipment by the serving network, i.e. call end causes for voice calls.

Radio measurements for the serving and neighboring cells

Calculated approximate latitude/longitude position of the subscriber

Depending upon the subscribers' service provider requirements, privacy is assured by;

The Applet obfuscating Subscriber ID with an irreversible hashing algorithm.

Application of unique key encryption implemented by the Javacard Applet. Unique keys are derived by the Applet and not pre-shared.

Encryption of data at rest by ensuring KPI stores are encrypted and datacentre access is limited.

Disabling the transmission of ID data by each Applet.

All device types used to measure service including Smartphones, fixed feature phones and IoT devices.

The bearer service used to upload data from the Applet is chosen by the MNO. The suggested default is for the Applet to attempt upload by IP with fall back to SMS first, then fallback to buffering when no bearer service is available. Rules with respect to upload of data are determined by the MNO, that is, upload from a visited network may not be allowed so the Applet will buffer data for subsequent upload when the subscriber returns to their Home network.

Additionally, Applet performance is controlled remotely and securely. For example, Applets are distributed in all physical and embedded SIMs with central control enabling the Applet as required.

The use of the Javacard Applet does not require intervention by the Subscriber. The Applet exports no User Interface, does not accelerate battery drain and uses minimal bearer service to carry data to the network. The amount of physical data uploaded by each Applet ranges from 130 bytes to less than 2k bytes.

2.2.2.2 Crowd testing/Monitoring

With reference to 2.2.2.1, a Javacard Applet in the SIM supports crowdsourcing of QoE/QoS data from Subscriber terminals so the number of Applets deployed should be significant with respect to the size of the target networks Subscriber base. As a guideline, at least 10% of the base should be enabled with an Applet.

By deploying the Applet in pSIMs and eSIMs, the Subscriber's service provider can measure their service nationwide, 24x7. As the Applet in the SIM accompanies the Subscriber on their user journey, all visited networks are measured as well. KPI/Data arising from the aggregation of SIM QoE data includes;

Performance of any Radio Access Network used. Radio measurements are provided with latitude/longitude position of the Subscriber when the radio is measured and Radio Link Failures are reported. These measurements address basic accessibility in 2G, 3G, 4G, 5G NSA & 5G SA (for example, see sections below with respect to voice KPI).

Voice calls to include CSFB with CSSR, CSR and HOSR, location and ID of serving network and device (see section **Error! Reference source not found.**).

Attempts for Packet Data with indication of APN settings and Access Technology.

Network Rejects with indication of currently used network, the rejecting network the update type and rejection cause.

•

2.2.3 PROTOCOLS

2.2.3.1 CAMEL

The Customized Applications for Mobile Networks Enhanced Logic (CAMEL) Monitoring method uses a similar set up to SS7 Monitoring, whereby non-intrusive CAMEL signaling probes record selected protocol messages for further analysis and reporting.

Once a CAMEL relationship is established between a HPMN and a VPMN, an exchange of CAMEL Application Part (CAP) protocol messages takes places when customers are accessing different roaming services. This enables both the HPMN and the VPMN to monitor roaming QoS using passive signaling probes (subject to appropriate protocol stack library for decoding messages).

The CAMEL Phase enabled between the roaming partners will determine the scope of parameters available for GRQ monitoring:

- Phase 1: Applies to Mobile Originated (MO) and Mobile Terminated (MT) (at Gateway mobile switching center (GMSC)) calls related activities.
- Phase 2: Phase 1 plus Unstructured Supplementary Service Data (USSD) control, call duration, and so on.
- Phase 3: Phase 1 and Phase 2 plus control of dialed services (actual number dialed), mobility events, GPRS session and SMS-MO.
- Phase 4: All of the above plus IMS control and SMS-MT.

2.2.3.2 Most DIAMETER

A general description for DIAMETER and GTP monitoring to be added in this section

2.2.3.3 2.GTP-C / -U

Operators with CAMEL-enabled limit its support to CAMEL Phase 2.

2.2.3.4 IP Monitoring

IP monitoring applies to IPX connectivity, both when a single IPX provider provides the roaming path or when two IPX Providers provide the roaming path via a IPX-IPX interconnection, i.e. IPX peering relationship. Interconnection framework for IP (GSMA <u>PRD</u> <u>IR.34</u>) provides network level QoS monitoring of IP traffic between mobile operators and interconnection providers.

When this document is used by operators wishing to establish an end-to-end Roaming Service Level Agreement, GSMA PRD BA.51 is the document providing guidelines to define the parameters to be measured.

3 Overview of Roaming QoS Parameters

This This section gives an overview of the basic parameters that enable monitoring of roaming quality of services end-to-end under the GRQ framework. These parameters were selected on the basis that they cover the below QoS aspects defined in GSMA PRD IR.42, and represents the customer experience. It gives an overview of the basic parameters that enable monitoring of roaming quality of services end-to-end under the GRQ framework. These parameters were selected on the basis that they cover the below QoS aspects defined in GSMA PRD IR.42, and represents the customer experience and the basis that they cover the below QoS aspects defined in GSMA PRD IR.42, and represents the customer experience.

QoS aspects:

Network Accessibility: Probability that the user performs a successful registration on the PMN. (In SIM QoE, the successful registration to a VPMN is explicit and not a probability). The customer is registering to the network (either the circuit switched network for CS voice or the packet switched network for data). For Global Roaming QoS monitoring, it is assumed that the network is available where the customer is located. Some of the parameters can be natively monitored by a roaming Hub Provider. In 5G, accessibility refer to the ability for the users to register to the network and to a network slice

Service Accessibility: If a customer wants to use a service, the network operator will provide access to the service as quickly as possible. (The end-to-end bearer connection is provided to the customer. For voice services, the customer hears the ring tone; for data services, the end-to-end packet data protocol (PDP) context is activated; for SMS, the connection is established between the end-user terminal and the Short Message Service Centre (SMSC).)

In Applet solution, the Applet reports all service consumed on a VPMN. For voice, the Applet reports call control (the user dials a number), call connect (set-up completes and voice starts) nad call end. For all call end, the end cause code is provided. Attach for data and network rejects are also reported.

Connection Establishment: For voice services, this describes the call setup end-to-end (even in case of call forward to voicemail). For data services, this describes the connection establishment for MultiMedia Service (MMS) or accesses to a Wireless Application Protocol (WAP) portal or web server, for newest technologies 3G/LTE/5G, http(s) successful connection to a public web site.

Service Retain-ability: Service Retain-ability describes the termination of services (in accordance with or against the will of the user), for example the customer terminates his voice call or data connection without cut-off. In 5G, retainability refers to abnormally loss of a QoS flow during the time the QoS flow is used, abnormal loss of a Data Radio Bearer (DRB) during the time the DRB is active.

Integrity

In 5G, Integrity refers to Latency/Delay, throughput for network and Network Slice Instance

Utilization

In 5G, Utilization KPI refers Mean number of PDU sessions of network and network Slice Instance, PDU session establishment time of network slice In Applet solution, the Applet records all attempts to attach for packet data across 2G, 3G, 4G and 5G.

Mobility

In 5G, Mobility refers to NG-RAN handover success rate, Inter-gNB handover which related to one single network slice, 5GS to EPS handover success rate.-

In Applet solution, the Applet can capture every Location Status Update (cell handover). As there are so many handoffs, to attenuate the number being reported by suitably setting Applt configurations applies.

Connection Quality

This describes the Quality of Service during service use. The connection is not impaired by quality problems, such as reduced speech quality for voice or data rate and increased latency for data services.

In Applet solution, the Applet reports logical data such as call end causes and network reject update/reject codes. There is also scope to use the Applet to capture radio data during voice calls. Radio measurement includes signal strength and quality. These last 2 measures can be viewed as relative to the quality of the call.

For Packet Switched services, there are two approaches

- 1. Bearer level measures are included, as most data services are delivered using the HPMN's infrastructure and the VPMN's data bearer (that is 'bit pipe'). This approach has been used to measure GPRS / UMTS data QoS.
- QoS measurement are performed at the specific services level (for example HTTP / HTTPS, as well as data capacity test). This approach aligns more closely to the user experience, therefore, is mandatorily applied to the LTE data QoS measurement and can be optionally adopted for the GPRS / UMTS data QoS measurement.

3.1 Voice QoS Parameters

3.1.1 CS voice QoS parameters

QoS Aspects	QoS Parameters	Parameter covered by Active Testing probes related	Parameter covered by Active Testing related	Parameter covered by Passive Monitoring	Parameter covered by Passive Monitoring
Network Accessibility (customer being able to register on the network)	 Circuit Switched LU success ratio (*) Circuit Switched LU delay (*) 	1.YES 2. YES	1.YES 2. YES	1 TBC 2. TBC	1 YES (1) 2. NO
Service accessibility (from customer hitting the send button until hearing a ring tone)	 NER-MO or SAT-MO (success ratio) NER-MT or SAT-MT (success ratio) PDD-MO or STT-MO (duration) PDD-MT or STT-MT (duration) 	3. YES 4. YES 5 YES 6 YES	3. YES 4. YES 5 YES 6 YES	3. TBC 4.TBC 5 TBC 6.TBC	3. YES4.YES 5 NO 6.NO (2)
Connection establishment (from customer hitting the send button until a successful establishment of the call)	 7. CSSR-MO (success ratio) 8. CSSR-MT (success ratio) 9. REL (ISUPv2) 10. OCN and RDN (ISUPv2) 	7,YES 8, YES 9.YES 10.YES	7,YES 8, YES 9.NO 10.NO	7,TBC 8, TBC 9. TBC 10. TBC	7,YES 8, YES 9. NA (3) 10. YES
Connection retain-ability (from a successful establishment of the call	11. CCR (success ratio) 12. ALOC (duration) ¹	11.YES 12.YES	11.YES 12.YES	11.TBC 12.TBC	11.YES 12.YES (4)

¹ Not relevant for a roaming QoS SLA.

until service is terminated)					
Connection quality	 13a. CLI transparency (MO) 13b. CLI transparency (MT) 14a. Speech Quality (SpQ_received_R_side) 14b. Speech Quality (SpQ_received_H_side) 	13a.YES 13b.YES 14a. YES 14b. YES	13a.YES 13b.YES 14a. YES 14b. YES	13a.TBC 13b.TBC 14a.TBC 14b. TBC	13a.YES 13b.YES 14a.NO 14b. NO

(*) Natively supported by roaming Hubbing Providers; other parameters may be supported through CAMEL.(1) The Applet provides explicit indication of a successful connect to a roaming partner. If there is no connection, then the Applet reports the availability of a network for emergency/limited service or the fact that the UE receives no radio whatsoever.

(2) Timers in the SIM do not reliably provide the required resolution in time.

(3) The Applet does receive the cause location and end cause values so the ratio in the Applet world is always 100%

(4) The duration of all calls is reported by the Applet. These can be reported individually or subject to server-side aggregation to derive ALOC.

3.1.2 Voice CSFB QoS parameters

CSFB denotes CS fallback. This session contains the KPIs for the voice CS fallback.

QoS Aspects	QoS Parameters	Parameter covered by Active Testing probes related	Parameter covered by Active Testing related	Parameter covered by Passive Monitoring	Parameter covered by Passive Monitoring
LTE network accessibility	 101. PS location update success ratio 102. PS location update delay 103a. CSFB return to LTE success ratio- MO 103b. CSFB return to LTE success ratio- MT 104a. CSFB return to LTE time – MO 104b. CSFB return to LTE time – MT 	101.YES 102, YES 103a. YES 103b. YES 104a.YES 104B. YES	101.YES 102, YES 103a. YES 103b. YES 104a.YES 104B. YES	101.TBC 102, TBC 103a.TBC 103b. TBC 104a.TBC 104B.TBC	101.YES 102, NO 103a.YES (1) 103b. YES 104a.NO 104B.NO
CS voice accessibility	 NER-MO or SAT-MO (success ratio) NER-MT or SAT-MT (success ratio) CSFB PDD-MO or CSFB STT-MO (setup time) CSFB PDD-MT or CSFB STT-MT (setup time) 	3.YES 4.YES 115 .YES 116.YES 7. YES 8.YES	3.YES 4.YES 115 .YES 116.YES 7. YES 8.YES	3.TBC 4.TBC 115 TBC 116.TBC 7.TBC 8.TBC	3.YES 4.YES 115 NO 116.NO 7.YES 8.YES

	7. CSSR-MO (success ratio)8. CSSR-MT (success ratio)		
	hbined EPS + IMSI attach is applied neters 101 and 102.		
Note 2: CSFB QoS parameters 103 and 104 are (2G / 3G) technology-dependent.			
	a successful CSFB, the CS voice ers are applied.		
Reported by the Applet as update ot serving cell + access technology			

3.1.3 VoLTE QoS parameters

	QoS Pa	arameters				
QoS Aspects	GRQ Id	KPI description	Paramet er covered by Active Testing probes related	Paramet er covered by Active Testing Smartph one related	Parame ter covered by Passive Monitor ing Networ Related + Protoco I involve d	Parameter covered by Passive Monitoring Applet/Cro wd Related + Protocol involved
VoLTE service Accessibility	201 202	IMS Registration success ratio IMS Registration time	201 YES 202.YES	201 YES 202.YES	201 TBC 202 TBC	201 NO 202 NO
VoLTE service integrity and retainability	203 204 205 206 207 208 211 212 213 210	Voice MO accessibility (NER-MO or SAT-MO success ratio) Voice MT accessibility (NER -MT or SAT-MT success ratio) Voice MO session setup time (PDD- MO or STT-MO duration) Voice MT session setup time (PDD- MT or STT-MT duration) Voice MO session setup ratio (CSSR-MO)	203,YES 204.YES 205.YES 206.YES 207.YES 208.YES 211.YES 212.YES 213.YES 210.YES	203,YES 204.YES 205.YES 206.YES 207.YES 208.YES 211.YES 212.YES 213.YES 210.YES	203 TBC 204 TBC 205 TBC 206 TBC 207 TBC 208 TBC 211 TBC 212 TBC 213 TBC 210 TBC	203 YES 204 YES 205 NO 206 NO 207 YES 208 YES 211 YES 212 YES 213 YES 210 YES

	214	Voice MT session setup ratio	214 .YES	214 .YES	214 TBC	214 NO
		(CSSR-MT)				
	215	Voice MO session duration	215.YES	215.YES	215 TBC	215 NO
	216	Voice MT session duration	216.YES	216.NO	216 TBC	216 NO
	217		217.YES	217.NO	217 TBC	217 NO
		OIP transparency MO (CLI transparency)				
		OIP transparency MT (CLI				
		transparency)				
		Speech quality on call basis at R-				
		party				
		Speech quality on call basis at H-				
		party				
		Speech quality R-factor at R-party				
		Speech quality R-factor at H-party				
	230	SRVCC MO success ratio	230.YES	230.NO	230 TBC	230 YES
VoLTE	230	SRVCC MO success ratio	230. TES 231.YES	230.NO 231.YES	230 TBC 231 TBC	230 YES 231 YES
service						
mobility	232	SRVCC MO time	232.YES	232.YES	232 TBC	232 NO
	233	SRVCC MT time	233.YES	233.NO	233 TBC	233 NO
		Default EPS bearer context				
		activation success ratio				
		Default EPS bearer context				
		activation time				
	240	Default EPS bearer QCI	240.YES	240.YES	240 TBC	240 TBC
	241	Default EPS bearer UL AMBR	241 YES	241 YES	241 TBC	241 NO
	242	Default EPS bearer DL AMBR	242.YES	242.YES	242 TBC	242 NO
	243	Dedicated EPS bearer context	243.YES	243.YES	243 TBC	243 NO
	244	activation success ratio (audio)	244.YES	244.YES	244 TBC	244 NO
	245	Dedicated EPS bearer context	245.YES	245.YES	245 TBC	245 NO
	246	activation time (audio)	246.YES	246.YES	246 TBC	246 NO
LTE	247	Dedicated EPS bearer QCI (audio)	247.YES	247.YES	247 TBC	247 NO
network	248	Dedicated EPS bearer UL GBR	248.YES	248.YES	248 TBC	248 NO
quality for	249	(audio) Dedicated EPS bearer DL GBR	249.YES	249.YES	249 TBC	249 NO
VoLTE	250	(audio)	250.YES	250.YES	250 TBC	250 NO
service	251	IP data volume received on QCI5	251.YES	251.YES	250 TBC	250 NO 251 NO
	252	bearer at R-party	252.YES	252.YES	251 TBC 252 TBC	251 NO 252 NO
		IP data volume transmitted on QCI5				
	253	bearer at R-party	253.YES	253.YES	253 TBC	253 NO
	254	IP data volume received on QCI5	254.YES	254.YES	254 TBC	254 NO
	255	bearer at H-party	255.YES	255.YES	255 TBC	255 NO
	256	IP data volume transmitted on QCI5	256.YES	256.YES	256 TBC	256 NO
	257	bearer at H-party	257.YES	257.YES	257 TBC	257 NO
		IP data volume received on QCI1				
		bearer at R-party				
		IP data volume transmitted on QCI1				
		bearer at R-party				

Voice media transport qualit y for VoLTE service	260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277	IP data volume received on QCI1 bearer at H-party IP data volume transmitted on QCI1 bearer at H-party RTP max packet delay variation R2H (A-B) RTP max packet delay variation H2R (B-A) RTP mean packet delay variation R2H (A-B) RTP mean packet delay variation H2R (B-A) RTP mean packet delay variation H2R (B-A) RTP mean interarrival jitter of incoming streaming R2H (A-B) RTP mean interarrival jitter of incoming streaming H2R (B-A) RTP mean data rate transmitted R2H (A-B) RTP mean data rate received H2R (B-A) RTP mean data rate received H2R (B-A) RTP mean data rate received R2H (A-B) RTP mean data rate received R2H (A-B) RTP packets lost R2H (A-B) RTP packets lost R2H (A-B) RTP packet lost ratio R2H (A-B) RTP packet lost ratio R2H (A-B) RTP packet lost ratio H2R (B-A) RTP round-trip delay (RTD RHR A- B-A) RTP round-trip delay (RTD HRH B- A-B) RTP one-way delay (OWD R2H A-B) RTP one-way delay (OWD H2R B-A)	260.YES 261.YES 262.YES 263.YES 263.YES 265.YES 266.YES 267.YES 268.YES 270.YES 270.YES 271.YES 272.YES 273.YES 274.YES 275.YES 276.YES	260.YES 261.YES 262.YES 263.YES 263.YES 265.YES 266.YES 268.YES 269.YES 270.YES 270.YES 271.YES 272.YES 273.YES 274.YES 275.YES 276.YES	260 TBC 261 TBC 262 TBC 263 TBC 263 TBC 265 TBC 265 TBC 266 TBC 267 TBC 269 CTB C 270 TBC 271 TBC 273 TBC 273 TBC 273 TBC 275 TBC 275 TBC 277 TBC	260 NO 261 NO 262 NO 263 NO 264 NO 265 NO 266 NO 266 NO 267 NO 268 NO 269 NO 270 NO 271 NO 272 NO 273 NO 274 NO 275 NO 275 NO 276 NO 277 NO
--	--	---	---	---	---	--

Table 1: VoLTE GRQ parameters

(1) The Applet captures IMS Registration but not failures

3.2 SMS QoS Parameters

3.2.1 SMS over GSM, UMTS and LTE

QoS Aspects	QoS Parameters		
1 Network Accessibility (sustemar being able	No QoS Parameter (as not SMS specific)		
1. Network Accessibility (customer being able to register on the network)	QoS parameters 101 and 102 are applied to SMSoSGs		
	21. Service Accessibility for SMS-MO (*)		
2. Sorvice accessibility (MO)	22. Service Accessibility for SMS-MT (*)		
2. Service accessibility (MO)	23. Access Delay for SMS-MO (*)		
	24. Access Delay for SMS-MT (*)		
3. Connection establishment (from customer	25. End-to-End Delivery Time for SMS-MO(*) ^{Error!} Bookmark not defined.		
hitting the send button until a successful delivery of the SMS)	26. End-to-End Delivery Time for SMS-MT(*) ^{Error!} Bookmark not defined.		
4. Connection retain-ability (from a successful establishment of the service until service is terminated)	No QoS Parameter (Store and Forward Mechanism)		
5. Connection quality	No QoS Parameter (Store and Forward Mechanism)		

Table 2 SMS over GSM, UMTS and LTE

(*) Natively supported by a roaming Hubbing Provider only in the case where the SMS traffic is controlled by the roaming HUB.

SMS over SGs applies the same QoS parameters for SMS.

3.2.2 Voice 5G QoS parameters

3.2.2.1 Voice Service in 5G

3.2.2.1.1 Voice Service in Option 2

Voice over IMS via 5G SA (VoNR)

	QoS Pa	arameters				
QoS Aspects	GRQ Id	KPI description	Parameter covered by Active Testing probes related	Parame ter covered by Active Testing Smartp hone related	Paramete r covered by Passive Monitorin g Networ Related + Protocol involved	Paramete r covered by Passive Monitorin g Applet/Cr owd Related + Protocol involved
Connection Quality	515	Packet Loss Rate: The percentage of voice packets that are lost during transmission. A high packet loss rate can result in choppy or distorted voice quality.	YES	YES	TBC	NO
Service Retainability	514	Jitter : The variation in the delay of voice packets as they traverse the network. High jitter can lead to uneven or unpredictable voice quality.	YES	YES	TBC	NO
Connection Quality	516	Latency :The time it takes for voice packets to travel from the sender to the receiver. High latency can result in delays or lag in the conversation.	YES	YES	TBC	NO
Connection Quality	517	MOS (Mean Opinion Score : A subjective measure of the overall voice quality experienced by the user. MOS is typically rated on a scale from 1 to 5, with 5 indicating excellent voice quality.	YES	YES	TBC	NO

Connection Quality	519	Echo Return Loss (ERL): The amount of echo that is heard by the user on the receiving end. High ERL can result in feedback and reduce voice clarity.	YES	NO	TBC	NO
Network Accessibility	511	Signal-to-Noise Ratio (SNR):The ratio of the voice signal strength to background noise. High SNR can result in clear and distinct voice quality.	YES	NO	TBC	NO
Connection Quality	518	Bit Rate :The amount of data transmitted per unit of time. High bit rate can result in better voice quality, but also requires more bandwidth.	YES	YES	TBC	NO
Service Establishment	512	Call setup time :The time taken to establish a voice call, including authentication, authorization, and call routing. A long call setup time can reduce user satisfaction and lead to call drops.	YES	YES	TBC	NO
Service Retainability	513	Call drop rate :The percentage of voice calls that are disconnected prematurely. High call drop rates can indicate network congestion or other issues that affect voice continuity.	YES	YES	TBC	NO (1)

Table 3 Voice Service

(1) Currently not supported in the API used by the Applet (SIM Application Toolkit). We await 3GPP/ETSI to update TS 31.111/TS 12 223 to include

3.2.2.2 Voice Service in Option 3

Voice services provided as Voice over IMS via EPS (VoLTE)

QoS parameters are same than VoLTE call, please refer to <u>3.1.3 section</u>

3.3 SMS SERVICE QoS Parameters

3.3.1 SMS over GSM, UMTS and LTE

QoS Aspects	QoS Parameters	Parameter covered by Active Testing probes related	Parameter covered by Active Testing Smartphone related	Parameter covered by Passive Monitoring Network Related + Protocol involved	Parameter covered by Passive Monitoring Applet/Crowd Related + Protocol involved
1. Network Accessibility (customer being able to register on the network)	No QoS Parameter (as not SMS specific) QoS parameters 101 and 102 are applied to SMSoSGs				
2. Service accessibility (MO)	 21. Service Accessibility for SMS-MO (*) 22. Service Accessibility for SMS-MT (*) 23. Access Delay for SMS- MO (*) 24. Access Delay for SMS-MT (*) 	21 YES 22 YES 23 YES 24.YES	21 YES 22 NO 23 YES 24.NO	21 TBC 22 TBC 23 TBC 24.TBC	21 YES 22 NO 23 NO 24.NO
3. Connection establishment (from customer hitting the send button until a successful delivery of the SMS)	 25. End-to-End Delivery Time for SMS-MO(*)^{Error! Bookmark not} defined. 26. End-to-End Delivery Time for SMS-MT(*)^{Error! Bookmark not} defined. 	25. YES 26. YES	25. YES 26. YES	25. TBC 26. TBC	25. TBC 26. TBC

Table 4 UMTS and LTE

(*) Natively supported by a roaming Hubbing Provider only in the case where the SMS traffic is controlled by the roaming HUB.

SMS over SGs applies the same QoS parameters for SMS.

3.3.2 SMS over IP

	QoS Parameters					
QoS Aspects	GRQ Id	KPI description	Parameter covered by Active Testing probes related	Parameter covered by Active Testing Smartphone related	Parameter covered by Passive Monitoring Network Related	Parameter covered by Passive Monitoring Applet/Crowd Related
1. SMSoIP Accessibility	201 202	IMS Registration success ratio IMS Registration success time	201 YES 202 YES	201 YES 202 YES	201 TBC 202 TBC	201 NO (1) 202 NO
2. Service accessibility	221 222 223 224	SMSoIP-MO accessibility SMSoIP-MT accessibility SMSoIP-MO access delay SMSoIP-MT access delay	221 YES 222 YES 223 YES 224 YES	221 YES 222 YES 223 YES 224 YES	221 TBC 222 TBC 223 TBC 224 TBC	221 YES 222 NO 223 NO 224 NO
3. Connection establishment	225 226	SMSoIP-MO e2e delay SMSoIP-MT e2e delay	225 YES 226 YES	225 YES 226 YES	225 TBC 226 TBC	225 NO 226 NO

- 1. The Applet does capture IMS Registration but there is no failure case data that enables a success/fail ratio
- 2. The Applet does capture IMS Registration but there is no failure case data that enables a success/fail ratio

3.3.3 SMS over 5G

For SMS service over the 5GC we still will find the alternatives over signaling (NAS) and the SMS over IP through the IMS

Bottom line, there are parameters coming from end user perspective which are valid, then for instance we can keep monitoring the traditional:

	QoS Pa	rameters				
QoS Aspects	GRQ Id	KPI description	Paramet er covered by Active Testing probes related	Paramete r covered by Active Testing Smartpho ne related	Paramet er covered by Passive Monitori ng Network Related + Protocol involved	Parameter covered by Passive Monitorin g Applet/Cr owd Related + Protocol involved
Connection Establishmen t	TO BE ADDE D520	SMS submission success rate: Message indication as sent received at UE	YES	TBC	TBC	NO
Connection Establishmen t	521	SMS submission delay: Time to reach Cx network and receive confirmation at MO side (message sent)	YES	TBC	TBC	NO
Connection Quality	523	Message Success Rate :The percentage of SMS messages that are successfully delivered to the recipient. A high success rate indicates good network performance and reliability.	YES	YES	TBC	NO (1)
Connection Quality	524	Latency (END TO END Delivery time): The time it takes for SMS messages to be sent and received. High latency can result in delays in message delivery and response times.	YES	YES	TBC	NO
Utilization	526	Throughput (Traffic load): The amount of SMS message traffic that can be handled by the network per unit of time. High throughput is necessary to support high volumes of SMS traffic.	NO	NO	TBC	NO

Service Retainability	522	Error Rate : The percentage of SMS messages that fail to send or are lost during transmission. A high error rate can indicate network congestion or other issues that affect SMS service quality.	TBC	NO	TBC	YES (1)
Service retainability	525	Retransmission Rate :The percentage of SMS messages that require retransmission due to errors or other issues. A high retransmission rate can indicate network congestion or other issues that affect SMS service quality.	NO	NO	TBC	YES (1)

Table 6 SMS over 5G

1. The Applet has no access to User SMS but can use SMS itself as a bearer of data to the network. Integrity checking in the Applet to server protocol shows failre/retries and dropped SMS.

3.4 DATA SERVICE QoS Parameters

3.4.1 GPRS / UMTS

GRQ monitoring involves testing of MMS, WAP and internet, all with their specific Access Point Name (APN)s.

QoS Aspects	QoS Parameters	Parameter covered by Active Testing probes related	Parameter covered by Active Testing related	Parameter covered by Passive Monitoring	Parameter covered by Passive Monitoring
Network Accessibility (customer being able to register on the network)	31. Packet Switched LocationUpdate success ratio (*)32. Packet Switched LocationUpdate Delay (*)	31. YES 32. YES	31. YES 32. YES	31,TBC 32. TBC	31,NO 32. NO
Service accessibility (from customer hitting the send / connection button until accessing the data bearer)	33. PDP Context Activationsuccess ratio34. PDP Context Activation time	33 YES 34. YES	33 YES 34. YES	33 TBC 34. TBC	33 NO 34. NO
Connection retain ability (from a successful establishment of the service until service is terminated)	35. PDP Context Cut-Off Ratio 36. PDP Context Average Session Time ^{Error! Bookmark not} defined.	35 YES. 36.YES	35 YES. 36.YES	35 TBC 36.TBC	35 NO 36.NO
Connection quality	37. Throughput (Kbit/sec) ² 38. Goodput (Kbit/sec)	37. YES 38. YES 39. YES	37. YES 38. YES 39. YES	37. TBC 38. TBC 39. TBC	37. NO 38. NO 39. NO

² Because a 'bearer level' approach is adopted for the data services QoS monitoring, these parameters have to be measured at the 'bit pipe' level.

	 39. Roundtrip time (expressed in milliseconds) ³ 40. Packet loss⁴ 	40.YES	40.YES	40 TBC	40 NO
HTTP / HTTPS WEB browsing service quality	 142. HTTP / HTTPS IP service setup time 143. HTTP / HTTPS session success ratio 144. HTTP / HTTPS session time 145. HTTP / HTTPS mean data rate 146. HTTP / HTTPS data transfer success ratio 	142.YES 143 YES 144.YES 145YES 146.YES	142.YES 143 YES 144.YES 145YES 146.YES	142 TBC 143 TBC 144.TBC 145 TBC 146. TBC	142 NO 143 NO 144.NO 145 NO 146. NO

Table 7 GPRS / UMTS

(*) Natively supported by a roaming Hubbing Provider; other parameters may be supported through CAMEL.

Various opinions exist⁵ on how to measure throughput/goodput. It is acknowledged that the application used for measuring these parameters may even influence the measure itself. Therefore, it is recommended that the calibration process at the initial stage of the implementation of a GRQ framework between two operators scrutinizes these measures.

For the sake of clarity, it is noted that active probes may measure roundtrip and packet loss in different ways for example based on the PING application or based on analysis of TCP packet processing. It is also acknowledged that PING is not always trusted by IP experts for achieving accurate measure for the real customer experience. Indeed, PING is part of Internet Control Message Protocol (ICMP) while the data transfer is done in User Datagram Protocol (UDP) or Transmission Control Protocol (TCP). Therefore, it is recommended that both operators involved in the GRQ measurements agree on the chosen method and perform calibration tests.

A high-level definition of throughput is the ratio between the global data volume by unit of time; goodput is the ratio between the useful data volume by unit of time.

³ See 'Delay' in section 8 of GSMA PRD IR.34 'Inter-Service Provider IP Backbone Guidelines'.

⁴ See 'Packet Loss Ratio' in section 8 of GSMA PRD IR.34 'Inter-Service Provider IP Backbone Guidelines'

⁵ See RFC 5166 Metrics for the Evaluation of Congestion Control Mechanisms (<u>http://tools.ietf.org/html/rfc5166</u>)

3.4.2 LTE data

QoS Aspects	QoS Parameters	Parameter covered by Active Testing probes related	Parameter covered by Active Testing Smartphone related	Parameter covered by Passive Monitoring Networ Related + Protocol involved	Parameter covered by Passive Monitoring Applet/Crowd Related + Protocol involved
Network Accessibility (customer being able to register on the network)	 31. Packet Switched Location Update success ratio (*) 32. Packet Switched Location Update Delay (*) 	31. YES 32. YES	31. YES 32. YES	31,TBC 32. TBC	31,NO 32. NO
Service accessibility (from customer hitting the send / connection button until accessing the data bearer)	33. PDPContextActivationsuccess ratio34. PDPContextActivation time	33 YES 34. YES	33 YES 34. YES	33 TBC 34. TBC	33 NO 34. NO
Connection retain ability (from a successful establishment of the service until service is terminated)	35. PDP Context Cut-Off Ratio 36. PDP Context Average Session Time ^{Error!} Bookmark not defined.	35 YES. 36.YES	35 YES. 36.YES	35 TBC 36.TBC	35 NO 36.NO
Connection quality	 37. Throughput (Kbit/sec) ⁶ 38. Goodput (Kbit/sec) 39. Roundtrip time (expressed) 	37. YES 38. YES 39. YES 40.YES	37. YES 38. YES 39. YES 40.YES	37. TBC 38. TBC 39. TBC 40 TBC	37. NO 38. NO 39. NO 40 NO

⁶ Because a 'bearer level' approach is adopted for the data services QoS monitoring, these parameters have to be measured at the 'bit pipe' level.

	in milliseconds) ⁷ 40. Packet loss ⁸				
HTTP / HTTPS WEB browsing service quality	142. HTTP / HTTPS IP service setup time 143. HTTP / HTTPS session success ratio 144. HTTP / HTTPS session time 145. HTTP / HTTPS mean data rate 146. HTTP / HTTPS data transfer success ratio	142.YES 143 YES 144.YES 145YES 146.YES	142.YES 143 YES 144.YES 145YES 146.YES	142 TBC 143 TBC 144.TBC 145 TBC 146. TBC	142 NO 143 NO 144.NO 145 NO 146. NO
PING service quality			151.YES 152. YES	151 TBC 152. TBC	151. NO 152. NO
to QoS paramet Note 2: The KPI 137b, 141-148, be applied as th data QoS param	attach is applied ers 101 and 102 107, 108, 131a- 151, 152 can also e GPRS / UMTS neters to the data is the case, these 37 - 40.				

Table 8 LTE Parameters

1. implementing DNS related KPI under evaluation

3.4.3 5G data

Both SA and NSA network architecture options are covered.

As deployment options, most common adopted options are covered, as the standardisation of these two options have already been completed:

- 5G NSA Option 3
- 5G SA Option 2

 ⁷ See 'Delay' in section 8 of GSMA PRD IR.34 'Inter-Service Provider IP Backbone Guidelines'.
 ⁸ See 'Packet Loss Ratio' in section 8 of GSMA PRD IR.34 'Inter-Service Provider IP Backbone Guidelines'

3.4.3.1 5G SA Option 2

Roaming scenarios in 5G SA Option 2 are designed to provide seamless connectivity and mobility for users traveling between different geographical areas or countries. In particular, Local Breakout (LBO) and Home Routing (HR) are two common modes of operation for roaming scenarios in 5G SA Option 2.

In LBO mode, the data traffic of the roaming user is routed locally in the visited network to reach the internet or other external services. This allows the user to access services directly from the visited network without going through the home network, reducing latency and improving network performance. LBO mode is particularly useful for data-intensive services such as video streaming, which require high bandwidth and low latency.

In HR mode, the data traffic of the roaming user is routed back to the home network, which then forwards it to the external services. This mode is useful for services that require a high level of security or specialized functionality that is only available in the home network, such as corporate VPNs or specialized applications. HR mode can also be used to enforce policy and compliance requirements for data traffic.

The combination of LBO and HR modes in roaming scenarios allows mobile network operators to optimize network resources, improve network performance, and provide a better user experience for their customers. By choosing the appropriate mode for each user and service, operators can ensure that their network resources are used efficiently and effectively while providing the desired level of service quality.

QoS Aspects	QoS Parameters	Parameter covered by Active Testing probes related		Parameter covered by Passive Monitorin g	Parameter covered by Passive Monitoring
EN-DC NR accessibility & availability	500. 5G coverage indication 501. NR RSRP (Note 2) 502. Restrict DCNR	500 YES 501.YES 502. YES	500 YES 501.YES 502. YES	500 TBC 501.TBC 502. TBC	500 YES 501.NO 502. NO

3.4.3.2 5G NSA Option 3 - EN-DC QoS Parameters

GSM Association **ODTemplate**

en-gNB	503. ENDC	503. YES	503. YES	503. TBC	503. NO		
resource	EPS bearer	YES	YES	TBC	NO		
availability	configuration	504. YES	504. NO	504. TBC	504. NO		
	5G bearer	505. YES	505. YES	505. YES	505. NO		
	context						
	activation time, as 106 in LTE						
	504. 5G						
	ENDC_Used						
	allocated						
	505. Default						
	EPS bearer						
	QoS						
	parameters						
MBB data	510. HTTP /	510. YES	510. YES	510. TBC	510. NO		
rate & latency	HTTPS MBB	530. YES	530. YES	530. TBC	530. NO		
	data transfer success ratio	531. YES	531. YES	531. TBC	531. NO		
	530.	532 YES	532. YES	532. TBC	532. NO		
	HTTP/HTTPS	YES	YES	NO	NO		
	MBB Download						
	Rate Mbits/s (*)						
	531.						
	HTTP/HTTPS						
	MBB Upload						
	Rate Mbits/s (*)						
	532. HTTP/HTTPS						
	MBB Latency						
	milliseconds (**)						
	PING packet						
	loss ratio						
	specifically for						
	5G NSA, as						
	151 in LTE						
	Note 1: An EPS attach is a precondition for testing QoS parameters 501 – 505, 145 and 152.						
	(*) Add specific metrics for download rate and upload rate based in MBB environment						
(**) Add specific metric for Latency in ms for MBB environment							
Note 2: In combination with RSRP in such of frequency band would be more accurate to also include RSRQ and SINR as part of the							
global RF Conditions metrics							

RSRP [dBm] RSRQ [dB] SINR [dB] Excellent >= -80 >= -10 >= 20 **RF** Conditions Good -80 to -90 -10 to -15 13 to 20 -90 to -100 -15 to -20 Poor 0 to 13

< -20

<= 0

< -100

Very Poor

NR RF Conditions = 40%*RSRP + 40%*RSRQ + 20%*SINR (New KPI)

Table 9 EN-DC QoS Parameters

3.5 VIDEO SERVICE QoS Parameters

3.5.1 VILTE

	QoS F	Parameters				
QoS Aspects	GRQ Id	KPI description	Parameter covered by Active Testing probes related	Parameter covered by Active Testing Smartphone related	Parameter covered by Passive Monitoring Network Related + Protocol involved	Parameter covered by Passive Monitoring Applet/Crowd Related + Protocol involved
ViLTE service Accessibility	301 302	IMS Registration success ratio IMS Registration time	301YES 302 YES	301YES 302 YES	301 TBC 302 TBC	301 NO 302 NO
ViLTE service integrity and retainability	303 304 305 306 307 308 311 312 313 310 314 315 216 217 318 319	ViLTE MO accessibility (NER-MO or SAT-MO success ratio) ViLTE MT accessibility (NER -MT or SAT-MT success ratio) ViLTE MO session setup time (PDD-MO or STT-MO duration) ViLTE MT session setup time (PDD-MT or STT-MT duration) ViLTE MO session setup ratio (CSSR-MO) ViLTE MT session setup ratio (CSSR-MT) ViLTE MO session duration ViLTE MT session	303 YES 304 YES 305 YES 306 YES 307.YES 308 YES 311 YES 312 YES 313 YES 314 YES 315 YES 216 YES 216 YES 318 YES 319 YES	303 YES 304 YES 305 YES 306 YES 307.YES 308 YES 311 YES 312 YES 313 YES 314 YES 314 YES 315 YES 216 NO 217 NO 318 YES 319 YES	303 TBC 304 TBC 305 TBC 305 TBC 306 TBC 307 TBC 308 TBC 311 TBC 312 TBC 313 TBC 313 TBC 310 TBC 314 TBC 315 TBC 216 TBC 217 TBC 318 TBC 319 TBC	303 NO 304 NO 305 NO 305 NO 307 NO 308 NO 311 NO 312 NO 313 NO 313 NO 314 NO 315 NO 216 NO 217 NO 318 NO 319 NO

	1					,
		OIP transparency MO (CLI transparency)				
		OIP transparency MT				
		(CLI transparency)				
		Speech quality on sample basis at R-party				
		Speech quality on				
		sample basis at H-party				
		Speech quality R-factor at R-party				
		Speech quality R-factor at H-party				
		Video quality on sample basis at R-party				
		Video quality on sample basis at H-party				
		SRVCC MO success				
	230	ratio	230 YES	230 YES	230 TBC	230 NO
VILTE	231	SRVCC MT success	231 YES	231 YES	231 TBC	231 NO
service	232	ratio	232 YES	232 YES	232 TBC	232 NO
mobility	233	SRVCC MO time	233 YES	233 YES	233 TBC	233 NO
		SRVCC MT time				
	240	Default EPS bearer	240 YES	240 YES	240 TBC	240 NO
	241	context activation	241 YES	241 YES	241 TBC	241 NO
	242	success ratio	242 YES	242 YES	242 TBC	242 NO
	243	Default EPS bearer	243 YES	243 YES	243 TBC	243 NO
	244	context activation time	244 YES	244 YES	244 TBC	244 NO
	247	Default EPS bearer QCI	247 YES	247 YES	247 TBC	247 NO
	248		248 YES	248 YES	248 TBC	248 NO
	249	Default EPS bearer UL	249 YES	249 YES	249 TBC	249 NO
	345	Default EPS bearer DL	345 YES	345 YES	345 TBC	345 NO
	346	AMBR	346 YES	346 YES	346 TBC	346 NO
LTE	347	Dedicated EPS bearer	347 YES	347 YES	347 TBC	347 NO
network	348	QCI (audio)	348 YES	348 YES	348 TBC	348 NO
quality for ViLTE	349	Dedicated EPS bearer	349 YES	349 YES	349 TBC	349 NO
service	343	UL GBR (audio)	343 YES	343 YES	343 TBC	343 NO
3011100	344	Dedicated EPS bearer	344 YES	344 YES	344 TBC	344 NO
	250	DL GBR (audio)	250 YES	250 YES	250 TBC	250 NO
	251	Dedicated EPS bearer	251 YES	251 YES	251 TBC	251 NO
	252	context activation	252 YES	252 YES	252 TBC	252 NO
	253	success ratio	253 YES	253 YES	253 TBC	253 NO
	254	(audio&video)	254 YES	254 YES	254 TBC	254 NO
	255	Dedicated EPS bearer context activation time	255 YES	255 YES	255 TBC	255 NO
	256	(audio&video)	256 YES	256 YES	256 TBC	256 NO
	257	Dedicated EPS bearer	257 YES	257 YES	257 TBC	257 NO
	354	QCI (video)	354 YES	354 YES	354 TBC	354 NO
L						

	0.5-5					
	355	Dedicated EPS bearer	355 YES	355 YES	355 TBC	355 NO
	356	UL GBR (video)	356 YES	356 YES	356 TBC	356 NO
	357	Dedicated EPS bearer DL GBR (video)	357 YES	357 YES	357 TBC	357 NO
		Dedicated EPS bearer				
		UL AMBR (video)				
		Dedicated EPS bearer				
		DL AMBR (video)				
		IP data volume				
		received on QCI5				
		bearer at R-party				
		IP data volume				
		transmitted on QCI5				
		bearer at R-party				
		IP data volume				
		received on QCI5				
		bearer at H-party IP data volume				
		transmitted on QCI5				
		bearer at H-party				
		IP data volume				
		received on QCI1				
		bearer at R-party				
		IP data volume				
		transmitted on QCI1				
		bearer at R-party				
		IP data volume				
		received on QCI1				
		bearer at H-party				
		IP data volume				
		transmitted on QCI1				
		bearer at H-party				
		IP data volume				
		received on QCI2/8/9				
		bearer at R-party				
		IP data volume transmitted on				
		QCI2/8/9 bearer at R-				
		party				
		IP data volume				
		received on QCI2/8/9				
		bearer at H-party				
		IP data volume				
		transmitted on				
		QCI2/8/9 bearer at H-				
		party				
RTP	260		260 YES	260 YES	260 TBC	260 NO
transport	261	RTP max packet delay	261 YES	261 YES	261 TBC	261 NO
quality for	262	variation R2H (A-B)	262 YES	262 YES	262 TBC	261 NO 262 NO
VILTE						

service -	263	RTP max packet delay	263 YES	263 YES	263 TBC	263 NO
audio	264	variation H2R (B-A)	264 YES	264 YES	264 TBC	264 NO
	265	RTP mean packet	265 YES	265 YES	265 TBC	265 NO
	266	delay variation R2H (A-	266 YES	266 YES	266 TBC	266 NO
	267	B)	267 YES	267 YES	267 TBC	267 NO
	268	RTP mean packet	268 YES	268 YES	268 TBC	268 NO
	269	delay variation H2R (B-	269 YES	269 YES	269 TBC	269 NO
	203	A)	270 YES	270 YES	203 TBC 270 TBC	270 NO
	270	RTP mean interarrival	270 TES	270 TES	270 TBC 271 TBC	270 NO 271 NO
		jitter of incoming			271 TBC 272 TBC	
	272	streaming R2H (A-B)	272 YES	272 YES		272 NO
	273	RTP mean interarrival	273 YES	273 YES	273 TBC	273 NO
	274	jitter of incoming	274 YES	274 YES	274 TBC	274 NO
	275	streaming H2R (B-A)	275 YES	275 YES	275 TBC	275 NO
	276	RTP mean data rate transmitted R2H (A-B)	276 YES	276 YES	276 TBC	276 NO
	277	RTP mean data rate received H2R (B-A)	277 YES	277 YES	277 TBC	277 NO
		RTP mean data rate transmitted H2R (B-A)				
		RTP mean data rate received R2H (A-B)				
		RTP packets lost R2H (A-B)				
		RTP packets lost H2R (B-A)				
		RTP packet lost ratio R2H (A-B)				
		RTP packet lost ratio H2R (B-A)				
		RTP round-trip delay (RTD RHR A-B-A)				
		RTP round-trip delay (RTD HRH B-A-B)				
		RTP one-way delay (OWD R2H A-B)				
		RTP one-way delay (OWD H2R B-A)				
	360		360 YES	360 YES	360 TBC	360 NO
	361	RTP max packet delay	361 YES	361 YES	361 TBC	361 NO
DTD	362	variation R2H (A-B)	362 YES	362 YES	362 TBC	362 NO
RTP	363	RTP max packet delay	363 YES	363 YES	363 TBC	363 NO
transport quality for	364	variation H2R (B-A)	364 YES	364 YES	364 TBC	364 NO
ViLTE	365	RTP mean packet delay variation R2H (A-	365 YES	365 YES	365 TBC	365 NO
service -	366	B)	366 YES	366 YES	366 TBC	366 NO
video	367	RTP mean packet			367 TBC	
		delay variation H2R (B-	367 YES	367 YES		367 NO
	368	A)	368 YES	368 YES	368 TBC	368 NO
	369	,	369 YES	369 YES	369 TBC	369 NO

370	RTP mean interarrival	370 YES	370 YES	370 TBC	370 NO
371		371 YES	371 YES	371 TBC	371 NO
372		372 YES	372 YES	372 TBC	372 NO
373	DTD mean interarrival	373 YES	373 YES	373 TBC	373 NO
374	jitter of incoming	374 YES	374 YES	374 TBC	374 NO
375	streaming H2R (B-A)	375 YES	375 YES	375 TBC	375 NO
376	RTP mean data rate	376 YES	376 YES	376 TBC	376 NO
377	transmitted R2H (A-B)	377 YES	377 YES	377 TBC	377 NO
011	RTP mean data rate	0// 120	011 120	011 100	0// 110
	received H2R (B-A)				
	RTP mean data rate				
	transmitted H2R (B-A) RTP mean data rate				
	received R2H (A-B)				
	RTP packets lost R2H				
	(A-B)				
	RTP packets lost H2R				
	(B-A)				
	RTP packet lost ratio				
	R2H (A-B)				
	RTP packet lost ratio				
	H2R (B-A)				
	RTP round-trip delay				
	(RTD RHR A-B-A)				
	RTP round-trip delay				
	(RTD HRH B-A-B)				
	RTP one-way-delay				
	(OWD R2H A-B)				
	RTP one-way-delay				
	(OWD H2R B-A)				

Table 10: ViLTE GRQ parameters

3.6 MIOT SERVICE QoS Parameters

	MIoT QoS	Parameters				
QoS Aspects	GRQ Id	KPI description	Paramete r covered by Active Testing probes related	Parameter covered by Active Testing Smartphon e related MIoT parameters are not supported by Smart phones due to MIot device nature (i.e. this requires specific MIoT device).	Paramet er covered by Passive Monitori ng Networ Related + Protocol involved	Paramete r covered by Passive Monitorin g Applet/Cr owd Related + Protocol involved
	101	PS location update success	101YES	101 NO	101TBC	101 YES
	102	ratio	102 YES	102 NO	102 TBC	102 NO
	105	PS location update delay	105 YES	105 NO	105 TBC	105 NO (1)
	106	Default EPS bearer context activation success ratio	106 YES	106 NO	106 TBC	106 NO
	400	Default EPS bearer context	400 YES	400 NO	400 TBC	400 NO (2)
	401	activation time	401 YES	401 NO	401 TBC	401 NO (2)
	402 403	LPWA access type	402 YES 403 YES	402 NO 403 NO	402 TBC 403 TBC	402 NO 403 NO
MIoT	403	Attach type with additional	403 YES 404 YES	403 NO 404 NO	403 TBC 404 TBC	403 NO 404 YES
service	405	update type	405 YES	405 NO	405 TBC	405 NO
availability	406	Detach type	406 YES	406 NO	406 TBC	406 NO
& network	407	Detach delay	407 YES	407 NO	407 TBC	407 NO
connectivit y	408	PDN type	408 YES	408 NO	408 TBC	408 NO
	409	Serving PLMN rate control (NB-IoT)	409 YES	409 NO	409 TBC	409 NO
	410	APN rate control (NB-IoT)	410 YES	410 NO	410 TBC	410 NO
	411	APN rate control for exception	411 YES	411 NO	411 TBC	411 NO
	412	data (NB-IoT)	412 YES	412 NO	412 TBC	412 NO
	413	NAS signalling low priority	413 YES	413 NO	413 TBC	413 NO
	414	(LTE-M)	414 YES	414 NO	414 TBC	414 NO
	150	Non-IP link MTU size (NB-IoT)	150 YES	150 NO	150 TBC	150 NO
	151	IPv4 link MTU size (NB-IoT)	151 YES	151 NO	151 TBC	151 NO

	152	Half-duplex (FDD)	152 YES	152 NO	152 TBC	152 NO
	153	RSRP	153 YES	153 NO	153 TBC	153 NO
	154	CE Mode (LTE-M)	154 YES	154 NO	154 TBC	154 NO
	155	CE Level (NB-IoT)	155 YES	155 NO	155 TBC	155 NO
	156	PING Host	156 YES	156 NO	156 TBC	156 NO
	157	PING packet loss ratio	157 YES	150 NO 157 NO	150 TBC 157 TBC	150 NO 157 NO
	158	PING round trip time	158 YES	158 NO	158 TBC	158 NO
		Number of packets received				
		Number of packets sent PING interval				
		PING packet payload size				
		Sum of bytes received				
		Sum of bytes sent				
		PSM enable / disable				
		PSM status NW-accepted				
		PSM TAU period UE-				
	420	requested (T3412 extended)	420 YES	420 NO	420 TBC	420 NO
	421	PSM TAU period NW-accepted	421 YES	421 NO	421 TBC	421 NO
	422	(T3412 extended)	422 YES	422 NO	422 TBC	422 NO
	423	PSM UE active timer UE- requested (T3324)	423 YES	423 NO	423 TBC	423 NO
	424	PSM UE active timer NW-	424 YES	424 NO	424 TBC	424 NO
	425	accepted (T3324)	425 YES	425 NO	425 TBC	425 NO
	426	PSM Hibernate ratio NW-	426 YES	426 NO	426 TBC	426 NO
MIoT	427	accepted	427 YES	427 NO	427 TBC	427 NO
Power	428	PSM MT data transfer success	428 YES	428 NO	428 TBC	428 NO
saving &	431	ratio	431 YES	431 NO	431 TBC	431 NO
eDRX	432	PSM SMS MT accessibility	432 YES	432 NO	432 TBC	432 NO
	433	eDRX UE-config enable /	433 YES	433 NO	433 TBC	433 NO
	434	disable	434 YES	434 NO	434 TBC	434 NO
	435	eDRX status NW-accepted	435 YES	435 NO	435 TBC	435 NO
	436	eDRX cycle UE- requested	436 YES	436 NO	436 TBC	436 NO
	437	eDRX cycle NW-accepted	437 YES	437 NO	437 TBC	437 NO
	438	eDRX PTW UE- requested	438 YES	438 NO	438 TBC	438 NO
		eDRX PTW NW-accepted				
		eDRX MT data transfer				
		success ratio				
		eDRX SMS MT accessibility				
	109	Default EPS bearer context	109 YES	109 NO	109 TBC	109 NO
MIoT	440	cut-off ratio	440 YES	440 NO	440 TBC	440 NO
service	441	MO TCP data transfer success	441 YES	441 NO	441 TBC	441 NO
integrity	442	ratio	442 YES	442 NO	442 TBC	442 NO
and	443	MO TCP data transfer payload	443 YES	443 NO	443 TBC	443 NO
retainabilit	444	size	444 YES	444 NO	444 TBC	444 NO
у	445	MO TCP data transfer	445 YES	445 NO	445 TBC	445 NO
	446	throughput	446 YES	446 NO	446 TBC	446 NO
		MO TCP data transfer duration				

	447	MO TCP data RTT	447 YES	447 NO	447 TBC	447 NO
	448	MO UDP data transfer success	448 YES	448 NO	448 TBC	448 NO
	449	ratio	449 YES	449 NO	449 TBC	449 NO
	450	MO UDP data transfer payload	450 YES	450 NO	450 TBC	450 NO
	451	size	451 YES	451 NO	451 TBC	451 NO
	452	MO UDP data transfer	452 YES	452 NO	452 TBC	452 NO
	453	throughput	453 YES	453 NO	453 TBC	453 NO
	454	MO UDP data transfer duration	454 YES	454 NO	454 TBC	454 NO
	455	MO UDP data RTT	455 YES	455 NO	455 TBC	455 NO
	456	MT TCP data transfer success	456 YES	456 NO	456 TBC	456 NO
	457	ratio	457 YES	457 NO	457 TBC	457 NO
	460	MT TCP data transfer payload size	460 YES	460 NO	460 TBC	460 NO
	461	MT TCP data transfer	461 YES	461 NO	461 TBC	461 NO
	462	throughput	462 YES	462 NO	462 TBC	462 NO
	463	MT TCP data transfer duration	463 YES	463 NO	463 TBC	463 NO
	464	MT UDP data transfer success	464 YES	464 NO	464 TBC	464 NO
	465	ratio	465 YES	465 NO	465 TBC	465 NO
	466	MT UDP data transfer payload	466 YES	466 NO	466 TBC	466 NO
	467	size	467 YES	467 NO	467 TBC	467 NO
		MT UDP data transfer				
		throughput				
		MT UDP data transfer duration				
		MO Non-IP data transfer				
		success ratio MO Non-IP data transfer				
		payload size				
		MO Non-IP data transfer				
		throughput				
		MO Non-IP data transfer				
		duration				
		MT Non-IP data transfer				
		success ratio				
		MT Non-IP data transfer				
		payload size				
		MT Non-IP data transfer throughput				
		MT Non-IP data transfer				
		duration				
	471	SMSinMME-MO accessibility	471YES	471. NO	471. TBC	471. NO
	472	SMSinMME-MO access delay	472 YES	472.NO	472 . TBC	472.NO
MIoT SMS	473	SMSinMME-MT accessibility	473 YES	473 . NO	473 . TBC	473 . NO
	474	SMSinMME-MT access delay	474 YES	474 . NO	474 . TBC	474 . NO
Note 1. An		applied to QoS parameters 101				
and 102.						

- 1. The Applet does observe the attempt but there is no failure information to support the derivation of a ratio
- 2. Feature not yet developed by Wadaro

3.7 IPX SERVICE QoS Parameters – TO BE COMPLETED

QoS Aspects	QoS Parameters
	Jitter
	Packet Loss
	Latency

Table 12: MIoT test descriptions for active test methodology

4 QoS Parameter-Method Grid

4.1 Circuit Switched

Methods:		Monitoring by Provider (R)	Monitoring by Roaming Hubbing Provider (R)		Monitoring by HPMN (H)		
		End-to-end Active Testing and Monitoring	SS7 Monitoring	CAMEL Monitoring (CS11)	End-to-end Active Testing and Monitoring	SS7 Monitoring	
QoS Parameter	GRQ Test Code	A	В	с	A	В	(
Circuit Switched LU Success Ratio (CS LU – SR)	1	N Not applicable	Y (CS2)	N Not applicable	Y	Y (CS2)	1 1 5
Circuit Switched Location Update Delay	2	N Not applicable	Y (CS3)	N Not applicable	Y (CS1)	Y (CS3)	1 1 8
Service Accessibility Telephony – MO (SA-T-MO)	3	N Not applicable	N Not applicable	Y (CS10)	Y	N (CS4)	``
Service Accessibility Telephony – MT (SA-T-MT)	4	N Not applicable	N Not applicable	N	Y	Y	,
Setup Time Telephony – MO (ST-T-MO)	5	N Not applicable	N Not applicable	Y (CS10)	Y	N (CS5)	,
Setup Time Telephony – MT (ST-T-MT)	6	N Not applicable	N Not applicable	N	Y	Y	,
Call Setup Success Ratio (CSSR – MO)	7	N Not applicable	N Not applicable	Y (CS10)	Y	N (CS5)	,
Call Setup Success Ratio (CSSR – MT)	8	N Not applicable	N Not applicable	N	Y	Y (CS6)	,
ISUP signalling transparency (REL)	9	N Not applicable	N Not applicable	N	Y (CS20)	N (CS7)	,
ISUPv2 signalling transparency (OCN and RDN)	10	N Not applicable	N Not applicable	N	N	N (CS8)	

Call Completion Rate Circuit Switched Telephony (CCR-CS-T)	11	N Not applicable	N Not applicable	Y (CS12)	Y	N (CS5)
Average Length of a Call (ALOC)	12	N Not applicable	N Not applicable	Y (CS12, CS19)	Ν	N (CS4)
CLI Transparency	13a, 13b	N Not applicable	N Not applicable	N Not applicable	Y	N (CS4)
Speech Quality (SpQ)	14a, 14b	N Not applicable	N Not applicable	N Not applicable	Y	N (CS9)

Table 13: Circuit Switched Test Parameters

Remarks:

- (CS1) The measurement might vary depending on the handset integrated in the active probe.
- (CS2) It is assumed that the Location Update (LU) success ratio is visible in the MAP signalling and can be monitored. In other words, it is assumed that the data-fill of the VLR is correct. The failures only happen at the HLR level and Steering of Roaming (SoR)-induced errors are filtered out.
- (CS3) Only for successful LU's and the measured duration is not the same as in VPMN
- (CS4) HPMN does not know when a call fails.
- (CS5) HPMN does not know when a call starts.
- (CS6) It is assumed that there is no cross talk.
- (CS7) HPMN cannot know which kind of release has been used.
- (CS8) HPMN cannot know which network was used for the call forwarding.
- (CS9) The method is non-intrusive.
- (CS10) It is assumed CAMEL works properly and the appropriate CAMEL capabilities are implemented/available.
- (CS11) Always in combination with a SS7 monitoring system
- (CS12) It is assumed the correct CAMEL parameters have been loaded for this call (that is BCSM Event Reports are in use).
- (CS13) Only in case of Home Routing.
- (CS14) CAMEL cannot measure voice quality.
- (CS15) The VPMN cannot know which release the B-party receives
- (CS16) The VPMN cannot know the OCN and RDN at the end of the call.
- (CS17) The VPMN cannot know the CLI of the B-Party
- (CS18) The SCP is at the HPMN side
- (CS19) Need to take into account the customer profile. Best to use only if HPMN customers are all CAMEL enabled.

4.1.7 5G

To be completed to cover all parameters defined section 3.6

4.1.7.1 5G SA Option 2

To be completed

4.1.7.2 5G NSA Option 3

4.1.7.2.1 EN-DC GRQ

For FR1 corresponding to frequency range 450 – 6000 MHz, it is recommended that EN-DC GRQ testing:

LTE RSRP > -85 dBm,

FR1 NR RSRP > -88 dBm.

An EN-DC capable UE, including test probe, considers itself to be configured with EN-DC if it is configured with NR SecondaryCellGroup and it is connected to the EPC.

When configured with the EN-DC, user data carried by a data bearer may either be transferred via MCG, via NR SCG or via both MCG and NR SCG (split bearer). Also, RRC signalling carried by an SRB may either be transferred via MCG or via both MCG and NR SCG [19].

GRQ Test Code	Parameter (KPI)	Test Method for Implementation	Test specifics
500AH, 500AV	5G coverage indication	Verify receiving an <i>upperLayerIndication</i> bit in <i>SystemInformationBlockType2</i> . The upperLayerIndication in SIB2 is an indication to upper layers that the UE has entered a coverage area offering 5G capabilities.	Note 1
501AH, 501AV	NR RSRP	The measured NR RSRP value (-dBm) by the UE / test probe during the test. Aggregation of multiple tests yields the corresponding an average measured NR RSRP value.	
502AH, 502AV	Restrict DCNR	With a 5G subscription SIM, an EN-DC UE performs an EPS ATTACH procedure. Ensure to indicate the DCNR bit in the UE network capability IE of the ATTACH REQUEST message. Verify in the ATTACH ACCEPT the <i>RestrictDCNR</i> bit being set as "Use of dual connectivity with NR is not restricted" in the <i>EPS network feature support</i> IE. Verify whether the ACTIVATE DEFAULT EPS BEARER CONTEXT REQUEST message is received by the UE.	

GSMA
Official Document <nn.nn> - <document title=""></document></nn.nn>

	The default APN corresponds to the internet access in the U plane reflecting an IP connectivity.	
ENDC EPS bearer configuration	Resulted either from a KPI 501, or from a subsequent test step, e.g. via Service Request for MO data, verify whether a SCG or a Split data bearer has been established. Verify which one of the EN-DC bearers is configured in	Note 2
	the set of an EN-DC bearer configurations (MCG, SCG, Split, MCG+SCG, MCG+Split, SCG+Split, MCG+SCG+Split).	
5G ENDC_Used allocated	It verifies the UE and network have negotiated the dual connectivity and the corresponding bearers was allocated, then RAT for User Plane is 5G NSA	Note 3
Default EPS bearer QoS parameters	Resulted from EPS attach to verify the QoS parameters in the default EPS bearer context	Note 4
HTTP / HTTPS MBB data transfer success ratio	Calculation of the 5G MBB data transfer success ratio uses the same formula referred to the KPI 146 (HTTP / HTTPS data transfer success ratio), with an exception of the HTTP / HTTPS data transfer on pure MCG bearer type (i.e. only on the LTE resource) is considered as a fail due to be missing the SCG resource usage. It implies a lower data rate. Aggregation of multiple tests yields the MBB data	
	bearer configuration 5G ENDC_Used allocated Default EPS bearer QoS parameters HTTP / HTTPS MBB data transfer	the U plane reflecting an IP connectivity.ENDC EPS bearer configurationResulted either from a KPI 501, or from a subsequent test step, e.g. via Service Request for MO data, verify whether a SCG or a Split data bearer has been established. Verify which one of the EN-DC bearers is configured in the set of an EN-DC bearer configurations (MCG, SCG, Split, MCG+SCG, MCG+Split, SCG+Split, MCG+SCG+Split).5G ENDC_Used allocatedIt verifies the UE and network have negotiated the dual connectivity and the corresponding bearers was allocated, then RAT for User Plane is 5G NSADefault EPS bearer QoS parametersResulted from EPS attach to verify the QoS parameters in the default EPS bearer contextHTTP / HTTPS MBB data transfer success ratioCalculation of the 5G MBB data transfer success ratio uses the same formula referred to the KPI 146 (HTTP / HTTPS data transfer success ratio), with an exception of the HTTP / HTTPS data transfer success ratio, with an exception of the HTTP / HTTPS data transfer success ratio, with an exception of the HTTP / HTTPS data transfer success ratio, with an exception of the HTTP / HTTPS data transfer on pure MCG bearer type (i.e. only on the LTE resource) is considered as a fail due to be missing the SCG resource usage. It implies a lower data rate.

Note 1: Upon receiving SIB2, *upperLayerIndication*, a 5G logo may appear on the mobile screen. It, however, doesn't require the UE to scan for NR carriers.

Note 2: Although mixed EN-DC bearer combination, e.g. MCG+SCG or MCG+split etc. could be configured, the transferring user plane data over the Uu interface either involves MCG or SCG radio resources or both:

- For MCG bearers, only MCG radio resources are involved.
- For SCG bearers, only SCG radio resources are involved.
- For split bearers, both MCG and SCG radio resources are involved.

Specifi metric to be checkled are to be finalized

Note 3: For MN terminated bearers, the user plane connection to the CN entity (SGW) is terminated at the Master Node over S1-U_{mn} interface; for SN terminated bearers, the user plane connection to the CN entity is terminated at the Secondary Node over S1-U_{sn} interface.

KPI 503 and 504 are independent from each other, e.g. an SCG bearer can terminate at S1-U_{mn} or S1-U_{sn}.

Note 4: "We suggest to take here the pop session activation, i.e. the metric will be "pdp context action success rate

4.1.7.3 Data in 5G

GRQ Test Code	Parameter (KPI)	Test Method for Implementation	Test specifics
530AH, 530AV	HTTP/HTTPS MBB Download Rate Mbits/s	Initiate in VPMN speed test based on HTTP/HTTPS to identify the average download rate	Note 4
531AH, 531AV	HTTP/HTTPS MBB Upload Rate Mbits/s	Initiate in VPMN speed test based on HTTP/HTTPS to identify the average upload rate	Note 4
532AH, 532AV	HTTP/HTTPS MBB Latency milliseconds	From VPMN send an ICMP echo request with a certain number of PING packets to be sent as parameter. Measure the time between ICMP echo sent and ICMP echo reply received.	Note 4
	or those KPIs the reconced with 504).	mmendation is to take the results effectively executed over 5G	NSA User

4.1.7.4 Voice Service in 5G

4.1.7.4.1 Voice Service in Option 2

The voice service offered in this architecture is based on Voice over IMS.

Here are the steps to measure the key QoS parameters using active testing methodology:

GRQ Test Code	Parameter (KPI)	Test Method for Implementation	Test specifics
511AH, 511AV	5G Siignal to Noise (SNR)	By taking the radio parameters at call establishment from cell information	
512AH, 512AV	5G Call Setup Time	To measure call setup time, test calls can be initiated and the time it takes for the call to be established can be measured. This can be done by measuring the time between initiating the call and receiving a response from the destination.	
513AH, 513AV	Call drop Rate	To measure call drop rate, a large number of test calls can be made and the percentage of calls that are dropped during the call can be calculated. This can be done by counting the number of dropped calls and dividing it by the total number of calls made	
514AH, 514AV	Jitter	To measure jitter, test voice packets can be sent through the network and the variation in delay between packets can be measured. This can be done by calculating the difference in delay between consecutive packets.	
515AH, 515AV	Packet Loss	To measure packet loss, test voice packets can be sent through the network and the percentage of packets lost during transmission can be calculated. This can be done by counting the number of lost packets and dividing it by the total number of packets sent.	
516AH, 516AV	Latency	To measure latency, test voice packets can be sent through the network and the time it takes for the packets to travel from the source to the destination and back can be measured. This can be done by measuring the time between sending the packet and receiving the acknowledgement packet from the destination.	
517AH, 517AV	MOS	To measure the MOS (Mean Opinion Score) for voice calls, Objective testing can also be conducted using specialized equipment that simulates the human ear and records the call quality, like wireless interface module.	

4.1.7.4.2 Voice Service in Option 3

Voice service offered in 5G NSA option3 is VoLTE so it will be used the same methodology described in section 5.1.4.1

4.1.7.5 SMS Service in 5G

Active testing is a methodology where test traffic is generated to simulate real user traffic and then sent through the network to measure its performance and quality. Here's how the key Quality of Service (QoS) parameters for SMS and voice services in 5G option 2 architecture with 5GC can be measured using active testing methodology:

GRQ Test Code	Parameter (KPI)	Test Method for Implementation	Test specifics
520AH, 520AV	SMS Submission Success	To measure the message, test SMS can be sent from source to destination and get the ACK from network that sms was accepted at core platform level (message sent in the UE)	
521AH, 521AV	SMS Submission Delay	Submission delay will be measured by calculating difference between sms send timestamp and ack received timestamp in source side	
522AH, 522AV	Error Rate		
523AH, 523AV	End To End Success	To measure the message success rate, a large number of test SMS messages can be sent and the percentage of messages that are successfully delivered to the destination can be calculated. This can be done by counting the number of successful message deliveries and dividing it by the total number of messages sent (single sms success will count if destination received the message)	
524AH, 524AV	Latency (End To End Delivery Time)	To measure the message delivery time, a test SMS message can be sent from the source to the destination and the time taken for the message to be delivered and acknowledged can be measured. This can be done by measuring the time between sending the message and receiving an acknowledgement message from the destination	
525AH, 525AV	Retransmission Rate	To measure the retransmission rate, a large number of test SMS or voice packets can be sent and the percentage of packets that require retransmission due to errors or other issues can be calculated. This can be done by counting the number of retransmitted packets and dividing it by the total number of packets sent.	

4.1.7.6 Video Service in 5G

Section to be completed

Active testing is a methodology where test traffic is generated to simulate real user traffic and then sent and received through the network to measure its performance and quality. Here's how the key Quality of Service (QoS) parameters for Video Streaming in 5G can be measured using active testing methodology. These KPIs result from calculating the videoquality KPIs from the captured video after converting it to raw format. Initially these KPIs are calculated for each video-frame and in the end, the average value is used for the final KPI value.

- 1. Blockloss: Block loss occurs when some of the data packets forming the compressed stream of video are lost during one of the transmission stages
- 2. Blur: Blur (blurring) shows as a reduction of edge sharpness and spatial detail
- 3. Spatial Activity: The degree of detail in a video, such as the presence of sharp edges, minute details, and texture
- 4. Freezing: is caused by the use of an inadequate sampling/display or transmission delays of the coded bit-stream to the decoder.

4.1.7.7 Where to measure:

4.1.7.7.1 Probing

The passive monitoring occurs on the international links (SS7 links, voice interconnect links and IP/Gp links).

It is recommended operators to agree on the International Mobile Subscriber Identity/ Mobile Subscriber ISDN Number (MSI/MSISDN) being used by the active probes in order that the same IMSI/MSISDN is being used between roaming partner using passive probes. If one operator uses active probes and the other Operating Company (OpCo) uses passive probes, the MSISDN needs to be agreed in order to be able to compare the results.

Between passive probes address ranges, they have to monitor: Country Code/ national destination code (CC/NDC) ranges, Mobile Station Roaming Number (MSRN) Ranges, IP Ranges of GPRS Nodes.

4.1.7.7.2 SIM Applet

Applets are distributed across multiple SIMs in Subscriber UE and IoT devices and those Applets report on all of the Subscrbers' QoE wherever they connect to a VPLMNs.

4.1.7.7.3 Known Limitations:

4.1.7.7.4 Probing

The measurements are done on live traffic. Therefore, it can only bring information on node where the roaming service is correctly configured. Typically, Radio failure or Network configuration failure cannot be monitored by SS7 Monitoring alone.

Additionally, as it is linked to the actual usage on the network, the values observed may be vary from one operator under observation to another due to various 'normal' conditions:

the prepaid/postpaid market share may have an impact on the Qos linked to chargeable events as credit exhaustion will prevent or stop the service abruptly. It may also influence the behaviour of the roamers (calls without answer (old-fashioned 2 rings and call me back), SMS oriented, and so on)

the country may have an influence - numbering plan may be "closed" (known finite numbers of digits) or open. In the case of open numbering plans, the switch has to go through a wait period before deciding to connect the call

the service provided to users (for example do the subscriber have a Voice Mail? The absence/presence of such service may the observed ASR (a Voice Mail system is supposed to always answer a call that is forwarded to it).

4.1.7.7.5 SIM Applet

Measurement is indicative of Subscriber QoE when roaming so the HPMN service provider will acquire an essential measure of their partner networks performance. However, some

detailed measurements are not accessible via SIM API. For example, there is no indication of data throughput for packet.

GRQ Test Code	Parameter	Measurement	Specifics
COVE	RAGE		
	Service retention	% of all time connected to VPLMN	Qualified by VPLMN
VOICE			
	LU update success ratio	Derived from a fully qualified cell handover record	
	NER-MO (Network Effectiveness Ratio on Mobile Originated calls in the visited network)	Fully qualified voice call record	Qualifications include serving cell, geographic location, A- and B-Party addresses, length of conversation and call end casue code.
	NER-MT (Network Effectiveness Ratio on Mobile Terminated calls in the visited network)	Fully qualified voice call record	Qualifications include serving cell, geographic location, A- and B-Party addresses, length of conversation and call end casue code.
	PDD-MT (Post Dialling Delay)	Measure time between successful calls by observing sequential call records with start and end timestamps	
	CSSR-MO (Call Setup Success Ratio on Mobile Originated calls in the visited network)	Derived from fully qualified call records.	Cause being radio link failure of network failure is available for each call attempt.
	CSSR-MT (Call Setup Success Ratio on Mobile Terminated calls in the visited network)	Derived from fully qualified call records.	Cause being radio link failure of network failure is available for each call attempt.
	CCR (Call Completion Ratio Circuit)	Derived from fully qualified call records.	-
	ALOC	Derived from fully qualified call records.	-
	CLI transparency	Derived from fully qualified call records.	-
	CLI transparency	Derived from fully qualified call records.	-

4.1.8 GPRS / UMTS/LTE Applet Monitoring Specification

GRQ Test Code	Parameter	Measurement	Specifics
COVE	RAGE		
	Service retention	% of all time connected to VPLMN	Qualified by VPLMN
		SMS	
	Service Accessibility SMS MO (SA SMS MO)	MO SMS transmit/retry	Based on Applet use of SMS as bearer of data to the HPLMN.

Table 14: Parameter measurement table

4.1.9 LTE Probe Test Specification

to be added

4.1.10 Volte/Vilte and SMSoIP

to be added

4.1.11 MIoT

to be added

4.1.12 5G

To be added to cover all parameters defined section 3.6

4.1.12.1 5G SA Option 2

To be completed

4.1.12.2 5G NSA Option 3

4.1.12.3 Voice Service in 5G

4.1.12.3.1 Voice Service in Option 3

to be completed

4.1.12.4 SMS Service in 5G

to be completed

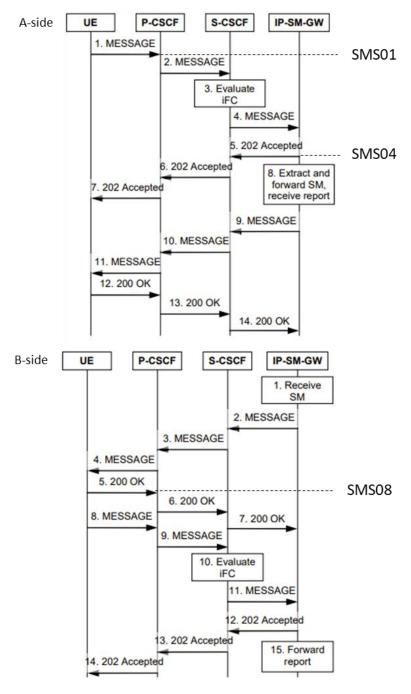
4.1.12.5 Video Service in 5G

to be completed

4.1.13 SMS, SMSoSGs and SMSoIP

151	ISC/VLR Sender	SMSC	.R MSC/ Receiv		
SM Submit				·	SMS1
	MAP FSM (MO)				SMS2
	MAP FSM (Ack)				SMS3
SM Ack		MAP SRI for SM			SMS4
-		MAP SRIfor SM ack			SMS5
		MAP FSM			SMS6
				SM Delivery	SMS7
				SM Delivery Ack	SMS8
		MAP FSM a	¢k	•	SMS9

Figure 2: SMS and SMSoSGs



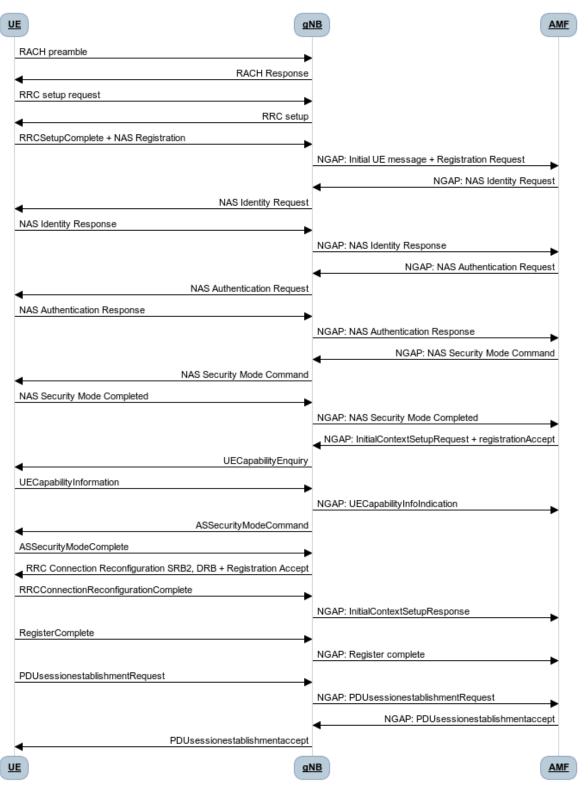
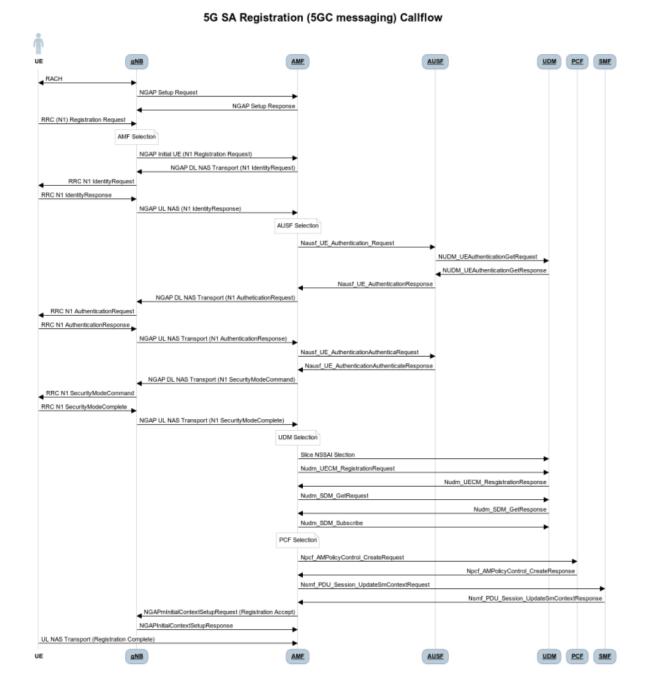
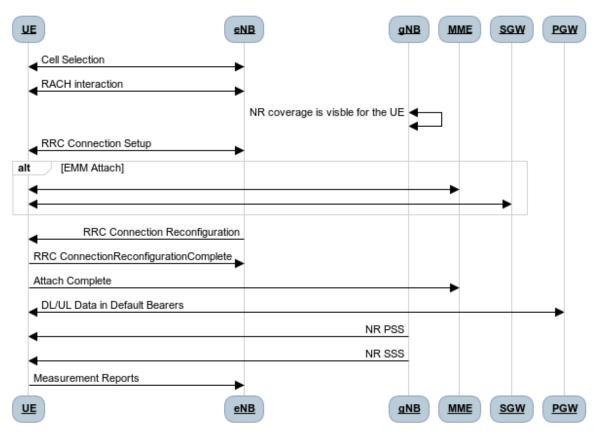



Figure 3: SMSoIP (SIP)



5G StandAlone Registration (RAN)

4.1.13.1.1 5.4.10.2 5G StandAlone Registration (CORE Network details)

4.1.13.2 5.4.10.3 5G NSA Registration (option3)

5G NSA (option 3) - ENDC Registration

4.1.13.3 5.4.10.4 5G VoNR callsetup (EPS Fallback)

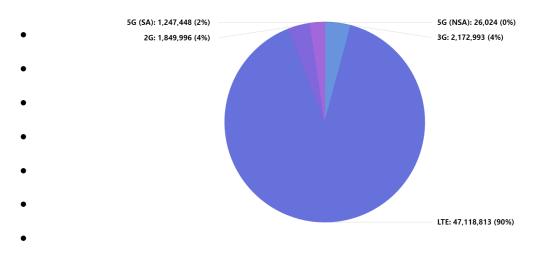
<u>UE</u> <u>gNB</u> IMS <u>eNB</u> EPC <u>5GC</u> NR radio bearer 5GMM Registration PDU session with default 5Q1 PDU session for IMS with 5QI=5 SIP signaling IMS Registration on NR with 3gpp-NR-FDD as PANI INVITE (MO Voice) with PANI = "3GPP-NR-FDD" 100 Trying + 183 Session in progress IMS voice session failed PRACK PDU session modification with EPSfallbacksupported RRCRelease redirectcarrierinfo = EUTRA + voicefallbackindication = true EUTRA Radio Bearer TAU procedure to establish IMS + Internet PDN on EPC Re-Register (MO Voice) with PANI = "3GPP-EUTRA-FDD" ٠ PRACK + 180 Ringing + INVITE 200 OK INVITE IMS Voice Call Establishment procedure on LTE EPC <u>UE</u> <u>gNB</u> 5GC IMS <u>eNB</u>

5G VoNR CallSetup (EPS Fallback)

4.1.13.4 NSA EN-DC GRQ trigger points

Test code	Parameter	Reference flow	Start point	End Point
500AH, 500AV,	5G coverage indication	NSA Registration (option3)	NR coverage is visible for the UE	
501AH 501AV	NR RSRP	HTTP/HTTPS	KPI collected during HTTP/HTTPS session	
502AH 502AV	Restrict DCNR	NSA Registration (option3)	From content of ATTACH REQUEST	From content of ATTACH ACCEPT
503AH 503AV	ENDC EPS bearer configuration	NSA Registration (option3)		
504AH 504AV	5G ENDC_Used allocated	NSA Registration (option3)	Pdp context activation	pdp context deactivation
505AH 505AV	Default EPS bearer QoS parameters	NSA Registration (option3)		
510AH 510AV	HTTP/HTTPS MBB data transfer success ratio	HTTP/HTTPS	HTTP01 (active)	HTTP04 (active)
5xxAH 5xxAV	5G bearer context activation time	NSA Registration (option3)	RRC Connection Reconfiguration with NR	NR SSS
530AH 530AV	HTTP / HTTPS download data specifically for 5G NSA	HTTP/HTTPS	HTTP01 (active)	Reached max. capacity (active)
531AH 531AV	HTTP / HTTPS upload data specifically for 5G NSA	HTTP/HTTPS	HTTP01 (active)	Reached max. capacity (active)
532AH 532AV	PING round trip time specifically for 5G NSA	PING	Ping 01 (Active) During TCP session (Passive)	Ping04 (Active) During TCP session (Passive)

4.1.14 Reporting of KPI from Passive Measurement by Applet


Voice KPIs - VPLMN (%) **Brand Name Brand Name Brand Name** Brand Name Portugal Montenegro **United States** Canada (297:MNČ) (310:MNC) (286:MNC) (302:MNC) CSSR 100% CSSR 100% CSSR CSSR 100% 71% CSR 100% CSR 100% CSR 100% CSR 92% HOSR HOSR HOSR HOSR 100% 100% 100% 100% **Brand Name Brand Name Brand Name Brand Name** United Status Aruba Dominican Republi... **United States** (310:MNC) (310:MNC) (363:MNC) (370:MNC) CSSR 100% 100% CSSR 93% CSSR 82% CSSR CSR 100% CSR 64% CSR CSR 100% 96% 100% HOSR 100% HOSR HOSR 100% HOSR 100% **Brand Name** Brand Name **Brand Name Brand Name** Korea, Republic of Malaysia Haiti Jordan (372:MNC) (416:MNC) (450:MNC) (502:MNC) CSSR 100% CSSR 100% CSSR 100% CSSR 100% CSR 100% CSR 100% CSR 100% CSR 100% 100% 100% 100% 100% HOSR HOSR HOSR HOSR

Brand Name Phlippines (515:MNC)			Brand Name Guinea (611:MNC)		Brand Name Uganda (641:MNC)		Brand Name Nicaragua (710:MNC)	
	CSSR	100%	CSSR	100%	CSSR	100%	CSSR	100%
	CSR	100%	CSR	100%	CSR	100%	CSR	100%
	HOSR	100%	HOSR	100%	HOSR	100%	HOSR	100%

Figure 4: Service Accessibility – Voice KPI per VPLMN

Time on PLMN				I	•
PLMN Brand		Country	Connected Hours	% Connected Time	
364:		Bahamas	195,113,424	96.5	
334:		Mexico	1,579,112	0.8	
222:		Italy	696,358	0.3	
515:		Philippines	603,817	0.3	
370:		Dominican Republic	520,111	0.3	
302:		Canada	116,603	0.1	
	2	>>	Page 1 of 82	Go to page: 1	

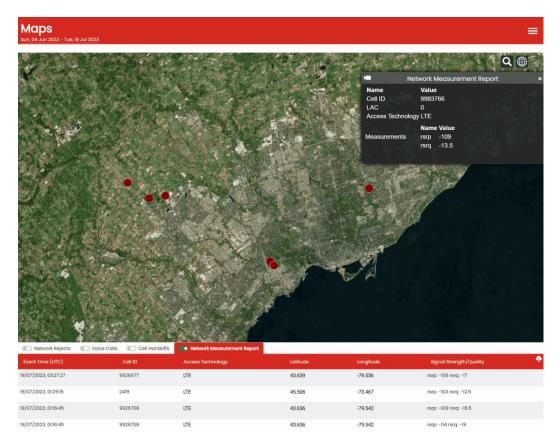

Figure 5: Network Accessibility – Time on each VPLMN

Figure 7:	Network Rejects - VPLMI	N	•	Service
	PLMN Brand	Country	Failures	
	310:	United States	1,164,610	
	311:	United States	304,887	
	334:	Mexico	267,895	
	310:	United States	202,794	
	234:	United Kingdom	145,494	
	311:	United States	141,758	
	901:		141,372	
	440:	Japan	139,686	
	234:	United Kingdom	123,056	
	208:	France	82,637	
	« · · · · · · · · · · · · · · · · · · ·	Page Go 1 of 77	o to page: 1	

Accessibility – Network Rejections

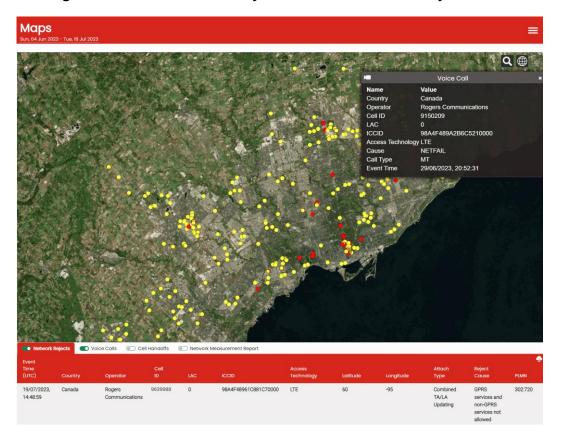
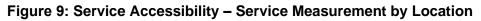



Figure 8: Service Accessibility – Radio Measurements by Location

Annex A GRQ KPI Thresholds

The GRQ KPI thresholds characterize the end-to-end quality for mobile services in roaming. The threshold values are applied to both outbound and inbound roaming, independently of whether the KPIs are tested by using active or passive test methods.

A.1 GRQ LTE KPI Thresholds

The thresholds have resulted from the LTE GRQ pilot project performed in Sept 2015⁹ [9]. There are two key recommendations for the KPI thresholds for roaming quality in LTE networks.

- KPI threshold for success ratio of services ≥ 99% Consequently, Loss ratio, cut-off ratio etc. ≤ 1%
- Some KPI thresholds depend on geo-distance between HPMN and VPMN.
 Data rate such as data capacity, delay / setup time etc. have two thresholds, depending on whether the geo-distance between HPMN and VPMN is less or more than 4000 km

Although the KPI thresholds have resulted from outbound roaming active tests they can also be referenced for inbound roaming KPI.

A.1.1 LTE Data GRQ KPI Thresholds

The following table contains the referenced LTE GRQ KPI thresholds for data roaming.

GRQ KPI D	efinition	Threshold		Relevance
GRQ Identifier	QoS parameter (KPI)	Geo- distance < 4000 km	Geo- distance ≥ 4000 km	
101	PS location update success ratio (%)	≥ 99.00		Network access
102	PS location update delay (s)	≤ 5.5	≤ 5.5	User experience
105	Default EPS bearer context activation success ratio (%)	≥ 99.00		Network access
106	Default EPS bearer context activation time (ms)	≤ 30		User experience
107	DNS host name resolution success ratio (%)	≥ 99.00		Network access
108	DNS host name resolution time (ms)	≤ 250	≤ 550	User experience

⁹ The LTE GRQ pilot project was led by the NG LTE GRQ task force and managed by the GSMA Network 2020 programme. Vodafone group, Orange Group, Telecom Italia Group, Bouygues Telecom and SIGOS participated in the pilot project.

131a	FTP download IP service access success ratio (%)	≥ 99.00		Service access
131b	FTP upload IP service access success ratio (%)	≥ 99.00		Service access
132a	FTP download IP service setup time (s)	≤2	≤ 5.5	User experience
132b	FTP upload IP service setup time (s)	≤2	≤ 5	User experience
133a	FTP download session success ratio (%)	≥ 99.00		Service access
133b	FTP upload session success ratio (%)	≥ 99.00		Service access
134a	FTP download session time (s)	≤2	≤ 5.5	User experience
134b	FTP upload session time (s)	≤ 30	≤ 50	User experience
135a	FTP download mean data rate (Mbit/s)	≥ 13.5	≥6	Service access
135b	FTP upload mean data rate (Mbit/s)	≥ 6	≥ 2.5	Service access
136a	FTP download data transfer cut-off ratio (%)	≤ 1.00		Service access
136b	FTP upload mean data transfer cut-off ratio (%)	≤ 1.00		Service access
137a	FTP download data capacity (Mbit/s)	≥ 26.5	≥ 17	User experience
137b	FTP upload data capacity (Mbit/s)	≥ 13	≥ 13	User experience
141	HTTP IP service access success ratio (%)	≥ 99.00		Service access
142	HTTP IP service setup time (ms)	≤ 250	≤ 800	User experience
143	HTTP session success ratio (%)	≥ 99.00		Service access
144	HTTP session time (ms)	≤ 250	≤ 750	User experience
145	HTTP mean data rate (Mbit/s)	≥ 11	≥ 5	User experience
146	HTTP data transfer cut-off ratio (%)	≤ 1.00		User experience
148	HTTP download data capacity (Mbit/s)	≥ 33.5	≥ 18	User experience
151	PING packet loss ratio (%)	≤ 1.00		Service access

152	PING round trip time (ms)	≤ 100	≤ 370	User
				experience

Table 15: GRQ KPI Threshold for LTE data roaming

Many parameters will affect the FTP test result. It is therefore recommended to use a file size of 20 MB for the FTP download test and 10 MB for the FTP upload test by using a single TCP/IP connection. The FTP server is located in the HPMN, and fully reliable and reachable through the mobile network from roaming, in order to ensure that the FTP server performance will not affect the LTE network performance during the test.

For the FTP data capacity (download or upload) and HTTP capacity testing, 10 TCP/IP connections, as a maximum, are recommended.

For HTTP tests, it is recommended to download a 20 MB file by using a single TCP/IP connection.

A.2 Voice CSFB and SMSoSGs GRQ KPI Thresholds

The following table contains the referenced LTE GRQ KPI thresholds at roaming for voice CSFB and SMSoSGs.

GRQ KPI Definition		Threshold		Relevance
GRQ Identifier	QoS parameter (KPI)	Geo- distance < 4000 km	Geo- distance ≥ 4000 km	
101	Location update (combined) success ratio (%)	≥ 99.00		Network access
102	Location update (combined) delay (s)	≤ 6	≤ 9.5	User experience
103a	CSFB return to LTE success ratio - MO (%)	≥ 99.00	-	Service access
103b	CSFB return to LTE success ratio - MT (%)	≥ 99.00		Service access
104a	CSFB return to LTE time - MO (s)	≤ 9	≤ 11	User experience
104b	CSFB return to LTE time - MT (s)	≤ 9	≤ 13,5	User experience
3	CSFB voice service access success ratio - NER-MO (%)	≥ 99.00	-	Service access
4	CSFB voice service access success ratio - NER-MT (%)	≥ 99.00		Service access
115	CSFB voice service setup time PDD-MO (s)	≤ 12	≤ 20	User experience
116	CSFB voice service setup time PDD-MT (s)	≤ 13.5	≤ 13.5	User experience

GSMA
Official Document <nn.nn> - <document title=""></document></nn.nn>

7	CSFB call setup success ratio – CSSR-MO (%)	≥ 99.00		Service access
8	CSFB call setup success ratio – CSSR-MT (%)	≥ 99.00		Service access
21	Service accessibility SMS-MO (%)	≥ 99.00		Service access
22	Service accessibility SMS-MT (%)	≥ 99.00		Service access
23	Access delay SMS-MO (s)	≤ 1.5	≤ 3	User experience
24	Access delay SMS-MT (s)	≤ 2.5	≤ 3	User experience
25	End-to-end delivery time SMS- MO (s)	≤ 4	≤ 5.5	User experience
26	End-to-end delivery time SMS- MT (s)	≤ 4.5	≤ 5.5	User experience

Table 16: GRQ KPI thresholds for voice CSFB and SMSoSGs roaming

A.3 GRQ GSM/GPRS and UMTS KPI Thresholds

This section contains the GRQ KPI thresholds for GSM/GPRS and UMTS technologies.

GRQ Identifier	QoS parameter (KPI)	Threshold	Relevance
1	CS LU SR (CS location update success ratio) (%)	≥ 98.00	Network access
2	CS LU Delay (CS location update delay) (s)	≤ 10.0	User experience
3	NER-MO (MO CS voice service access success ratio) (%)	≥ 98.00	Service access
4	NER-MT (MT CS voice service access success ratio) (%)	≥ 98.00	Service access
5	PDD-MO (MO CS voice service setup time) (s)	≤ 8.0	User experience
6	PDD-MT (MT CS voice service setup time) (s)	≤ 8.0	User experience
7	CSSR-MO (MO CS call setup success ratio) (%)	≥ 98.00	Service access
8	CSSR-MT (MT CS call setup success ratio) (%)	≥ 98.00	Service access
11	CCR (CS voice call completion ratio for MO call) (%)	≥ 98.00	Service access
13	CLI (CLI transparency ratio) (%)	≥ 98.00	Service access

		1	
14	SpQ (speech quality on call-basis)	≥ 3.0	User experience
21	SA-MO (Service accessibility SMS-MO) (%)	≥ 98.00	Service access
22	SA-MT (Service accessibility SMS-MT) (%)	≥ 98.00	Service access
23	AD-MO (Access delay SMS-MO) (s)	≤ 4.0	User experience
24	AD-MT (Access delay SMS-MT) (s)	≤ 4.0	User experience
25	E2E DT-MO (End-to-end delivery time SMS-MO) (s)	≤ 10.0	User experience
26	E2E DT-MT (End-to-end delivery time SMS-MT) (s)	≤ 10.0	User experience
31	PS LU SR (PS location update success ratio) (%)	≥ 98.00	Service access
32	PS LU Delay (PS location update delay) (s)	≤ 6.0	User experience
33	PDPC Act SR (PDP context activation success ratio) (%)	≥ 98.00	Service access
34	PDPC Act Time (PDP context activation time) (s)	≤ 3.0	User experience
35	PDPC Cut-off ratio (PDP context cut-off ratio) (%)	≤ 2.00	Service access
37	Throughput GPRS (FTP) (kbit/s)	≥ 29	User experience
38	Goodput GPRS (FTP) (kbit/s)	≥ 32	User experience
39	Roundtrip Time GPRS (Ping) (ms)	≤ 1200	User experience
40	Packet Loss GPRS (Ping) (%)	≤ 2.00	Service access
133a	FTP download session success ratio (%)	≥ 99.00	Service access
135a	FTP download mean data rate (Mbit/s)	2.5	User experience
136a	FTP download data transfer cut-off ratio (%)	≤ 1.00	Service access
143	HTTP session success ratio (%)	≥ 99.00	Service access
145	HTTP mean data rate (Mbit/s)	7.5	User experience

146	HTTP data transfer cut-off ratio (%)	≤ 1.00	User
			experience

Table 17: GRQ KPI thresholds for GSM / GPRS and UMTS

Note: The thresholds of the 2G / 3G PS part shall be revisited after a test pilot project.

A.4 5G GRQ KPI Thresholds (1)

GRQ Identifier	QoS parameter (KPI)	Threshold	Relevance
500	5G Coverage Indication	≥ 98.00	Network access
501	NR RSRP	≥ -90.0	Network access
502	Restrict DCNR	≤ 10.0	Network access
503	ENDC EPS bearer configuration	≥ 95.00	Service access
504	5G ENDC_Used allocated	>= 85.00	Service access
505	Default EPS bearer QoS parameters	≥ 95.00	Service access
510	HTTP/HTTPS MBB data transfer success ratio	≥ 98.00	User experience
530	HTTP/HTTPS MBB Download Rate Mbits/s	≥ 100	User experience
531	HTTP/HTTPS MBB Upload Rate Mbits/s	≥ 40	User experience
532	HTTP/HTTPS MBB Latency milliseconds	≤ 200	User experience

1. thresholds for 5G data should be subjected to be modified after trial period due to "environment" conditions, i.e. Latency could be affected by distance to the node, same with speed, and certain radio conditions.

Document Management

Document History

Table 18\ ersi on	Table 19D ate	Table 20Brief Description of Change	Table 21Approval Authority	Table 22Editor / Company
0.5	26 Aug 2008	Clean version for SIGNAL and PACKET comments.		
0.51	23 Sep 2008	Editorial corrections to trigger table as noted by Inge Menschaert, Vodafone.		David Gillot,
0.52	10 Oct 2008	Editorial corrections as noted by Magnus Zimmerman, Polystar.	N/A –draft only	Roamware
0.6	12 Dec 2008	Further revisions and editorial changes		
0.7	22 Dec 2008	Editorial and formatting corrections		David Maxwell, GSMA
1.0	20 Feb 2009	New PRD - GRQ Measurement Implementation	IREG-EMC	David Gillot, Roamware
2.0	Nov 2009	Adding of roaming Hubbing Providing references	IREG-EMC	David Gillot, Roamware
3.0	June 2011	Submitted to DAG and EMC for approval	EMC	David Gillot, Roamware
4.0	May 2015	Including LTE GRQ	NG	Javier Sendin (GSMA)
5.0	October 2015	Major CR1002 included: Differentiation of GRQ Codes and add missing KPIs	NG	Veronique Verhé, SIGOS GmbH
6.0	November 2015	Major CR1003 included: New annex with LTE GRQ Thresholds	NG	Veronique Verhé, SIGOS GmbH
7.0	November 2016	Major CR1004 included: New annex with 2G and 3G Thresholds Major CR1005 included: VoLTE and ViLTE roaming quality KPIs	NG	Veronique Verhé, SIGOS GmbH

Table 18\ ersi on	Table 19D ate	Table 20Brief Description of Change	Table 21Approval Authority	Table 22Editor / Company
8.0	June 2017	Major CR1006 included: Add SSI and SQI, CR1007 included: Clean-up GRQ codes, CR1008 inlcuded: Correction 2G and 3G thresholds	NG	Veronique Verhé, SIGOS GmbH
9.0	October 2017	Major CR1009 included: Update 2G and 3G GRQ Major CR1010 included: Introduction of 4G SSI and SQI	NG	Veronique Verhé, SIGOS GmbH
9.1	May 2018	Minor CR1012 included: Correction of MBR to AMBR for non-GBR bearer	NG	Veronique Verhé, SIGOS GmbH
10.0	Nov 2018	Minor CR1011 included: Remove reference to IR.78 Minor CR1013 inlcuded: Correction of wrong unit Major CR1014 inlcuded: Add missing CSFB call flows	NG	Veronique Verhé, SIGOS GmbH
11.0	Nov 2019	Major CR1015 included: MIoT GRQ Test Descriptions	NG	Veronique Verhé, SIGOS GmbH
12.0	Oct 2020	Major CR1016 included: NSA EN-DC GRQ	NG	Veronique Verhé, SIGOS GmbH
12.1	Mar 2023	Major CR1017 to include document re-organization, 5G KPIs (NSA and SA) for GRQ	NG	Ariel Vergara, Mobileum Inc.
13.0	Feb 2023	IR.81 CR1017 5G QoS	NG	Javier Sendin, GSMA