

GRQ Measurement Implementation Version 10.0 15 November 2018

This is a Non-binding Permanent Reference Document of the GSMA

Security Classification: Non-confidential

Access to and distribution of this document is restricted to the persons permitted by the security classification. This document is confidential to the Association and is subject to copyright protection. This document is to be used only for the purposes for which it has been supplied and information contained in it must not be disclosed or in any other way made available, in whole or in part, to persons other than those permitted under the security classification without the prior written approval of the Association.

Copyright Notice

Copyright © 2018 GSM Association

Disclaimer

The GSM Association ("Association") makes no representation, warranty or undertaking (express or implied) with respect to and does not accept any responsibility for, and hereby disclaims liability for the accuracy or completeness or timeliness of the information contained in this document. The information contained in this document may be subject to change without prior notice.

Antitrust Notice

The information contain herein is in full compliance with the GSM Association's antitrust compliance policy.

V10.0 Page 1 of 111

Table of Contents

1	Intro	duction	4
	1.1	Overview	4
	1.1.1	Scope	4
	1.1.2	Purpose	4
	1.2	GRQ Framework	5
	1.3	Scope and Purpose	5
	1.4	Definition of Terms	6
	1.5	Document Cross-References	6
2	Ove	view of roaming QoS monitoring methods	7
	2.1	End-to-end Active Testing and Monitoring	8
	2.2	Drive Testing and Monitoring	8
	2.3	Passive Monitoring	9
	2.4	CAMEL Monitoring	9
	2.5	Use smartphone for QoS test	10
	2.6	DIAMETER and GTP-C / -U Monitoring	10
3	Ove	view of Roaming QoS Parameters	11
	3.1	Voice QoS Parameters	11
	3.1.1	CS voice QoS parameters	11
	3.1.2	Voice CSFB QoS parameters	12
	3.1.3	VoLTE QoS parameters	13
	3.2	SMS QoS Parameters	14
	3.2.1	SMS over GSM, UMTS and LTE	14
	3.2.2	SMS over IP	15
	3.3	Data QoS Parameters	15
	3.3.1	GPRS / UMTS data QoS parameters	15
	3.3.2	LTE data QoS parameters	16
	3.4	ViLTE QoS Parameters	17
	3.5	IPX QoS Monitoring	19
4	QoS	Parameter-Method Grid	19
	4.1	Circuit Switched	21
	4.2	SMS	24
	4.3	Packet Switched GPRS/UMTS	27
	4.4	Voice CSFB	30
	4.5	SMSoSGs	32
	4.6	Packet Switched – LTE [5] [6] [7] [8]	34
	4.7	VoLTE, ViLTE and SMSoIP	36
5	Test	Methodology	36
	5.1	End-To-End Active Testing and Monitoring	36
	5.1.1	General Information	36
	5.1.2	GSM/GPRS and UMTS Test Specification	37
	5.1.3	LTE/EPC test specification	41
	5.1.4	VoLTE / ViLTE and SMSoIP GRQ test specification	47

V10.0 Page 2 of 111

GSM Asse	ociation surement Implementation	Non-confidential
5.1.5		59
5.2	Passive Monitoring	61
5.2.1	General Information	61
5.2.2	GPRS / UMTS Test Specification	63
5.2.3	LTE test specification	68
5.3	CAMEL Monitoring	69
5.3.1	General Information	69
5.3.2	Test specification	69
5.4	Call Flows	70
5.4.1	Location update	70
5.4.2	Voice call MO	72
5.4.3	Voice call MT	73
5.4.4	SMS and SMSoSGs	73
5.4.5	Packet Switched/GPRS	74
5.4.6	FTP	76
5.4.7	Ping	76
5.4.8	HTTP/HTTPS	77
5.4.9	EPS	78
5.5	Trigger Table	86
5.5.1	GSM/GPRS and UMTS trigger points	86
5.5.2	LTE trigger points	90
5.6	Monitoring Values	93
6 GRQ	Test Result Presentations	93
6.1	KPI Matrix presentation	94
6.2	KPI chart presentations	94
6.3	Single Service Indicator and Single Quality Indicator	95
6.3.1	SSI and SQI for roaming	95
6.3.2	SSI and SQI in 2G or 3G roaming	95
6.3.3	SSI and SQI in 4G roaming	100
Annex A	GRQ KPI Thresholds	104
A.1	GRQ LTE KPI Thresholds	104
A.1.1	LTE Data GRQ KPI Thresholds	104
A.1.2	Voice CSFB and SMSoSGs GRQ KPI Thresholds	106
A.2	GRQ GSM/GPRS and UMTS KPI Thresholds	107
Annex B	Document Management	110
B.1	Document History	110

V10.0 Page 3 of 111

1 Introduction

Global Roaming Quality (GRQ) provides a neutral, objective and proportionate framework for active testing, passive monitoring. Regular GRQ measurements assure end-to-end roaming services quality, thus enable GSMA members to get a global perspective on roaming quality.

By reducing roaming quality issues, reasonable quality levels can be assured and customer satisfaction improved. The costs associated with customer complaints and fault resolution will also reduce.

1.1 Overview

This document describes the implementation procedures for measuring the quality of SMS, voice, and data roaming services end-to-end both in the bilateral and in the roaming hubbing scenario. The document consists of four main sections.

The first section details common Quality of Service (QoS) monitoring methods for use with the GRQ monitoring framework.

The second section provides an overview of the quality parameters used with the GRQ monitoring framework. These parameters are defined with details of calculations in PRD IR.42 [1].

The third section contains the tables indicating which monitoring methods are appropriate for each monitoring parameter, and the necessary conditions for consistent monitoring results.

The fourth section provides detailed testing conditions for each parameter, method, and Visited Public Mobile Network/ Home Public Mobile Network (VPMN/HPMN) perspective.

The 5th section specifies the test trigger and measurement points for each test methods. As each section builds on the previous one, it is recommended to read all the sections in the given order.

1.1.1 Scope

This permanent reference document (PRD) provides the parameters, methods, and conditions necessary to perform end-to-end monitoring of roaming services according to the GRQ framework.

Other parameters may complement GRQ monitoring and other methods may be added in the future.

1.1.2 Purpose

This document is intended for mobile operators, roaming Hubbing Providers and vendors.

Operators will find information about the most important QoS parameters and common monitoring methods for end-to-end roaming QoS monitoring.

Roaming Hubbing Providers will find information about the most important QoS parameters and common monitoring methods that can be natively measured/performed by roaming Hubbing Providers themselves.

V10.0 Page 4 of 111

1.2 GRQ Framework

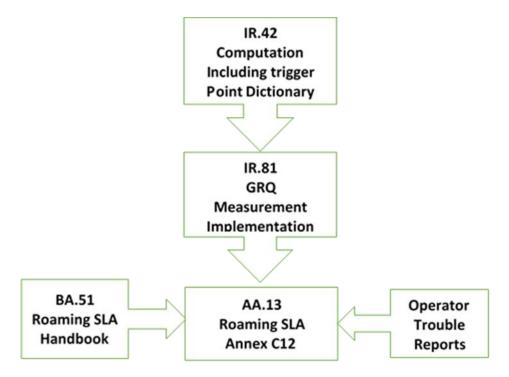


Figure 1: Relation of IR.81 to other PRDs in the GRQ Framework

Figure 1 depicts the GRQ framework and the relationship of IR.81 with the other relevant GSMA PRDs. The GSMA GRQ framework has been designed to standardize the parameters, measurement and implementation of roaming quality KPIs and to provide the guidelines and supporting information for operators to deploy those quality KPIs within end to end roaming SLAs.

The framework consists of four PRDs and a trouble report database.

- IR.42 contains the quality KPI definitions and calculations relevant for the global roaming
- IR.81 (the present PRD) specifies the roaming quality KPI test methods, test implementations and the KPI thresholds for roaming
- BA.51 provides the specific guidelines and advanced agreements to those operators wishing to establish an end-to-end Roaming Service Level Agreement (RSLA) either between themselves and/or through a Roaming Hub Provider.
- AA.13 Annex C12 provides the basis for establishing Roaming Service Level Agreement between operators.

Operator Trouble Report – operator report to communicate issues on their network to their roaming partners. May use the global NSIA (Network Service Interruption Advisory) reporting via the GSMA Infocentre when available.

1.3 Scope and Purpose

This permanent reference document (PRD) provides the parameters, methods, and conditions necessary to perform end-to-end monitoring of roaming services according to the GRQ framework.

V10.0 Page 5 of 111

This document is intended for mobile operators, roaming Hubbing Providers and vendors. Operators will find information about the most important QoS parameters and common monitoring methods for end-to-end roaming QoS monitoring. Roaming Hubbing Providers will find information about the most important QoS parameters and common monitoring methods that can be natively measured/performed by roaming Hubbing Providers themselves.

Vendors will find information about the most important QoS parameters and the necessary testing conditions providing for comparable monitoring results irrespective of the methods, vendors, and mobile operators involved.

1.4 Definition of Terms

Term	Description
ACD	Average Call Duration
ASR	Answer-Seize Ratio
CAMEL	Customized Applications for Mobile networks Enhanced Logic
GTP	GPRS Tunneling Protocol
HPMN	Home Public Mobile Network
IMSI	International Mobile Subscriber Identity
ISDN	Integrated Services Digital Network
ISUP	ISDN User Part
KPI	(QoS) Key Performance Indicator
LBO-HR	Local Breakout HPMN Routing (roaming architecture)
LBO-VR	Local Breakout VPMN Routing (roaming architecture)
LTE	Long Term Evolution
MAP	Mobile Application Part
MOS	Mean Opinion Score
MSC	Mobile Switching Centre
PDD	Post-Dial Delay
QoS	Quality of Service
SQI	Single Quality Indicator
SRVCC	Single Radio Voice Call Continuity
SS7	Signaling System 7
SSI	Single Service Indicator
S8HR	S8 Home-Routed (roaming architecture)
STP	Signaling Transfer Point
ViLTE	(conversational) Video over LTE

1.5 Document Cross-References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document. References are non-specific, i.e. referred to the latest version.

V10.0 Page 6 of 111

No.	Document	Description
[1]	GMSA PRD IR.42	Definition of Quality of Service parameters and their computation
[2]	ETSI TS 102 250-4	"Speech Processing, Transmission and Quality Aspects (STQ); QoS aspects for popular services in GSM and 3G networks; Part 4: Requirements for Quality of Service measurement equipment ".
[3]	ETSI TR 103 114	"Speech Processing, Transmission and Quality Aspects (STQ); QoS parameters and measurement methodology for smartphone".
[4]	3GPP TS 23.272	"Circuit Switched Fallback in Evolved Packet System; Stage 2"
[5]	3GPP TS 23.401	"GPRS Enhancements for E-UTRAN Access"
[6]	3GPP TS 29.272	"MME and SGSN related interfaces based on Diameter protocol"
[7]	3GPP TS 29.274	"Evolved General Packet Radio Service (GPRS) Tunnelling Protocol for Control plane (GTPv2-C); Stage 3"
[8]	3GPP TS 29.281	"General Packet Radio System (GPRS) Tunnelling Protocol User Plane (GTPv1-U)"
[9]	GMSA PRD IR.65	IMS roaming and interworking guidelines
[10]	GMSA PRD IR.88	LTE Roaming Guidelines
[11]	GMSA PRD IR.92	IMS Profile for Voice and SMS
[12]	GMSA PRD IR.94	IMS Profile for Conversational Video Service
[13]	3GPP TS 34.229-1	Internet Protocol (IP) multimedia call control protocol based on Session Initiation Protocol (SIP) and Session Description Protocol (SDP); User Equipment (UE) conformance specification; Part 1: Protocol conformance specification
[14]	3GPP TS 36 508	Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access (E-UTRAN); Common Test Environments for User Equipment (UE) Conformance Testing
[15]	3GPP TS 36 523-1	Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Packet Core (EPC); User Equipment (UE) conformance specification; Part 1: Protocol conformance specification
[16]	ITU-T P.863	Perceptual Objective Listening Quality Assessment (POLQA)
[17]	ITU-T G.107.1	Wideband E-Model
[18]	ITU-T J.247	Objective perceptual multimedia video quality measurement in the presence of a full reference

2 Overview of roaming QoS monitoring methods

Monitoring is a continuous method to measure the QoS on an on-going basis. It provides a statistical representation of end-user experience based on a sample of the roaming services provided. This in contrast to ad-hoc tests, which are only giving a snap-shot of the QoS. Adhoc tests are typically more complicated, and are not standardized. These are used for troubleshooting.

There are two general approaches to monitoring roaming QoS end-to-end.

V10.0 Page 7 of 111

GSM Association
GRQ Measurement Implementation

Non-confidential

The first approach generates test calls in the visited network using test subscriber identity module (SIM) cards from stationery or a moving test rig. This is referred to as 'active monitoring'.

The second approach monitors live roaming traffic signaling and IP traffic resulting from roaming subscriber activities in the visited network. This is referred to as 'passive monitoring', because this approach is non-intrusive. Roaming Hubbing Providers can natively perform some of these methods.

This document includes both approaches and contains details of the following common methods:

- 1. End-to-end Active Testing and Monitoring
- 2. Drive Testing and Monitoring
- 3. Passive Monitoring
- 4. CAMEL Monitoring
- 5. DIAMETER and GTP-C / -U Monitoring
- 6. Use smartphone

One or more methods can be combined to perform end-to-end GRQ monitoring. Other methods may be added in the future.

2.1 End-to-end Active Testing and Monitoring

The End-to-end Active Testing and Monitoring method deploys one or more stationary test rigs in the roaming destination. Each test rig contains one or more active Radio Frequency (RF) probes programmed to emulate subscriber behavior. Test calls are generated on the visited or on the home network using test SIM cards.

The active test probes typically support automated scheduled testing for on-going roaming service quality monitoring, as well as real-time testing for troubleshooting. An IP network is used to remotely control the probes and receive test results from the test rig. The test rigs often incorporate SIM multiplexing to centrally manage SIM resources and dynamically assign them to the active test probes.

2.2 Drive Testing and Monitoring

The Drive Testing and Monitoring method is similar to the End-to-end Active Testing and Monitoring method with the exception that the active probes are installed in vehicles (for example taxis or buses).

Given that monitoring is performed in different locations and potentially from a moving location, this method will give different results than stationary test rigs.

As Drive Testing and Monitoring was not included in the GRQ trial, no test conditions nor comparison factors could be included in this document. Once we have the framework ready and working for End-to-end active testing, we will further look into this mobile variant.

V10.0 Page 8 of 111

2.3 Passive Monitoring

Passive Monitoring method uses non-intrusive high-impedance Signaling System number 7 (SS7) signaling probes to record selected protocol messages for further analysis for example with an SS7 data analysis and reporting tool.

It is noted that some Signal Transfer Points (STP)s enable the replication of signaling messages. They can send the replicates towards a network monitoring application. Such approach is also considered as a "passive monitoring" method.

The SS7 data analysis provides a real-time view of the network and service performance experienced by the roamers.

It is important to note that only monitoring of basic and mandatory protocols for GSM/GPRS roaming services have been considered, that is Mobile Application Part (MAP), Integrated Services Digital Network User Part (ISUP).

Similarly, Passive Monitoring may be applied on the IP traffic for monitoring the GPRS Tunneling Protocol (GTP) flows, as required for evaluating the QoS of the PS-domain. The approach taken may consist of implementing high-impedance probes or to apply a port mirroring on a network switch. In the later case, it forces the switch to send a copy of all network packets seen on one switch port (or an entire Virtual LAN (VLAN)) to a network monitoring connection on another switch port. This is commonly used for network appliances that require monitoring of network traffic.

CAMEL is the embodiment of the Intelligent Networks (IN) concept for mobile networks. CAMEL is bilaterally and specifically enabled across networks by roaming partners. It is supported by the CAP protocol.

In this document, CAMEL Monitoring refers to passive probes monitoring CAP signaling. This monitoring brings additional visibility on the activity of the roamer, so it is described separately from passive Monitoring, in a specific section – see below.

2.4 CAMEL Monitoring

The Customized Applications for Mobile networks Enhanced Logic (CAMEL) Monitoring method uses a similar set up to SS7 Monitoring, whereby non-intrusive CAMEL signaling probes record selected protocol messages for further analysis and reporting.

Once a CAMEL relationship is established between a HPMN and a VPMN, an exchange of CAMEL Application Part (CAP) protocol messages takes places when customers are accessing different roaming services. This enables both the HPMN and the VPMN to monitor roaming QoS using passive signaling probes (subject to appropriate protocol stack library for decoding messages).

The CAMEL Phase enabled between the roaming partners will determine the scope of parameters available for GRQ monitoring:

- Phase 1: Applies to Mobile Originated (MO) and Mobile Terminated (MT) (at Gateway mobile switching center (GMSC)) calls related activities.
- Phase 2: Phase 1 plus Unstructured Supplementary Service Data (USSD) control, call duration, and so on.

V10.0 Page 9 of 111

GSM Association
GRQ Measurement Implementation

Non-confidential

- Phase 3: Phase 1 and Phase 2 plus control of dialed services (actual number dialed), mobility events, GPRS session and SMS-MO.
- Phase 4: All of the above plus IMS control and SMS-MT.

Most operators with CAMEL-enabled limit its support to CAMEL Phase 2.

The CAMEL Monitoring was not tested in the trial due to lack of CAMEL agreements between the participating operators and the CAMEL/CAP monitoring modules being inactive at the trial participants. However, due to widespread use of CAMEL for critical services (prepaid roaming, VPN, and so on.), it was decided to include CAMEL Monitoring in this document. It is recommended that operators check the results from the calibration process if the CAMEL Monitoring method is to be used with GRQ.

2.5 Use smartphone for QoS test

Smartphones can be used either as a stand-alone test platform, or as a front-end of a host based active test system, for the execution of Quality of Service measurements [3].

Smartphone as a mobile device is based on an operating system which can be programmatically controlled via a programming interface, in combination with the possibility to run applications (Apps) at user level. The result is visible to the user.

The smartphones is capable of a parallel usage of different services. The multi-service testing describes a complex test scenario where at least two services are used in parallel. This situation has to be considered when QoS measurements and test result being closer to user experiences.

User agents acting as applications can be installed in the phone or on the SIM cards. These user agents are used to get a full End-to-End QoS view, from the user perspective.

This monitoring method can be used in both active and passive mode. In active mode the test is launched "on request" (mainly for troubleshooting); while in passive mode no dedicated test is run, but the applications send on-usage statistics. This method would be mainly used for user experience monitoring and complaints troubleshooting.

Similar KPIs to the ones used in the scope of GRQ framework are applied by aggregating individual customer data at network level. The KPI values obtained can be very different from the ones using other test methods described in the present document and highly dependent on the number of customers monitored, static versus moving tests, radio coverage of the VPLMN, and so on. If the number of customers is high enough, so that the measured KPIs will give the most accurate view of roaming experience in real life scenarios. On the other hand, a good diagnostic/analyse process of the results is required as the KPIs measured by a single subscriber (for example, having a coverage issue) may influence very much the entire quality evaluation.

2.6 DIAMETER and GTP-C / -U Monitoring

A general description for DIAMETER and GTP monitoring to be added in this section

V10.0 Page 10 of 111

3 Overview of Roaming QoS Parameters

This section gives an overview of the basic parameters that enable monitoring of roaming quality of services end-to-end under the GRQ framework. These parameters were selected on the basis that they cover the five QoS aspects defined in PRD <u>IR42</u>, and represents the customer experience.

The five QoS aspects are:

- 1. Network Accessibility: Probability that the user performs a successful registration on the PLMN. The customer is registering to the network (either the circuit switched network for voice or the packet switched network for data). (For Global Roaming QoS monitoring, it is assumed that the network is available where the customer is located.). Some of these parameters can be natively monitored by a roaming Hubbing Provider
- 2. Service Accessibility: If a customer wants to use a service, the network operator will provide access to the service as quickly as possible. (The end-to-end bearer connection is provided to the customer. For voice services, the customer hears the ring tone; for data services, the end-to-end packet data protocol (PDP) context is activated; for SMS, the connection is established between the end-user terminal and the Short Message Service Centre (SMSC).)
- 3. Connection Establishment: For voice services, this describes the call setup end-to-end (even in case of call forward to voicemail). For data services, this describes the connection establishment for MultiMedia Service (MMS) or accesses to a Wireless Application Protocol (WAP) portal or web server and so on.
- 4. **Service Retain-ability**: Service Retain-ability describes the termination of services (in accordance with or against the will of the user), for example the customer terminates his voice call or data connection without cut-off.
- Connection Quality: This describes the Quality of Service during service use. The
 connection is not impaired by quality problems, such as speech quality for voice or
 data rate for data services.

For Packet Switched services, there are two approaches measuring QoS.

- Bearer level measures are included, as most data services are delivered using the HPMN's infrastructure and the VPMN's data bearer (that is 'bit pipe'). This approach has been used to measure GPRS / UMTS data QoS.
- 2. QoS measurement are performed at the specific services level (for example HTTP / HTTPS, as well as data capacity test). This approach can result more closely to the user experience, therefore, is mandatorily applied to the LTE data QoS measurement and can be optionally adopted for the GPRS / UMTS data QoS measurement.

The GRQ framework may further consider class-based QoS monitoring (cf. IP Exchange (IPX) QoS) in the future to reflect end-user applications more closely.

3.1 Voice QoS Parameters

3.1.1 CS voice QoS parameters

V10.0 Page 11 of 111

QoS Aspects	QoS Parameters
Network Accessibility (customer being able to register on the network)	Circuit Switched LU success ratio (*) Circuit Switched LU delay (*)
Service accessibility (from customer hitting the send button until hearing a ring tone)	3. NER-MO or SAT-MO (success ratio) 4. NER-MT or SAT-MT (success ratio) 5. PDD-MO or STT-MO (duration) 6. PDD-MT or STT-MT (duration)
Connection establishment (from customer hitting the send button until a successful establishment of the call)	7. CSSR-MO (success ratio) 8. CSSR-MT (success ratio) 9. REL (ISUPv2) 10. OCN and RDN (ISUPv2)
Connection retain-ability (from a successful establishment of the call until service is terminated)	11. CCR (success ratio) 12. ALOC (duration) ¹
Connection quality	13a. CLI transparency (MO) 13b. CLI transparency (MT) 14a. Speech Quality (SpQ_received_R_side) 14b. Speech Quality (SpQ_received_H_side)

(*) Natively supported by roaming Hubbing Providers; other parameters may be supported through CAMEL.

3.1.2 Voice CSFB QoS parameters

CSFB denotes CS fallback. This session contains the KPIs for the voice CS fallback.

QoS Aspects	QoS Parameters
LTE network accessibility	101. PS location update success ratio 102. PS location update delay 103a. CSFB return to LTE success ratio- MO 103b. CSFB return to LTE success ratio- MT 104a. CSFB return to LTE time – MO 104b. CSFB return to LTE time – MT
CS voice accessibility	3. NER-MO or SAT-MO (success ratio) 4. NER-MT or SAT-MT (success ratio) 115. CSFB PDD-MO or CSFB STT-MO (setup time) 116. CSFB PDD-MT or CSFB STT-MT (setup time) 7. CSSR-MO (success ratio) 8. CSSR-MT (success ratio)

¹ Not relevant for a roaming QoS SLA.

V10.0 Page 12 of 111

- Note 1: A combined EPS + IMSI attach is applied to QoS parameters 101 and 102.
- Note 2: CSFB QoS parameters 103 and 104 are (2G / 3G) technology-dependent.
- Note 3: After a successful CSFB, the CS voice QoS parameters are applied.

3.1.3 VoLTE QoS parameters

	QoS Parameters		
QoS Aspects	GRQ Id	KPI description	
VoLTE service	201	IMS Registration success ratio	
Accessibility	202	IMS Registration time	
	203	Voice MO accessibility (NER-MO or SAT-MO success ratio)	
	204	Voice MT accessibility (NER -MT or SAT-MT success ratio)	
	205	Voice MO session setup time (PDD-MO or STT-MO duration)	
	206	Voice MT session setup time (PDD-MT or STT-MT duration)	
	207	Voice MO session setup ratio (CSSR-MO)	
	208	Voice MT session setup ratio (CSSR-MT)	
VoLTE service integrity	211	Voice MO session duration	
and retainability	212	Voice MT session duration	
	213	OIP transparency MO (CLI transparency)	
	210	OIP transparency MT (CLI transparency)	
	214	Speech quality on call basis at R-party	
	215	Speech quality on call basis at H-party	
	216	Speech quality R-factor at R-party	
	217	Speech quality R-factor at H-party	
	230	SRVCC MO success ratio	
VoLTE service mobility	231	SRVCC MT success ratio	
VOLTE Service mobility	232	SRVCC MO time	
	233	SRVCC MT time	
	240	Default EPS bearer context activation success ratio	
	241	Default EPS bearer context activation time	
	242	Default EPS bearer QCI	
	243	Default EPS bearer UL AMBR	
	244	Default EPS bearer DL AMBR	
	245	Dedicated EPS bearer context activation success ratio (audio)	
LTE network quality for	246	Dedicated EPS bearer context activation time (audio)	
VoLTE service	247	Dedicated EPS bearer QCI (audio)	
V0212 001V100	248	Dedicated EPS bearer UL GBR (audio)	
	249	Dedicated EPS bearer DL GBR (audio)	
	250	IP data volume received on QCI5 bearer at R-party	
	251	IP data volume transmitted on QCI5 bearer at R-party	
	252	IP data volume received on QCI5 bearer at H-party	
	253	IP data volume transmitted on QCI5 bearer at H-party	
	254	IP data volume received on QCI1 bearer at R-party	

V10.0 Page 13 of 111

	255	IP data volume transmitted on QCI1 bearer at R-party
	256	IP data volume received on QCI1 bearer at H-party
	257	IP data volume transmitted on QCI1 bearer at H-party
	260	RTP max packet delay variation R2H (A-B)
	261	RTP max packet delay variation H2R (B-A)
	262	RTP mean packet delay variation R2H (A-B)
	263	RTP mean packet delay variation H2R (B-A)
	264	RTP mean interarrival jitter of incoming streaming R2H (A-B)
	265	RTP mean interarrival jitter of incoming streaming H2R (B-A)
	266	RTP mean data rate transmitted R2H (A-B)
	267	RTP mean data rate received H2R (B-A)
Voice media transport	268	RTP mean data rate transmitted H2R (B-A)
quality for VoLTE service	269	RTP mean data rate received R2H (A-B)
	270	RTP packets lost R2H (A-B)
	271	RTP packets lost H2R (B-A)
	272	RTP packet lost ratio R2H (A-B)
	273	RTP packet lost ratio H2R (B-A)
	274	RTP round-trip delay (RTD RHR A-B-A)
	275	RTP round-trip delay (RTD HRH B-A-B)
	276	RTP one-way delay (OWD R2H A-B)
	277	RTP one-way delay (OWD H2R B-A)

Table 1: VoLTE GRQ parameters

3.2 SMS QoS Parameters

3.2.1 SMS over GSM, UMTS and LTE

QoS Aspects	QoS Parameters
Network Accessibility (customer being able to register on the network)	No QoS Parameter (as not SMS specific) QoS parameters 101 and 102 are applied to SMSoSGs
2. Service accessibility (MO)	21. Service Accessibility for SMS-MO (*) 22. Service Accessibility for SMS-MT (*) 23. Access Delay for SMS-MO (*) 24. Access Delay for SMS-MT (*)
Connection establishment (from customer hitting the send button until a successful delivery of the SMS)	25. End-to-End Delivery Time for SMS-MO(*) ¹ 26. End-to-End Delivery Time for SMS-MT(*) ¹
Connection retain-ability (from a successful establishment of the service until service is terminated)	No QoS Parameter (Store and Forward Mechanism)
5. Connection quality	No QoS Parameter (Store and Forward Mechanism)

V10.0 Page 14 of 111

(*) Natively supported by a roaming Hubbing Provider only in the case where the SMS traffic is controlled by the roaming HUB.

SMS over SGs applies the same QoS parameters for SMS.

3.2.2 SMS over IP

	QoS Parameters		
QoS Aspects	GRQ Id	KPI description	
1. SMSoIP Accessibility	201 202	IMS Registration success ratio IMS Registration success time	
2. Service accessibility	221 222 223 224	SMSoIP-MO accessibility SMSoIP-MT accessibility SMSoIP-MO access delay SMSoIP-MT access delay	
3. Connection establishment	225 226	SMSoIP-MO e2e delay SMSoIP-MT e2e delay	

Table 2: SMSoIP GRQ parameters

3.3 Data QoS Parameters

3.3.1 GPRS / UMTS data QoS parameters

GRQ monitoring involves testing of MMS, WAP and internet, all with their specific Access Point Name (APN)s.

QoS Aspects	QoS Parameters
Network Accessibility (customer being able to register on the network)	31. Packet Switched Location Update success ratio (*) 32. Packet Switched Location Update Delay (*)
Service accessibility (from customer hitting the send / connection button until accessing the data bearer)	33. PDP Context Activation success ratio34. PDP Context Activation time
Connection retain ability (from a successful establishment of the service until service is terminated)	35. PDP Context Cut-Off Ratio 36. PDP Context Average Session Time ¹ .
Connection quality	37. Throughput (Kbit/sec) ² 38. Goodput (Kbit/sec)

² Because a 'bearer level' approach is adopted for the data services QoS monitoring, these parameters have to be measured at the 'bit pipe' level.

V10.0 Page 15 of 111

_

39. Roundtrip time (expressed in milliseconds) 3
40. Packet loss ⁴
142. HTTP / HTTPS IP service setup time
143. HTTP / HTTPS session success ratio
144. HTTP / HTTPS session time
145. HTTP / HTTPS mean data rate
146. HTTP / HTTPS data transfer success ratio

(*) Natively supported by a roaming Hubbing Provider; other parameters may be supported through CAMEL.

Various opinions exist⁵ on how to measure throughput/goodput. It is acknowledged that the application used for measuring these parameters may even influence the measure itself. Therefore it is recommended that the calibration process at the initial stage of the implementation of a GRQ framework between two operators scrutinizes these measures.

For the sake of clarity, it is noted that active probes may measure roundtrip and packet loss in different ways for example based on the PING application or based on analysis of TCP packet processing. It is also acknowledged that PING is not always trusted by IP experts for achieving accurate measure for the real customer experience. Indeed, PING is part of Internet Control Message Protocol (ICMP) while the data transfer is done in User Datagram Protocol (UDP) or Transmission Control Protocol (TCP). Therefore, it is recommended that both operators involved in the GRQ measurements agree on the chosen method and perform calibration tests.

A high-level definition of throughput is the ratio between the global data volume by unit of time; goodput is the ratio between the useful data volume by unit of time.

3.3.2 LTE data QoS parameters

QoS Aspects	QoS Parameters
LTE network accessibility	101. PS location update success ratio
	102. PS location update delay
LTE data service accessibility	105. Default EPS bearer context activation success ratio
	106. Default EPS bearer context activation time
LTE data service establishment	107. DNS host name resolution success ratio
	108. DNS host name resolution time

³ See 'Delay' in section 8 of GSMA PRD IR.34 'Inter-Service Provider IP Backbone Guidelines'.

V10.0 Page 16 of 111

⁴ See 'Packet Loss Ratio' in section 8 of GSMA PRD IR.34 'Inter-Service Provider IP Backbone Guidelines'

⁵ See RFC 5166 Metrics for the Evaluation of Congestion Control Mechanisms (http://tools.ietf.org/html/rfc5166)

LTE data service retainability	109. Default EPS bearer context cut-off ratio
FTP service quality	131. FTP {download upload} IP service access success ratio
	132. FTP {download upload} IP service setup time
	133. FTP {download upload} session success ratio
	134. FTP {download upload} session time
	135. FTP {download upload} mean data rate
	136. FTP {download upload} data transfer success ratio
	137. FTP {download upload} data capacity
HTTP / HTTPS WEB browsing	141. HTTP / HTTPS IP service access success ratio
service quality	142. HTTP / HTTPS IP service setup time
	143. HTTP / HTTPS session success ratio
	144. HTTP / HTTPS session time
	145. HTTP / HTTPS mean data rate
	146. HTTP / HTTPS data transfer success ratio
	147. HTTP / HTTPS content compression ratio
	148. HTTP / HTTPS {download upload} data capacity
PING service quality	151. PING packet loss ratio
	152. PING round trip time

Note 1: An EPS attach is applied to QoS parameters 101 and 102

Note 2: The KPI 107, 108, 131a-137b, 141-148, 151, 152 can also be applied as the GPRS / UMTS data QoS parameters to the data quality test. If it is the case, these KPI replace KPI 37 - 40.

3.4 ViLTE QoS Parameters

	QoS	Parameters
QoS Aspects	GRQ ld	KPI description
ViLTE service Accessibility	301 302	IMS Registration success ratio IMS Registration time
ViLTE service integrity and retainability	303 304 305 306 307 308 311 312 313 310 314 315 216 217	ViLTE MO accessibility (NER-MO or SAT-MO success ratio) ViLTE MT accessibility (NER -MT or SAT-MT success ratio) ViLTE MO session setup time (PDD-MO or STT-MO duration) ViLTE MT session setup time (PDD-MT or STT-MT duration) ViLTE MO session setup ratio (CSSR-MO) ViLTE MT session setup ratio (CSSR-MT) ViLTE MO session duration ViLTE MT session duration OIP transparency MO (CLI transparency) OIP transparency MT (CLI transparency) Speech quality on sample basis at R-party Speech quality R-factor at R-party Speech quality R-factor at H-party

V10.0 Page 17 of 111

	318	Video quality on sample basis at R-party
	319	Video quality on sample basis at H-party
	230	SRVCC MO success ratio
	231	SRVCC MT success ratio
ViLTE service mobility	232	SRVCC MO time
	233	SRVCC MT time
	240	Default EPS bearer context activation success ratio
	241	Default EPS bearer context activation time
	242	Default EPS bearer QCI
	243	Default EPS bearer UL AMBR
	244	Default EPS bearer DL AMBR
	247	Dedicated EPS bearer QCI (audio)
	248	Dedicated EPS bearer UL GBR (audio)
	249	Dedicated EPS bearer DL GBR (audio)
	345	Dedicated EPS bearer context activation success ratio (audio&video)
	346	Dedicated EPS bearer context activation time (audio&video)
	347	Dedicated EPS bearer QCI (video)
	348	Dedicated EPS bearer UL GBR (video)
	349	Dedicated EPS bearer DL GBR (video)
LTE network quality	343	Dedicated EPS bearer UL AMBR (video)
for ViLTE service	344	Dedicated EPS bearer DL AMBR (video)
	250	IP data volume received on QCI5 bearer at R-party
	251	IP data volume transmitted on QCI5 bearer at R-party
	252	IP data volume received on QCI5 bearer at H-party
	253	IP data volume transmitted on QCI5 bearer at H-party
	254	IP data volume received on QCI1 bearer at R-party
	255	IP data volume transmitted on QCI1 bearer at R-party
	256	IP data volume received on QCI1 bearer at H-party
	257	IP data volume transmitted on QCI1 bearer at H-party
	354	IP data volume received on QCI2/8/9 bearer at R-party
	355	IP data volume transmitted on QCI2/8/9 bearer at R-party
	356	IP data volume received on QCI2/8/9 bearer at H-party
	357	IP data volume transmitted on QCI2/8/9 bearer at H-party
	260 261	RTP max packet delay variation R2H (A-B) RTP max packet delay variation H2R (B-A)
		, , ,
	262	RTP mean packet delay variation R2H (A-B)
	263	RTP mean packet delay variation H2R (B-A)
RTP transport quality	264	RTP mean interarrival jitter of incoming streaming R2H (A-B)
for ViLTE service -	265	RTP mean interarrival jitter of incoming streaming H2R (B-A)
audio	266	RTP mean data rate transmitted R2H (A-B)
	267	RTP mean data rate received H2R (B-A)
	268	RTP mean data rate transmitted H2R (B-A)
	269	RTP mean data rate received R2H (A-B)
	270	RTP packets lost R2H (A-B)
	271	RTP packets lost H2R (B-A)

V10.0 Page 18 of 111

	272	RTP packet lost ratio R2H (A-B)
	273	RTP packet lost ratio H2R (B-A)
	274	RTP round-trip delay (RTD RHR A-B-A)
	275	RTP round-trip delay (RTD HRH B-A-B)
	276	RTP one-way delay (OWD R2H A-B)
	277	RTP one-way delay (OWD H2R B-A)
	360	RTP max packet delay variation R2H (A-B)
	361	RTP max packet delay variation H2R (B-A)
	362	RTP mean packet delay variation R2H (A-B)
	363	RTP mean packet delay variation H2R (B-A)
	364	RTP mean interarrival jitter of incoming streaming R2H (A-B)
	365	RTP mean interarrival jitter of incoming streaming H2R (B-A)
	366	RTP mean data rate transmitted R2H (A-B)
DTD ()	367	RTP mean data rate received H2R (B-A)
RTP transport quality	368	RTP mean data rate transmitted H2R (B-A)
for ViLTE service - video	369	RTP mean data rate received R2H (A-B)
VIGCO	370	RTP packets lost R2H (A-B)
	371	RTP packets lost H2R (B-A)
	372	RTP packet lost ratio R2H (A-B)
	373	RTP packet lost ratio H2R (B-A)
	374	RTP round-trip delay (RTD RHR A-B-A)
	375	RTP round-trip delay (RTD HRH B-A-B)
	376	RTP one-way-delay (OWD R2H A-B)
	377	RTP one-way-delay (OWD H2R B-A)

Table 3: ViLTE GRQ parameters

3.5 IPX QoS Monitoring

Roaming interconnection is an integral part of roaming services. A new interconnection framework for IP (PRD IR.34) also provides for network level QoS monitoring of IP traffic between mobile operators and interconnection providers. Where IPX interconnections replace GRX interconnections, it may be possible to utilise packet switched QoS parameters from the IPX QoS Monitoring scheme with the GRQ Framework in the future.

4 QoS Parameter-Method Grid

The following tables summarize the feasibility of each test method against each QoS parameter when measured by the HPMN or the VPMN.

The objective of the table is to identify whether a network acting as HPMN or as VPMN is able to measure a parameter. Parameters are measured independently (that is there is no coordination needed between the 2 roaming partners) and results are aggregated over the agreed monitoring period.

Drive Testing and Monitoring was not evaluated for this version.

V10.0 Page 19 of 111

GSM Association
GRQ Measurement Implementation

Non-confidential

Each GRQ test is referenced by a GRQ Test Code. For example, '21BH' refers to test parameter 21 (Service Accessibility SMS MO) measured by the HPMN using the SS7 Monitoring method.

V10.0 Page 20 of 111

4.1 Circuit Switched

Metho	ods:		g by Roaming Provider (R)	Hubbing	Monit	toring by HPN	IN (H)	Monito	oring by VPMN	(V)
		End-to-end Active Testing and Monitoring	SS7 Monitoring	CAMEL Monitoring (CS11)	End-to-end Active Testing and Monitoring	SS7 Monitoring	CAMEL Monitoring	End-to-end Active Testing and Monitoring	SS7 Monitoring	CAMEL Monitoring
QoS Parameter	GRQ Test Code	А	В	С	A	В	С	A	В	С
Circuit Switched LU Success Ratio (CS LU – SR)	1	N Not applicable	Y (CS2)	N Not applicable	Y	Y (CS2)	N Not applicable	Y	Y	N. Not applicable
Circuit Switched Location Update Delay	2	N Not applicable	Y (CS3)	N Not applicable	Y (CS1)	Y (CS3)	N Not applicable	Y (CS1)	Υ	N Not applicable
Service Accessibility Telephony – MO (SA-T-MO)	3	N Not applicable	N Not applicable	Y (CS10)	Y	N (CS4)	Y (CS10)	Y	Y	Y (CS11)
Service Accessibility Telephony – MT (SA-T-MT)	4	N Not applicable	N Not applicable	N	Y	Y	Y	Υ	Y	Y (CS11)
Setup Time Telephony – MO (ST-T-MO)	5	N Not applicable	N Not applicable	Y (CS10)	Y	N (CS5)	Y (CS10)	Υ	Υ	Y (CS11)

V10.0 Page 21 of 111

GSM Association GRQ Measurement Implementation

Setup Time Telephony – MT (ST-T-MT)	6	N Not applicable	N Not applicable	N	Y	Y	Y (CS11)	Y	Υ	Y (CS10)
Metho	ods:	Monitorin	g by Roaming Provider (R)	Hubbing	Moni	Monitoring by HPMN (H)			ring by VPMI	N (V)
		End-to-end Active Testing and Monitoring	SS7 Monitoring	CAMEL Monitoring (CS11)	End-to-end Active Testing and Monitoring	SS7 Monitoring	CAMEL Monitoring	End-to-end Active Testing and Monitoring	SS7 Monitoring	CAMEL Monitoring
Call Setup Success Ratio (CSSR – MO)	7	N Not applicable	N Not applicable	Y (CS10)	Υ	N (CS5)	Y	Υ	Y (CS6)	Y (CS11)
Call Setup Success Ratio (CSSR – MT)	8	N Not applicable	N Not applicable	N	Υ	Y (CS6)	Y (CS11)	Υ	Y	Y
ISUP signalling transparency (REL)	9	N Not applicable	N Not applicable	N	Y (CS20)	N (CS7)	Y (CS12)	Y (CS20)	N (CS15)	N (CS18,CS2 0)
ISUPv2 signalling transparency (OCN and RDN)	10	N Not applicable	N Not applicable	N	N	N (CS8)	Y.(CS10),(C S13)	N	N (CS16)	N (CS18, CS20)
Call Completion Rate Circuit Switched Telephony (CCR-CS-T)	11	N Not applicable	N Not applicable	Y (CS12)	Y	N (CS5)	Y	Y	Υ	Y (CS11)

V10.0 Page 22 of 111

GSM Association GRQ Measurement Implementation

Average Length of a Call (ALOC)	12	N Not applicable	N Not applicable	Y (CS12, CS19)	N	N (CS4)	Y	N	Y	Y (CS19)
Metho	ods:	Monitoring by Roaming Hubbing Provider (R)			Monitoring by HPMN (H)			Monitoring by VPMN (V)		
		End-to-end Active Testing and Monitoring	SS7 Monitoring	CAMEL Monitoring (CS11)	End-to-end Active Testing and Monitoring	SS7 Monitoring	CAMEL Monitoring	End-to-end Active Testing and Monitoring	SS7 Monitoring	CAMEL Monitorin g
CLI Transparency	13a, 13b	N Not applicable	N Not applicable	N Not applicable	Y	N (CS4)	Y (CS10, CS13)	Υ	N (CS17)	N (CS18)
Speech Quality (SpQ)	14a, 14b	N Not applicable	N Not applicable	N Not applicable	Y	N (CS9)	N (CS14)	Υ	N (CS11)	N (CS18)

Table 4: Circuit Switched Test Parameters

Remarks:

- (CS1) The measurement might vary depending on the handset integrated in the active probe.
- (CS2) It is assumed that the Location Update (LU) success ratio is visible in the MAP signalling and can be monitored. In other words, it is assumed that the data-fill of the VLR is correct. The failures only happen at the HLR level and Steering of Roaming (SoR)-induced errors are filtered out.
- (CS3) Only for successful LU's and the measured duration is not the same as in VPMN
- (CS4) HPMN does not know when a call fails.
- (CS5) HPMN does not know when a call starts.
- (CS6) It is assumed that there is no cross talk.
- (CS7) HPMN cannot know which kind of release has been used.
- (CS8) HPMN cannot know which network was used for the call forwarding.

V10.0 Page 23 of 111

GSM Association Non-confidential

GRQ Measurement Implementation

- (CS9) The method is non-intrusive.
- (CS10) It is assumed CAMEL works properly and the appropriate CAMEL capabilities are implemented/available.
- (CS11) Always in combination with a SS7 monitoring system
- (CS12) It is assumed the correct CAMEL parameters have been loaded for this call (that is BCSM Event Reports are in use).
- (CS13) Only in case of Home Routing.
- (CS14) CAMEL cannot measure voice quality.
- (CS15) The VPMN cannot know which release the B-party receives
- (CS16) The VPMN cannot know the OCN and RDN at the end of the call.
- (CS17) The VPMN cannot know the CLI of the B-Party
- (CS18) The SCP is at the HPMN side
- (CS19) Need to take into account the customer profile. Best to use only if HPMN customers are all CAMEL enabled.

4.2 SMS

V10.0 Page 24 of 111

		Monitorin	g by Roaming Provider (R)	Hubbing	Monit	oring by HPM	IN (H)	Monitoring by VPMN (V)			
	Metho ds:	End-to-end Active Testing and Monitoring	SS7 Monitoring	CAMEL Monitoring	End-to-end Active Testing and Monitoring	SS7 Monitoring	CAMEL Monitoring	End-to-end Active Testing and Monitoring	SS7 Monitoring	CAMEL Monitoring	
QoS Parameter	GRQ Test Code	А	В	С	Α	В	O	Α	В	С	
Service Accessibility SMS MO (SA SMS MO)	21	N Not applicable	N(SM1)	N (SM1)	Υ	N (SM1)	Y	Υ	Y	Y (SM3)	
Service Accessibility SMS MT (SA SMS MT)	22	N Not applicable	N (SM1)	N (SM1)	Υ	Y	Y (SM3)	Υ	N (SM1)	N (SM1)	
Access Delay SMS MO (AD SMS-MO)	23	N Not applicable	N (SM2)	N	Υ	N (SM2)	Y	Υ	Y	Y (SM3)	
Access Delay SMS MT (AD SMS-MT)	24	N Not applicable	N (SM1)	N (SM1)	Υ	Υ	Y (SM3)	Υ	N (SM1)	N (SM1)	
End-to-End Delivery Time for SMS-MO	25	N Not applicable	N (SM4)	N	Y (SM5)	Y (SM5)	Y (SM3)	Y	N (SM4)	N (SM4)	
End-to-End Delivery Time for SMS-MT	26	N Not applicable	N (SM7)	N	Y (SM6)	Y (SM6)	Y (SM3)	Y	N (SM7)	N (SM7)	

V10.0 Page 25 of 111

Table 5: SMS Test Parameters

Remarks:

- (SM1) Failed attempts will be missing
- (SM2) Actual Start time will be missing
- (SM3) Measurement may be based on standard SS7 procedure (MAP)
- (SM4) There is no knowledge beforehand to identify where the receiving side stands.
- (SM5) SM-MO from a roamer in a VPMN to a subscriber in the HPMN. Note a delivery time can only measure for complete and successful transactions.
- (SM6) SM-MT from a subscriber in the HPMN to the a roamer in the VPMN
- (SM7) There is no knowledge to identify when the message is sent from the HPMN.

V10.0 Page 26 of 111

4.3 Packet Switched GPRS/UMTS

The HPMN decides which APNs are used for monitoring. For example, if there are 3 APN's for WEB, WAP and MMS, and they are specified in the IR.21, these may be used for measuring QoS for data. They may be specified in the "GPRS information - List of APN's available for testing and troubleshooting" section.

	Methods:	Monitoring by Roaming Hubbing Provider (R)			Monit	oring by HPM	N (H)	Monitoring by VPMN (V)		
		e2e Active Testing and Monitoring	SS7 Monitoring	CAMEL Monitoring (PS13)	End-to-end Active Testing and Monitoring	SS7 Monitoring	CAMEL Monitoring	End-to-end Active Testing and Monitoring	SS7 Monitoring	CAMEL Monitoring
QoS Parameter	GRQ Test Code	А	В	С	А	В	С	А	В	С
Packet Switched LU Success Rate (PS LU – SR)	31	N/A	Y (PS2)	N/A	Υ	Y (PS2)	N/A	Y	Y (PS2)	N/A
Packet Switched Location Update Delay (PS LU – D)	32	N/A	Υ	N/A	Y (PS1)	Υ	N/A	Y (PS1)	Y	N/A

V10.0 Page 27 of 111

Non-confidential

Service accessibility for PSD (PDP- context activation success rate)	33	N/A	N/A	Y (PS8)	Y	Y (PS3)	Y (PS8)	Y	Y	Y (PS13)
Set-up Delay (ST PSD)	34	N/A	N/A	Y	Y	Y (PS4)	Υ	Υ	Y	Y (PS13)
PDP Context Cut-Off Ratio	'35	N/A	N/A	Υ	Υ	N (PS5)	Y	Υ	N (PS5)	Y (PS13)

V10.0 Page 28 of 111

GSM Association GRQ Measurement Implementation

Average PDP Context Session Time (per APN)	36	N/A	N/A	Y	N	Υ	Υ	N	Y	Y (PS13)
Throughput (Kbits/sec)	37	N/A	N/A	Y (PS9, PS15)	Y (PS6, PS14)	Y (PS15)	Y (PS9, PS15)	Y (PS14)	Y (PS15)	Y (PS9, PS15)
Goodput (Kbits/sec)	38	N/A	N/A	N (PS10)	Y (PS6, PS14)	Y (PS15)	N (PS10)	Y (PS14)	Y (PS15)	N (PS10)
Roundtrip time	39	N/A	N/A	N (PS11)	Y (PS6, PS14)	Y (PS7, PS15)	N (PS11)	Y (PS14)	Y (PS7, PS15)	N
Packet loss	40	N/A	N/A	N (PS12)	Y (PS6, PS14)	Y (PS7, PS15))	N (PS12)	Y (PS14)	Y (PS7, PS15)	N

Table 3: Packet Switched Test Parameters

Remarks:

- (PS1) The measurement might vary depending on the handset integrated in the active probe.
- (PS2) It is assumed that the LU success rate is visible in the MAP signalling and can be monitored. In other words, it is assumed that the data-fill of the VLR is correct. The failures only happen at the HLR level and SoR-induced errors are filtered out.
- (PS3) If successful activation or failed in the Gateway GPRS Support Node (GGSN) level
- (PS4) The time measurements will not be the same as in the VPMN.
- (PS5) No release cause provided in the MAP_DELETE_PDP_CONTEXT.
- (PS6) In order to limit the influence of the "internet" not in control of the roaming partners on the bearer-level measurements, it is recommended that the files/webpages accessed to measure the parameters are stored in a HPMN equipment.
- (PS7) Can be estimated at IP level (Gp interface).
- (PS8) Requires CAMEL ph3 GPRS-CSI.
- (PS9) Requires the CAMEL request (Charging Information).
- (PS10) Only the number of bytes sent and received are available no distinction for retransmission.
- (PS11) Only the number of bytes sent and received are available and some timestamps. Not the roundtrip time.

V10.0 Page 29 of 111

- (PS12) The packets loss information is not transmitted in the CAMEL information. The CAMEL application may receive information about the volume transferred, but it does not know what the expected size of the transfer is. Therefore it cannot estimate the lost packets.
- (PS13) In combination with SS7 methods.
- (PS14) To make it relevant and cost effective, the default value proposed for exchanged files in the case of active is 100KB.
- (PS15) Similarly, it proposed to track session for which minimum size is greater or equal to 100KB.

4.4 Voice CSFB

The CSFB feature is enabled in VPMN [4] [5] [6] [7].

	Monitoring by Roaming Hubbing provider (R)				Monitoring by HPMN (H)				Monitoring by VPMN (V)				
	Test method	e2e active test	Diameter monitorin g	GTP-C monitorin g	SS7 monitorin g	e2e active test	Diameter monitorin g	GTP-C monitorin g	SS7 monitorin g	e2e active test	Diameter monitoring	GTP-C monitoring	SS7 monitorin g
KPI	GRQ test code	A	D	G	В	A	D	G	В	A	D	G	В
PS location update success ratio	101	N	Υ	Y ⁶	Υ	Υ	Y	Y	Y	Υ	Υ	Υ	Y
PS location update delay	102	N	Υ	Y ⁶	Y	Υ	Y	Υ	Y	Υ	Υ	Υ	Y
CSFB return to LTE success ratio – MO / MT	103a / 103b	N	N	N	N	Υ	N	N	N	Υ	N	N	N
CSFB return to LTE time – MO / MT	104a / 104b	N	N	N	N	Υ	N	N	N	Υ	N	N	N

V10.0 Page 30 of 111

		Monitor Provide	ring by Roami er (R)	ng Hubbing	Monito	ring by HPMN	(H)	Monitoring by VPMN (V)		
	Test method	e2e active test	SS7 monitoring	CAMEL monitoring	e2e active test	SS7 monitoring	CAMEL monitoring	e2e active test	SS7 monitoring	CAMEL monitoring
KPI	GRQ test code	A	В	С	A	В	С	A	В	С
Service Accessibility Telephony – MO	3	N	N	Y	Y	N	Y	Y	Y	Y
Service Accessibility Telephony – MT	4	N	N	N	Y	Y	Υ	Y	Y	Υ
CSFB Setup Time Telephony – MO	115	N	N	Y	Y	N	Y	Y	Y	Υ
CSFB Setup Time Telephony – MT	116	N	N	N	Y	Y	Y	Y	Y	Y
CSSR - MO	7	N	N	Υ	Υ	N	Υ	Υ	Υ	Υ
CSSR - MT	8	N	N	N	Υ	Υ	Υ	Υ	Υ	Υ

V10.0 Page 31 of 111

4.5 SMSoSGs

SMSoSGs allows to deliver SMS services over EPS NAS signalling without GERAN or UTRAN deployment [4] [5] [6] [7].

		Monitoring by Roaming Hubbing Provider (R)				Mor	Monitoring by HPMN (H)				Monitoring by VPMN (V)				
	Test method	e2e active test	Diam eter monit oring	GTP- C monit oring	SS7 mon itori ng	e2e acti ve test	Diam eter monit oring	GTP- C monit oring	SS7 mon itori ng	e2e acti ve test	Diam eter monit oring	GTP-C monito ring	SS7 monitoring		
KPI	GRQ test code	A	D	G	В	A	D	G	В	A	D	G	В		
PS location update success ratio	101	N	Y	Y	Υ	Y	Y	Υ	Y	Υ	Y	Y	Y		
PS location update delay	102	N	Υ	Y	Y	Y	Y	Y	Y	Y	Y	Υ	Y		

V10.0 Page 32 of 111

		Monitor	ing by Roamir Provider (R		Mor	nitoring by HP	MN (H)	Monitoring by VPMN (V)		
	Test method	e2e active test	SS7 monitoring	CAMEL monitoring	e2e active test	SS7 monitoring	CAMEL monitoring	e2e active test	SS7 monitoring	CAMEL monitoring
KPI	GRQ test code	Α	D	В	Α	D	В	Α	D	В
Service Accessibility SMS MO	21	N	N	N	Y	N	Y	Υ	Y	Υ
Service Accessibility SMS MT	22	N	N	N	Υ	Y	Υ	Υ	N	N
Access Delay SMS MO	23	N	N	N	Υ	N	Υ	Υ	Υ	Υ
Access Delay SMS MT	24	N	N	N	Υ	Υ	Υ	Υ	N	N
End-to-End Delivery Time for SMS-MO	25	N	N	N	Υ	Y	Υ	Υ	N	N
End-to-End Delivery Time for SMS-MT	26	N	N	N	Υ	Y	Y	Υ	N	N

V10.0 Page 33 of 111

4.6 Packet Switched – LTE [5] [6] [7] [8]

		Monitor	ing by Roamir Provider (R		Moi	nitoring by HP	MN (H)	Monitoring by VPMN (V)		
	Test method	e2e active test	Diameter monitoring	GTP-C / U monitoring	e2e active test	Diameter monitoring	GTP-C / U monitoring	e2e active test	Diameter monitoring	GTP-C / U monitoring
KPI	GRQ test code	Α	D	G	Α	D	G	Α	D	G
PS location update success ratio	101	N	Y	N	Υ	Y	N	Υ	Υ	N
PS location update delay	102	N	Y	N	Υ	Y	N	Υ	Y	N
Default EPS bearer context activation success ratio	105	N	Y	Y ⁶	Y	Y	Υ	Υ	Y	Υ
Default EPS bearer context activation time	106	N	Y	Y ⁶	Y	Y	Υ	Υ	Y	Υ
DNS host name resolution success ratio	107	N	N		Υ	N		Υ	N	
DNS host name resolution time	108	N	N		Υ	N		Υ	N	
Default EPS bearer context cut-off ratio	109	N	N		Υ	N		Υ	N	
FTP {download upload} IP service access success ratio	131a / 131b	N	N		Y	N		Υ	N	
FTP {download upload} IP service setup time	132a / 132b	N	N		Y	N		Υ	N	
FTP {download upload}	133a/ 133b	N	N		Υ	N		Υ	N	

V10.0 Page 34 of 111

GSM Association GRQ Measurement Implementation

session success ratio								
FTP {download upload} session time	134a / 134b	N	N	Υ	N	Y	N	
FTP {download upload} mean data rate	135a/ 135b	N	N	Υ	N	Y	N	
FTP {download upload} data transfer success ratio	136a / 136b	N	N	Υ	N	Y	N	
FTP {download upload} data capacity	137a / 137b	N	N	Υ	N	Y	N	
HTTP / HTTPS IP service access success ratio	141	N	N	Υ	N	Y	N	
HTTP / HTTPS IP service setup time	142	N	N	Υ	N	Y	N	
HTTP / HTTPS session success ratio	143	N	N	Υ	N	Υ	N	
HTTP / HTTPS session time	144	N	N	Υ	N	Υ	N	
HTTP / HTTPS mean data rate	145	N	N	Υ	N	Υ	N	
HTTP / HTTPS data transfer success ratio	146	N	N	Υ	N	Υ	N	
HTTP / HTTPS content compression ratio	147	N	N	Υ	N	Υ	N	
HTTP / HTTPS download data capacity	148	N	N	Υ	N	Υ	N	
PING packet loss ratio	151	N	N	Υ	N	Υ	N	
PING round trip time	152	N	N	Υ	N	Υ	N	

V10.0 Page 35 of 111

4.7 VolTE, VilTE and SMSoIP

VoLTE, ViLTE and SMSoIP quality KPIs are applicable to all VoLTE roaming architectures, S8HR, LBO-HR and LBO-VR (GSMA IR.65 [9]) when the end-to-end active test methodology is applied.

5 Test Methodology

This section details the methodology for each of the monitoring methods included in the GRQ Framework, and describes the general and specific conditions for all tests methods.

Each GRQ test is referenced by a GRQ Test Code. For example, '21BH' refers to test parameter 21 (Service Accessibility SMS MO) measured by the HPMN using the SS7 Monitoring method.

5.1 End-To-End Active Testing and Monitoring

5.1.1 General Information

5.1.1.1 When to measure:

Minimum six (6) tests per day.

Recommended: one (1) test every two (2) hours from 8am to 8pm, one (1) test every four (4) hours from 8pm to 8am.

5.1.1.2 Where to measure:

If Roaming Partner decides to publish its network topology, it is preferred that a limited number of test probes are spread across various representative VPMN MSC areas.

Radio level recommended: RX Level > -80dbm.

However for some test cases, a RX Level > -70dbm is recommended in order to avoid any roaming issue reporting, while the service is only affected by only transient conditions (meteorological circumstances and so on)

5.1.1.3 Known Limitations

The testing is only performed at a limited number of locations. The measurement is limited in terms of number of geographic locations in the network that can be tested. This limitation has less influence when there are limited International Gateways used.

In case the PMN uses different core network vendors (MSC, Serving GPRS Support Node (SGSN), and so on) and decides to publish it, it would be ideal to test the QoS delivery for each network elements. It results it is recommended the active probe vendor to install one (1) probe per MSC, SGSN vendor region. However, this requirement might be difficult to achieve as the use of different vendors and the associated coverage is not public information to active probe vendors. Furthermore it may lead to inefficient allocation of cost for installing probes. Example: in a country with three (3) operators, each having two (2) vendors, it might lead to the deployment up to four (4) probes in the worst case scenario.

V10.0 Page 36 of 111

GSM Association Non-confidential
Official Document IR.81 - GRQ Measurement Implementation

5.1.1.4 GRQ Monitoring Pre-requisites

Steering of Roaming could influence some results: the cards used for testing will not be subject to steering (Blacklisting at the HPMN)

The receiving party is ready to receive SMS (no user errors like memory full, bad coverage, and so on)

For GPRS data transfer performance, the operator has to provide a file located in its GPRS network which can be transferred for the test. This file will be preferably on the GGSN in order to reduce the risk of packet loss independent of the roaming between the operators.

5.1.1.1 Requirements of active test equipment

ETSI TS 102 250-4 [2] defines the minimum requirements of QoS test equipment for mobile networks in the way that the values and trigger points needed to compute the QoS parameter as specified in IR.42 [1] can be measured. Test equipment fulfilling the specified minimum requirements will allow to perform the proposed measurements in a reliable and reproducible way.

5.1.1.2 GRQ test code

Based on the active test methodology, the terminology 'test probe' is used overall in the section 5.1. The specifications of the test method for implementation contained in this section are also applied to a UE or a test UE which can provide observable test results at the GRQ test.

Each GRQ test is referenced by a GRQ Test Code which consists of a GRQ identifier (KPI number) and 'AH' or 'AV'. 'A' denotes the end-to-end Active test methodology. 'H' denotes the KPI for the outbound roaming quality to be tested at VPMN on behalf of HPMN or tested by HPMN itself. Similarly, 'V' denotes the KPI for the inbound roaming quality to be tested at VPMN on behalf of VPMN or tested by VPMN itself. For example, '203AV' refers to the GRQ parameter 203 (Voice MO Accessibility) tested by a VPMN by using the active test methodology for the inbound roaming at the VPMN; '203AH' refers to the same GRQ parameter 203 tested by an HPMN by using the active test methodology for the outbound roaming at a VPMN.

5.1.2 GSM/GPRS and UMTS Test Specification

GRQ Test Code	Parameter	How to Measure	Test Specifics
		CIRCUIT-SWITCHED	
1AH, 1AV	LU update success ratio	Force a location update via the modem, if there is steering the final result has to be the last location update of a maximum of five (5) attempts.	
2AH, 2AV	LU delay	Force a location update via the modem, if there is steering the delay of the last location update has to be taken into account. It is important that before starting, the simcards are	

V10.0 Page 37 of 111

GRQ Test Code	Parameter	How to Measure	Test Specifics
		registered on a different LAC in order to have a full location update.	
3AH, 3AV	NER-MO (Network Effectiveness Ratio on Mobile Originated calls in the visited network)	Generate a call from the probe located in the VPMN to a simcard of the probe located in the HPMN. The test is successful if the probe on the VPMN detects a ringing signal for the generated call.	
4AH, 4AV	NER-MT (Network Effectiveness Ratio on Mobile Terminated calls in the visited network)	Generate a call with a simcard from the probe located in the HPMN to a simcard on the probe located in the VPMN. The test is successful if the probe on the HPMN detects a ringing signal for the generated call.	
5AH, 5AV	PDD-MO (Post Dialling Delay)	Generate a call with a simcard from the probe located in the VPMN to a simcard on the probe located in the HPMN. The delay is the time between the point where the call has been initiated and the ringing has been detected on the VPMN.	
6AH, 6AV	PDD-MT (Post Dialling Delay)	Generate a call with a simcard from the probe located in the HPMN to a simcard on the probe located in the VPMN. The delay is the time between the point where the call has been initiated and the ringing has been detected on the HPMN.	
7AH, 7AV	CSSR-MO (Call Setup Success Ratio on Mobile Originated calls in the visited network)	Generate a call with a simcard from the probe located in the VPMN to a simcard on the probe located in the HPMN. The test is successful if the probe on the HPMN detects the ringing and picked up the call.	
8AH, 8AV	CSSR-MT (Call Setup Success Ratio on Mobile Terminated calls in the visited network)	Generate a call with a simcard from the probe located in the HPMN to a simcard on the probe located in the VPMN. The test is successful if the probe on the VPMN detects the ringing and picked up the call.	
9AH, 9AV	REL (ISUPv2 signalling transparency)	Generate a call with a simcard from the probe located in the VPMN to a simcard on the probe located in the HPMN. At the end of the call, check if the release code is the same on both sides.	

V10.0 Page 38 of 111

GRQ Test Code	Parameter	How to Measure	Test Specifics
10AH, 10AV	OCN and RDN (ISUPv2 signalling transparency)	Generate a call with a simcard from the probe located in the HPMN to a simcard on the probe located in the VPMN. Forward this call to the HPMN and check if the OCN and RDN is correct.	
11AH, 11AV	CCR (Call Completion Rate Circuit)	Generate a call with a simcard on the probe located in the VPMN to a simcard from the probe located in the HPMN. Answer the call and after a time hang up the call again. If the call has not been interrupted, the call is successful. Recommended duration: 2 minutes.	Reasonable radio level required: RxLev > -70dbm.
12AH, 12AV	ALOC	N/A	
13AH, 13AV	CLI transparency	Generate a call with a simcard from the probe located in the VPMN to a simcard on the probe located in the HPMN. Check at the HPMN if the CLI is in a dialable format to call back the A-party	
14AH, 14AV	SpQ (Speech Quality)	Generate a call with a simcard from the probe located in the VPMN to a simcard on the probe located in the HPMN and answer the call. Uplink voice quality:play a standard file in the VPMN and record this file in the HPMN and calculate the voice quality. Downlink voice quality: play a standard file in the HPMN and record this file in the VPMN and calculate the voice quality. Recommended duration: 2 minutes. If the sample is played/analyzed multiple times, the end-result of the test is the average of the individual voice quality assessments. If the sample is played/analyzed multiple times, the end-result of the test is the average of the individual voice quality assessments.	Reasonable radio level required: RxLev > -70dbm.
SMS			
21AH, 21AV	Service Accessibility SMS MO (SA SMS MO)	Send and SMS from a subscriber from the HPMN located on the VPLMN to a subscriber from the HPMN located in the HPMN using the HPMN SMSC, if	

V10.0 Page 39 of 111

GRQ Test Code	Parameter	How to Measure	Test Specifics
		the positive acknowledgement of the SMSC is received the tests is OK.	
22AH, 22AV	Service Accessibility SMS MT (SA SMS MT)	Send and SMS from a subscriber from the HPMN located on the HPMN to a subscriber from the HPMN located in the VPLMN using the HPMN SMSC, if the SMS is received the test is OK.	Reasonable radio level required: RxLev > -70dbm.
23AH, 23AV	Access Delay SMS MO (AD SMS-MO)	Send and SMS from a subscriber from the HPMN located on the VPLMN to a subscriber from the HPMN located in the HPMN using the HPMN SMSC. Measure the time between sending the SMS and receiving the notification from the SMSC that the message has been sent.	
24AH, 24AV	Access Delay SMS MT (AD SMS-MT)	Send an SMS from a subscriber from the HPMN located on the HPMN to a subscriber from the HPMN located in the VPLMN using the HPMN SMSC. Measure the time between the notification from the SMSC that the message has been sent and the notification on the B-party that the message has arrived.	Reasonable radio level required: RxLev > -70dbm.
25AH, 25AV	End-to-End Delivery Time for SMS-MO	Send an SMS from a subscriber from the HPMN located on the VPLMN to a subscriber from the HPMN located in the HPMN using the HPMN SMSC. Measure the time between sending the SMS and receiving the notification on the B-party that the message has arrived.	Reasonable radio level required: RxLev > -70dbm.
26AH, 26AV	End-to-End Delivery Time for SMS-MT	Send an SMS from a subscriber from the HPMN located on the HPMN to a subscriber from the HPMN located in the VPLMN using the HPMN SMSC. Measure the time between sending the SMS and receiving the notification on the B-party that the message has arrived.	Reasonable radio level required: RxLev > -70dbm.
	T-SWITCHED		
31AH, 31AV	Packet Switched LU Success Ratio (PS LU – SR)	Start manually a GPRS attach on the VPLMN, after the GSM location has been performed. If the GPRS attached is confirmed, the test is OK.	
32AH,	Packet Switched Location Update Delay (PS LU –	Start manually a GPRS attach on the VPLMN, after the GSM location has	

V10.0 Page 40 of 111

GRQ Test Code	Parameter	How to Measure	Test Specifics
32AV	D)	been performed. Measure the time between start and end of the GPRS attach.	
33AH, 33AV	Service accessibility for PSD (PDP-context activation success ratio)	Start the PDP context activation after the GPRS attach on the VPLMN. If the PDP context has been confirmed, the test is successful	
34AH, 34AV	Set-up Delay (ST PSD)	Start the PDP context activation after the GPRS attach on the VPLMN. Measure the time between the start and the acknowledgement of the PDP context activation.	
35AH, 35AV	PDP Context Cut-Off Ratio (session Stability measured at PDP context or PS level)	Start a PDP context, keep it open during a certain time and close it again. If the session is still open the test is OK.	Reasonable radio level required: RxLev > -70dbm.
36AH, 36AV	Average PDP Context Session Time (per APN)	N/A	
37AH, 37AV	Throughput (Kbits/sec)	Start downloading a reference file and measure the time from the start of the download till the end of file detection.	Reasonable radio level required: RxLev > -70dbm.
38AH, 38AV	Goodput (Kbits/sec)	Start downloading a reference file and measure the time from the start of the download till the end of file detection and count the used bytes	Reasonable radio level required: RxLev > -70dbm.
39AH, 39AV	Roundtrip time	Measure the time between sending a TCP packet and receiving the acknowledgement of the reception.	
40AH, 40AV	Packet loss	Count the TCP packets sent and count the TCP packets received for a file transfer.	Reasonable radio level required: RxLev > -70dbm.

Table 1: Test Procedures Table

5.1.3 LTE/EPC test specification

In order to ensure a reasonable test result, the radio power level from an LTE cell at the UE Rx antenna requires to fulfil: $RxLev > -85 \ dbm / 15kHz$.

V10.0 Page 41 of 111

5.1.3.1 Voice CSFB

The CSFB feature is enabled at VPMN.

If the VPMN has implemented the voice CS fallback to GSM and to UMTS, the relevant KPI for those radio technologies shall be separately measured.

H-party is a subscriber from the HPMN located in the HPMN.

R-party is a subscriber from the HPMN located in the VPMN and has the UE CSFB capable.

GRQ Test Code	Parameter	How to Measure	Test specifics
101AH, 101AV	PS location update success ratio	Configure the UE in CS/PS mode and initiate a combined location update (EPS/IMSI attach) in VPMN. Observe whether the network type indicator is LTE. If there is steering the end result shall be the last location update of maximum five (5) attempts.	
102AH, 102AV	PS location update delay	Configure the UE in CS/PS mode and trigger a combined location update (EPS/IMSI attach) in VPMN. In order to ensure a full location update, the USIM was registered on a different TAC and LAC before testing. Measure the time between the initiation of attach and LTE network type indicated. If there is steering the delay of the last location update is taken into account.	
103aAH, 103aAV	CSFB return to LTE success ratio – MO	Configure the UE in CS/PS mode and select LTE as preferable radio access technology. Make a successful CS MO phone call in VPMN and release the call. Observe whether the network type indicator on the UE display switches to LTE.	GSM or UMTS power level: RxLev > -70dbm.
103bAH, 103bAV	CSFB return to LTE success ratio - MT	Configure the UE in CS/PS mode and select LTE as preferable radio access technology. Make a successful CS MT phone call in VPMN and release the call. Observe whether the network type indicator on the UE display switches to LTE.	GSM or UMTS power level: RxLev > -70dbm.
104aAH, 104aAV	CSFB return to LTE time - MO	Configure the UE in CS/PS mode and select LTE as preferable radio access technology. Make a successful CS MO phone call in VPMN and release the call. Measure the time from the CS call release to the UE returning to LTE.	GSM or UMTS power level: RxLev > -70dbm.

V10.0 Page 42 of 111

104bAH, 104bAV	CSFB return to LTE time - MT	Configure the UE in CS/PS mode and select LTE as preferable radio access technology. Make a successful CS MT phone call in VPMN and release the call. Measure the time from the CS call release to the UE returning to LTE.	GSM or UMTS power level: RxLev > -70dbm.
3AH, 3AV	Service Accessibility Telephony – MO	UE registered in VPMN and the network type indicates LTE. R-party initiates a voice call to H-party. Observe whether ALERTING message is received at R-party and H-party rings.	GSM or UMTS power level: RxLev > -70dbm
4AH, 4AV	Service Accessibility Telephony – MT	UE registered in VPMN and the network type indicates LTE. H-party initiates a voice call to R-party. Observe whether the ALERTING message is received at H-party and R-party rings.	GSM or UMTS power level: RxLev > -70dbm
115AH, 115AV	CSFB Setup Time Telephony – MO (PDD- MO)	UE registered in VPMN and the network type indicates LTE. R-party initiates a voice call to H-party. Measure the time between the call initiation at R-party and ALERTING received at R-party.	GSM or UMTS power level: RxLev > -70dbm
116AH, 116AV	CSFB Setup Time Telephony – MT (PDD- MT)	UE registered in VPMN and the network type indicates LTE. H-party initiates a voice call to R-party. Measure the time between the call initiation at H-party and ALERTING sent at R-party.	GSM or UMTS power level: RxLev > -70dbm
7AH, 7AV	CSSR-MO (Call Setup Success Ratio on Mobile Originated calls in the visited network)	Generate a MO call with a SIM card from the probe located in the VPMN to a SIM card from the probe located in the HPMN. The test is successful if the probe on the HPMN detects the ringing and picks up the call.	GSM or UMTS power level: RxLev > -70dbm
8AH, 8AV	CSSR-MT (Call Setup Success Ratio on Mobile Terminated calls in the visited network)	Generate a MT call with a SIM card from the probe located in the HPMN to a SIM card from the probe located in the VPMN. The test is successful if the probe on the VPMN detects the ringing and picks up the call.	GSM or UMTS power level: RxLev > -70dbm

5.1.3.1 SMSoSGs

VPMN supports and enables SMSoSGs.

H-party is a subscriber from the HPMN located in the HPMN

R-party is a subscriber from the HPMN located in the VPMN

GRQ Test Code	Parameter	How to Measure	Test specifics
101AH, 101AV	PS location update success ratio	Configure the UE in CS/PS mode and initiate a combined location update (EPS/IMSI attach) in VPMN. Observe whether the network type	

V10.0 Page 43 of 111

		indicator is LTE. If there is steering the final result shall be the last location update of maximum five (5) attempts.	
102AH, 102AV	PS location update delay	Configure the UE in CS/PS mode and initiate a combined location update (EPS/IMSI attach) in VPMN. In order to ensure a full location update, the USIM was registered on a different TAC and LAC before testing. Measure the time between the initiation of attach and LTE network type indicated. If there is steering the delay of the last location update is taken into account.	
21AH, 21AV	Service Accessibility SMS MO (SA SMS MO)	Send an SMS from R-party to H-party, using the HPMN SMSC, Observe if the positive acknowledgement of the SMSC is received.	
22AH, 22AV	Service Accessibility SMS MT (SA SMS MT)	Send an SMS from H-party to R-party, using the HPMN SMSC. Observe if the positive acknowledgement of the SMSC is received.	
23AH, 23AV	Access Delay SMS MO (AD SMS-MO)	Send an SMS from R-party to H-party, using the HPMN SMSC. Measure the time between sending the SMS and receiving the notification from the SMSC that the message has been sent.	
24AH, 24AV	Access Delay SMS MT (AD SMS-MT)	Send an SMS from H-party to R-party, using the HPMN SMSC. Measure the time between the notification from the SMSC that the message has been sent and the notification at the R-party that indicates that the message has arrived.	
25AH, 25AV	End-to-End Delivery Time for SMS-MO	Send an SMS from R-party to H-party, using the HPMN SMSC. Measure the time between sending the SMS and receiving the notification at the H-party that the message has arrived.	
26AH, 26AV	End-to-End Delivery Time for SMS-MT	Send an SMS from H-party to R-party, using the HPMN SMSC. Measure the time between sending the SMS and receiving the notification on the R-party that the message has arrived.	

5.1.3.2 LTE Data

GRQ Test Code	Parameter	How to Measure	Test specifics
101AH, 101AV	PS location update success ratio	Configure the UE in PS mode and initiate a location update (EPS attach) in VPMN. Observe whether the network type indicator is LTE. If there is steering the final result shall be	

V10.0 Page 44 of 111

		the last location update of maximum five (5) attempts.	
102AH, 102AV	PS location update delay	Configure the UE in PS mode and initiate a combined location update (EPS attach) in VPMN. In order to ensure a full location update, the USIM was registered on a different TAC before testing. Measure the time between the initiation of attach and LTE network type indicated. If there is steering the delay of the last location update is taken into account.	
105AH, 105AV	Default EPS bearer context activation success ratio	Configure the UE in PS mode and initiate a location update (EPS attach) in VPMN. Observe whether ACTIVATE DEFAULT EPS BEARER CONTEXT REQUEST message is received by the UE.	
106AH, 106AV	Default EPS bearer context activation time	Trigger an EPS attach at UE and measure the time between UE sending attach request and attach complete	
107AH, 107AV	DNS host name resolution success ratio	From VPMN request a DNS server to resolve a host name in HPMN and observe whether the host address is resolved successfully.	
108AH, 108AV	DNS host name resolution time	From VPMN request a DNS server to resolve a host name in HPMN and measure the time to perform the host name and address translation.	
109AH, 109AV	Default EPS bearer context cut-off ratio	Observe whether the UE in VPMN is detached by the network initiation after each LTE attach or after each LTE application usage (voice CSFB, HTTP/HTTPS, FTP or PING).	
131aAH, 131aAV	FTP download IP service access success ratio	Initiate in VPMN to download a FTP binary file from a FTP server. Observe whether the file contents downloading starts.	
131bAH, 131bAV	FTP upload IP service access success ratio	Initiate in VPMN to upload a FTP binary file to a FTP server. Observe whether the file content uploading starts.	
132aAH, 132aAV	FTP download IP service setup time	Initiate in VPMN to download a FTP binary file from a FTP server. Measure the time between the initiation and the start of the file contents downloading.	
132bAH, 132bAV	FTP upload IP service setup time	Initiate in VPMN to upload a FTP binary file to a FTP server. Measure the time between the initiation and the start of the file contents uploading.	
133aAH, 133aAV	FTP download session success ratio	Initiate in VPMN to download a FTP binary file from a FTP server. Observe whether the complete file is downloaded.	
133bAH, 133bAV	FTP upload session success ratio	Initiate in VPMN to upload a FTP binary file to a FTP server. Observe whether the complete	

V10.0 Page 45 of 111

		file is uploaded.	
134aAH, 134aAV	FTP download session time	Initiate in VPMN to download a FTP binary file from a FTP server. Measure the time between the initiation and the complete file content downloaded.	
134bAH, 134bAV	FTP upload session time	Initiate in VPMN to upload a FTP binary file to a FTP server. Measure the time between the initiation and the complete file content uploaded.	
135aAH, 135aAV	FTP download mean data rate	Initiate in VPMN to download a FTP binary file from a FTP server. Measure the time between the first data packet received containing the file contents and the last data packet received containing the file content.	
135bAH, 135bAV	FTP upload mean data rate	Initiate in VPMN to upload a FTP binary file to a FTP server. Measure the time between the first data packet sent containing the file contents and the last data packet sent containing the file content.	
136aAH, 136aAV	FTP download data transfer success ratio	Initiate in VPMN to download a FTP binary file from a FTP server. Observe whether all data packets containing the file content (from the first one to the last one) is successfully received.	
136bAH, 136bAV	FTP upload data transfer success ratio	Initiate in VPMN to upload a FTP binary file to a FTP server. Observe whether all data packets containing the file content (from the first one to the last one) is successfully sent.	
137aAH, 137aAV	FTP download data capacity	Initiate in VPMN multiple TCP/IP connections to download one or multiple FTP files from one or multiple FTP servers in parallel. Observe the max. capacity of the data pipe is reached.	
137bAH, 137bAV	FTP upload data capacity	Initiate in VPMN multiple TCP/IP connections to upload one or multiple FTP files to one or multiple FTP servers in parallel. Observe the max. capacity of the data pipe is reached.	
141AH, 141AV	HTTP / HTTPS IP service access success ratio	Initiate in VPMN to download an HTTP / HTTPS Web page. Observe whether downloading the Web page contents starts.	
142AH, 142AV	HTTP / HTTPS IP service setup time	Initiate in VPMN to download an HTTP / HTTPS Web page. Measure the time between the initiation and the start of downloading the Web page contents.	
143AH, 143AV	HTTP / HTTPS session success ratio	Initiate in VPMN to download an HTTP / HTTPS Web page. Observe whether the complete Web page contents are downloaded.	
144AH, 144AV	HTTP / HTTPS session time	Initiate in VPMN to download an HTTP / HTTPS Web page. Measure the time between	

V10.0 Page 46 of 111

		the initiation and the complete Web page contents downloaded.	
145AH, 145AV	HTTP / HTTPS mean data rate	Initiate in VPMN to download an HTTP / HTTPS Web page. Measure the time between the first data packet received containing the Web page content and the last data packet received containing the Web page content.	
146AH, 146AV	HTTP / HTTPS data transfer success ratio	Initiate in VPMN to download an HTTP / HTTPS Web page. Observe whether all data packets containing the Web page content (from the first one to the last one) is successfully received.	
147AH, 147AV	HTTP / HTTPS content compression ratio	Initiate in VPMN to download an HTTP / HTTPS Web page. Measure the entire size of the Web page contents received and compare with the original HTTP / HTTPS contents sent.	The size of the original Web page content sent is known.
148AH, 148AV	HTTP / HTTPS download data capacity	Initiate in VPMN multiple TCP/IP connections to download one or multiple Web pages from one or multiple HTTP / HTTPS servers in parallel. Observe the max. capacity of the data pipe is reached.	
151AH, 151AV	PING packet loss ratio	From VPMN send an ICMP echo request with a certain number of PING packets to be sent as parameter. Observe whether ICMP echo reply is received.	
152AH, 152AV	PING round trip time	From VPMN send an ICMP echo request with a certain number of PING packets to be sent as parameter. Measure the time between ICMP echo sent and ICMP echo reply received.	

5.1.4 Volte / Vilte and SMSoIP GRQ test specification

When implementing the test methods in this section, the test message sequences and the default message contents are referred to 3GPP TS 34.229-1 [13] and 3GPP TS 36.508 [14].

Based on the active test methodology, the terminology 'test probe' is used overall in this section. The descriptions of the test method for implementation containing in this section are also applied to a UE or a test UE which can provide observable test results at the GRQ test.

Each GRQ test is referenced by a GRQ Test Code which consists of a GRQ identifier (KPI number) and of 'AH' or 'AV'. 'A' denotes the end-to-end Active test methodology. 'H' denotes the KPI for the inbound roaming quality to be tested at HPMN. Similarly, 'V' denotes the KPI for the outbound roaming quality to be tested at VPMN. For example, '203AV' refers to the GRQ parameter 203 (Voice MO Accessibility) tested at the VPMN by using the active test methodology for the outbound roaming; '203AH' refers to the same GRQ parameter 203 tested at the HPMN by using the active test methodology for the inbound roaming.

V10.0 Page 47 of 111

GSM Association
Official Document IR.81 - GRQ Measurement Implementation

5.1.4.1 **VoLTE**

For the VoLTE GRQ test, the test probe shall be configured in accordance with GSMA IR.92 [11], annex C.3, with the exception of the parameter "Voice and/or Video over LTE allowed while roaming" that should be set to "voice allowed while roaming". The test probe is attached to the LTE network.

The LTE network shall indicate at the (UE) EPS attach that the IMS voice over PS session in S1 mode is supported.

H-party is a subscriber from the HPMN located in the HPMN. R-party is a subscriber from the HPMN located in the VPMN.

GRQ Test Code	Parameter (KPI)	Test Method for Implementation	Test specifics
201AH, 201AV	IMS Registration success ratio	Initiate an IMS registration in VPMN for IMS multimedia telephony service (VoLTE) at test probe. Observe whether the registration is successfully completed by receiving NOTIFY for registration event package from P-CSCF. The test probe shall subscribe to its registration event package (ref. to TS 34.229-1, C.2 [13]). To ensure a full IMS registration, initiate an (UE) deregistration if it is already IMS registered.	
202AH, 202AV	IMS Registration time	Initiate an IMS registration in VPMN for IMS multimedia telephony service (VoLTE). Measure the time between the test probe sending the initial REGISTER request for IMS registration and receiving NOTIFY for registration event package from P-CSCF. The test probe shall subscribe to its registration event package (ref. to 3GPP TS 34.229-1, C.2 [13]). To ensure a full IMS registration, initiate an (UE) deregistration if it is already IMS registered.	
203AH, 203AV	Voice MO accessibility	Initial a VoLTE MO call from a test probe at VPMN to HPMN. The call is successful if 180 Ringing is received at VPMN. The test probe at HPMN shall send 180 Ringing unreliably i.e. not containing "Require: 100rel".	
204AH, 204AV	Voice MT accessibility	Initial a VoLTE MT call from HPMN to a test probe at VPMN. The call is successful if 180 Ringing is received at HPMN from the test probe at VPMN. The test probe at VPMN shall send 180 Ringing unreliably, i.e. not containing "Require: 100rel".	
205AH, 205AV	Voice MO session setup time	Make a successful VoLTE MO call from a test probe at VPMN to HPMN. Measure the time between sending INVITE and receiving 200 OK (INVITE) (ref. to 3GPP TS 34.229-1, C.21 [13]). The time for the HPMN user accepting the incoming call is excluded in the calculation.	
206AH, 206AV	Voice MT session setup time	Make a successful VoLTE MT call from HPMN to a test probe at VPMN. Measure the time between receiving INVITE and receiving ACK for 200 OK	

V10.0 Page 48 of 111

		(INVITE) (ref. to 3GPP TS 34.229-1, C.11 [13]). The time for the VPMN user accepting the incoming call is excluded in the calculation.	
207AH, 207AV	Voice MO session setup ratio	Initial a VoLTE MO call from a test probe at VPMN to HPMN. The session is successfully established if 200 OK (INVITE) is received at VPMN.	
208AH, 208AV	Voice MT session setup ratio	Initial a VoLTE MT call from HPMN to a test probe at VPMN. The call is successfully established if ACK for 200 OK (INVITE) is received by the test probe at VPMN.	
211AH, 211AV	Voice MO session duration	Make a successful VoLTE MO call from a test probe at VPMN to HPMN. Measure the time at the test probe of VPMN between receiving 200 OK (INVITE) and receiving 200 OK (BYE) – using the MO call release in the test (ref. to 3GPP TS 34.229-1, C.21, C.32 [13]).	
212AH, 212AV	Voice MT session duration	Make a successful VoLTE MT call from HPMN to a test probe at VPMN. Measure the time at the test probe of HPMN between receiving ACK for 200 OK (INVITE) and receiving BYE – using the MT call release in the test (ref. to 3GPP TS 34.229-1, C.11, C.33 [13]).	
213AH, 213AV	OIP transparency MO	Make a successful VoLTE MO call from a test probe at VPMN to HPMN and check at the test probe of HPMN if the OIP results in a dial able format (ref. to GSMA IR.92, 2.3.12 [11]) to call back the call originator at VPMN.	
210AH, 210AV	OIP transparency MT	Make a successful VoLTE MT call from HPMN to a test probe at VPMN and check at the test probe of VPMN if the OIP results in a dial able format to call back the call originator at HPMN.	
214AH, 214AV	SpQ on call basis at R- party	Make a successful VoLTE MO call from a test probe at VPMN to a test probe at HPMN. Play a standard file in the test probe at HPMN and record this file in the test probe at VPMN and calculate the voice quality per POLQA as specified in ITU-T P.863 [16]. Recommended duration of the audio reference file: 8 - 32s. The sample is played/analysed. The end-result of the test is a pre-aggregation of the measured MOS-LQO values to one value per call.	
215AH, 215AV	SpQ on call basis at H- party	Make a successful VoLTE MO call from a test probe at VPMN to a test probe at HPMN. Play a standard file in the probe at VPMN and record this file in the probe at HPMN and calculate the voice quality per POLQA as specified in ITU-T P.863 [16]. Recommended duration of the audio reference file: 8 - 32s. The sample is played/analysed. The end-result of the test is a pre-aggregation of the measured MOS-LQO values to one value per call.	
216AH, 216AV	SpQ R-factor at R-party	Make a successful VoLTE MO call from a test probe at VPMN to a test probe at HPMN. Play a standard file in the test probe at HPMN and record this file in the test probe at VPMN and calculate the voice	

V10.0 Page 49 of 111

		quality. The sample is played/analysed. Recommended duration of the audio reference file: 8 - 32s. The end-result of the test is the R-factor LQ (Listening Quality) calculated per ITU-T G.107 [17].	
217AH, 217AV	SpQ R-factor at H-party	Make a successful VoLTE MO call from a test probe at VPMN to a test probe at HPMN. Play a standard file in the probe at VPMN and record this file in the probe at HPMN and calculate the voice quality. The sample is played/analysed. Recommended duration of the audio reference file: 8 - 32s. The end-result of the test is the R-factor LQ (Listening Quality) calculated per ITU-T G.107 [17].	
230AH, 230AV	SRVCC MO success ratio	Make a VoLTE MO call from a test probe at VPMN to a test probe at HPMN and trigger an SRVCC PS to CS event at VPMN. The test is successful if a TMSI REALLOCATION COMMAND message is received by the test probe in the target 2G/3G cell of VPMN, and - In case of SRVCC pre-alerting phase, CS call establishment is continued, CC_ALERTING and CONNECT are received (ref. to 3GPP TS 36.523-1, 13.4.3.7 [15]). - In case of SRVCC alerting phase, CS call establishment is continued, CONNECT is received (ref. to 3GPP TS 36.523-1, 13.4.3.21 [15]). The voice channel is through connected in the target 2G/3G cell of VPMN.	
		In case of SRVCC mid-call phase, the voice channel is through connected in the target 2G/3G cell of VPMN.	
231AH, 231AV	SRVCC MT success ratio	Make a VoLTE MT call from HPMN to a test probe at VPMN and trigger an SRVCC PS to CS event at VPMN. The test is successful if a TMSI REALLOCATION COMMAND message is received by the test probe in the target 2G/3G cell of VPMN, and - In case of SRVCC pre-alerting or alerting phase, CS call establishment is continued, CONNECT ACKNOWLEDGE is received (ref. to 3GPP TS 36.523-1, 13.4.3.10 [15]). The voice channel is through connected in the target 2G/3G cell of VPMN. - In case of SRVCC mid-call phase, the voice channel is through connected in the target	
232AH, 232AV	SRVCC MO success time	2G/3G cell of VPMN. Make a VoLTE MO call from a test probe at VPMN to a test probe at HPMN and trigger an SRVCC PS to CS event at VPMN. In case of SRVCC pre-alerting or alerting phase, measure the time between receiving MobilityFromEUTRACommand in the E-UTRAN cell and receiving CONNECT in the target 2G/3G cell (ref. to 3GPP TS 36.523-1, 13.4.3.7 [15]). In case of SRVCC mid-call phase, two test	

V10.0 Page 50 of 111

		methods are applied.	
		a) Measure the time at the test probe of VPMN between receiving MobilityFromEUTRACommand in the E-UTRAN cell and receiving TMSI REALLOCATION COMMAND in the target 2G/3G cell.	
		 b) An average of downlink voice interruption time at the two probes of VPMN and HPMN. 	
		The time for the HPMN user accepting the incoming call is excluded in the calculation.	
233AH, 233AV	SRVCC MT success time	Make a VoLTE MT call from a test probe HPMN to a test probe at VPMN and trigger an SRVCC PS to CS event at VPMN.	
		 In case of SRVCC pre-alerting or alerting phase, measure the time between receiving MobilityFromEUTRACommand in the E-UTRAN cell and receiving CONNECT ACKNOWLEDGE in the target 2G/3G cell (ref. to TS 36.523-1, 13.4.3.10 [15]). 	
		In case of SRVCC mid-call phase, two test methods are applied.	
		a) Measure the time at the test probe of VPMN between receiving MobilityFromEUTRACommand in the E-UTRAN cell and receiving TMSI REALLOCATION COMMAND in the target 2G/3G cell.	
		 b) An average of downlink voice interruption time at the two probes of VPMN and HPMN. 	
		The time for the VPMN user accepting the incoming call is excluded in the calculation.	

Table 2: VoLTE service level GRQ test descriptions for active test methodology

GRQ Test Code	Parameter (KPI)	Test Method for Implementation	Test specifics
Network	quality parameters (ref. to 3	GPP TS 36.508 [14])	
240AH, 240AV	Default EPS bearer context activation success ratio	The test probe initiates an EPS attach in VPMN and create the PDN connection to the IMS well-known APN (ref. to GSMA IR.88, 6.3 [10]). The test is successful if the default bearer with QCI 5 is established.	
241AH, 241AV	Default EPS bearer context activation time	The test probe initiates an EPS attach in VPMN and create the PDN connection to the IMS well-known APN. Measure the time between sending ATTACH REQUEST and sending ACTIVATE DEFAULT EPS BEARER CONTEXT ACCEPT piggybacked on ATTACH COMPLETE (ref. to 3GPP TS 36.508, 4.5.2 [14]).	
242AH, 242AV, 243AH, 243AV,	Default EPS bearer QCI, Default EPS bearer UL AMBR, Default EPS bearer DL	Read ACTIVATE DEFAULT EPS BEARER CONTEXT REQUEST (NAS): QCI, AMBR Note: AMBR values for a non-GBR bearer are	

V10.0 Page 51 of 111

244AH, 244AV	AMBR	applied to across all non-GBR bearers for the IMS "well known" APN	
245AH, 245AV	Dedicated EPS bearer context activation success ratio (audio)	By initiating an MO call in VPMN, the test probe creates the dedicated EPS bearer context for the voice media. The test is successful if the dedicated bearer with QCI 1 is established.	
246AH, 246AV	Dedicated EPS bearer context activation time (audio)	Create a dedicated EPS bearer context for the voice media and measure the time between receiving ACTIVATE DEDICATED EPS BEARER CONTEXT REQUEST and sending ACTIVATE DEDICATED EPS BEARER CONTEXT ACCEPT (ref. to 3GPP TS 36.508, 4.5A.6 [14]).	
247AH, 247AV, 248AH, 248AV, 249AH, 249AV	Dedicated EPS bearer QCI, Dedicated EPS bearer UL GBR, Dedicated EPS bearer DL GBR	Read from EPS quality of service information element in ACTIVATE DEDICATED EPS BEARER CONTEXT REQUEST (NAS): QCI, Guaranteed bit rate for uplink and Guaranteed bit rate for downlink	
250AH, 250AV	IP data volume received on QCI5 bearer at R-party	Count the accumulated data received in a certain period at the IP ports (TCP and UDP) on the QCI5 EPS AM bearer in the test probe at VPMN	
251AH, 251AV	IP data volume transmitted on QCI5 bearer at R-party	Count the accumulated data transmitted in a certain period at the IP ports (TCP and UDP) on the QCI5 EPS AM bearer in the test probe at VPMN	
252AH, 252AV	IP data volume received on QCI5 bearer at H-party	Count the accumulated data received in a certain period at the IP ports (TCP and UDP) on the QCI5 EPS AM bearer in the test probe at HPMN	
253AH, 253AV	IP data volume transmitted on QCI1 bearer at H-party	Count the accumulated data transmitted in a certain period at the IP ports (TCP and UDP) on the QCI5 EPS AM bearer in the test probe at HPMN	
254AH, 254AV	IP data volume received on QCI1 bearer at R-party	Count the accumulated data received in a certain period at the IP port (UDP) on the QCI1 EPS UM bearer in the test probe at VPMN	
255AH, 255AV	IP data volume transmitted on QCI1 bearer at R-party	Count the accumulated data transmitted in a certain period at the IP port (UDP) on the QCI1 EPS UM bearer in the test probe at VPMN	
256AH, 256AV	IP data volume received on QCI1 bearer at H-party	Count the accumulated data received in a certain period at the IP port (UDP) on the QCI1 EPS UM bearer in the test probe at HPMN	
257AH, 257AV	IP data volume transmitted on QCI1 bearer at H-party	Count the accumulated data transmitted in a certain period at the IP port (UDP) on the QCI1 EPS UM bearer in the test at HPMN	
RTP trans	sport quality parameters (ref. to	IR.42 [1])	
260AH, 260AV, 261AH, 261AV, 262AH,	RTP max packet delay variation R2H, RTP max packet delay variation H2R, RTP mean packet delay	Make the test probe at VPMN an MO call, analyse the RTP streams at the both ends (for a duration of the audio reference file in 8 - 32s) and calculate the max. and mean packet delay variations (ref. to GSMA IR.42 [1]) in the R2H direction at HPMN, and in the H2R direction at VPMN	
262AV, 263AH, 263AV	variation R2H, RTP mean packet delay variation H2R		

V10.0 Page 52 of 111

264AH, 264AV, 265AH, 265AV	RTP mean interarrival jitter of incoming streaming R2H RTP mean interarrival jitter of incoming streaming H2R	Make the test at VPMN an MO call, analyse the RTP streams at the both ends (for a duration of the audio reference file in 8 - 32s) and calculate the RTP mean interarrival jitter of incoming streaming (ref. to GSMA IR.42 [1]) in the R2H direction at HPMN, and in the H2R direction at VPMN	
266AH, 266AV, 267AH, 267AV	RTP mean data rate transmitted R2H (audio) RTP mean data rate received H2R (audio)	Make the test probe at VPMN an MO call, count the total data transmitted and received respectively in a certain period, and calculate the average data rate (ref. to IR.42 [1]) transmitted and received of the probe at VPMN at that period.	
268AH, 268AV, 269AH, 269AV	RTP mean data rate transmitted H2R (audio) RTP mean data rate received R2H (audio)	Make a VoLTE MT call from HPMN to a test probe at VPMN, count the total data transmitted and received respectively at the VoLTE test probe of HPMN in a certain period and calculate the average data rate (ref. to IR.42 [1]) transmitted and received of the probe at HPMN at that period.	
270AH, 270AV, 271AH, 271AV	RTP packets lost R2H RTP packets lost H2R	Make the test at VPMN an MO call to a test probe at HPMN, count the total number of the missing RTP sequence numbers in a certain period at the home probe of HPMN and at the roaming probe of VPMN.	
272AH, 272AV, 273AH, 273AV	RTP packets lost ratio R2H RTP packets lost ratio H2R	Make the test probe at VPMN an MO call to a test probe at HPMN, within a certain period: Count the total number of the missing RTP sequence numbers Count the total number of RTP packets received Calculate the portion of lost packets (ref. to GSMA IR.42 [1]) at the roaming probe of VPMN and at the home probe of HPMN.	
274AH, 274AV, 275AH, 275AV	RTP round-trip delay (RHR) RTP round-trip delay (HRH)	Make the test probe at VPMN an MO call to a test probe at HPMN, within a certain period calculate the average transfer time of RTP packets (ref. to GSMA IR.42 [1]) - from the roaming probe of VPMN to the home probe of HPMN and looped back to the roaming probe, - from the home probe of HPMN to the roaming probe of VPMN and looped back to the home probe	

Table 3: VoLTE network / transport level GRQ test descriptions for active test methodology

The transport level KPIs are tested if the two ends (R-party and H-party) are VoLTE capable, i.e. RTP packets are end-to-end transported between the two end entities.

5.1.4.2 VILTE

For the ViLTE GRQ test, the test probe shall be configured in accordance with

• GSMA IR.92 [11], annex C.3, with the exception that the parameter "Voice and/or Video over LTE allowed while roaming" is set to "voice over LTE allowed while roaming".

V10.0 Page 53 of 111

GSM Association Non-confidential Official Document IR.81 - GRQ Measurement Implementation

 GSMA IR.94 [12], annex C.3, with the exception that the parameter "Voice and/or Video over LTE allowed while roaming" is set to "voice and Video over LTE allowed while roaming".

The test probe is attached to the LTE network.

The LTE network shall indicate at the (UE) EPS attach that the IMS voice over PS session in S1 mode supported.

H-party is a subscriber from the HPMN located in the HPMN. R-party is a subscriber from the HPMN located in the VPMN.

GRQ Test Code	Parameter (KPI)	Test Method for Implementation	Test specifics
301AH, 301AV	IMS Registration success ratio (ViLTE)	Initiate an IMS registration in VPMN for IMS multimedia conversational video service (ViLTE) at test probe. Observe whether the registration is successful completed by receiving NOTIFY for registration event package from P-CSCF. The test probe shall subscribe to its registration event package (ref. to 3GPP TS 34.229-1, C.2 [13]). To ensure a full IMS registration, initiate an (UE) deregistration if it is already IMS registered.	
302AH, 302AV	IMS Registration time (ViLTE)	Initiate an IMS registration in VPMN for IMS multimedia conversational video service (ViLTE). Measure the time between the test probe sending the initial request for IMS registration and receiving NOTIFY for registration event package from P-CSCF. The test probe shall subscribe to its registration event package (ref. to 3GPP TS 34.229-1, annex C.2 [13]). To ensure a full IMS registration, initiate an (UE) deregistration if it is already IMS registered.	
303AH, 303AV	ViLTE MO accessibility	Initial a ViLTE MO call from a test probe at VPMN to HPMN. The call is successful if 180 Ringing is received at VPMN. The test probe at HPMN shall send 180 Ringing unreliably, i.e. not containing "Require: 100rel".	
304AH, 304AV	VILTE MT accessibility	Initial a ViLTE MT call from HPMN to a test probe at VPMN. The call is successful if 180 Ringing is received at HPMN from the test probe at VPMN. The test probe at VPMN shall send 180 Ringing unreliably, i.e. not containing "Require: 100rel".	
305AH, 305AV	ViLTE MO session setup time	Make a successful ViLTE MO call from a test probe at VPMN to HPMN. Measure the time between sending INVITE and receiving 200 OK (INVITE) (ref. to 3GPP TS 34.229-1, C.25 [13]). The time for the HPMN user accepting the incoming call is excluded in the calculation.	
306AH, 306AV	ViLTE MT session setup time	Make a successful ViLTE MT call from HPMN to a test probe at VPMN. Measure the time between receiving INVITE and receiving ACK for 200 OK (INVITE) (ref. to 3GPP TS 34.229-1, C.26 [13]). The	

V10.0 Page 54 of 111

		time for the VPMN user accepting the incoming call is excluded in the calculation.	
307AH, 307AV	ViLTE MO session setup ratio	Initial a VoLTE MO call from a test probe at VPMN to HPMN. The session is successfully established if 200 OK (INVITE) is received at VPMN.	
308AH, 308AV	ViLTE MT session setup ratio	Initial a VoLTE MT call from HPMN to a test probe at VPMN. The call is successfully established if ACK for 200 OK (INVITE) is received by the test probe at VPMN.	
311AH, 311AV	ViLTE MO session duration	Make a successful ViLTE MO call from a test probe at VPMN to HPMN. Measure the time at the test probe of VPMN between receiving 200 OK (INVITE) and receiving 200 OK (BYE) – using the MO call release in the test (ref. to 3GPP TS 34.229-1, C.25, C.32 [13]).	
312AH, 312AV	ViLTE MT session duration	Make a successful ViLTE MT call from HPMN to a test probe at VPMN. Measure the time at the test probe of HPMN between receiving ACK for 200 OK (INVITE) and receiving BYE – using the MT call release in the test (ref. to 3GPP TS 34.229-1, C.26 [13]).	
313AH, 313AV	OIP transparency MO (ViLTE)	Make a successful ViLTE MO call from a test probe at VPMN to HPMN and check at the test probe of HPMN if the OIP results in a dial able format (ref. to GSMA IR.92, 2.3.12 [11]) to call back the call originator at VPMN.	
310AH, 310AV	OIP transparency MT (ViLTE)	Make a successful ViLTE MT call from HPMN to a test probe at VPMN and check at the test probe of VPMN if the OIP results in a dial able format to call back the call originator at HPMN.	
314AH, 314AV	SpQ on sample basis at R-party (ViLTE)	Make a successful ViLTE MO call from a test probe at VPMN to a test probe at HPMN. Play a standard file in the test probe at HPMN and record this file in the test probe at VPMN and calculate the voice quality per POLQA as specified in ITU-T P.863 [1]. Recommended duration of the audio reference file: 8 - 32s. The selected samples are played/analysed. The end-result of the test is an average value of the measured MOS-LQO values per sample.	
315AH, 315AV	SpQ on sample basis at H-party (ViLTE)	Make a successful ViLTE MO call from a test probe at VPMN to a test probe at HPMN. Play a standard file in the probe at VPMN and record this file in the probe at HPMN and calculate the voice quality per POLQA as specified in ITU-T P.863 [1]. Recommended duration of the audio reference file: 8 - 32s. The selected samples are played/analysed. The end-result of the test is an average value of the measured MOS-LQO values <i>per sample</i> .	
216AH, 216AV	SpQ R-factor at R-party	Make a successful ViLTE MO call from a test probe at VPMN to a test probe at HPMN. Play a standard file in the test probe at HPMN and record this file in the test probe at VPMN and calculate the voice quality. The samples are played/analysed.	

V10.0 Page 55 of 111

		Recommended duration of the audio reference file: 8 - 32s. The end-result of the test is the R-factor LQ (Listening Quality) calculated per ITU-T G.107 [17].	
217AH, 217AV	SpQ R-factor at H-party	Make a successful ViLTE MO call from a test probe at VPMN to a test probe at HPMN. Play a standard file in the probe at VPMN and record this file in the probe at HPMN and calculate the voice quality. The samples are played/analysed. Recommended duration of the audio reference file: 8 - 32s. The endresult of the test is the R-factor LQ (Listening Quality) calculated per ITU-T G.107 [17].	
318AH, 318AV	Video quality on sample basis at R-party	Make a successful ViLTE MO call from a test probe at VPMN to a test probe at HPMN. Play a standard file in the test probe at HPMN and record this file in the test probe at VPMN and calculate the video quality per PEVQ as specified in ITU-T J.247 [18]. The selected samples are played/analysed. Recommended duration of the video reference file: 8 - 32s. The end-result of the test is an average value of the measured MOS values <i>per sample</i> .	
319AH, 319AV	Video quality on sample basis at H-party	Make a successful ViLTE MO call from a test probe at VPMN to a test probe at HPMN. Play a standard file in the probe at VPMN and record this file in the probe at HPMN and calculate the video quality per PEVQ as specified in ITU-T J.247 [18]. The selected samples are played/analysed. Recommended duration of the video reference file: 8 - 32s. The endresult of the test is an average value of the measured MOS values <i>per sample</i> .	

Table 4: ViLTE service level GRQ test descriptions for active test methodology

The following table shows only the video part of the ViLTE Network / Transport GRQ Test description. The corresponding audio part is referred to the table of VoLTE Network / Transport GRQ Test description in 5.1.4.1, except (245AH, 245AV, 246AH, 246AV) replaced with (345AH, 345AV, 346AH, 346AV).

GRQ Test Code	Parameter (KPI)	Test Method for Implementation	Test specifics
345AH, 345AV	Dedicated EPS bearer context activation success ratio (voice & video)	By initiating a ViLTE MO session in VPMN, the test probe creates the dedicated EPS bearer context for the voice and video media. The test is successful if the dedicated bearer is established with QCI1 and QCI2 or QCI8 or QCI9.	
346AH, 346AV	Dedicated EPS bearer context activation time (voice & video)	Create a dedicated EPS bearer context for the voice and video media and measure the time between receiving ACTIVATE DEDICATED EPS BEARER CONTEXT REQUEST and sending ACTIVATE DEDICATED EPS BEARER CONTEXT ACCEPT	

V10.0 Page 56 of 111

		(ref. to 3GPP TS 36.508, 4.5A.8 [14]).	
347AH, 347AV, 348AH, 348AV, 349AH, 349AV, 343AH, 343AV, 344AH,	Dedicated EPS bearer QCI, Dedicated EPS bearer UL GBR, Dedicated EPS bearer DL GBR Dedicated EPS bearer UL AMBR, Dedicated EPS bearer UL AMBR	Read from EPS quality of service information element in ACTIVATE DEDICATED EPS BEARER CONTEXT REQUEST (NAS): QCI, guaranteed bit rate for uplink and Guaranteed bit rate for downlink (for QCI2) Read from ACTIVATE DEFAULT EPS BEARER CONTEXT REQUEST (NAS): QCI, AMBR (for QCI8 or QCI9) Note: AMBR values for a non-GBR bearer are applied to across all non GBR bearers for the IMS "well known" APN	
354AH, 354AV	IP data volume received on QCI2/8/9 bearer at R-party	Count the accumulated data received in a certain period at the test probe of VPMN at the IP port (UDP) on the EPS bearer - QCI2 (UM) or QCI8 (AM) or QCI9 (AM)	
355AH, 355AV	IP data volume transmitted on QCI2/8/9 bearer at R- party	Count the accumulated data transmitted in a certain period at the test probe of VPMN at the IP port (UDP) on the EPS bearer - QCI2 (UM) or QCI8 (AM) or QCI9 (AM)	
356AH, 356AV	IP data volume received on QCI2/8/9 bearer at H- party	Count the accumulated data received in a certain period at the test probe of HPMN at the IP port (UDP) on the EPS bearer - QCI2 (UM) or QCI8 (AM) or QCI9 (AM)	
357AH, 357AV	IP data volume transmitted on QCI2/8/9 bearer at H- party	Count the accumulated data transmitted in a certain period at the test probe of HPMN at the IP port (UDP) on the EPS bearer - QCI2 (UM) or QCI8 (AM) or QCI9 (AM)	
RTP trans	port quality parameters		
360AH, 360AV, 361AH, 361AV, 362AH, 362AV, 363AH, 363AV	RTP max packet delay variation R2H, RTP max packet delay variation H2R, RTP mean packet delay variation R2H, RTP mean packet delay variation H2R	Make the test probe at VPMN an MO call, analyse the RTP streams at the both ends (for a duration of the audio reference file in 8 - 32s) and calculate the max. and mean packet delay variations (ref. to IR.42 [1]) in the R2H direction at HPMN, and in the H2R direction at VPMN	
364AH, 364AV, 365AH, 365AV	RTP mean interarrival jitter of incoming streaming R2H RTP mean interarrival jitter of incoming streaming H2R	Make the test probe at VPMN an MO call, analyse the RTP streams at the both ends (for a duration of the audio reference file in 8 - 32s) and calculate the RTP mean interarrival jitter of incoming streaming (ref. to GSMA IR.42 [1]) in the R2H direction at HPMN, and in the H2R direction at VPMN	
366AH, 366AV, 367AH, 367AV	RTP mean data rate transmitted R2H (audio) RTP mean data rate received H2R (audio)	Make the test probe at VPMN an MO call, count the total data transmitted and received respectively in a certain period, and calculate the average data rate (ref. to GSMA IR.42 [1]) transmitted and received of the probe at VPMN at that period.	
368AH, 368AV, 369AH, 369AV	RTP mean data rate transmitted H2R (audio) RTP mean data rate received R2H (audio)	Make a VoLTE MT call from HPMN to a test probe at VPMN, count the total data transmitted and received respectively at the VoLTE test probe of HPMN in a certain period and calculate the average data rate	

V10.0 Page 57 of 111

		(ref. to GSMA IR.42 [1]) transmitted and received of the probe at HPMN at that period.	
370AH, 370AV, 371AH, 371AV	RTP packets lost R2H RTP packets lost H2R	Make the test probe at VPMN an MO call to a test probe at HPMN, count the total number of the missing RTP sequence numbers in a certain period at the home probe of HPMN and at the roaming probe of VPMN.	
372AH, 372AV, 373AH, 373AV	RTP packets lost ratio R2H RTP packets lost ratio H2R	Make the test probe at VPMN an MO call to a test probe at HPMN, within a certain period: Count the total number of the missing RTP sequence numbers Count the total number of RTP packets received Calculate the portion of lost packets (ref. to GSMA IR.42 [1]) at the roaming probe of VPMN and at the home probe of HPMN.	
374AH, 374AV, 375AH, 375AV	RTP round-trip delay (RHR) RTP round-trip delay (HRH)	Make the test probe at VPMN an MO call to a test probe at HPMN, within a certain period calculate the average transfer time (ref. to GSMA IR.42 1]) of RTP packets - from the roaming probe of VPMN to the home probe of HPMN and looped back to the roaming probe, - from the home probe of HPMN to the roaming probe of VPMN and looped back to the home probe	

Table 5: ViLTE network / transport level GRQ test descriptions for active test (video part)

The GRQ test codes (348AH, 348AV, 349AH, 349AV) and (343AH, 343AV, 344AH, 344AV) are mutually exclusive.

- If EPS GBR bearer QCI2 is assigned for the video media, the GRQ test codes for GBR (348AH, 348AV, 349AH, 349AV) are applied to the ViLTE GRQ test.
- If EPS non-GBR bearer QCI8 or QCI9 is assigned for the video media, the GRQ test codes for AMBR (343AH, 343AV, 344AH, 344AV) are applied to the ViLTE GRQ test.

The transport level KPIs are tested if the two ends (R-party and H-party) are ViLTE capable, i.e. RTP packets are end-to-end transported between the two end entities.

The ViLTE media uses two separate RTP connections to transport audio and video streams. The audio and video RTP quality KPI are separately measured under the condition when two RTP connections are present during the test.

5.1.4.3 Preconditions of SRVCC GRQ test

The SRVCC GRQ test is performed in terms of a handover from E-UTRAN to UTRAN or GERAN, depending upon the VPMN radio access technologies deployed. The test is applied to the LBO HR and LBO VR roaming architectures, but not applied to the S8HR.

The test probe at VPMN shall in ATTACH REQUEST of the E-UTRAN attach procedure:

- indicate IMS PS voice preferred, CS Voice as secondary,
- support SRVCC to GERAN or UTRAN in MS Classmark 2,

V10.0 Page 58 of 111

GSM Association Non-confidential Official Document IR.81 - GRQ Measurement Implementation

• support SRVCC to GERAN in MS Classmark 3.

In the IMS registration, the test probe at VPMN shall include the media feature tag *g.3gpp.accesstype* in the Contact header field of the SIP REGISTER request.

The test probe shall be capable of supporting SRVCC procedures in the pre-alerting, alerting or MSC-assisted mid-call phase.

When initiating a VoLTE MO call, the test probe includes in the Contact header field of SIP INVITE request the following media feature tags (ref. to TS 34.229-1 [13] annex A.2.1):

- g.3gpp.mid-call
- g.3gpp.srvcc-alerting
- g.3gpp.ps2cs-srvcc-orig-pre-alerting

At the VoLTE or ViLTE MT call when receiving a SIP INVITE request including the feature-capability indicator *g.3gpp.mid-call* or *g.3gpp.srvcc-alerting* in a Feature-Caps header field, the test probe includes (ref. to TS 34.229-1 [13] annex A.2.3, A.2.6, A.2.9):

- *g.3gpp.ps2cs-srvcc-orig-pre-alerting* feature-capability indicator in a Feature-Caps header field of SIP 183 Session Progress,
- g.3gpp.srvcc-alerting
 - media feature tag in a Contact header field of SIP 180 Ringing,
 - feature-capability indicator in a Feature-Caps header field of SIP 180 Ringing,
- g.3gpp.mid-call media feature tag in the Contact header field of SIP 200 OK (INVITE)

5.1.5 **SMSoIP**

GRQ Test Code	Parameter (KPI)	Test Method for Implementation	Test specifics
201AH, 201AV	IMS Registration success ratio (VoLTE)	Initiate an IMS registration in VPMN for IMS multimedia conversational video service (VoLTE) at test probe. Observe whether the registration is successful completed by receiving NOTIFY for registration event package from P-CSCF. The test probe shall subscribe to its registration event package (ref. to 3GPP TS 34.229-1, annex C.2 [13]). To ensure a full IMS registration, initiate an (UE) deregistration if it is already IMS registered.	
202AH, 202AV	IMS Registration time	Initiate an IMS registration in VPMN for IMS multimedia telephony service (VoLTE). Measure the time between the test probe sending the initial request for IMS registration and receiving NOTIFY for registration event package from P-CSCF. The test probe shall subscribe to its registration event package (ref. to 3GPP TS 34.229-1, annex C.2 [13]). To ensure a full IMS registration, initiate an (UE) deregistration if it is already IMS registered.	
221AH,	SMSoIP-MO accessibility	Send an SM included in the SIP MESSAGE request	

V10.0 Page 59 of 111

221AV		from a test probe at VPMN, using HPMN IP-SM-GW/SMSC, to a test probe at HPMN. If the submit report in the MESSAGE request from SMSC is received (ref. to 3GPP TS 34.229-1, 18.1.4 [13]), the test is successful.	
222AH, 222AV	SMSoIP-MT accessibility	Send an SM included in the SIP MESSAGE request from a test probe at HPMN to a test probe at VPMN using the HPMN IP-SM-GW/ SMSC. The test is successful if the SM is correctly delivered at R-party and 202 (Accepted) is received from SMSC for responding the delivery report from R-party (ref. to 3GPP TS 34.229-1, 18.2.4 [13]).	
223AH, 223AV	SMSoIP-MO access delay	Send an SM included in the SIP MESSAGE request from a test probe at VPMN, using HPMN IP-SM-GW/SMSC, to a test probe at HPMN. Measure the time at R-party between - sending a SIP MESSAGE request (UL) including a vnd.3gpp.sms payload that contains a short message, and - responding with 200 OK (UL) to a SIP MESSAGE request including a vnd.3gpp.sms payload that contains the short message submission report indicating a positive acknowledgement from SMSC (ref. to 3GPP TS 34.229-1, 18.1.4 [13]).	
224AH, 224AV	SMSoIP-MT access delay	Send an SM included in the SIP MESSAGE request from a test probe at HPMN to a test probe at VPMN using the HPMN IP-SM-GW/ SMSC. Measure the time at H-party between - Receiving a SIP MESSAGE request (DL) including a vnd.3gpp.sms payload that contains a short message, and - Receiving a 202 ACCEPTED from SMSC acknowledging to the SIP MESSAGE request (UL) including a vnd.3gpp.sms payload that contains a delivery report (ref. to 3GPP TS 34.229-1, 18.2.4 [13]).	
225AH, 225AV	SMSoIP-MO e2e delay	Send an SM included in the SIP MESSAGE request from a test probe at VPMN, using HPMN IP-SM-GW/SMSC, to a test probe at HPMN. Measure the time between - Sending a SIP MESSAGE request (UL) including a vnd.3gpp.sms payload that contains a short message at R-party, and - Receiving a SIP MESSAGE request (DL) including a vnd.3gpp.sms payload that contains that short message at H-party (ref. to 3GPP TS 34.229-1, 18.1.4, 18.2.4 [13]).	
226AH, 226AV	SMSoIP-MT e2e delay	Note: A clock accuracy of the test system ≤ 30ms Send an SM included in the SIP MESSAGE request from a test probe at HPMN to a test probe at VPMN using the HPMN IP-SM-GW/ SMSC. Measure the time between - Sending a SIP MESSAGE request (UL) including a vnd.3gpp.sms payload that contains	

V10.0 Page 60 of 111

GSM Association Non-confidential
Official Document IR.81 - GRQ Measurement Implementation

a short message at H-party, and	
- Receiving a SIP MESSAGE request (DL)	
including a vnd.3gpp.sms payload that contains	
that short message at R-party (ref. to 3GPP TS	
34.229-1, 18.1.4, 18.2.4 [13]).	
Note: A clock accuracy of the test system ≤ 30ms	

Table 6: SMSoIP GRQ test descriptions for active test methodology

5.2 Passive Monitoring

5.2.1 General Information

5.2.1.1 When to measure:

The measurement is made continuously that is as soon as live traffic generates relevant data. The KPI calculated over a daily time window and is aggregated for the Month.

Example – Day 1 – KPI = 90%, Day 2 – KPI = 95% and so on Day 3 – KPI = 88%

GRQ KPI is the average of the daily KPI.

A daily measurement is considered as valid if there is at least one (1) measure every four (4) hours (6/day or 180/Month) or according to a mutual agreement between the HPMN and VPMN.

5.2.1.2 Where to measure:

The passive monitoring occurs on the international links (SS7 links, voice interconnect links and IP/Gp links).

It is recommended operators to agree on the I International Mobile Subscriber Identity/ Mobile Subscriber ISDN Number (MSI/MSISDN) being used by the active probes in order that the same IMSI/MSISDN is being used between roaming partner using passive probes. If one operator uses active probes and the other Operating Company (OpCo) uses passive probes, the MSISDN needs to be agreed in order to be able to compare the results.

Between passive probes address ranges they have to monitor: Country Code/ national destination code (CC/NDC) ranges, Mobile Station Roaming Number (MSRN) Ranges, IP Ranges of GPRS Nodes.

5.2.1.3 Known Limitations:

The measurements are done on live traffic. Therefore it can only bring information on node where the roaming service is correctly configured. Typically, Radio failure or Network configuration failure cannot be monitored by SS7 Monitoring alone.

Additionally, as it is linked to the actual usage on the network, the values observed may be vary from one operator under observation to another due to various 'normal' conditions:

 the prepaid/postpaid market share may have an impact on the Qos linked to chargeable events as credit exhaustion will prevent or stop the service abruptly. It

V10.0 Page 61 of 111

GSM Association Non-confidential

Official Document IR.81 - GRQ Measurement Implementation

may also influence the behaviour of the roamers (calls without answer (old-fashioned 2 rings and call me back), SMS oriented, and so on)

- the country may have an influence numbering plan may be "closed" (known finite numbers of digits) or open. In the case of open numbering plans, the switch has to go through a wait period before deciding to connect the call
- the service provided to users (for example do the subscriber have a Voice Mail? The absence/presence of such service may the observed ASR (a Voice Mail system is supposed to always answer a call that is forwarded to it).

5.2.1.4 GRQ Monitoring Pre-requisites

Steering of Roaming could influence some results. Actually, the error messages generated by SoR system will be filtered out: the HPMN operator shall provide information about its SoR configuration for enabling the parties to exclude the effect of the SoR on the measurements.

Filter out error that are non-roaming related or do not affect the roaming service: MAP version fallback, User Error (Roaming Not Allowed), and so on

In the case the operators want to compare throughput/goodput across technologies (that is GPRS, EDGE, UMTS, HSDPA, etc) the operators have, for the time being to identify the technology based on the involved core network element (SGSN). While the technology is not explicitly identified in the protocol, the node origin address may help operator distinguish 2G / 3G elements, if the VPMN use non-hybrid core network elements (2G-3G nodes).

It is noted that 3GPP TS 29.060 V6.18.0 (2007-09) specifies a new information element called "RAT Type" (radio access technology) that the SGSN may include in the signalling (it is an optional parameter) for facilitating the future measurements and their comparison. However, such release version is not implemented by SGSN vendors at the time of writing this document.

V10.0 Page 62 of 111

5.2.2 GPRS / UMTS Test Specification

GRQ			
Test Code	Parameter	How to Measure	Test Specifics
		VOICE	
1BH	LU update success ratio	Measure MAP Update Location procedure. Can be measured on SCCP and TCAP level.	
1BV	LU update success ratio	Measure MAP Update Location procedure. Can be measured on SCCP and TCAP level.	
1BR	LU update success ratio	Measure MAP Update Location procedure. Can be measured on SCCP and TCAP level.	
2BH	LU delay	Measure the time between the MAP UL request until the MAP UL ACK	Only applicable for successful transaction
2BV	LU delay	Measure the time between the MAP UL request until the MAP UL ACK	Only applicable for successful transaction
2BR	LU delay	Measure the time between the MAP UL request until the MAP UL ACK	Only applicable for successful transaction
3ВН	NER-MO (Network Effectiveness Ratio on Mobile Originated calls in the visited network)	N/A	Home network has no visibility on Voice Call without CAMEL
3BV	NER-MO (Network Effectiveness Ratio on Mobile Originated calls in the visited network)	Measure ratio between successful calls (reception of ISUP ACM) and attempts (ISUP IAM)	For RP applying MNP, additional info to be extracted (IMSI/MSISDN in the loc.up) for assuring measurement on the roaming partner
4BH	NER-MT (Network Effectiveness Ratio on Mobile Terminated calls in the visited network)	Measure ratio between successful calls (reception of ISUP ACM for calls towards MSRN) and attempts (MAP PRN with MSRN)	The success of an MT depends on the combined success of MAP PRN operation and ISUP towards MSRN
4BV	NER-MT (Network Effectiveness Ratio on Mobile Terminated calls in the visited network)	Measure ratio between successful calls (reception of ISUP ACM for call towards MSRN) and attempts MAP PRN with MSRN)	The success of an MT depends on the combined success of MAP PRN operation and ISUP towards MSRN
5BH	PDD-MO (Post Dialling Delay)	N/A	Home network has no visibility on Voice Call without CAMEL
5BV	PDD-MO (Post Dialling Delay)	Measure Time between reception of ISUP ACM and attempts (ISUP IAM)	For RP applying MNP, additional info to be

V10.0 Page 63 of 111

GRQ Test Code	Parameter	How to Measure	Test Specifics
			extracted (IMSI/MSISDN in the loc.up) for assuring measurement on the roaming partner
6BH	PDD-MT (Post Dialling Delay)	Measure time between successful calls (reception of ISUP ACM) and MT procedure start (MAP PRN with MSRN)	
6BV	PDD-MT (Post Dialling Delay)	Measure time between successful calls (reception of ISUP ACM) and MT procedure start (MAP PRN with MSRN)	
7BH	CSSR-MO (Call Setup Succes Ratio on Mobile Originated calls in the visited network)	N/A	Home network has no visibility on Voice Call without CAMEL
7BV	CSSR-MO (Call Setup Succes Ratio on Mobile Originated calls in the visited network)	Measure ratio between successful calls (reception of ISUP ANM) and attempts (ISUP IAM)	For RP applying MNP, additional info to be extracted (IMSI/MSISDN in the loc.up) for assuring measurement on the roaming partner. Takes into account destination behaviour (user busy, presence of VM, and so on) – risk of result bias
8BH	CSSR-MT (Call Setup Success Ratio on Mobile Terminated calls in the visited network)	Measure ratio between successful calls (reception of ISUP ANM for call towards MSRN and attempts (MAP PRN with MSRN)	The success of an MT depends on the combined success of MAP PRN operation and ISUP towards MSRN
8BV	CSSR-MT (Call Setup Success Ratio on Mobile Terminated calls in the visited network)	Measure ratio between successful calls (reception of ISUP ANM for call towards MSRN) and attempts (MAP PRN with MSRN)	The success of an MT depends on the combined success of MAP PRN operation and ISUP towards MSRN
9BH	REL (ISUPv2 signalling transparency)	N/A	Home network has no visibility on Voice Call without CAMEL
9BV	REL (ISUPv2 signalling transparency)	N/A	Visited network has no visibility on the actual release cause
10BH	OCN and RDN (ISUPv2 signalling transparency)	N/A	Home network has no visibility on Voice Call without CAMEL

V10.0 Page 64 of 111

GRQ Test Code	Parameter	How to Measure	Test Specifics
10BV	OCN and RDN (ISUPv2 signalling transparency)	N/A	Home network has no visibility on RDN/OCN transparency at destination side
11BH	CCR (Call Completion Ratio Circuit)	N/A	Home network has no visibility on Voice Call without CAMEL
11BV	CCR (Call Completion Ratio Circuit)	Measure ratio between successfully released calls (reception of ISUP RLC) of dropped calls and answered (ISUP ANM). A drop call definition based on the release call that is if call is released because of network specific errors, then it will be counted as call dropped. For example if REL cause code is one of - (NO_ROUTE_TO_SPECIFIED_TRAN SIT_NETWORK = 2, NO_ROUTE_TO_DESTINATION = 3, CHANNEL_UNACCEPTABLE = 6, EXCHANGE_ROUTING_ERROR = 25, DESTINATION OUT OF ORDER = 27, NETWORK_OUT_OF_ORDER = 38, TEMPORARY_FAILURE = 41, RECOVERY_ON_TIMER_EXPIRY = 102), then count the call as Call Dropped.	For RP applying MNP, additional info to be extracted (IMSI/MSISDN in the loc.up) for assuring measurement on the roaming partner
12BH	ALOC	N/A	Home network has no visibility on Voice Call without CAMEL
12BV	ALOC	Measure Time between reception of call answer ISUP ANM and call release (ISUP REL)	For RP applying MNP, additional info to be extracted (IMSI/MSISDN in the loc.up) for assuring measurement on the roaming partner
13BH	CLI transparency	N/A	Home network has no visibility on Voice Call without CAMEL
13BV	CLI transparency	N/A	Home network has no visibility on CLI transparency

V10.0 Page 65 of 111

GRQ Test Code	Parameter	How to Measure	Test Specifics
			at destination side
14BH	SpQ (Speech Quality)	N/A	SS7 monitoring is non intrusive. It only monitors signalling message.
14BV	SpQ (Speech Quality)	N/A	SS7 monitoring is non intrusive. It only monitors signalling message.
		SMS	
21BH	Service Accessibility SMS MO (SA SMS MO)	N/A	
21BV	Service Accessibility SMS MO (SA SMS MO)	Measure ratio between successful SMS-SUBMIT and attempts	
21BR	Service Accessibility SMS MO (SA SMS MO)	Measure ratio between successful SMS-SUBMIT and attempts	
22BH	Service Accessibility SMS MT (SA SMS MT)	Measure ratio between successful SMS-DELIVER and attempts	
22BV	Service Accessibility SMS MT (SA SMS MT)	N/A	
23BH	Access Delay SMS MO (AD SMS-MO)	N/A	
23BV	Access Delay SMS MO (AD SMS-MO)	Measure time between SMS-SUBMIT and acknowledgement	
23BR	Access Delay SMS MO (AD SMS-MO)	Measure time between SMS-SUBMIT and acknowledgement	
24BH	Access Delay SMS MT (AD SMS-MT)	Measure time between successful SMS-DELIVER and acknowledgement	
24BV	Access Delay SMS MT (AD SMS-MT)	N/A	
25BH	End-to-End Delivery Time for SMS-MO	Measure time stamp between MAP-FWD-SM (SMS-Submit) operation and MAP-FWD-SM (SMS-Deliver) operation acknowledgement	
25BV	End-to-End Delivery Time for SMS-MO	N/A	
26BH	End-to-End Delivery Time for SMS-MT	Measure time stamp between MAP-FWD-SM (SMS-Submit) operation and MAP-FWD-SM (SMS-Deliver) operation acknowledgement	
26BV	End-to-End Delivery Time for SMS-MT	N/A	
		PACKET-SWITCHED	
31BH	Packet Switched LU	Measure MAP GPRS Update Location	

V10.0 Page 66 of 111

GRQ			
Test Code	Parameter	How to Measure	Test Specifics
	Success Ratio (PS LU – SR)	procedure. Can be measure on SCCP and TCAP level.	
31BV	Packet Switched LU Success Ratio (PS LU – SR)	Measure MAP GPRS Update Location procedure. Can be measure on SCCP and TCAP level.	
31BR	Packet Switched LU Success Ratio (PS LU – SR)	Measure MAP GPRS Update Location procedure. Can be measure on SCCP and TCAP level.	
32BH	Packet Switched Location Update Delay (PS LU – D)	Measure the time between the MAP UL request until the MAP UL ACK	
32BV	Packet Switched Location Update Delay (PS LU – D)	Measure the time between the MAP UL request until the MAP UL ACK	
32BR	Packet Switched Location Update Delay (PS LU – D)	Measure the time between the MAP UL request until the MAP UL ACK	
33BH	Service accessibility for PSD (PDP-context activation success ratio)	Measure ratio between successful MAP_PDP_Context Activation and attempts	
33BV	Service accessibility for PSD (PDP-context activation success ratio)	Measure ratio between successful MAP_PDP_Context Activation and attempts	
34BH	Set-up Delay (ST PSD)	Measure timing between successful MAP_PDP_Context Activation Request and Response	
34BV	Set-up Delay (ST PSD)	Measure timing between successful MAP_PDP_Context Activation Request and Response	
35BH	PDP Context Cut-Off Ratio (session Stability measured at PDP context or PS level)	N/A	
35BV	PDP Context Cut-Off Ratio (session Stability measured at PDP context or PS level)	N/A	
36BH	Average PDP Context Session Time (per APN)	Measure time between the MAP_PDP Activation and the MAP_PDP_Delete message	
36BV	Average PDP Context Session Time (per APN)	Measure time between the MAP_PDP Activation and the MAP_PDP_Delete	

V10.0 Page 67 of 111

GRQ Test Code	Parameter	How to Measure	Test Specifics
		message	
37BH	Throughput (Kbits/sec)	Measure UDP Packet volume exchanged	
37BV	Throughput (Kbits/sec)	Measure UDP Packet volume exchanged	
38BH	Goodput (Kbits/sec)	Measure UDP Packet volume exchanged, corrected by filtering UDP containing TCP retransmission	only application based on TCP
38BV	Goodput (Kbits/sec)	Measure UDP Packet volume exchanged, corrected by filtering UDP containing TCP retransmission	only application based on TCP
39BH	Roundtrip time	Measure UDP roundtrip based on encapsulated TCP acknowledgement mechanisms	only application based on TCP
39BV	Roundtrip time	Measure UDP roundtrip based on encapsulated TCP acknowledgement mechanisms	only application based on TCP
40BH	Packet loss	Measure UDP Packet Loss based on TCP retransmission mechanisms	only application based on TCP
40BV	Packet loss	Measure UDP Packet Loss based on TCP retransmission mechanisms	only application based on TCP

Table 7: Parameter mesaurament table

5.2.3 LTE test specification

A detailed test specification for passive KPI monitoring to be added in this section

V10.0 Page 68 of 111

GSM Association Non-confidential Official Document IR.81 - GRQ Measurement Implementation

5.3 CAMEL Monitoring

5.3.1 General Information

Although CAMEL Monitoring was not trialled by GRQ project Jan-Apr 2008, this method is similar to SS7 Monitoring. The general information below is for information only.

5.3.1.1 When to measure:

The measurement is made continuously that is as soon as live traffic generates relevant data. The KPI calculated over a daily time window and is aggregated for the Month.

Example – Day 1 – KPI = 90%, Day 2 – KPI = 95% and so on Day 3 – KPI = 88%

GRQ KPI is the average of the daily KPI.

A daily measurement is considered as valid if there is at least 1 measure every 4 hours (6/day or 180/Month) or according to a mutual agreement between the HPMN and VPMN.

5.3.1.2 Where to measure:

The passive monitoring occurs on the operator's and Hubbing Provider's international links (SS7 links, voice interconnect links and IP/Gp links).

All parties have to agree on the address ranges they have to monitor CC/NDC ranges, MSRN Ranges, IP Ranges of GPRS Nodes.

5.3.1.3 Known Limitations:

The measurements are done on the live traffic. Therefore it brings information on node where the roaming service is correctly configured. Typically, Radio failure or Network configuration failure is not unambiguously detectable.

CAMEL is activated per subscriber. Therefore the kind of subscriber having a CAMEL mark may influence results (Prepaid, VPN, Postpaid, and so on)

5.3.1.4 GRQ Monitoring Pre-requisites

Requires SS7 monitoring capabilities for most of the tests. Requires CAMEL support from the Operators and the Hubbing Providers

5.3.2 Test specification

Test information will be appended at a later stage when this method has been tested against the GRQ Framework.

V10.0 Page 69 of 111

5.4 Call Flows

5.4.1 Location update

5.4.1.1 Bilateral case

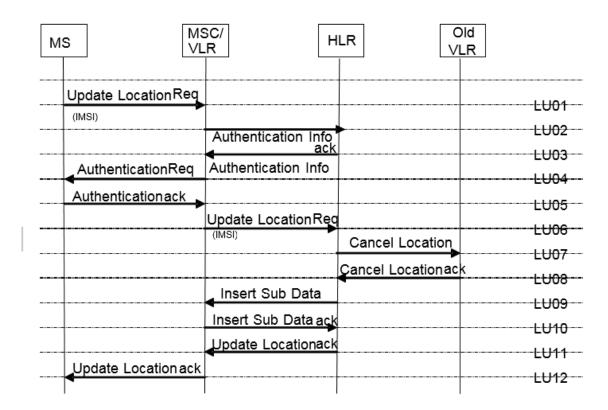


Figure 2: Location update with HLR and VLR

V10.0 Page 70 of 111

GSM Association Non-confidential Official Document IR.81 - GRQ Measurement Implementation

5.4.1.2 Roaming Hubbing Provider case (only GRQ monitoring relevant procedures)

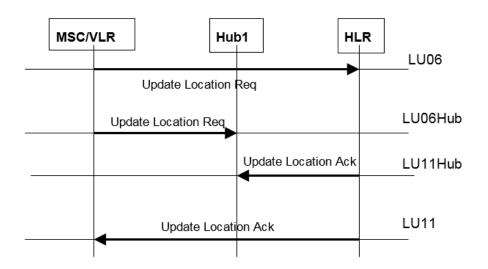


Figure 3: Location Update with Roaming Hubbing Provider

Note: LU06 and LU11 are for reference only

V10.0 Page 71 of 111

5.4.2 Voice call MO

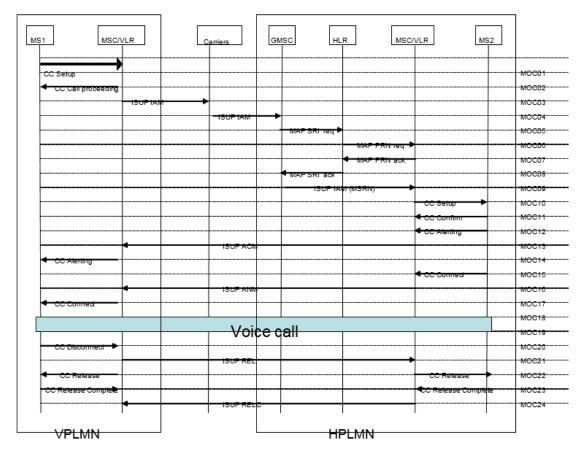


Figure 4: CS voice call MO

Note: Although some signalling may pass through the roaming Hubbing Provider the diagram only refers to the bilateral case.

V10.0 Page 72 of 111

5.4.3 Voice call MT

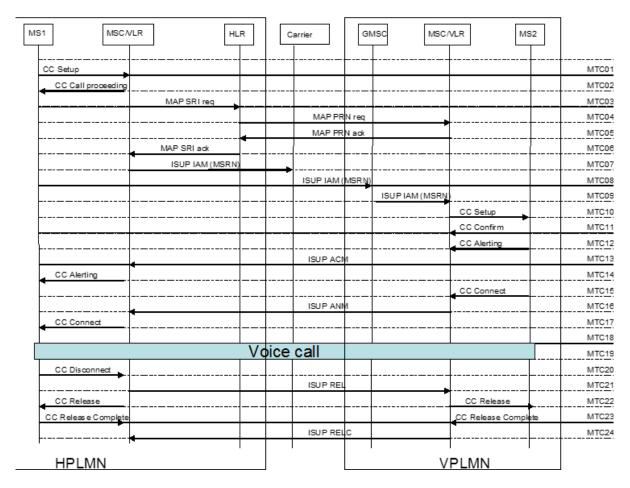


Figure 5: CS voice call MT

Note: Although some signalling may pass trough the roaming Hubbing Provider the diagram only refers to the bilateral case

5.4.4 SMS and SMSoSGs

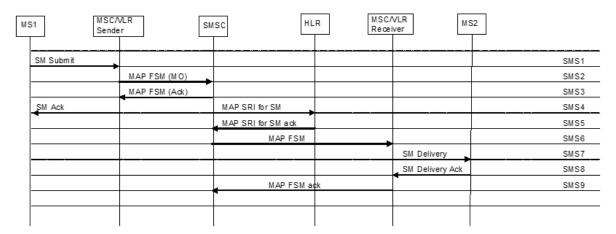


Figure 6: SMS and SMSoSGs

V10.0 Page 73 of 111

5.4.5 Packet Switched/GPRS

5.4.5.1 Bilateral case

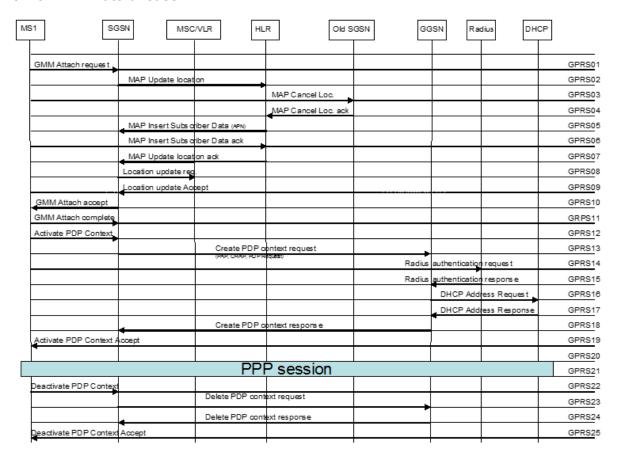


Figure 7: GPRS PDP context and data transfer in bilateral case

V10.0 Page 74 of 111

5.4.5.2 Roaming Hubbing Provider Case (only relevant procedures)

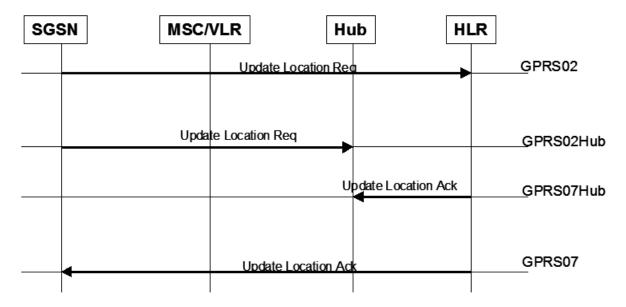


Figure 8: Packet Switch flow for Roaming Hub Provider

V10.0 Page 75 of 111

5.4.6 FTP

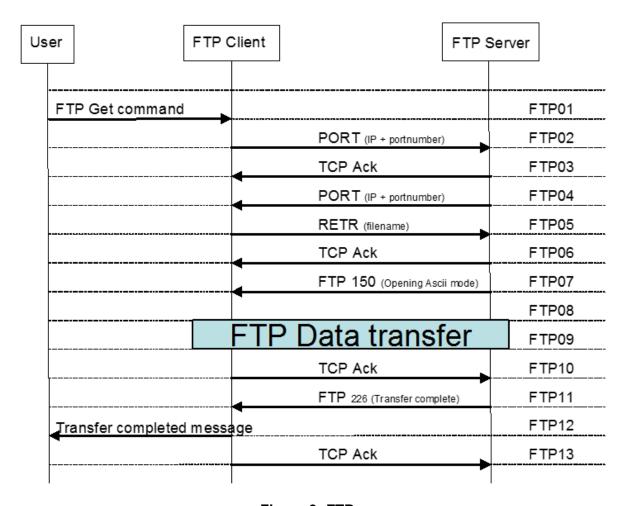


Figure 9: FTP

Note: FTP00: The time to initiate FTP

5.4.7 **Ping**

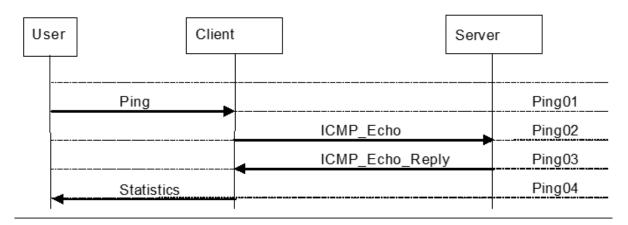


Figure 10: Ping

V10.0 Page 76 of 111

5.4.8 HTTP/HTTPS

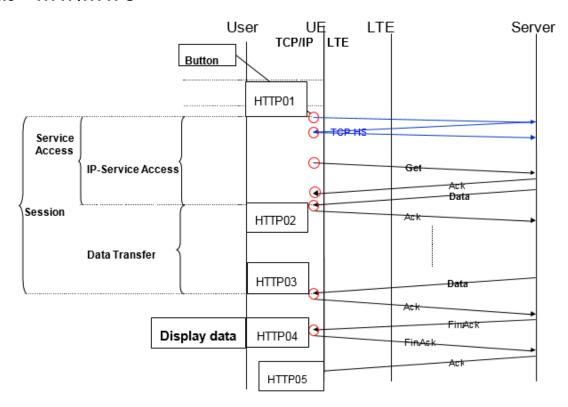


Figure 11: HTTP/HTTPS session flow

V10.0 Page 77 of 111

GSM Association
Official Document IR.81 - GRQ Measurement Implementation

5.4.9 EPS

5.4.9.1 EPS attach

The EPS attach signalling flow refers to 3GPP TS 23.401 [5]. The trigger / observation points are numbered by using the same procedural step numbers in the figure. The reference interface and the supported protocol at the trigger points are listed in the following table.

Trigger point	EPS attach procedural step number	Description	Interface / protocol
EPS01	1	UE attach request	LTE-Uu / NAS
EPS05 _{vh}	5a	Authentication / security	S6a / Diameter
EPS05 _{hv}	5a	Authentication / security	S6a / Diameter
EPS07 _{vh}	7	Delete session request	S8 or S11 / GTPv2-C
EPS07 _{hv}	7	Delete session response	S8 or S11 / GTPv2-C
EPS08	8	Update location request	S6a / Diameter
EPS09 _{hv}	9	Cancel location	S6a / Diameter
EPS09 _{vh}	9	Cancel location Ack	S6a / Diameter
EPS10 _{vh}	10	Delete session request	S8 or S11 / GTPv2-C
EPS10 _{hv}	10	Delete session response	S8 or S11 / GTPv2-C
EPS11	11	Update location Ack	S6a / Diameter
EPS12	12	Create session request	S11 / GTPv2-C
EPS13	13	Create session request	S8 / GTPv2-C
EPS15	15	Create session response	S8 / GTPv2-C
EPS16	16	Create session response	S11 / GTPv2-C
EPS18	18	RRC connection reconfiguration	LTE-Uu / NAS
EPS21	21	Direct transfer	LTE-Uu / NAS

V10.0 Page 78 of 111

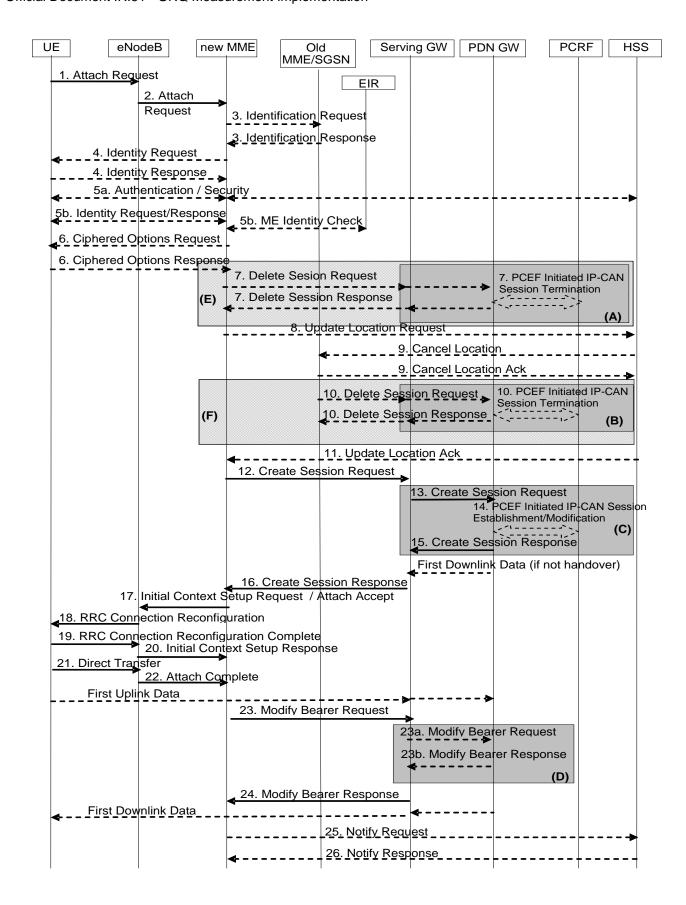


Figure 12 EPS attach

V10.0 Page 79 of 111

GSM Association Non-confidential Official Document IR.81 - GRQ Measurement Implementation

5.4.9.2 Combined EPS / IMSI attach

The signalling flow of the combined EPS /IMSI attach refers to 3GPP TS 23.272 [4]. The trigger / observation points are numbered by using the same procedural step numbers in the figure.

Trigger attach procedural step number		Description	Interface / protocol	
	Combined EPS/IMSI	EPS		
EPSC01	1	-	UE combined attach request	LTE-Uu / NAS
EPS05 _{vh}	-	5a	Authentication / security	S6a / Diameter
EPS05 _{hv}	-	5a	Authentication / security	S6a / Diameter
EPS07 _{vh}	-	7	Delete session request	S8 or S11 / GTPv2-C
EPS07 _{hv}	-	7	Delete session response	S8 or S11 / GTPv2-C
EPS08	-	8	Update location request	S6a / Diameter
EPS09 _{hv}	-	9	Cancel location	S6a / Diameter
EPS09 _{vh}	-	9	Cancel location Ack	S6a / Diameter
EPS10 _{vh}	-	10	Delete session request	S8 or S11 / GTPv2-C
EPS10 _{hv}	-	10	Delete session response	S8or S11 / GTPv2-C
EPS11	-	11	Update location Ack	S6a / Diameter
EPS12	-	12	Create session request	S11 / GTPv2-C
EPS13	-	13	Create session request	S8 / GTPv2-C
EPS15	-	15	Create session response	S8 / GTPv2-C
EPS16	-	16	Create session response	S11 / GTPv2-C
LU06	5	-	Update location request	D / SS7
LU11	5	-	Update location Ack	D / SS7
EPS18	-	18	RRC connection reconfiguration	LTE-Uu / NAS
EPS21	-	21	Direct transfer	LTE-Uu / NAS

V10.0 Page 80 of 111

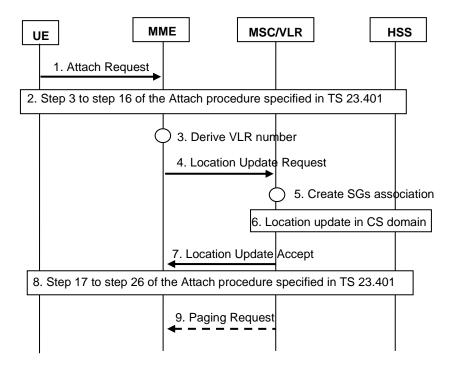


Figure 13: Combined EPS /IMSI attach

V10.0 Page 81 of 111

GSM Association
Official Document IR.81 - GRQ Measurement Implementation

Non-confidential

5.4.9.3 Voice CSFB MO call

The voice CSFB MO call flow consists of two diagrams, the handovers between EPS to CS domains before and after a CS MO call and the CS MO call establishment.

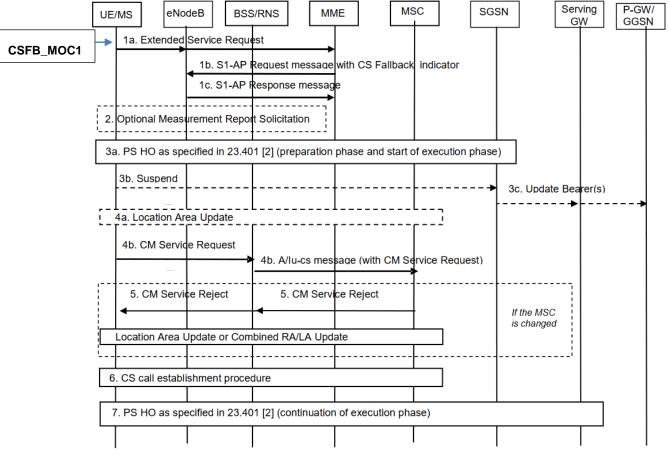


Figure 14: Voice CSFB MO call with PS / CS HO [4]

The call flow below is the expansion of procedure 6 for the CS call establishment procedure in the previous flow.

V10.0 Page 82 of 111

GSM Association Official Document IR.81 - GRQ Measurement Implementation Non-confidential

Figure 15: CS MO call establishment

The CSFB PDD-MO is defined as the time between CSFB_MOC2 - CSFB_MOC1.

V10.0 Page 83 of 111

5.4.9.4 Voice CSFB MT call

The voice CSFB MT call flow consists of two diagrams, the handovers between EPS to CS domains before and after a CS MT call and the CS MT call establishment.

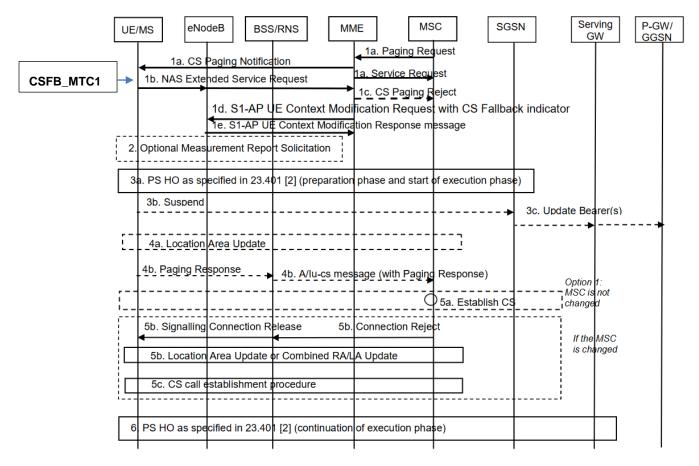


Figure 16: Voice CSFB MT call with PS / CS HO [4]

V10.0 Page 84 of 111

GSM Association Non-confidential Official Document IR.81 - GRQ Measurement Implementation

The call flow below is the expansion of procedure 5c for the CS call establishment procedure in the previous flow.

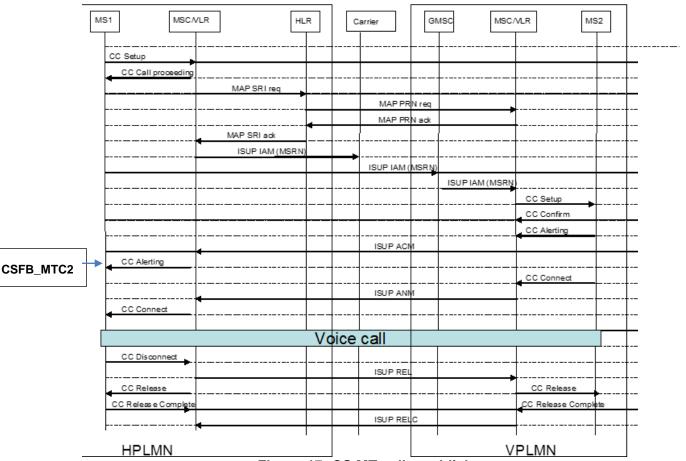


Figure 17: CS MT call establishment

The CSFB PDD-MT is defined as the time between CSFB_MTC2 - CSFB_MTC1.

V10.0 Page 85 of 111

5.5 Trigger Table

5.5.1 GSM/GPRS and UMTS trigger points

		Reference	0	5 ID : (
Test	Parameter	flow	Start point	End Point
CIRCUI	T-SWITCHED			
1AH, 1AV, 1BH, 1BV	LU update success ratio	Location update	LU01 (Active) LU06 (Passive)	LU12 (Active) LU11(Passive)
1BR	LU update success ratio	Location update	LU06HUB	LU11Hub
2AH, 2AV, 2BH, 2BV	LU delay	Location update	LU01 (Active) LU06 (Passive)	LU12 (Active) LU11(Passive)
2BR	LU delay	Location update	LU06Hub	LU11Hub
3AH, 3AV, 3BH, 3BV	NER-MO (Network Effectiveness Ratio on Mobile Originated calls in the visited network)	Voice call MO	MOC01 (Active) MOC03 (Passive)	MOC14 (Active) MOC13 (Passive)
4AH, 4AV, 4BH, 4BV	NER-MT (Network Effectiveness Ratio on Mobile Terminated calls in the visited network)	Voice call MT	MTC01 (Active) MTC07 (Passive)	MTC14 (Active) MTC13 (Passive)
5AH, 5AV, 5BH, 5BV	PDD-MO (Post Dialling Delay)	Voice call MO	MOC01 (Active) MOC03 (Passive)	MOC14 (Active) MOC13 (Passive)
6AH, 6AV, 6BH, 6BV	PDD-MT (Post Dialling Delay)	Voice call MT	MTC01 (Active) MTC07 (Passive)	MTC14 (Active) MTC13 (Passive)
7AH, 7AV, 7BH, 7BV	CSSR-MO (Call Setup Succes Ratio on Mobile Originated calls in the visited network)	Voice call MO	MOC01 (Active) MOC03 (Passive)	MOC17 (Active) MOC16 (Passive)
8AH, 8AV, 8BH, 8BV	CSSR-MT (Call Setup Succes Ratio on Mobile Terminated calls in the visited network)	Voice call MT	MTC01 (Active) MTC07 (Passive)	MOC17 (Active) MOC16 (Passive)

V10.0 Page 86 of 111

Test	Parameter	Reference flow	Start point	End Point
9BH, 9BV	REL (ISUPv2 signalling transparency)	Voice call MO	MOC20	MOC22
10BH, 10BV	OCN and RDN (ISUPv2 signalling transparency)	No flow available		
11AH, 11AV, 11BH, 11BV	CCR (Call Completion Rate Circuit)	Voice call MO	MOC14 (Active) MOC13 (Passive)	MOC20 (Active) MOC21 (Passive)
12BH, 12BV	ALOC	Voice call MO	MOC03	MOC21
13aAH, 13aAV, 13aBH, 13aBV	CLI transparency (MO)	Voice call MO	MOC01 (Active) MOC02 (Passive)	MOC10 (Active), (Passive)
13bAV, 13bBV, 13bBH, 13bBV	CLI transparency (MT)	Voice call MT	MTC01 (Active) MTC02 (Passive)	MTC10 (Active), (Passive)
14aAH, 14aAV	Speech Quality (SpQ_received_R_side)	Voice call MO	MOC18 (Active)	MOC19 (Active)
14bAV, 14bAV	Speech Quality (SpQ_received_H_side)	Voice call MO	MOC18 (Active)	MOC19 (Active)
	SMS			
21AH, 21AV, 21BH, 21BV	Service Accessibility SMS MO (SA SMS MO)	SMS	SMS01 (Active) SMS02 (Passive)	SMS04 (Active) SMS03 (Passive)
22AH, 22AV, 22BH, 22BV	Service Accessibility SMS MT (SA SMS MT)	SMS	SMS04 (Active) SMS06 (Passive)	SMS08 (Active) SMS09 (Passive)
23AH, 23AV, 23BH, 23BV	Access Delay SMS MO (AD SMS-MO)	SMS	SMS01 (Active) SMS02 (Passive)	SMS04 (Active) SMS03 (Passive)
24AH, 24AV, 24BH, 24BV	Access Delay SMS MT (AD SMS-MT)	SMS	SMS04 (Active) SMS06 (Passive)	SMS08 (Active) SMS09 (Passive)
25AH, 25AV, 25BH, 25BV	End-to-End Delivery Time for SMS-MO	SMS	SMS01 (Active) SMS02 (Passive)	SMS08 (Active) SMS09 (Passive)

V10.0 Page 87 of 111

Test	Parameter	Reference flow	Start point	End Point
26AH, 26AV, 26BH, 26BV	End-to-End Delivery Time for SMS-MT	SMS	SMS01 (Active) SMS02 (Passive)	SMS08 (Active) SMS09 (Passive)
	PACKET-SWIT	CHED		
31AH, 31AV, 31BH, 31BV	Packet Switched LU Success Ratio (PS LU - SR)	GPRS	GPRS01 (Active) GPRS02 (Passive)	GPRS10 (Active) GPRS09 (Passive)
31BR	Packet Switched LU Success Rate (PS LU - SR)	GPRS	GPRS02Hub	GPRS07Hub
32AH, 32AV, 32BH, 32BV	Packet Switched Location Update Delay (PS LU - D)	GPRS	GPRS01 (Active) GPRS02 (Passive)	GPRS10 (Active) GPRS09 (Passive)
32BR	Packet Switched Location Update Delay (PS LU - D)	GPRS	GPRS02Hub	GPRS07Hub
33AH, 33AV, 33BH, 33BV	Service accessibility for PSD (PDP-context activation success rate)	GPRS	GPRS12 (Active) GPRS13 (Passive)	GPRS19 (Active) GPRS18 (Passive)
34AH, 34AV, 34BH, 34BV	Set-up Delay (ST PSD)	GPRS	GPRS12 (Active) GPRS13 (Passive)	GPRS19 (Active) GPRS18 (Passive)
35AH, 35AV, 35BH, 35BV	PDP Context Cut-Off Ratio (session Stability measured at PDP context or PS level)	GPRS	GPRS19 (Active) GPRS18 (Passive)	GPRS25 (Active) GPRS24 (Passive)
36AH, 36AV, 36BH, 36BV	Average PDP Context Session Time (per APN)	GPRS	GPRS20	GPRS21
37AH, 37AV, 37BH, 37BV	Throughput (Kbits/sec)	FTP / GPRS	FTP01 (Active) GPRS21 (Passive)	FTP12 (Active) GPRS21 (Passive)
38BH, 38BV, 38BH, 38BV	Goodput (Kbits/sec)	FTP / GPRS	FTP01 (Active) GPRS21 (Passive)	FTP12 (Active) GPRS21 (Passive)
39AH, 39AV,	Roundtrip time	Ping / GPRS	Ping 01 (Active) During TCP	Ping04 (Active) During TCP

V10.0 Page 88 of 111

Test	Parameter	Reference flow	Start point	End Point
39BH, 39BV			session (Passive)	session (Passive)
40AH, 40AV, 40BH, 40BV	Packet loss	Ping / GPRS	Ping 01 (Active) During TCP session (Passive)	Ping04 (Active) During TCP session (Passive)
142AH,	HTTP / HTTPS IP service setup time	HTTP/HTT	HTTP01	HTTP02
142AV		PS	(active)	(active)
143AH,	HTTP / HTTPS session success ratio	HTTP/HTT	HTTP01	HTTP03
143AV		PS	(active)	(active)
144AH,	HTTP / HTTPS session time	HTTP/HTT	HTTP01	HTTP03
144AV		PS	(active)	(active)
145AH,	HTTP / HTTPS mean data rate	HTTP/HTT	HTTP01	HTTP03
145AV		PS	(active)	(active)
146AH,	HTTP / HTTPS data transfer success ratio	HTTP/HTT	HTTP01	HTTP04
146AV		PS	(active)	(active)

V10.0 Page 89 of 111

5.5.2 LTE trigger points

Test				
code	Parameter	Reference flow	Start point	End Point
		Voice CSF	В	
101AH, 101AV, 101BH, 101BV	PS location update success ratio	Combined EPS / IMSI attach	EPSC01 (Active) EPS08 (Passive) EPS09 _{hv} (Passive) LU06 (Passive) EPS07 _{vh} (Passive) ⁶ EPS10 _{vh} (Passive) ⁶	EPS18 (Active) EPS11 (Passive) EPS09 _{vh} (Passive) LU11 (Passive) EPS07 _{hv} (Passive) ⁶ EPS10 _{hv} (Passive) ⁶
101BR	PS location update success ratio	Combined EPS / IMSI attach	EPS08Hub (Passive) EPS09 _{hv} Hub(Passive) LU06Hub (Passive)	EPS11Hub (Passive) EPS09 _{vh} Hub(Passive) LU11Hub (Passive)
102AH, 102AV, 102BH, 102BV	PS location update delay	Combined EPS / IMSI attach	EPSC01 (Active) EPS08 (Passive) LU06 (Passive)	EPS18 (Active) EPS11 (Passive) LU11 (Passive)
102BR	PS location update delay	Combined EPS / IMSI attach	EPS08Hub (Passive) LU06Hub (Passive)	EPS11Hub (Passive) LU11Hub (Passive)
103AH, 103AV	CSFB return to LTE success ratio	-	Disconnect voice call (Active)	Return to LTE (Active)
104AH, 104AV	CSFB return to LTE time	-	Disconnect voice call (Active)	Return to LTE (Active)
3AH, 3AV, 3BH, 3BV	Service Accessibility Telephony – MO	Voice call MO	MOC01 (Active) MOC03 (Passive)	MOC14 (Active) MOC13 (Passive)
4AH, 4AV, 4BH, 4BV	Service Accessibility Telephony – MT	Voice call MT	MTC01 (Active) MTC07 (Passive)	MTC14 (Active) MTC13 (Passive)
115AH, 115AV, 5BH, 5BV	CSFB Setup Time Telephony – MO	CSFB Voice call MO	CSFB MOC1 (Active) MOC03 (Passive)	CSFB MOC2 (Active) MOC13 (Passive)
116AH, 116AV, 6BH, 6BV	CSFB Setup Time Telephony – MT	CSFB Voice call MT	CSFB MTC1 (Active) MTC07 (Passive)	CSFB MTC2 (Active) MTC13 (Passive)

⁶ The S8 interface and the trigger point referring to the interface are valid for the home routed architecture via PGW at HPMN.

V10.0 Page 90 of 111

Test code	Parameter	Reference flow	Start point	End Point
SMSoS	es e			
101AH, 101AV, 101BH, 101BV	PS location update success ratio	Combined EPS / IMSI attach	EPSC01 (Active) EPS08 (Passive) EPS09 _{hv} (Passive) LU06 (Passive) EPS07 _{vh} (Passive) ⁶ EPS10 _{vh} (Passive) ⁶	EPS18 (Active) EPS11 (Passive) EPS09 _{vh} (Passive) LU11 (Passive) EPS07 _{hv} (Passive) ⁶ EPS10 _{hv} (Passive) ⁶
101BR	PS location update success ratio	Combined EPS / IMSI attach	EPS08Hub (Passive) EPS09 _{hv} Hub(Passive) LU06Hub (Passive)	EPS11Hub (Passive) EPS09 _{vh} Hub(Passive) LU11Hub (Passive)
102AH, 102AV, 102BH, 102BV	PS location update delay	Combined EPS / IMSI attach	EPSC01 (Active) EPS08 (Passive) LU06 (Passive)	EPS18 (Active) EPS11 (Passive) LU11 (Passive)
102BR	PS location update delay	Combined EPS / IMSI attach	EPS08Hub (Passive) LU06Hub (Passive)	EPS11Hub (Passive) LU11Hub (Passive)
21AH, 21AV, 21BH, 21BV	Service Accessibility SMS MO (SA SMS MO)	SMS and SMSoSGs	SMS01 (Active) SMS02 (Passive)	SMS04 (Active) SMS03(Passive)
22AH, 22AV, 22BH, 22BV	Service Accessibility SMS MT (SA SMS MT)	SMS and SMSoSGs	SMS04 (Active) SMS06 (Passive)	SMS08 (Active) SMS09 (Passive)
23AH, 23AV, 23BH, 23BV	Access Delay SMS MO (AD SMS-MO)	SMS and SMSoSGs	SMS01 (Active) SMS02 (Passive)	SMS04 (Active) SMS03(Passive)
24AH, 24AV, 24BH, 24BV	Access Delay SMS MT (AD SMS-MT)	SMS and SMSoSGs	SMS04 (Active) SMS06 (Passive)	SMS08 (Active) SMS09 (Passive)
25AH, 25AV, 25BH, 25BV	End-to-End Delivery Time for SMS-MO	SMS and SMSoSGs	SMS01 (Active) SMS02 (Passive)	SMS08 (Active) SMS09 (Passive)
26AH, 26AV, 26BH, 26BV	End-to-End Delivery Time for SMS-MT	SMS and SMSoSGs	SMS01 (Active) SMS02 (Passive)	SMS08 (Active) SMS09 (Passive)

V10.0 Page 91 of 111

Test code	Parameter	Reference flow	Start point	End Point
LTE data	a			
101AH, 101AV, 101BH, 101BV	PS location update success ratio	EPS attach	EPS01 (Active) EPS08 (Passive) EPS09 _{hv} (Passive) EPS07 _{vh} (Passive) ⁶	EPS18 (Active) EPS11 (Passive) EPS09 _{vh} (Passive)
			EPS10 _{vh} (Passive) ⁶	EPS07 _{hv} (Passive) ⁶ EPS10 _{hv} (Passive) ⁶
101BR	PS location update success ratio	EPS attach	EPS08Hub (Passive) EPS09 _{hv} Hub(Passive)	EPS11Hub (Passive) EPS09 _{vh} Hub(Passive)
102AH, 102AV, 102BH, 102BV	PS location update delay	EPS attach	EPS01 (Active) EPS08 (Passive)	EPS18 (Active) EPS11 (Passive)
102BR	PS location update delay	EPS attach	EPS08Hub (Passive)	EPS11Hub (Passive)
105AH, 105AV, 105BH, 105BV	Default EPS bearer context activation success ratio	EPS attach	EPS18 (Active) EPS12 (Passive) EPS13 (Passive) ⁶	EPS21 (Active) EPS16 (Passive) EPS15 (Passive) ⁶
106AH, 106AV	Default EPS bearer context activation time	EPS attach	EPS18 (Active) EPS12 (Passive)	EPS21 (Active) EPS16 (Passive)
107AH, 107AV	DNS host name resolution success ratio	-	DNS request (Active)	DNS data packet (type A) received (Active)
108AH, 108AV	DNS host name resolution time	-	DNS request (Active)	DNS data packet (type A) received (Active)
109AH, 109AV	Default EPS bearer context cut-off ratio	EPS attach		
131AH, 131AV	FTP {download upload} IP service access success ratio	FTP	FTP00 (active)	FTP08 (active)
132AH, 132AV	FTP {download upload} IP service setup time	FTP	FTP00 (active)	FTP08 (active)
133AH, 133AV	FTP {download upload} session success ratio	FTP	FTP00 (active)	FTP09 (active)
134AH, 134AV	FTP {download upload} session time	FTP	FTP00 (active)	FTP09 (active)
135AH, 135AV	FTP {download upload} mean data rate	FTP	FTP00 (active)	FTP09 (active)
136AH, 136AV	FTP (download upload) data transfer success ratio	FTP	FTP00 (active)	FTP11 (active)

V10.0 Page 92 of 111

Test code	Parameter	Reference flow	Start point	End Point
137AH, 137AV	FTP {download upload} data capacity	FTP	FTP00 (active)	Reached max. capacity (active)
141AH, 141AV	HTTP / HTTPS IP service access success ratio	HTTP/HTTPS	HTTP01 (active)	HTTP02 (active)
142AH, 142AV	HTTP / HTTPS IP service setup time	HTTP/HTTPS	HTTP01 (active)	HTTP02 (active)
143AH, 143AV	HTTP / HTTPS session success ratio	HTTP/HTTPS	HTTP01 (active)	HTTP03 (active)
144AH, 144AV	HTTP / HTTPS session time	HTTP/HTTPS	HTTP01 (active)	HTTP03 (active)
145AH, 145AV	HTTP / HTTPS mean data rate	HTTP/HTTPS	HTTP01 (active)	HTTP03 (active)
146AH, 146AV	HTTP / HTTPS data transfer success ratio	HTTP/HTTPS	HTTP01 (active)	HTTP04 (active)
147AH, 147AV	HTTP / HTTPS content compression ratio	HTTP/HTTPS	HTTP01 (active)	HTTP04 (active)
148AH, 148AV	HTTP / HTTPS {download upload} data capacity	HTTP/HTTPS	HTTP01 (active)	Reached max. capacity (active)
151AH, 151AV, 151BH, 151BV	PING packet loss ratio	PING	Ping 01 (Active) During TCP session (Passive)	Ping04 (Active) During TCP session (Passive)
152AH, 152AV, 152BH, 152BV	PING round trip time	PING	Ping 01 (Active) During TCP session (Passive)	Ping04 (Active) During TCP session (Passive)

5.6 Monitoring Values

Please refer to the GRQ Handbook (BA.51) for information on the GRQ trial observed measurements and how to define Service Level, trigger values

6 GRQ Test Result Presentations

Visualisation of test result data stored is always of great importance. Presentation of quality KPIs values, collected at active testing of network interconnect or roaming, is the key step of the visualisation and displaying of the test results towards the human users involved. Much attention in KPIs presentation is given to the interconnect network complexity and roaming service challenges that arise. A good presentation of the GRQ test results, provides to human users a new and rich way of quality analysis with good user experience.

V10.0 Page 93 of 111

6.1 KPI Matrix presentation

A fundamental and probably the most popular form to present the KPI test result is in a matrix, not only because the matrix is easily stored and can be retrieved from a KPI database, but also a two-dimensional matrix is suitably displayed in a rectangular screen.

Figure 18: KPI matrix presentation

Very often, the measured GRQ KPI values are presented as a matrix group with at least 3 dimensions in a large size with axes of GRQ KPIs and VPMN partners with possibly more locations and testing time. A rectangular screen is selected to display or visualize a single matrix. Multiple screens are used for displaying multiple matrixes.

6.2 KPI chart presentations

Extracted from the original primary KPI matrix, a submatrix can present one or more of the concerned KPIs of interest. In these simplified cases, KPI charts are used. There exist different chart types which are often used in a dashboard for the presentation of a partial, but characterized test result.

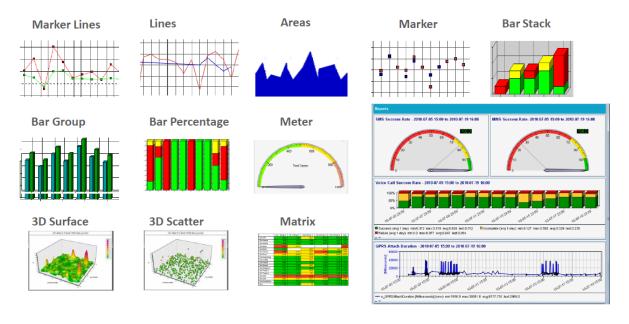


Figure 19: Different chart types

V10.0 Page 94 of 111

GSM Association Non-confidential
Official Document IR.81 - GRQ Measurement Implementation

6.3 Single Service Indicator and Single Quality Indicator

Single Service Indicator (SSI) is a composite performance indicator of a particular service. The main purpose of having a SSI is to provide an executive management view of quality with a single and unique service indicator. The most relevant quality KPIs are selected, combined and weighted in a calculation according to their importance. The SSI abstract calculation can be found in IR.42, section 5 [1].

Figure 20: Single Service Indicator

Similar to SSI, Single Quality Indicator (SQI) combines a number of weighted SSIs and provides a single unique quality score of performance.

6.3.1 SSI and SQI for roaming

In a roaming environment, an SSI is more focussed on the service accessibility and user experience, rather than the network accessibility (location or routing area update) in a VPMN, as steering of roaming at the VPMN may alter the result.

The SSI is defined at the service level. The SQI can be defined at the level per visited network or per country, depending on the purpose. For example, in case it is required to compare the performance of a specific service among several operators the SSI per service can be used. However, to have a general overview of the performance in a visited network, the SQI gives a single performance value per VPMN. In a similar way, SQI can provide a single performance value per country.

6.3.2 SSI and SQI in 2G or 3G roaming

The SSI and SQI abstract calculations are found in IR.42 [1], section 5.1.2 and 5.2.1, respectively.

The relevant KPIs are selectively included in the SSI calculation. The main criteria are to select those KPIs which reflect the better user experience of each service and give them an opportune weight according to their importance. The unselected KPIs are masked in the calculation with the zero weight.

6.3.2.1 CS Voice SSI

The CS voice service is evaluated from the user perspective by considering the VPMN capability of delivering a voice call to the HPMN as the most essential roaming service indicator. Therefore, the 1st important KPI is contributed to a call setup. The second

V10.0 Page 95 of 111

GSM Association Non-confidential

Official Document IR.81 - GRQ Measurement Implementation

important KPI is the voice quality, this has also an impact on the operator's revenue, because a poor voice quality might lead to a reduced conversation time. The capability of retaining a call and to release it correctly is considered with a lower weight, the least impacting the KPI is, the biggest delay experienced by the user after dialling the destination number (PDD) is. This is because a typical user in roaming tends to be more tolerant to such a delay.

The outbound roaming voice SSI is defined as:

$$SSI_Voice = 40\% * CSSR + 30\% * MOS + 20\% * CCR + 10\% * PDD$$

Where:

CSSR: Call Set up Success Ratio,

MOS: Mean Opinion Score, based on the POLQA algorithm,

· CCR: Call Completion Success Ratio,

PDD: Post Dial Delay.

The table below summarizes the weighted value applied to those voice GRQ KPIs which derive the voice SSI per VPMN.

Service	GRQ Number	KPI Name	GRQ KPI	KPI Weight	Higher- Lower Limit	Scoring Mode
Voice	7	CSSR call set up success ratio	CSSR_MO	40	100 – 0	Higher is better
	14	MOS voice quality score	SpQ_received_R_side_MO	15	3 - 2,5	Higher is better
	14	MOS voice quality score	SpQ_received_H_side_MO	15	3 - 2,5	Higher is better
	11	CCR call completion success ratio	CCR_CS_T	20	100 – 0	Higher is better
	5	PDD post dial delay (sec)	PDD-ST_T_MO	10	15 - 8	Lower is better

Table 8: CS Voice roaming SSI calculation

6.3.2.2 SMS SSI

The SMS is quite simple from the user perspective; the most important the factor is, the biggest chances to deliver the SMS within a reasonable time. A default timer of 240 seconds is assumed, after that time out, the test will be failed. The SMS has not been delivered. Therefore, the KPIs considered are the SMS success ratio and the end-to-end delivery time:

$$SSI_{SMS} = 70\% * SMS Success Ratio + 30\% * E2E delivery time$$

Where:

• SMS success ratio: Service Accessibility SMS MO (SA SMS MO),

V10.0 Page 96 of 111

GSM Association Non-confidential Official Document IR.81 - GRQ Measurement Implementation

• E2E delivery time: End-to-End Delivery Time for SMS-MO.

This means that an outbound roaming SMS (MO) shall be delivered successfully within four minutes.

The table below summarizes the weighted value applied to SMS GRQ KPI which derives the SSI per VPMN.

Service	GRQ Number	KPI Name	GRQ KPI	KPI Weight	Higher- Lower Limit	Scoring Mode
SMS	21	SMS success ratio	SA_SMS_MO	70	100 – 0	Higher is better
	25	End-to-End Delivery Time for SMS-MO (sec)	E2E delivery time	30	240 - 0	Lower is better

Table 9: SMS Roaming SSI calculation

V10.0 Page 97 of 111

Table 10: SMS Roaming SSI calculation

6.3.2.3 PS Data SSI

The data services are evaluated by considering first the accessibility of the data network, meaning the PDP context activation. Without the success of this procedure the data is not available at all, therefore this has a high weight. A second criteria for evaluation is the data speed and the PDP cut off ratio that measures the retain ability of the data connection.

$$SSI_Data = 25\% * PDP CA SR + 50\% * Download_{rate} + 25\% * PDP Cut off ratio$$

Where:

- PDP_CA_SR: PDP context activation Success Ratio,
- Download rate: the measured *Goodput* download bit rate expressed in Mbps,
- PDP Context Cut off ratio: the percentage of the PDP cut off during a data session.

Regarding the data download rate, the *Goodput* is considered because this does not include the overhead and the retransmissions. This way, only the application throughput is considered and the real user experience evaluated.

The table below summarizes the weighted value applied to those KPIs which derive the SSI per VPMN.

Service	GRQ Number	KPI Name	GRQ KPI	KPI Weight	Higher- Lower Limit	Scoring Mode
Data	33	PDP context activation success ratio	PDP_CA_SR	25	100 – 0	Higher is better
	38	Download Goodput (Mbps)	Goodput	50	2 - 0,5	Higher is better
	35	PDP context cut off ratio	PDP_C_COR	25	100 - 0	Lower is better

Table 11: PS data roaming SSI calculation

6.3.2.4 SQI per VPMN

SQI_VPMN is defined to aggregate the services in the VPMN. The indicator aggregates the individual SSI of each service by means of a weighted sum according to the following criteria:

$$SQI_VPMN = 40\% * Voice (SSI) + 40\% * Data (SSI) + 20\% * SMS (SSI)$$

The voice and the data services are considered with equal weight, because in roaming the data services, influence the customer experience at least in the same way as the voice

V10.0 Page 98 of 111

GSM Association Non-confidential

Official Document IR.81 - GRQ Measurement Implementation

service. This is due to the expansion of OTT services, internet browsing and for business travellers the email is particularly important. This explains also why the SMS plays a less role, as part of the messaging person-to-person is sent via OTT applications.

The table below summarizes the weighted value applied to those KPIs which derive the SSI per VPMN.

Service	GRQ Number	KPI Name	GRQ KPI	KPI Weight	Higher -Lower Limit	Scoring Mode
Voice	7	CSSR call set up success ratio	CSSR_MO	16	100 – 0	Higher is better
	14	MOS voice quality score	SpQ_received_R_side_ MO	6	3 - 2,5	Higher is better
	14	MOS voice quality score	SpQ_received_H_side_ MO	6	3 - 2,5	Higher is better
	11	CCR call completion success ratio	CCR_CS_T	8	100 – 0	Higher is better
	5	PDD post dial delay (sec)	PDD-ST_T_MO	4	15 - 8	Lower is better
SMS	21	SMS success ratio	SA_SMS_MO	14	100 – 0	Higher is better
	25	End-to-End Delivery Time for SMS-MO (sec)	E2E delivery time	6	240-0	Lower is better
Data	33	PDP context activation success ratio	PDP_CA_SR	10	100 – 0	Higher is better
	38	Download Throughput in Mbps	Goodput	20	2 - 0,5	Higher is better
	35	PDP context cut off ratio	PDP_C_COR	10	100 - 0	Lower is better

Table 12: Roaming SQI calculation per VPMN

6.3.2.5 SQI per country

A countrywide SSI allows to compare the overall user experience among different visited countries. In this case the correct weighting is applied to the steering of roaming. In this way the preferred operator performances are weighted more than the non-preferred where it is expected to have less traffic. However, in most cases this information is confidential. Therefore the criteria to be used option for the countywide SSI is the simple arithmetical average of the SSI_VPMN with equal weights.

$$SQI_Country = average(SSI_VPMN)$$

The SQI per country allows to have an overall indication on the user roaming experience in each visited country. This information can also be used for benchmarking purposes.

V10.0 Page 99 of 111

GSM Association Non-confidential

Official Document IR.81 - GRQ Measurement Implementation

6.3.3 SSI and SQI in 4G roaming

In the 4G roaming environment, the SSI and SQI have three service aspects, voice, data and messaging services.

6.3.3.1 Voice CSFB

The voice CS Fallback service is evaluated from the user perspective by considering the VPMN capability of delivering a voice call when the UE has been attached under a combined EPS/IMSI in VPMN. Therefore, the first important KPI contributes to initiate a CS voice call setup (NER-MO). The second important KPI is to measure the capability of redirecting the UE back to 4G after the established voice call is released. The third KPI is the user waiting time from the initiation of the call till ringing (PDD).

The outbound roaming voice CSFB SSI is defined as:

$$SSI_{\text{voice CSFB}} = 60\% * NER_{MO} + 30\% * Return_{tolte} + 10\% * CSFB PDD$$

Where:

- NER-MO: Service Accessibility Telephony (Network Efficiency Ratio) MO,
- Return to LTE: CSFB return to LTE success ratio,
- CSFB PDD: CSFB Post Dial Delay.

The table below summarizes the weighted value applied to those voice CSFB KPIs which derive the voice SSI per VPMN.

Service	GRQ Number	KPI Name	GRQ KPI	KPI Weight	Higher- Lower Limit	Scoring Mode
Voice CSFB	3	Service Accessibility Telephony – MO	NER_MO	60	100 – 0	Higher is better
	103a	CSFB return to LTE success ratio - MO	Return to LTE	30	100 – 0	Higher is better
	115	CSFB PDD post dial delay (sec)	CSFB PDD- ST_T_MO	10	20 - 0	Lower is better

Table 13: Voice CSFB roaming SSI calculation

6.3.3.2 **SMSoSGs**

The SMSoSGs service is evaluated from the user perspective whether the VPMN is capable of delivering SMS when the UE has been attached under a combined EPS/IMSI in VPMN.

Therefore, the first important KPI is the Service Accessibility SMS MO (SA SMS MO). The second important KPI is to measure End-to-End Delivery Time for SMS-MO, to deliver the SMS within a reasonable time. A default timer of 240 seconds is assumed, after that time out, the test will be failed. This means that an outbound roaming SMS (MO) shall be delivered successfully within four minutes.

 $SSI_{SMSoSGS} = 70\% * SMS success ratio + 30\% * E2E delivery time$

V10.0 Page 100 of 111

GSM Association
Official Document IR.81 - GRQ Measurement Implementation

Non-confidential

Where:

- SMS success ratio: Service Accessibility SMS MO (SA SMS MO),
- E2E delivery time: End-to-End Delivery Time for SMS-MO.

The table below summarizes the weighted value applied to SMSoSGs GRQ KPI which derives the SSI per VPMN.

Service	GRQ Number	KPI Name	GRQ KPI	KPI Weight	Higher- Lower Limit	Scoring Mode
SMSoSGs	21	SMS success ratio	SA_SMS_MO	70	100 – 0	Higher is better
	25	End-to-End Delivery Time for SMS-MO (sec)	E2E delivery time	30	240 - 0	Lower is better

Table 14: SMSoSGs Roaming SSI calculation

6.3.3.3 HTTP / HTTPS SSI

The HTTP / HTTPS data service is evaluated by considering first the accessibility to the data network, when the default EPS bearer context is activated. Without the success of this procedure the data service is not available at all. Therefore, it has a higher weight. A second criteria for evaluation is the HTTP /HTTPS download data speed and the success ratio of downloading a complete contents of the WEB page.

 $SSI_{HTTP} = 25\% * EPS bearer \ actv + 50\% * Download_{rate} + 25\% * HTTP session \ completion$

Where:

- EPSbearer actv: Default EPS bearer context activation success ratio,
- Download_{rate}: HTTP / HTTPS mean data rate in mbps, it is recommended to have at least three TCP sessions in parallel,
- HTTPsession completion: HTTP / HTTPS data transfer success ratio.

The table below summarizes the weighted value applied to those KPIs which derive the SSI per VPMN.

Service	GRQ Number	KPI Name	GRQ KPI	KPI Weight	Higher- Lower Limit	Scoring Mode
HTTP / HTTPS	105	Default EPS bearer context activation success ratio	EPS bearer actv	25	100 – 0	Higher is better
	145	HTTP / HTTPS mean data rate (mbps)	Download rate	50	11 - 1	Higher is better
	146	HTTP / HTTPS data transfer success ratio	HTTP session completion	25	100 - 0	Higher is better

Table 15: 4G HTTP / HTTPS SSI calculation

V10.0 Page 101 of 111

GSM Association Non-confidential

Official Document IR.81 - GRQ Measurement Implementation

6.3.3.4 LTE data network performance SSI

The LTE data network SSI indicates the transport network performance for the maximum roaming data capability between the VPMN and the HPMN interconnected via IPX / GRX (illustrated in the figure below).

Figure 21: S8HR or LBO-HR data network SSI

The SSI is based on the data capacity KPI (i.e. maximum throughput available to the end user in roaming), but also on the latency caused by VPMN – HPMN distance, as well as the packet loss ratio affecting the user experience.

 $SSI_{4Gdata} = 25\% * RTT + 50\% * MaxThroughput + 25\% * PacketLoss$

Where:

- RTT: PING round trip time,
- Max Throughput: FTP download data capacity in mbps,
- · Packet Loss: PING packet loss ratio
- The table below summarizes the weighted value applied to those KPIs which derive the SSI per VPMN.

Service	GRQ Number	KPI Name	GRQ KPI	KPI Weight	Higher- Lower Limit	Scoring Mode
LTE data network performance	152	PING round trip time (ms)	RTT	25	370 – 0	Lower is better
	137	FTP download data capacity (mbps)	Max Throughput	50	13.5 - 1	Higher is better
	151	PING packet loss ratio	Packet Loss	25	100 - 0	Lower is better

Table 16: LTE data network SSI calculation

6.3.3.5 SQI per VPMN

Similar to 2G/3G, 4G SQI_VPMN is defined to aggregate the 4G services in the VPMN. The indicator aggregates the individual SSI of each service by means of a weighted sum according to the following criteria:

$$4G\ SOI\ VPMN = 30\% * CSFB\ (SSI) + 60\% * HTTPdata\ (SSI) + 10\% * SMSoSGs\ (SSI)$$

The table below summarizes the weighted value applied to those KPIs which derive the SSI per VPMN.

V10.0 Page 102 of 111

Service	GRQ Number	KPI Name	GRQ KPI	KPI Weight	Higher -Lower Limit	Scoring Mode
Voice CSFB	3	Service Accessibility Telephony – MO	NER_MO	18	100 – 0	Higher is better
	103a	CSFB return to LTE success ratio - MO	Return to LTE	9	100 – 0	Higher is better
	115	CSFB PDD post dial delay (sec)	CSFB PDD- ST_T_MO	3	20 - 0	Lower is better
SMSoS Gs	21	SMS success ratio	SA_SMS_MO	7	100 – 0	Higher is better
	25	End-to-End Delivery Time for SMS-MO (sec)	E2E delivery time	3	240-0	Lower is better
HTTP/ HTTPS Data	105	Default EPS bearer context activation success ratio	EPS bearer actv	15	100 – 0	Higher is better
	145	HTTP / HTTPS mean data rate (mbps)	Download rate	30	11 - 1	Higher is better
	146	HTTP / HTTPS data transfer success ratio	HTTP session completion	15	100 - 0	Higher is better

Table 17: 4G Roaming SQI calculation per VPMN

V10.0 Page 103 of 111

Annex A GRQ KPI Thresholds

The GRQ KPI thresholds characterize the end-to-end quality for mobile services in roaming. The threshold values are applied to both outbound and inbound roaming, independently of whether the KPIs are tested by using active or passive test methods.

A.1 GRQ LTE KPI Thresholds

The thresholds have resulted from the LTE GRQ pilot project performed in Sept 2015⁷ [9]. There are two key recommendations for the KPI thresholds for roaming quality in LTE networks.

- KPI threshold for success ratio of services ≥ 99%
 Consequently, Loss ratio, cut-off ratio etc. ≤ 1%
- Some KPI thresholds depend on geo-distance between HPMN and VPMN.
 Data rate such as data capacity, delay / setup time etc. have two thresholds, depending on whether the geo-distance between HPMN and VPMN is less or more than 4000 km

Although the KPI thresholds have resulted from outbound roaming active tests they can also be referenced for inbound roaming KPI.

A.1.1 LTE Data GRQ KPI Thresholds

The following table contains the referenced LTE GRQ KPI thresholds for data roaming.

GRQ KPI D	GRQ KPI Definition		Threshold	
GRQ Identifier	QoS parameter (KPI)	Geo- distance < 4000 km	Geo- distance ≥ 4000 km	
101	PS location update success ratio (%)	≥ 99.00		Network access
102	PS location update delay (s)	≤ 5.5	≤ 5.5	User experience
105	Default EPS bearer context activation success ratio (%)	≥ 99.00		Network access
106	Default EPS bearer context activation time (ms)	≤ 30		User experience
107	DNS host name resolution success ratio (%)	≥ 99.00		Network access

V10.0 Page 104 of 111

⁷ The LTE GRQ pilot project was led by the NG LTE GRQ task force and managed by the GSMA Network 2020 programme. Vodafone group, Orange Group, Telecom Italia Group, Bouygues Telecom and SIGOS participated in the pilot project.

108	DNS host name resolution time (ms)	≤ 250	≤ 550	User experience
131a	FTP download IP service access success ratio (%)	≥ 99.00		Service access
131b	FTP upload IP service access success ratio (%)	≥ 99.00		Service access
132a	FTP download IP service setup time (s)	≤ 2	≤ 5.5	User experience
132b	FTP upload IP service setup time (s)	≤ 2	≤ 5	User experience
133a	FTP download session success ratio (%)	≥ 99.00		Service access
133b	FTP upload session success ratio (%)	≥ 99.00		Service access
134a	FTP download session time (s)	≤ 2	≤ 5.5	User experience
134b	FTP upload session time (s)	≤ 30	≤ 50	User experience
135a	FTP download mean data rate (Mbit/s)	≥ 13.5	≥ 6	Service access
135b	FTP upload mean data rate (Mbit/s)	≥ 6	≥ 2.5	Service access
136a	FTP download data transfer cut-off ratio (%)	≤ 1.00		Service access
136b	FTP upload mean data transfer cut-off ratio (%)	≤ 1.00		Service access
137a	FTP download data capacity (Mbit/s)	≥ 26.5	≥ 17	User experience
137b	FTP upload data capacity (Mbit/s)	≥ 13	≥ 13	User experience
141	HTTP IP service access success ratio (%)	≥ 99.00		Service access
142	HTTP IP service setup time (ms)	≤ 250	≤ 800	User experience
143	HTTP session success ratio (%)	≥ 99.00		Service access
144	HTTP session time (ms)	≤ 250	≤ 750	User experience
145	HTTP mean data rate (Mbit/s)	≥ 11	≥ 5	User experience
146	HTTP data transfer cut-off ratio (%)	≤ 1.00		User experience
148	HTTP download data capacity (Mbit/s)	≥ 33.5	≥ 18	User experience
			•	•

V10.0 Page 105 of 111

Non-confidential

151	PING packet loss ratio (%)	≤ 1.00		Service
				access
152	PING round trip time (ms)	≤ 100	≤ 370	User experience

Table 18: GRQ KPI Threshold for LTE data roaming

Many parameters will affect the FTP test result. It is therefore recommended to use a file size of 20 MB for the FTP download test and 10 MB for the FTP upload test by using a single TCP/IP connection. The FTP server is located in the HPMN, and fully reliable and reachable through the mobile network from roaming, in order to ensure that the FTP server performance will not affect the LTE network performance during the test.

For the FTP data capacity (download or upload) and HTTP capacity testing, 10 TCP/IP connections, as a maximum, are recommended.

For HTTP tests, it is recommended to download a 20 MB file by using a single TCP/IP connection.

A.1.2 Voice CSFB and SMSoSGs GRQ KPI Thresholds

The following table contains the referenced LTE GRQ KPI thresholds at roaming for voice CSFB and SMSoSGs.

GRQ KPI Def	inition	Threshold		Relevance
GRQ Identifier	QoS parameter (KPI)	Geo- distance < 4000 km	Geo- distance ≥ 4000 km	
101	Location update (combined) success ratio (%)	≥ 99.00		Network access
102	Location update (combined) delay (s)	≤ 6	≤ 9.5	User experience
103a	CSFB return to LTE success ratio - MO (%)	≥ 99.00		Service access
103b	CSFB return to LTE success ratio - MT (%)	≥ 99.00		Service access
104a	CSFB return to LTE time - MO (s)	≤ 9	≤ 11	User experience
104b	CSFB return to LTE time - MT (s)	≤ 9	≤ 13,5	User experience
3	CSFB voice service access success ratio - NER-MO (%)	≥ 99.00		Service access
4	CSFB voice service access success ratio - NER-MT (%)	≥ 99.00		Service access
115	CSFB voice service setup time PDD-MO (s)	≤ 12	≤ 20	User experience

V10.0 Page 106 of 111

116	CSFB voice service setup time PDD-MT (s)	≤ 13.5	≤ 13.5	User experience
7	CSFB call setup success ratio – CSSR-MO (%)	≥ 99.00		Service access
8	CSFB call setup success ratio – CSSR-MT (%)	≥ 99.00		Service access
21	Service accessibility SMS-MO (%)	≥ 99.00		Service access
22	Service accessibility SMS-MT (%)	≥ 99.00		Service access
23	Access delay SMS-MO (s)	≤ 1.5	≤ 3	User experience
24	Access delay SMS-MT (s)	≤ 2.5	≤ 3	User experience
25	End-to-end delivery time SMS-MO (s)	≤ 4	≤ 5.5	User experience
26	End-to-end delivery time SMS-MT (s)	≤ 4.5	≤ 5.5	User experience

Table 19: GRQ KPI thresholds for voice CSFB and SMSoSGs roaming

A.2 GRQ GSM/GPRS and UMTS KPI Thresholds

This section contains the GRQ KPI thresholds for GSM/GPRS and UMTS technologies.

GRQ Identifier			Relevance
1	CS LU SR (CS location update success ratio) (%)	≥ 98.00	Network access
2	1		User experience
3	NER-MO (MO CS voice service access success ratio) (%)	≥ 98.00	Service access
4	NER-MT (MT CS voice service access success ratio) (%)	≥ 98.00	Service access
5	PDD-MO (MO CS voice service setup time) (s)	≤ 8.0	User experience
6	PDD-MT (MT CS voice service setup time) (s)	≤ 8.0	User experience
7	CSSR-MO (MO CS call setup success ratio) (%)	≥ 98.00	Service access
8	CSSR-MT (MT CS call setup success ratio) (%)	≥ 98.00	Service access
11	CCR (CS voice call completion ratio for MO call) (%)	≥ 98.00	Service access

V10.0 Page 107 of 111

CLI (CLI transparency ratio) (%) ≥ 98.00 Service access			
SpQ (speech quality on call-basis)	≥ 3.0 User experience		
SA-MO (Service accessibility SMS-MO) (%) \geqslant 98.00 Service access			
SA-MT (Service accessibility SMS-MT) (%) \geqslant 98.00 Service access			
AD-MO (Access delay SMS-MO) (s) < 4.0 User experie			
AD-MT (Access delay SMS-MT) (s)	≤ 4.0	User experience	
E2E DT-MO (End-to-end delivery time SMS-MO) (s)	≤ 10.0	User experience	
E2E DT-MT (End-to-end delivery time SMS-MT) (s) < 10.0 User		User experience	
, , , , , , , , , , , , , , , , , , , ,		Service access	
7, ()		User experience	
PDPC Act SR (PDP context activation success ratio) (%)	tio) > 98.00 Service access		
PDPC Act Time (PDP context activation time) (s)	≤ 3.0 User experience		
PDPC Cut-off ratio (PDP context cut-off ratio) (%)	≤ 2.00	Service access	
	1	1	
Throughput GPRS (FTP) (kbit/s)	≥ 29	User experience	
Goodput GPRS (FTP) (kbit/s)	≥ 32 User experience		
Roundtrip Time GPRS (Ping) (ms)	≤ 1200	User experience	
Packet Loss GPRS (Ping) (%)	≤ 2.00	Service access	
FTP download session success ratio (%)	≥ 99.00	Service access	
FTP download mean data rate (Mbit/s)	2.5 User experience		
FTP download data transfer cut-off ratio (%)	≤ 1.00 Service access		
HTTP session success ratio (%)	≥ 99.00 Service access		
	SpQ (speech quality on call-basis) SA-MO (Service accessibility SMS-MO) (%) SA-MT (Service accessibility SMS-MT) (%) AD-MO (Access delay SMS-MO) (s) AD-MT (Access delay SMS-MT) (s) E2E DT-MO (End-to-end delivery time SMS-MO) (s) E2E DT-MT (End-to-end delivery time SMS-MT) (s) PS LU SR (PS location update success ratio) (%) PS LU Delay (PS location update delay) (s) PDPC Act SR (PDP context activation success ratio) (%) PDPC Act Time (PDP context activation time) (s) PDPC Cut-off ratio (PDP context cut-off ratio) (%) Throughput GPRS (FTP) (kbit/s) Goodput GPRS (FTP) (kbit/s) Roundtrip Time GPRS (Ping) (ms) Packet Loss GPRS (Ping) (%) FTP download session success ratio (%) FTP download data transfer cut-off ratio (%)	SPQ (speech quality on call-basis) ≥ 3.0 SA-MO (Service accessibility SMS-MO) (%) ≥ 98.00 SA-MT (Service accessibility SMS-MT) (%) ≥ 98.00 AD-MO (Access delay SMS-MO) (s) ≤ 4.0 AD-MT (Access delay SMS-MT) (s) ≤ 4.0 E2E DT-MO (End-to-end delivery time SMS-MO) (s) ≤ 10.0 E2E DT-MT (End-to-end delivery time SMS-MT) (s) ≤ 10.0 PS LU SR (PS location update success ratio) (%) ≥ 98.00 PS LU Delay (PS location update delay) (s) ≤ 6.0 PDPC Act SR (PDP context activation success ratio) (%) ≥ 98.00 PDPC Act Time (PDP context activation time) (s) ≤ 3.0 PDPC Cut-off ratio (PDP context cut-off ratio) (%) ≤ 2.00 Throughput GPRS (FTP) (kbit/s) ≥ 29 Goodput GPRS (FTP) (kbit/s) ≥ 32 Roundtrip Time GPRS (Ping) (%) ≤ 1200 FTP download session success ratio (%) ≥ 99.00 FTP download mean data rate (Mbit/s) 2.5 FTP download data transfer cut-off ratio (%) ≤ 1.00	

V10.0 Page 108 of 111

145	HTTP mean data rate (Mbit/s)	7.5	User experience
146	HTTP data transfer cut-off ratio (%)	≤ 1.00	User experience

Table 20: GRQ KPI thresholds for GSM / GPRS and UMTS

Note: The thresholds of the 2G / 3G PS part shall be revisited after a test pilot project.

V10.0 Page 109 of 111

Annex B Document Management

B.1 Document History

Version	Date	Brief Description of Change	Approval Authority	Editor / Company
0.5	26 Aug 2008	Clean version for SIGNAL and PACKET comments.		
0.51	23 Sep 2008	Editorial corrections to trigger table as noted by Inge Menschaert, Vodafone.		David Gillot, Roamware
0.52	10 Oct 2008	Editorial corrections as noted by Magnus Zimmerman, Polystar.	N/A –draft only	Noamware
0.6	12 Dec 2008	Further revisions and editorial changes		
0.7	22 Dec 2008	Editorial and formatting corrections		David Maxwell, GSMA
1.0	20 Feb 2009	New PRD - GRQ Measurement Implementation	IREG-EMC	David Gillot, Roamware
2.0	Nov 2009	Adding of roaming Hubbing Providing references	IREG-EMC	David Gillot, Roamware
3.0	June 2011	Submitted to DAG and EMC for approval	EMC	David Gillot, Roamware
4.0	May 2015	Including LTE GRQ	NG	Javier Sendin (GSMA)
5.0	October 2015	Major CR1002 included: Differentiation of GRQ Codes and add missing KPIs	NG	Veronique Verhé, SIGOS GmbH
6.0	November 2015	Major CR1003 included: New annex with LTE GRQ Thresholds	NG	Veronique Verhé, SIGOS GmbH
7.0	November 2016	Major CR1004 included: New annex with 2G and 3G Thresholds Major CR1005 included: VoLTE and ViLTE roaming quality KPIs	NG	Veronique Verhé, SIGOS GmbH
8.0	June 2017	Major CR1006 included: Add SSI ans SQI, CR1007 included: Clean-up GRQ codes, CR1008 inlcuded: Correction 2G and 3G thresholds	NG	Veronique Verhé, SIGOS GmbH
9.0	October 2017	Major CR1009 included: Update 2G and 3G GRQ Major CR1010 included: Introduction of 4G SSI and SQI	NG	Veronique Verhé, SIGOS GmbH
9.1	May 2018	Minor CR1012 included: Correction of MBR to AMBR for non-GBR bearer	NG	Veronique Verhé, SIGOS GmbH
10.0	Nov 2018	Minor CR1011 included: Remove reference to IR.78 Minor CR1013 inlcuded: Correction of wrong unit Major CR1014 inlcuded: Add missing CSFB call flows	NG	Veronique Verhé, SIGOS GmbH

V10.0 Page 110 of 111

Other Information

Туре	Description
Document Owner	NG
Editor / Company	Veronique Verhé, SIGOS GmbH

It is our intention to provide a quality product for your use. If you find any errors or omissions, please contact us with your comments. You may notify us at prd@gsma.com

Your comments or suggestions & questions are always welcome.

V10.0 Page 111 of 111