

GSMA	
NG.139 - Cloud Infrastructure Reference Architecture managed by Kubernetes
[image: A red and white logo

Description automatically generated with low confidence]
NG.139 Cloud Infrastructure Reference Architecture managed by Kubernetes
Version 2.0
10 June 2025

Security Classification: Non-Confidential
Access to and distribution of this document is restricted to the persons permitted by the security classification. This document is subject to copyright protection. This document is to be used only for the purposes for which it has been supplied and information contained in it must not be disclosed or in any other way made available, in whole or in part, to persons other than those permitted under the security classification without the prior written approval of the Association. 
Copyright Notice
Copyright © 2025 GSM Association
Disclaimer
The GSMA makes no representation, warranty or undertaking (express or implied) with respect to and does not accept any responsibility for, and hereby disclaims liability for the accuracy or completeness or timeliness of the information contained in this document. The information contained in this document may be subject to change without prior notice.
[bookmark: RestrictedTable2]Compliance Notice
The information contain herein is in full compliance with the GSMA Antitrust Compliance Policy.
This Permanent Reference Document is classified by GSMA as an Industry Specification, as such it has been developed and is maintained by GSMA in accordance with the provisions set out GSMA AA.35 - Procedures for Industry Specifications.


GSMA	
NG.139 - Cloud Infrastructure Reference Architecture managed by Kubernetes

V2.0	Page 1 of 10
Table of Contents
1	Introduction	5
1.1	Overview	5
1.1.1	Required Component Versions	5
1.1.2	Principles	5
1.1.3	Approach	8
1.2	Scope	8
1.3	Definitions	8
1.4	Abbreviations	13
1.5	References	16
1.6	Conventions	16
1.7	Bibliography	16
2	Architecture Requirements	29
2.1	Introduction for Architecture Requirements	29
2.2	Key Word Definitions	29
2.3	Reference Model Requirements	29
2.3.1	Cloud Infrastructure Software Profile Capabilities	29
2.3.2	Virtual Network Interface Specifications	32
2.3.3	Cloud Infrastructure Software Profile Requirements	33
2.3.4	Cloud Infrastructure Hardware Profile Requirements	35
2.3.5	Edge Cloud Infrastructure Hardware Profile Requirements	36
2.3.6	Cloud Infrastructure Management Requirements	37
2.3.7	Cloud Infrastructure Monitoring Capabilities	38
2.3.8	Cloud Infrastructure Security Requirements	40
2.4	Kubernetes Architecture Requirements	54
3	High Level Architecture	60
3.1	Introduction to High Level Architecture	60
3.2	Infrastructure Services	61
3.2.1	Container Compute Services	61
3.2.2	Container Networking Services	68
3.2.3	Kubernetes Networking Semantics	72
3.2.4	Container Storage Services	75
3.2.5	Kubernetes Application package manager	76
3.2.6	Custom Resources	76
3.3	Platform services	77
3.4	CaaS Manager - Cluster Lifecycle Management	78
4	Component Level Architecture	79
4.1	Introduction to Component Level Architecture	79
4.2	Kubernetes Node	79
4.3	Node Operating System	85
4.4	Kubernetes	86
4.5	Container Runtimes	91
4.6	Networking Solutions	92
4.7	Storage Components	97
4.8	Service Meshes	99
4.9	Kubernetes Application Package Managers	99
4.10	Kubernetes Workloads	99
4.11	Additional Required Components	106
4.12	Platform Service Components	106
4.13	Kubernetes Cluster Lifecycle Management	110
5	Security Guidance	114
5.1	Introduction to Security Guidance	114
5.1.1	Security Perimeters	114
5.2	Security Principles	115
5.3	Node Hardening	115
5.3.1	Node Hardening: Securing the Kubernetes Hosts	115
5.3.2	Restricting Direct Access to Nodes	115
5.3.3	Vulnerability Assessment	115
5.3.4	Patch Management	116
5.4	Securing the Kubernetes Orchestrator	116
5.4.1	Control Network Access to Sensitive Ports	116
5.4.2	Controlling Access to the Kubernetes API	117
5.4.3	Using Transport Layer Security and Service Mesh	117
5.4.4	API Authentication and Authorization	117
5.4.5	Restricting Access to etcd and Encrypting Contents Within etcd	117
5.4.6	Controlling Access to the Kubelet	118
5.4.7	Securing the Kubernetes Dashboard	118
5.5	Using Namespaces to Establish Security Boundaries	118
5.6	Separating Sensitive Workloads	118
5.7	Creating and Defining Network Policies	118
5.8	Running the Latest Version	118
5.9	Securing Platform Metadata	119
5.10	Enabling Logging and Monitoring	119
5.11	Runtime Security	119
5.12	Secrets Management	119
5.13	Trusted Registry	119
5.14	Isolation	120
5.14.1	VM versus Container Isolation	120
5.14.2	Container Isolation in the Kubernetes Cluster	120
6	API and Feature Testing requirements	121
6.1	Introduction to API and Feature Testing requirement	121
6.1.1	Kubernetes feature gate policy	121
6.1.2	Kubernetes API policy	121
6.2	API Machinery Special Interest Group [126]	122
6.3	Apps [127]	123
6.4	Auth Special Interest Group [128]	123
6.5	Cluster Lifecycle Special Interest Group [129]	124
6.6	Instrumentation Special Interest Group [130]	124
6.7	Network Special Interest Group [131]	125
6.8	Node Special Interest Group [132]	126
6.9	Scheduling Special Interest Group [133]	127
6.10	Storage Special Interest Group [134]	127
6.11	Conformance testing	128
6.11.1	Requirements and Testing Principles	128
6.11.2	Test Case traceability	129
6.11.3	Test Cases Traceability to Requirements	137
6.11.4	Kubernetes Testing Cookbook	138
7	Gaps, Innovation, and Development	140
7.1	Introduction to Gaps, Innovation, and Development	140
7.1.1	Gap Template	140
7.1.2	Container Run-Time Interfaces Towards NFVI Resources	140
7.1.3	Multitenancy and Workload Isolation with Kubernetes	140
7.1.4	Kubernetes as a VM-based VNF Orchestrator	140
7.1.5	Native Multiple Network Interfaces on Pods	141
7.1.6	Dynamic Network Management	141
7.1.7	Control Plane Efficiency	141
7.1.8	Interoperability with VRF-based Networking	141
7.1.9	Hardware Topology-Aware Huge Pages	141
7.1.10	User Namespaces in Kubernetes	142
8	Appendix A - Guidance For workload isolation (Multitenancy) with Kubernetes for application vendors	143
8.1	Overview of Appendix A	143
8.2	Solution areas	144
8.3	Multitenancy Models	144
8.3.1	Soft multitenancy with Kubernetes Namespaces per tenant	145
8.3.2	Hard multitenancy with dedicated Kubernetes clusters per tenant	145
9	Document Management	146
A.1	Document History	146
A.2	Other Information	146


[bookmark: _Toc101946531][bookmark: _Toc74460299][bookmark: introduction][bookmark: _Toc184746542][bookmark: _Toc209948274]
Introduction
[bookmark: overview][bookmark: _Toc184746543]Overview
The objective of this Reference Architecture (RA) is to develop an usable Kubernetes-based platform for the Telecom industry. The RA is based on the standard Kubernetes platform wherever possible. This Reference Architecture for Kubernetes describes the high-level system components and their interactions, taking the goals and requirements from the Cloud Infrastructure Reference Model [1] (RM) and mapping them to Kubernetes (and related) components. This document needs to be sufficiently detailed and robust such that it can be used to guide the production deployment of Kubernetes within a network operator, whilst being flexible enough to evolve with and remain aligned with the wider Kubernetes ecosystem outside of Telecom.
To set this in context, it makes sense to start with the high-level definition and understanding of Kubernetes. Kubernetes [2] is a "portable, extendable, open source platform for managing containerised workloads and services, that facilitates both declarative configuration and automation. It has a large and rapidly growing ecosystem. Kubernetes services, support, and tools are widely available" [3]. Kubernetes is developed as an open source project in the kubernetes [4] repository of GitHub.
To assist with the goal of creating a reference architecture that will support Telecom workloads, but at the same time leverage the work that already has been completed in the Kubernetes community, RA2 will take an "RA2 Razor" approach to build the foundation. This can be explained along the lines of "if something is useful for non-Telecom workloads, we will not include it only for Telecom workloads". For example, start the Reference Architecture from a vanilla Kubernetes (say, v1.31) feature set, then provide clear evidence that a functional requirement cannot be met by that system (say, multi-NIC support), only then the RA would add the least invasive, Kubernetes-community aligned extension (say, Multus) to fill the gap. If there are still gaps that cannot be filled by standard Kubernetes community technologies or extensions then the RA will concisely record the requirement in the Introduction to Gaps, Innovation, and Development chapter of this document and approach the relevant project maintainers with a request to add this functionality into the feature set.
The Kubernetes Reference Architecture will be used to determine a Kubernetes Reference Implementation. The Kubernetes Reference Implementation would then also be used to test and validate the supportability and compatibility with Kubernetes-based Network Function workloads, and lifecycle management of Kubernetes clusters, of interest to the Anuket community. The intention is to expand as much of the existing test frameworks to be used for the verification and conformance testing of Kubernetes-based workloads, and Kubernetes cluster lifecycle management.
[bookmark: required-component-versions][bookmark: _Toc184746544]Required Component Versions
	Component
	Required version(s)

	Kubernetes
	1.31


[bookmark: principles][bookmark: _Toc184746545]Principles
[bookmark: architectural-principles]Architectural Principles
This Reference Architecture conforms with the Anuket principles:
1. Open source preference: for building Cloud Infrastructure solutions, components and tools, using open source technology.
1. Open APIs: to enable interoperability, component substitution, and minimise integration efforts.
1. Separation of concerns: to promote lifecycle independence of different architectural layers and modules (e.g., disaggregation of software from hardware).
1. Automated lifecycle management: to minimise the end-to-end lifecycle costs, maintenance downtime (target zero downtime), and errors resulting from manual processes.
1. Automated scalability: of workloads to minimise costs and operational impacts.
1. Automated closed loop assurance: for fault resolution, simplification, and cost reduction of cloud operations.
1. Cloud nativeness: to optimise the utilisation of resources and enable operational efficiencies.
1. Security compliance: to ensure the architecture follows the industry best security practices and is at all levels compliant to relevant security regulations.
1. Resilience and Availability: to withstand Single Point of Failure.
[bookmark: cloud-native-principles]Cloud Native Principles
For the purposes of this document, the CNCF TOC's (Technical Oversight Committee) definition of Cloud Native applies:
CNCF Cloud Native Definition v1.0 Approved by TOC: 2018-06-11
“Cloud native technologies empower organizations to build and run scalable applications in modern, dynamic environments such as public, private, and hybrid clouds. Containers, service meshes, microservices, immutable infrastructure, and declarative APIs exemplify this approach.
These techniques enable loosely coupled systems that are resilient, manageable, and observable. Combined with robust automation, they allow engineers to make high-impact changes frequently and predictably with minimal toil.
The Cloud Native Computing Foundation seeks to drive adoption of this paradigm by fostering and sustaining an ecosystem of open source, vendor-neutral projects. We democratize state-of-the-art patterns to make these innovations accessible for everyone.”
The CNCF TUG (Telecom User Group), formed in June 2019, published a set of Cloud Native Principles suited to the requirements of the Telecom community [5]. There are many similarities with the CNCF principles, briefly that infrastructure needs to be:
· scalable
· dynamic environments
· service meshes
· microservices
· immutable infrastructure
· declarative APIs
· loosely coupled
· resilient
· manageable
· observable
· robust automation
· high-impact changes frequently and predictably
[bookmark: exceptions]Exceptions
Anuket specifications define certain policies and general principles and strive to .. add general principles from common coalesce the industry towards conformant Cloud Infrastructure technologies and configurations. With the currently available technology options, incompatibilities, performance, and operator constraints (including costs), these policies and principles may not always be achievable and, thus, require an exception process. These policies describe how to handle non-conforming technologies. .. add policies:anuket project policies for managing non-conforming technologies from common In general, non-conformance with policies is handled through a set of exceptions. .. add gov/chapters/chapter09:exception types
The following sub-sections list the exceptions to the principles of Anuket specifications and shall be updated whenever technology choices, versions and requirements change. The Exceptions have an associated period of validity and this period shall include time for transitioning.
[bookmark: technology-exceptions]Technology Exceptions
The list of Technology Exceptions will be updated or removed when alternative technologies, aligned with the principles of Anuket specifications, develop and mature.
 Technology Exceptions
	Ref
	Name
	Description
	Valid Until
	Rationale
	Implication

	ra2.exc.tec.001
	SR-IOV
	This exception allows workloads to use SR-IOV over PCI-PassThrough technology.
	TBD
	Emulation of virtual devices for each virtual machine creates an I/O bottleneck resulting in poor performance and limits the number of virtual machines a physical server can support. SR-IOV implements virtual devices in hardware, and by avoiding the use of a switch, near maximal performance can be achieved. For containerisation the downsides of creating dependencies on hardware is reduced as Kubernetes nodes are either physical, or if virtual have no need to "live migrate" as a VNF VM might.
	


[bookmark: approach][bookmark: _Toc184746546]Approach
The approach taken in this Reference Architecture is to start with a basic Kubernetes architecture, based on the community distribution, and then add detail and additional features/extensions as is required to meet the requirements of the Reference Model and the functional and non-functional requirements of common cloud native network functions.
This document starts with a description of interfaces and capabilities requirements (the "what") before providing guidance on "how" those elements are deployed, through specifications. The details of how the elements will be used together are documented in full detail in the Reference Implementation.
[bookmark: scope][bookmark: _Toc184746547]Scope
The scope of this particular Reference Architecture can be described as follows (the capabilities themselves will be listed and described in subsequent chapters):
· Kubernetes platform capabilities required to conform to the Reference Model requirements
· Support for CNFs that consist wholly of containers
· Support for CNFs that consist partly of containers and partly of VMs, both of which will be orchestrated by Kubernetes
· Kubernetes Cluster lifecycle management: including Cluster creation/upgrade/scaling/deletion, and node customisation due to workload requirements.
The following items are considered out of scope:
· Kubernetes-based Application / CNF Management: this is an application layer capability that is out of scope of Anuket.
[bookmark: Kubernetes_Reference_Architecture_scope][image: figures/ch01_scope_k8s.png]
Kubernetes Reference Architecture scope
[bookmark: definitions][bookmark: _Toc184746548]Definitions
Definitions
	Term
	Description

	Abstraction
	Process of removing concrete, fine-grained or lower-level details or attributes or common properties in the study of systems to focus attention on topics of greater importance or general concepts. It can be the result of decoupling.

	Anuket
	A Linux Foundation Networking (LFN) open source project developing open reference infrastructure models, architectures, tools, and programs.

	CaaS Containers as a Service
	A Platform suitable to host and run Containerised workloads, such as Kubernetes. Instances of CaaS Platforms are known as CaaS Clusters.

	CaaS Manager
	A management plane function that manages the lifecycle (instantiation, scaling, healing, etc.) of one or more CaaS instances, including communication with VIM for control plane and node lifecycle management.

	Cloud Infrastructure
	A generic term covering NFVI, IaaS and CaaS capabilities - essentially the infrastructure on which a Workload can be executed. NFVI, IaaS and CaaS layers can be built on top of each other. In case of CaaS some cloud infrastructure features (e.g.: HW management or multitenancy) are implemented by using an underlying IaaS layer.

	Cloud Infrastructure Hardware Profile
	Defines the behaviour, capabilities, configuration, and metrics provided by a cloud infrastructure hardware layer resources available for the workloads.

	Cloud Infrastructure Profile
	The combination of the Cloud Infrastructure Software Profile and the Cloud Infrastructure Hardware Profile that defines the capabilities and configuration of the Cloud Infrastructure resources available for the workloads.

	Cloud Infrastructure Software Profile
	Defines the behaviour, capabilities and metrics provided by a Cloud Infrastructure Software Layer on resources available for the workloads.

	Cloud Native Network Function (CNF)
	A cloud native network function (CNF) is a cloud native application that implements network functionality. A CNF consists of one or more microservices. All layers of a CNF are developed using Cloud Native Principles including immutable infrastructure, declarative APIs, and a “repeatable deployment process”. This definition is derived from the Cloud Native Thinking for Telecommunications Whitepaper, which also includes further detail and examples.

	Compute Node
	An abstract definition of a server. A compute node can refer to a set of hardware and software that support the VMs or Containers running on it.

	Container
	A lightweight and portable executable image that contains software and all its dependencies. OCI defines Container as "An environment for executing processes with configurable isolation and resource limitations. For example, namespaces, resource limits, and mounts are all part of the container environment." A Container provides operating-system-level virtualisation by abstracting the “user space”. One big difference between Containers and VMs is that unlike VMs, where each VM is self-contained with all the operating systems components are within the VM package, containers "share" the host system’s kernel with other containers.

	Container Engine
	Software components used to create, destroy, and manage containers on top of an operating system.

	Container Image
	Stored instance of a container that holds a set of software needed to run an application.

	Container Runtime
	The software that is responsible for running containers. It reads the configuration files for a Container from a directory structure, uses that information to create a container, launches a process inside the container, and performs other lifecycle actions.

	Core (physical)
	An independent computer processing unit that can independently execute CPU instructions and is integrated with other cores on a multiprocessor (chip, integrated circuit die). Please note that the multiprocessor chip is also referred to as a CPU that is placed in a socket of a computer motherboard.

	CPU Type
	A classification of CPUs by features needed for the execution of computer programs; for example, instruction sets, cache size, number of cores.

	Decoupling, Loose Coupling
	Loosely coupled system is one in which each of its components has, or makes use of, little or no knowledge of the implementation details of other separate components. Loose coupling is the opposite of tight coupling

	Encapsulation
	Restriction of direct access to some of an object's components.

	External Network
	External networks provide network connectivity for a cloud infrastructure tenant to resources outside of the tenant space.

	Fluentd
	An open source data collector for unified logging layer, which allows data collection and consumption for better use and understanding of data. Fluentd is a CNCF graduated project.

	Functest
	An open source project part of Anuket LFN project. It addresses functional testing with a collection of state-of-the-art virtual infrastructure test suites, including automatic VNF testing.

	Hardware resources
	Compute, storage and network hardware resources on which the cloud infrastructure platform software, virtual machines and containers run on.

	Host Profile
	Is another term for a Cloud Infrastructure Hardware Profile.

	Huge pages
	Physical memory is partitioned and accessed using the basic page unit (in Linux default size of 4 KB). Huge pages, typically 2MB and 1GB size, allows large amounts of memory to be utilised with reduced overhead. In an NFV environment, huge pages are critical to support large memory pool allocation for data packet buffers. This results in fewer Translation Lookaside Buffers (TLB) lookups, which reduces the virtual to physical pages’ address translations. Without huge pages enabled high TLB miss rates would occur thereby degrading performance.

	Hypervisor
	A software that abstracts and isolates workloads with their own operating systems from the underlying physical resources. Also known as a virtual machine monitor (VMM).

	Instance
	Is a virtual compute resource, in a known state such as running or suspended, that can be used like a physical server. It can be used to specify VM Instance or Container Instance.

	Kibana
	An open source data visualisation system.

	Kubernetes
	An open source system for automating deployment, scaling, and management of containerised applications.

	Kubernetes Cluster
	A set of machines, called nodes (either workers or control plane), that run containerised applications managed by Kubernetes.

	Kubernetes Control Plane
	The container orchestration layer that exposes the API and interfaces to define, deploy, and manage the lifecycle of containers.

	Kubernetes Node
	A node is a worker machine in Kubernetes. A worker node may be a VM or physical host, depending on the cluster. It has local daemons or services necessary to run Pods and is managed by the control plane.

	Kubernetes Service
	An abstract way to expose an application running on a set of Pods as a Kubernetes network service.

	Monitoring (Capability)
	Monitoring capabilities are used for the passive observation of workload-specific traffic traversing the Cloud Infrastructure. Note, as with all capabilities, Monitoring may be unavailable or intentionally disabled for security reasons in a given cloud infrastructure instance.

	Multi-tenancy
	Feature where physical, virtual or service resources are allocated in such a way that multiple tenants and their computations and data are isolated from and inaccessible by each other.

	Network Function (NF)
	Functional block or application that has well-defined external interfaces and well-defined functional behaviour. Within NFV, a Network Function is implemented in a form of Virtualised NF (VNF) or a Cloud Native NF (CNF).

	NFV Orchestrator (NFVO)
	Manages the VNF lifecycle and Cloud Infrastructure resources (supported by the VIM) to ensure an optimised allocation of the necessary resources and connectivity.

	Network Function Virtualisation (NFV)
	The concept of separating network functions from the hardware they run on by using a virtual hardware abstraction layer.

	Network Function Virtualisation Infrastructure (NFVI)
	The totality of all hardware and software components used to build the environment in which a set of virtual applications (VAs) are deployed; also referred to as cloud infrastructure. The NFVI can span across many locations, e.g., places where data centres or edge nodes are operated. The network providing connectivity between these locations is regarded to be part of the cloud infrastructure. NFVI and VNF are the top-level conceptual entities in the scope of Network Function Virtualisation. All other components are sub-entities of these two main entities.

	Network Service (NS)
	Composition of Network Function(s) and/or Network Service(s), defined by its functional and behavioural specification, including the service lifecycle.

	Open Network Automation Platform (ONAP)
	An LFN project developing a comprehensive platform for orchestration, management, and automation of network and edge computing services for network operators, cloud providers, and enterprises.

	ONAP OpenLab
	ONAP community lab.

	Open Platform for NFV (OPNFV)
	A collaborative project under the Linux Foundation. OPNFV is now part of the LFN Anuket project. It aims to implement, test, and deploy tools for conformance and performance of NFV infrastructure.

	OPNFV Verification Program (OVP) / Anuket Assured
	An open source, community-led compliance and verification program aiming to demonstrate the readiness and availability of commercial NFV products and services using OPNFV and ONAP components.

	Platform
	A cloud capabilities type in which the cloud service user can deploy, manage and run customer-created or customer-acquired applications using one or more programming languages and one or more execution environments supported by the cloud service provider. Adapted from ITU-T Y.3500. This includes the physical infrastructure, Operating Systems, virtualisation/containerisation software and other orchestration, security, monitoring/logging and life-cycle management software.

	Pod
	The smallest and simplest Kubernetes object. A Pod represents a set of running containers on a cluster. A Pod is typically set up to run a single primary container. It can also run optional sidecar containers that add supplementary features like logging.

	Prometheus
	An open source monitoring and alerting system.

	Quota
	An imposed upper limit on specific types of resources, usually used to prevent excessive resource consumption by a given consumer (tenant, VM, container).

	Resource pool
	A logical grouping of cloud infrastructure hardware and software resources. A resource pool can be based on a certain resource type (for example, compute, storage and network) or a combination of resource types. A Cloud Infrastructure resource can be part of none, one or more resource pools.

	Simultaneous Multithreading (SMT)
	Simultaneous multithreading (SMT) is a technique for improving the overall efficiency of superscalar CPUs with hardware multithreading. SMT permits multiple independent threads of execution on a single core to better utilise the resources provided by modern processor architectures.

	Tenant
	Cloud service users sharing access to a set of physical and virtual resources, ITU-T Y.3500. Tenants represent an independently manageable logical pool of compute, storage and network resources abstracted from physical hardware.

	Tenant Instance
	Refers to an Instance owned by or dedicated for use by a single Tenant.

	Tenant (Internal) Networks
	Virtual networks that are internal to Tenant Instances.

	User
	Natural person, or entity acting on their behalf, associated with a cloud service customer that uses cloud services. Examples of such entities include devices and applications.

	Virtual CPU (vCPU)
	Represents a portion of the host's computing resources allocated to a virtualised resource, for example, to a virtual machine or a container. One or more vCPUs can be assigned to a virtualised resource.

	Virtualised Infrastructure Manager (VIM)
	Responsible for controlling and managing the Network Function Virtualisation Infrastructure (NFVI) compute, storage and network resources.

	Virtual Machine (VM)
	Virtualised computation environment that behaves like a physical computer/server. A VM consists of all of the components (processor (CPU), memory, storage, interfaces/ports, etc.) of a physical computer/server. It is created using sizing information or Compute Flavour.

	Virtualised Network Function (VNF)
	A software implementation of a Network Function, capable of running on the Cloud Infrastructure. VNFs are built from one or more VNF Components (VNFC) and, in most cases, the VNFC is hosted on a single VM or Container.

	Workload
	An application (for example VNF, or CNF) that performs certain task(s) for the users. In the Cloud Infrastructure, these applications run on top of compute resources such as VMs or Containers.


[bookmark: abbreviations][bookmark: _Toc184746549]Abbreviations
	Term
	Description

	API
	Application Programming Interface

	BGP VPN
	Border gateway Protocol Virtual Private network

	CaaS
	Containers as a Service

	CI/CD
	Continuous Integration/Continuous Deployment

	CNF
	Containerised Network Function

	CNTT
	Cloud iNfrastructure Telco Task Force

	CPU
	Central Processing Unit

	DNS
	Domain Name System

	DPDK
	Data Plane Development Kit

	DHCP
	Dynamic Host Configuration Protocol

	ECMP
	Equal Cost Multi-Path routing

	ETSI
	European Telecommunications Standards Institute

	FPGA
	Field Programmable Gate Array

	MB/GB/TB
	MegaByte/GigaByte/TeraByte

	GPU
	Graphics Processing Unit

	GRE
	Generic Routing Encapsulation

	GSM
	Global System for Mobile Communications (originally Groupe Spécial Mobile)

	GSMA
	GSM Association

	GSLB
	Global Service Load Balancer

	GUI
	Graphical User Interface

	HA
	High Availability

	HDD
	Hard Disk Drive

	HTTP
	Hypertext Transfer Protocol

	HW
	Hardware

	IaaC (also IaC)
	Infrastructure as a Code

	IaaS
	Infrastructure as a Service

	ICMP
	Internet Control Message Protocol

	IMS
	IP Multimedia Sub System

	IO
	Input/Output

	IOPS
	Input/Output per Second

	IPMI
	Intelligent Platform Management Interface

	KVM
	Kernel-based Virtual Machine

	LCM
	Life Cycle Management

	LDAP
	Lightweight Directory Access Protocol

	LFN
	Linux Foundation Networking

	LMA
	Logging, Monitoring and Analytics

	LVM
	Logical Volume Management

	MANO
	Management And Orchestration

	MLAG
	Multi-chassis Link Aggregation Group

	NAT
	Network Address Translation

	NFS
	Network File System

	NFV
	Network Function Virtualisation

	NFVI
	Network Function Virtualisation Infrastructure

	NIC
	Network Interface Card

	NPU
	Numeric Processing Unit

	NTP
	Network Time Protocol

	NUMA
	Non-Uniform Memory Access

	OAI
	Open Air Interface

	OS
	Operating System

	OSTK
	OpenStack

	OPNFV
	Open Platform for NFV

	OVS
	Open vSwitch

	OWASP
	Open Web Application Security Project

	PCIe
	Peripheral Component Interconnect Express

	PCI-PT
	PCIe Passthrough

	PXE
	Preboot Execution Environment

	QoS
	Quality of Service

	RA
	Reference Architecture

	RA-2
	Reference Architecture 2 (i.e., Reference Architecture for Kubernetes-based Cloud Infrastructure)

	RBAC
	Role-based Access Control

	RBD
	RADOS Block Device

	REST
	Representational state transfer

	RI
	Reference Implementation

	RM
	Reference Model

	SAST
	Static Application Security Testing

	SDN
	Software Defined Networking

	SFC
	Service Function Chaining

	SG
	Security Group

	SLA
	Service Level Agreement

	SMP
	Symmetric Multiprocessing

	SMT
	Simultaneous Multithreading

	SNAT
	Source Network Address Translation

	SNMP
	Simple Network Management Protocol

	SR-IOV
	Single Root Input Output Virtualisation

	SSD
	Solid State Drive

	SSL
	Secure Sockets Layer

	SUT
	System Under Test

	TCP
	Transmission Control Protocol

	TLS
	Transport Layer Security

	ToR
	Top of Rack

	TPM
	Trusted Platform Module

	UDP
	User Data Protocol

	VIM
	Virtualised Infrastructure Manager

	VLAN
	Virtual LAN

	VM
	Virtual Machine

	VNF
	Virtual Network Function

	VRRP
	Virtual Router Redundancy Protocol

	VTEP
	VXLAN Tunnel End Point

	VXLAN
	Virtual eXtensible LAN

	WAN
	Wide Area Network

	ZTA
	Zero Trust Architecture


[bookmark: references][bookmark: _Toc184746550]References
[bookmark: conventions][bookmark: _Toc184746551]Conventions
The key words "MUST", "MUST NOT", "required", "SHALL", SHALL NOT", "SHOULD", "SHOULD NOT", "recommended", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [6].
References
	Ref
	Doc Number
	Title

	[1]
	GSMA PRD NG.126 v3.0
	Reference Model for Cloud Infrastructure (RM)

	[6]
	RFC 2119
	Key words for use in RFCs to Indicate Requirement Levels

	[71]
	ETSI GS NFV-SOL 001
	ETSI GS NFV-SOL 001: NFV descriptors based on TOSCA specification

	[116]
	NIST Special Publication 800-204A
	Building Secure Microservices-based Applications Using Service-Mesh Architecture

	[117]
	NIST Special Publication 800-204B
	Attribute-based Access Control for Microservices-based Applications Using a Service Mesh

	[152]
	GSMA PRD NG.133 v2.0
	Cloud Infrastructure Reference Architecture managed by OpenStack


[bookmark: bibliography][bookmark: _Toc184746552]Bibliography
Bibliography
	Ref
	Document Title
	Source

	[2]
	Kubernetes Documentation
	https://kubernetes.io/docs/home/

	[3]
	What is Kubernetes
	https://kubernetes.io/docs/concepts/overview/

	[4]
	Kubernetes Github Repository
	https://github.com/kubernetes/kubernetes

	[5]
	Expanded Cloud Native Principles
	https://networking.cloud-native-principles.org/cloud-native-principles

	[7]
	CIS Password Policy Guide
	https://www.cisecurity.org/insights/white-papers/cis-password-policy-guide

	[8]
	CIS Controls List
	https://www.cisecurity.org/controls/cis-controls-list

	[9]
	CVE - Common Vulnerabilities and Exposures
	https://cve.mitre.org/

	[10]
	CVSS - Common Vulnerability Scoring System
	https://www.first.org/cvss/

	[11]
	SBOM - Software Bill Of Materials
	https://ntia.gov/page/software-bill-materials

	[12]
	Cloud Security Alliance
	https://cloudsecurityalliance.org/

	[13]
	OWASP Cheat Sheet Series (OCSS)
	https://github.com/OWASP/CheatSheetSeries/

	[14]
	OWASP Top Ten Security Risks
	https://owasp.org/www-project-top-ten/

	[15]
	OWASP Software Maturity Model (SAMM)
	https://owaspsamm.org/

	[16]
	OWASP Web Security Testing Guide
	https://github.com/OWASP/wstg/

	[17]
	ISO/IEC 27001
	https://www.iso.org/obp/ui/#iso:std:iso-iec:27001:ed-2:v1:en

	[18]
	ISO/IEC 27002
	https://www.iso.org/obp/ui/#iso:std:iso-iec:27002:ed-2:v1:en

	[19]
	ISO/IEC 27032
	https://www.iso.org/obp/ui/#iso:std:iso-iec:27032:ed-1:v1:en

	[20]
	CNCF Kubernetes Conformance
	https://github.com/cncf/k8s-conformance

	[21]
	Kubernetes Alpha API
	https://kubernetes.io/docs/reference/using-api/#api-versioning

	[22]
	Kubernetes Publishing Services (ServiceTypes)
	https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types

	[23]
	Kubernetes Ingress
	https://kubernetes.io/docs/concepts/services-networking/ingress/

	[24]
	Open Container Initiative Runtime Specification, version 1.0.0
	https://github.com/opencontainers/runtime-spec/blob/v1.0.0/spec.md

	[25]
	Kubernetes: Introducing Container Runtime Interface (CRI) in Kubernetes
	https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes/

	[26]
	Kubernetes Network Custom Resource Definition De-facto Standard
	https://github.com/k8snetworkplumbingwg/multi-net-spec/tree/master/v1.2

	[27]
	Kubernetes CSI Drivers
	https://kubernetes-csi.github.io/docs/drivers.html

	[28]
	Application Service Descriptor (ASD) and packaging Proposals for CNF
	https://wiki.onap.org/display/DW/Application+Service+Descriptor+%28ASD%29+and+packaging+Proposals+for+CNF

	[29]
	Open Container Initiative (OCI) runtime spec
	https://github.com/opencontainers/runtime-spec

	[30]
	Kubernetes Docs - Pod
	https://kubernetes.io/docs/concepts/workloads/pods

	[31]
	Kubernetes Docs - ReplicaSet
	https://kubernetes.io/docs/concepts/workloads/controllers/replicaset

	[32]
	Kubernetes Docs - Deployment
	https://kubernetes.io/docs/concepts/workloads/controllers/deployment

	[33]
	Kubernetes Docs - DaemonSet
	https://kubernetes.io/docs/concepts/workloads/controllers/daemonset

	[34]
	Kubernetes Docs - Job
	https://kubernetes.io/docs/concepts/workloads/controllers/job

	[35]
	Kubernetes Docs - CronJob
	https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs

	[36]
	Kubernetes Docs - StatefulSet
	https://kubernetes.io/docs/concepts/workloads/controllers/statefulset

	[37]
	Kubernetes Docs - CPU Manager
	https://kubernetes.io/docs/tasks/administer-cluster/cpu-management-policies

	[38]
	Kubernetes Docs - Huge Pages
	https://kubernetes.io/docs/tasks/manage-hugepages/scheduling-hugepages

	[39]
	Kubernetes Docs - Memory Manager
	https://kubernetes.io/docs/tasks/administer-cluster/memory-manager

	[40]
	Kubernetes Docs - Topology Manager
	https://kubernetes.io/docs/tasks/administer-cluster/topology-manager

	[41]
	Kubernetes Node Feature Discovery
	https://kubernetes-sigs.github.io/node-feature-discovery/

	[42]
	Kubernetes Docs - Device Plugin Framework
	https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/device-plugins

	[43]
	Kubernetes SR-IOV Network Device Plugin
	https://github.com/k8snetworkplumbingwg/sriov-network-device-plugin

	[44]
	Kubernetes Docs - Network Plugins
	https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins

	[45]
	Kubernetes Network Custom Resource Definition
	https://github.com/k8snetworkplumbingwg/multi-net-spec

	[46]
	Kubernetes Docs - Ingress
	https://kubernetes.io/docs/concepts/services-networking/ingress

	[47]
	Kubernetes Docs - Service
	https://kubernetes.io/docs/concepts/services-networking/service

	[48]
	Kubernetes Docs - EndpointSlices
	https://kubernetes.io/docs/concepts/services-networking/endpoint-slices

	[49]
	Kubernetes Docs - Network Policies
	https://kubernetes.io/docs/concepts/services-networking/network-policies

	[50]
	Container Network Interface
	https://github.com/containernetworking/cni

	[51]
	Kubernetes Network Special Interest Group
	https://github.com/kubernetes/community/tree/master/sig-network

	[52]
	Kubernetes Network Plumbing Working Group
	https://github.com/k8snetworkplumbingwg/community

	[53]
	Helm Documentation
	https://helm.sh/docs

	[54]
	Kubernetes Docs - Custom Resources
	https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources

	[55]
	Kubernetes Docs - Custom Resource Definitions
	https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions

	[56]
	Kubernetes Docs - API Server Aggregation
	https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/apiserver-aggregation

	[57]
	Kubernetes Docs - Custom Controllers
	https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#custom-controllers

	[58]
	Kubernetes Docs - Operator Pattern
	https://kubernetes.io/docs/concepts/extend-kubernetes/operator

	[59]
	Operator Hub
	https://operatorhub.io

	[60]
	Multus CNI
	https://github.com/k8snetworkplumbingwg/multus-cni

	[61]
	AF_XDP Device Plugin
	https://github.com/intel/afxdp-plugins-for-kubernetes

	[62]
	Cloud Native Data Plane
	https://cndp.io/

	[63]
	DPDK AF_XDP Poll Mode Driver
	https://doc.dpdk.org/guides/nics/af_xdp.html

	[64]
	Cert-manager
	https://cert-manager.io/

	[65]
	The Twelve Factor App: Logs
	https://12factor.net/logs

	[66]
	Reference Implementation based on RA2 specifications (RI2)
	https://cntt.readthedocs.io/projects/ri2/

	[67]
	Reference Architecture (RA1) for OpenStack based cloud infrastructure
	https://cntt.readthedocs.io/projects/ra1/

	[68]
	Node Feature Discovery
	https://kubernetes-sigs.github.io/node-feature-discovery/stable/get-started/index.html

	[69]
	Kubernetes Distributions and Platforms document
	https://docs.google.com/spreadsheets/d/1uF9BoDzzisHSQemXHIKegMhuythuq_GL3N1mlUUK2h0/

	[70]
	Kubernetes Supported versions
	https://kubernetes.io/releases/version-skew-policy/#supported-versions

	[72]
	OCI Runtime specification
	https://github.com/opencontainers/runtime-spec/blob/master/config.md

	[73]
	OCI Runtime specification, Mounts Parameter Group
	https://github.com/opencontainers/runtime-spec/blob/master/config.md#mounts

	[74]
	OCI Runtime specification, Process Parameter Group
	https://github.com/opencontainers/runtime-spec/blob/master/config.md#process

	[75]
	OCI Runtime specification, Hostname Parameter Group
	https://github.com/opencontainers/runtime-spec/blob/master/config.md#hostname

	[76]
	OCI Runtime specification, User Parameter Group
	https://github.com/opencontainers/runtime-spec/blob/master/config.md#user

	[77]
	Kubernetes Types of volumes, hostPath
	https://kubernetes.io/docs/concepts/storage/volumes/#hostpath

	[78]
	CNF Testsuite, Rationale, Test if the Helm chart is published: helm_chart_published
	https://github.com/cnti-testcatalog/testsuite/blob/main/RATIONALE.md#test-if-the-helm-chart-is-published-helm_chart_published

	[79]
	CNF Testsuite, Rationale, Test if the Helm chart is valid: helm_chart_valid
	https://github.com/cnti-testcatalog/testsuite/blob/main/RATIONALE.md#test-if-the-helm-chart-is-valid-helm_chart_valid

	[80]
	CNF Testsuite, Rationale, To test if the CNF can perform a rolling update: rolling_update
	https://github.com/cnti-testcatalog/testsuite/blob/main/RATIONALE.md#to-test-if-the-cnf-can-perform-a-rolling-update-rolling_update

	[81]
	CNF Testsuite, Rationale, To check if a CNF version can be downgraded through a rolling_downgrade: rolling_downgrade
	https://github.com/cnti-testcatalog/testsuite/blob/main/RATIONALE.md#to-check-if-a-cnf-version-can-be-downgraded-through-a-rolling_downgrade-rolling_downgrade

	[82]
	CNF Testsuite, Rationale, To check if the CNF is compatible with different CNIs: cni_compatibility
	https://github.com/cnti-testcatalog/testsuite/blob/main/RATIONALE.md#to-check-if-the-cnf-is-compatible-with-different-cnis-cni_compatibility

	[83]
	CNF Testsuite, Rationale, Test if the CNF crashes when node drain occurs node_drain
	https://github.com/cnti-testcatalog/testsuite/blob/main/RATIONALE.md#test-if-the-cnf-crashes-when-node-drain-occurs-node_drain

	[84]
	CNF Testsuite, Rationale, Test if the CNF crashes when network latency occurs pod_network_latency
	https://github.com/cnti-testcatalog/testsuite/blob/main/RATIONALE.md#test-if-the-cnf-crashes-when-network-latency-occurs-pod_network_latency

	[85]
	CNF Testsuite, Rationale, Test if the CNF crashes when disk fill occurs disk_fill
	https://github.com/cnti-testcatalog/testsuite/blob/main/RATIONALE.md#test-if-the-cnf-crashes-when-disk-fill-occurs

	[86]
	CNF Testsuite, Rationale, Test if the CNF crashes when pod memory hog occurs pod_memory_hog
	https://github.com/cnti-testcatalog/testsuite/blob/main/RATIONALE.md#test-if-the-cnf-crashes-when-pod-memory-hog-occurs-pod_memory_hog

	[87]
	CNF Testsuite, Rationale, Test if the CNF crashes when pod io stress occurs pod_io_stress
	https://github.com/cnti-testcatalog/testsuite/blob/main/RATIONALE.md#test-if-the-cnf-crashes-when-pod-io-stress-occurs-pod_io_stress

	[88]
	CNF Testsuite, Rationale, Test if the CNF crashes when pod network corruption occurs pod_network_corruption
	https://github.com/cnti-testcatalog/testsuite/blob/main/RATIONALE.md#test-if-the-cnf-crashes-when-pod-network-corruption-occurs-pod_network_corruption

	[89]
	CNF Testsuite, Rationale, Test if the CNF crashes when pod network duplication occurs pod_network_duplication
	https://github.com/cnti-testcatalog/testsuite/blob/main/RATIONALE.md#test-if-the-cnf-crashes-when-pod-network-duplication-occurs-pod_network_duplication

	[90]
	CNF Testsuite, Rationale, To test if the CNF uses local storage: no_local_volume_configuration
	https://github.com/cnti-testcatalog/testsuite/blob/main/RATIONALE.md#to-test-if-the-cnf-uses-local-storage-no_local_volume_configuration

	[91]
	CNF Testsuite, Rationale, To test if there is a liveness entry in the Helm chart: liveness
	https://github.com/cnti-testcatalog/testsuite/blob/main/RATIONALE.md#to-test-if-there-is-a-liveness-entry-in-the-helm-chart-liveness

	[92]
	CNF Testsuite, Rationale, To test if there is a readiness entry in the Helm chart: readiness
	https://github.com/cnti-testcatalog/testsuite/blob/main/RATIONALE.md#to-test-if-there-is-a-readiness-entry-in-the-helm-chart-readiness

	[93]
	CNF Testsuite, Rationale, To check if there is automatic mapping of service accounts: service_account_mapping
	https://github.com/cnti-testcatalog/testsuite/blob/main/RATIONALE.md#to-check-if-there-is-automatic-mapping-of-service-accounts-service_account_mapping

	[94]
	CNF Testsuite, Rationale, To check if there is a host network attached to a pod: host_network
	https://github.com/cnti-testcatalog/testsuite/blob/main/RATIONALE.md#to-check-if-there-is-a-host-network-attached-to-a-pod-host_network

	[95]
	CNF Testsuite, Rationale, To check if containers are running with hostPID or hostIPC privileges: host_pid_ipc_privileges
	https://github.com/cnti-testcatalog/testsuite/blob/main/RATIONALE.md#to-check-if-containers-are-running-with-hostpid-or-hostipc-privileges-host_pid_ipc_privileges

	[96]
	CNF Testsuite, Rationale, To check if containers have resource limits defined: resource_policies
	https://github.com/cnti-testcatalog/testsuite/blob/main/RATIONALE.md#to-check-if-containers-have-resource-limits-defined-resource_policies

	[97]
	CNF Testsuite, Rationale, To check if containers have immutable file systems: immutable_file_systems
	https://github.com/cnti-testcatalog/testsuite/blob/main/RATIONALE.md#to-check-if-containers-have-immutable-file-systems-immutable_file_systems

	[98]
	CNF Testsuite, Rationale, To test if there are any (non-declarative) hardcoded IP addresses or subnet masks in the K8s runtime configuration: hardcoded_ip_addresses_in_k8s_runtime_configuration
	https://github.com/cnti-testcatalog/testsuite/blob/main/RATIONALE.md#to-test-if-there-are-any-non-declarative-hardcoded-ip-addresses-or-subnet-masks-in-the-k8s-runtime-configuration-hardcoded_ip_addresses_in_k8s_runtime_configuration

	[99]
	CNF Testsuite, Rationale, To test the increasing and decreasing of capacity: increase_decrease_capacity
	https://github.com/cnti-testcatalog/testsuite/blob/main/RATIONALE.md#to-test-the-increasing-and-decreasing-of-capacity-increase_decrease_capacity

	[100]
	CNF Testsuite, Rationale, To check if the CNF has a reasonable image size: reasonable_image_size
	https://github.com/cnti-testcatalog/testsuite/blob/main/RATIONALE.md#to-check-if-the-cnf-has-a-reasonable-image-size-reasonable_image_size

	[101]
	CNF Testsuite, Rationale, To check if the CNF have a reasonable startup time: reasonable_startup_time
	https://github.com/cnti-testcatalog/testsuite/blob/main/RATIONALE.md#to-check-if-the-cnf-have-a-reasonable-startup-time-reasonable_startup_time

	[102]
	CNF Testsuite, Rationale, To check if there are any privileged containers: privileged_containers
	https://github.com/cnti-testcatalog/testsuite/blob/main/RATIONALE.md#to-check-if-there-are-any-privileged-containers-privileged_containers

	[103]
	CNF Testsuite, Rationale, To check if any containers are running as a root user (checks the user outside the container that is running dockerd): non_root_user
	https://github.com/cnti-testcatalog/testsuite/blob/main/RATIONALE.md#to-check-if-any-containers-are-running-as-a-root-user-checks-the-user-outside-the-container-that-is-running-dockerd-non_root_user

	[104]
	CNF Testsuite, Rationale, To check if any containers allow for privilege escalation: privilege_escalation
	https://github.com/cnti-testcatalog/testsuite/blob/main/RATIONALE.md#to-check-if-any-containers-allow-for-privilege-escalation-privilege_escalation

	[105]
	CNF Testsuite, Rationale, To check if containers are running with non-root user with non-root membership: non_root_containers
	https://github.com/cnti-testcatalog/testsuite/blob/main/RATIONALE.md#to-check-if-containers-are-running-with-non-root-user-with-non-root-membership-non_root_containers

	[106]
	CNF Testsuite, Rationale, To test if there are host ports used in the service configuration: hostport_not_used
	https://github.com/cnti-testcatalog/testsuite/blob/main/RATIONALE.md#to-test-if-there-are-host-ports-used-in-the-service-configuration-hostport_not_used

	[107]
	Kubernetes documentation: Service
	https://kubernetes.io/docs/concepts/services-networking/service/

	[108]
	Kubernetes documentation: LoadBalancer property of the Kubernetes Service
	https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer

	[109]
	Kubernetes documentation: Immutable ConfigMaps
	https://kubernetes.io/docs/concepts/configuration/configmap/#configmap-immutable

	[110]
	Kubernetes documentation: Horizontal Pod Autoscaling
	https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

	[111]
	Kubernetes documentation: Recommended Labels
	https://kubernetes.io/docs/concepts/overview/working-with-objects/common-labels/

	[112]
	Service Mesh Interface (SMI)
	https://smi-spec.io/

	[113]
	Kubernetes documentation: Images
	https://kubernetes.io/docs/concepts/containers/images/

	[114]
	Cluster API docs
	https://cluster-api.sigs.k8s.io/

	[115]
	Kubernetes Documentation Ports and Protocols
	https://kubernetes.io/docs/reference/networking/ports-and-protocols/

	[118]
	Arstechnica: Tesla cloud resources are hacked to run cryptocurrency-mining malware
	https://arstechnica.com/information-technology/2018/02/tesla-cloud-resources-are-hacked-to-run-cryptocurrency-mining-malware/

	[119]
	Kubernetes Testing Special Interest Group
	https://github.com/kubernetes/community/blob/master/sig-testing/charter.md

	[120]
	Kubernetes End-to-End Testing
	https://github.com/kubernetes/community/blob/master/contributors/devel/sig-testing/e2e-tests.md

	[121]
	Kubernetes Feature gates
	https://kubernetes.io/docs/reference/command-line-tools-reference/feature-gates/#feature-gates

	[122]
	Kubernetes KEP-3136
	https://github.com/kubernetes/enhancements/blob/master/keps/sig-architecture/3136-beta-apis-off-by-default/README.md

	[123]
	Kubernetes API
	https://kubernetes.io/docs/reference/using-api/

	[124]
	Kubernetes API Reference
	https://kubernetes.io/docs/reference/kubernetes-api/

	[125]
	Kubernetes API Groups
	https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.31/

	[126]
	Kubernetes API Machinery Special Interest Group
	https://github.com/kubernetes/community/tree/master/sig-api-machinery

	[127]
	Kubernetes Apps Special Interest Group
	https://github.com/kubernetes/community/tree/master/sig-apps

	[128]
	Kubernetes Auth Special Interest Group
	https://github.com/kubernetes/community/tree/master/sig-auth

	[129]
	Kubernetes Cluster Lifecycle Special Interest Group
	https://github.com/kubernetes/community/tree/master/sig-cluster-lifecycle

	[130]
	Kubernetes Instrumentation Special Interest Group
	https://github.com/kubernetes/community/tree/master/sig-instrumentation

	[131]
	Kubernetes Network Special Interest Group
	https://github.com/kubernetes/community/tree/master/sig-network

	[132]
	Kubernetes Node Special Interest Group
	https://github.com/kubernetes/community/tree/master/sig-node

	[133]
	Kubernetes Scheduling Special Interest Group
	https://github.com/kubernetes/community/tree/master/sig-scheduling

	[134]
	Kubernetes Storage Special Interest Group
	https://github.com/kubernetes/community/tree/master/sig-storage

	[135]
	Kubernetes Feature CrossNamespacePodAffinity
	https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#namespace-selector

	[136]
	Kubernetes Feature PodPriority
	https://kubernetes.io/docs/concepts/scheduling-eviction/pod-priority-preemption/

	[137]
	Kubernetes Feature StorageVersionAPI
	https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#storageversion-v1alpha1-internal-apiserver-k8s-io

	[138]
	Kubernetes Feature DaemonSetUpdateSurge
	https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#rollingupdatedaemonset-v1-apps

	[139]
	Kubernetes Feature IndexedJob
	https://kubernetes.io/docs/concepts/workloads/controllers/job/

	[140]
	Kubernetes Feature StatefulSet
	https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

	[141]
	Kubernetes Feature SuspendJob
	https://kubernetes.io/docs/concepts/workloads/controllers/job/#suspending-a-job

	[142]
	Kubernetes Feature TaintEviction
	https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/#taint-based-evictions

	[143]
	Kubernetes Feature TTLAfterFinished
	https://kubernetes.io/docs/concepts/workloads/controllers/ttlafterfinished/

	[144]
	Kubernetes Feature BoundServiceAccountTokenVolume
	https://github.com/kubernetes/enhancements/blob/master/keps/sig-auth/1205-bound-service-account-tokens/README.md

	[145]
	Kubernetes Feature IPv6DualStack
	https://kubernetes.io/docs/concepts/services-networking/dual-stack/

	[146]
	Kubernetes Extend Service IP Ranges
	https://kubernetes.io/docs/tasks/network/extend-service-ip-ranges/

	[147]
	Kubernetes Feature ProbeTerminationGracePeriod
	https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#probe-level-terminationgraceperiodseconds

	[148]
	Kubernetes Feature DownwardAPIHugePages
	https://kubernetes.io/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information

	[149]
	Kubernetes Feature PodReadinessGate
	https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-readiness-gate

	[150]
	Kubernetes Feature Sysctls
	https://kubernetes.io/docs/tasks/administer-cluster/sysctl-cluster/

	[151]
	Kubernetes Feature LocalStorageCapacityIsolation
	https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

	[153]
	Docker
	https://www.docker.com/

	[154]
	Xtesting Python package
	https://pypi.org/project/xtesting/

	[155]
	Test case execution description
	https://git.opnfv.org/functest-xtesting/tree/docker/core/testcases.yaml

	[156]
	CI/CD toolchains in a few commands
	https://github.com/collivier/ansible-role-xtesting

	[157]
	non-disruptive-conformance
	https://sonobuoy.io/docs/main/e2eplugin/

	[158]
	Sonobuoy
	https://sonobuoy.io/

	[159]
	upstream Kubernetes gate
	https://github.com/kubernetes/test-infra/blob/master/config/jobs/kubernetes/sig-release/release-branch-jobs/1.29.yaml

	[160]
	Anuket RC2 verification
	http://104.154.71.112:8080/job/functest-kubernetes-v1.29-daily

	[161]
	deprecated in-tree GitRepo volume type
	https://github.com/kubernetes-sigs/kind/issues/2356

	[162]
	xrally-kubernetes
	https://github.com/xrally/xrally-kubernetes

	[163]
	Functest Kubernetes Benchmarking
	https://git.opnfv.org/functest-kubernetes/tree/docker/benchmarking/testcases.yaml?h=stable%2Fv1.29

	[164]
	xrally_kubernetes_full
	https://artifacts.opnfv.org/functest-kubernetes/671YK0WH9PRK/functest-kubernetes-opnfv-functest-kubernetes-benchmarking-v1.29-xrally_kubernetes_full-run-9/xrally_kubernetes_full/xrally_kubernetes_full.html

	[165]
	Kubernetes perf-tests repository
	https://artifacts.opnfv.org/functest-kubernetes/671YK0WH9PRK/functest-kubernetes-opnfv-functest-kubernetes-benchmarking-v1.29-xrally_kubernetes_full-run-9/xrally_kubernetes_full/xrally_kubernetes_full.html

	[166]
	netperf
	https://github.com/kubernetes/perf-tests/tree/master/network/benchmarks/netperf

	[167]
	iperf
	https://github.com/esnet/iperf

	[168]
	Netperf
	https://github.com/HewlettPackard/netperf/

	[169]
	Functest Kubernetes Security
	https://git.opnfv.org/functest-kubernetes/tree/docker/security/testcases.yaml?h=stable%2Fv1.29

	[170]
	kube-hunter
	https://github.com/aquasecurity/kube-hunter

	[171]
	kube-bench
	https://github.com/aquasecurity/kube-bench

	[172]
	CIS Kubernetes Benchmark
	https://www.cisecurity.org/benchmark/kubernetes/

	[173]
	vulnerability categories
	https://github.com/aquasecurity/kube-hunter/blob/v0.6.8/kube_hunter/core/events/types.py

	[174]
	Clearwater IMS
	https://github.com/Metaswitch/clearwater-docker

	[175]
	clearwater-live-test
	https://github.com/Metaswitch/clearwater-live-test

	[176]
	Xtesting CI
	https://galaxy.ansible.com/collivier/xtesting

	[177]
	Deploy your own Xtesting CI/CD toolchains
	https://github.com/collivier/ansible-role-xtesting

	[178]
	systemd for Docker
	https://docs.docker.com/config/daemon/systemd/#httphttps-proxy

	[179]
	Alibaba Cloud Blog: What Can We Learn from Twitter's Move to Kubernetes
	https://www.alibabacloud.com/blog/twitter-announced-switch-from-mesos-to-kubernetes_595156

	[180]
	YouTube: Kubernetes Failure Stories, or: How to Crash Your Cluster - Henning Jacobs
	https://www.youtube.com/watch?v=LpFApeaGv7A

	[181]
	CNCF Blog: Demystifying Kubernetes as a service – How Alibaba cloud manages 10,000s of Kubernetes clusters
	https://www.cncf.io/blog/2019/12/12/demystifying-kubernetes-as-a-service-how-does-alibaba-cloud-manage-10000s-of-kubernetes-clusters/

	[182]
	GitHub: Multus-CNI
	https://github.com/k8snetworkplumbingwg/multus-cni

	[183]
	Google Docs: KEP: MultiNetwork podNetwork object
	https://docs.google.com/document/d/17LhyXsEgjNQ0NWtvqvtgJwVqdJWreizsgAZHWflgP-A/edit

	[184]
	Kubernetes Docs: User Namespaces
	https://kubernetes.io/docs/concepts/workloads/pods/user-namespaces/

	[185]
	KEP-127: Support User Namespaces in stateless pods
	https://github.com/kubernetes/enhancements/tree/master/keps/sig-node/127-user-namespaces

	[186]
	Wikipedia: Linux Namespaces
	https://en.wikipedia.org/wiki/Linux_namespaces


[bookmark: architecture-requirements]


[bookmark: _Toc184746553]Architecture Requirements
[bookmark: Xa061e9225fbcf2a2cab245131ed3c86da754189][bookmark: _Toc184746554]Introduction for Architecture Requirements
This chapter will specialise the requirements defined in the overall Reference Model into Kubernetes-specific requirements. Additional, RA2-specific, entries are included in section Kubernetes Architecture Requirements.
[bookmark: key-word-definitions][bookmark: _Toc184746555]Key Word Definitions
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [6].
[bookmark: reference-model-requirements][bookmark: _Toc184746556]Reference Model Requirements
The tables below contain the requirements from the Reference Model to cover all infrastructure profiles. The table also includes a reference to any linked specification at Component Level Architecture and at Security Guidance to ensure traceability. If the related Specification does not exist, the reference will read "N/A" (and in bold "N/A" for mandatory requirements).
To ensure alignment with the infrastructure profile catalogue, the following requirements are referenced through:
· Those relating to Cloud Infrastructure Software Profiles
· Those relating to Cloud Infrastructure Hardware Profiles
· Those relating to Cloud Infrastructure Management
· Those relating to Cloud Infrastructure Security
[bookmark: Xb27cd784a6a7608bbd16fbb8917af069b26130a][bookmark: _Toc184746557]Cloud Infrastructure Software Profile Capabilities
Reference Model Requirements: Cloud Infrastructure Software Profile Capabilities
	Reference Model Section [1]
	Reference
	Description
	Requirement for Basic Profile
	Requirement for High-Performance Profile
	Specification Reference

	Exposed Infrastructure Capabilities
	e.cap.001
	Max number of vCPU that can be assigned to a single Pod by the Cloud Infrastructure
	At least 16
	At least 16
	ra2.ch.011

	Exposed Infrastructure Capabilities
	e.cap.002
	Max memory in MB that can be assigned to a single Pod by the Cloud Infrastructure
	at least 32 GB
	at least 32 GB
	ra2.ch.012

	Exposed Infrastructure Capabilities
	e.cap.003
	Max storage in GB that can be assigned to a single Pod by the Cloud Infrastructure
	at least 320 GB
	at least 320 GB
	ra2.ch.010

	Exposed Infrastructure Capabilities
	e.cap.004
	Max number of connection points that can be assigned to a single Pod by the Cloud Infrastructure
	6
	6
	ra2.ntw.003

	Exposed Infrastructure Capabilities
	e.cap.005
	Max storage in GB that can be attached / mounted to Pod by the Cloud Infrastructure
	Up to 16TB (1)
	Up to 16TB (1)
	N/A

	Profiles Specifications & Capability Mapping
	e.cap.006
	CPU pinning support
	Optional
	Must support
	ra2.k8s.009

	Profiles Specifications & Capability Mapping
	e.cap.007
	NUMA support
	Optional
	Must support
	ra2.k8s.006

	Exposed Infrastructure Capabilities
	e.cap.008
	IPsec Acceleration using the virtio-ipsec interface
	Optional
	Optional
	N/A

	Exposed Infrastructure Capabilities
	e.cap.009
	Crypto Acceleration using the virtio-crypto interface
	Optional
	Optional
	N/A

	Exposed Infrastructure Capabilities
	e.cap.010
	Transcoding Acceleration
	Optional
	Optional
	N/A

	Exposed Infrastructure Capabilities
	e.cap.011
	Programmable Acceleration
	Optional
	Optional
	N/A

	Exposed Infrastructure Capabilities
	e.cap.012
	Enhanced Cache Management: L=Lean; E=Equal; X=eXpanded
	E
	E
	N/A

	Profiles Specifications & Capability Mapping
	e.cap.013
	SR-IOV over PCI-PT
	Optional
	Must support
	ra2.ch.002 ra2.ch.003 ra2.k8s.007 ra2.ntw.004 ra2.ntw.008

	Exposed Infrastructure Capabilities
	e.cap.014
	Hardware coprocessor support (GPU/NPU)
	Optional
	Optional
	N/A

	Exposed Infrastructure Capabilities
	e.cap.015
	SmartNICs
	Optional
	Optional
	N/A

	Exposed Infrastructure Capabilities
	e.cap.016
	FPGA/other Acceleration H/W
	Optional
	Optional
	ra2.k8s.007 ra2.ntw.012

	Exposed Infrastructure Capabilities
	e.cap.017
	Ability to monitor L2-L7 data from workload
	n/a (2)
	n/a (2)
	N/A

	Exposed Infrastructure Capabilities
	e.cap.026
	Real-Time settings
	No
	Mandatory for flavour rt-tsn
	

	Exposed Infrastructure Capabilities
	e.cap.027
	Time Sensitive Networking with PTP Hardware Clock and syncronization with SyncE
	No
	Mandatory for flavour rt-tsn
	

	Internal Infrastructure Capabilities
	i.cap.014
	Specifies the proportion of vCPUs consumed by the Cloud Infrastructure system on the worker nodes.
	2
	2
	ra2.k8s.008

	Internal Infrastructure Capabilities
	i.cap.015
	Indicates the memory consumed by Cloud Infrastructure on the worker nodes
	16 GB
	16 GB
	

	Internal Infrastructure Capabilities
	i.cap.016
	Number of virtual cores per physical core; also known as CPU overbooking ratio that is required
	01:01
	01:01
	ra2.ch.004, ra2.ch.005 Kubernetes Node

	Internal Infrastructure Capabilities
	i.cap.017
	QoS enablement of the connection point (vNIC or interface)
	Optional
	Must support
	N/A

	Internal Infrastructure Capabilities
	i.cap.018
	Support for huge pages
	Optional
	Must support
	ra2.ch.001

	Internal Infrastructure Capabilities
	i.pm.001
	Monitor worker node CPU usage, per nanosecond
	Must support
	Must support
	N/A

	Internal Infrastructure Capabilities
	i.pm.002
	Monitor Pod CPU usage, per nanosecond
	Must support
	Must support
	N/A

	Internal Infrastructure Capabilities
	i.pm.003
	Monitor worker node CPU utilisation (%)
	Must support
	Must support
	N/A

	Internal Infrastructure Capabilities
	i.pm.004
	Monitor Pod CPU utilisation
	Must support
	Must support
	N/A

	Internal Infrastructure Capabilities
	i.pm.005
	Measure external storage IOPs
	Must support
	Must support
	N/A

	Internal Infrastructure Capabilities
	i.pm.006
	Measure external storage throughput
	Must support
	Must support
	N/A

	Internal Infrastructure Capabilities
	i.pm.007
	Measure external storage capacity
	Must support
	Must support
	N/A

	Profiles Specifications & Capability Mapping
	i.os.001
	Host operating system must provide drivers etc. to support listed capabilities.
	Must support
	Must support
	ra2.ch.004


(1) Defined in the .bronze configuration in RM section Storage extensions [1].
(2) In Kubernetes based infrastructures packet monitoring is out of the scope for the infrastructure.
[bookmark: virtual-network-interface-specifications][bookmark: _Toc184746558]Virtual Network Interface Specifications
Note: The required number of connection points to a Pod is described in e.cap.004 above. This section describes the required bandwidth of those connection points.
Reference Model Requirements: Network Interface Specifications
	Reference Model Section [1]
	Reference
	Description
	Requirement for Basic Profile
	Requirement for High-Performance Profile
	Specification Reference

	Virtual Network Interface Specifications
	n1, n2, n3, n4, n5, n6
	1, 2, 3, 4, 5, 6 Gbps
	Must support
	Must support
	N/A

	Virtual Network Interface Specifications
	n10, n20, n30, n40, n50, n60
	10, 20, 30, 40, 50, 60 Gbps
	Must support
	Must support
	N/A

	Virtual Network Interface Specifications
	n25, n50, n75, n100, n125, n150
	25, 50, 75, 100, 125, 150 Gbps
	Must support
	Must support
	N/A

	Virtual Network Interface Specifications
	n50, n100, n150, n200, n250 , n300
	50, 100, 150, 200, 250, 300 Gbps
	Must support
	Must support
	N/A

	Virtual Network Interface Specifications
	n100, n200, n300, n400, n500, n600
	100, 200, 300, 400, 500, 600 Gbps
	Must support
	Must support
	N/A


Virtual Network Interface Specifications
[bookmark: X7c1ba66c0ed306960359ae954612698c147204c][bookmark: _Toc184746559]Cloud Infrastructure Software Profile Requirements
Reference Model Requirements: Cloud Infrastructure Software Profile Requirements
	Reference Model Section [1]
	Reference
	Description
	Requirement for Basic Profile
	Requirement for High-Performance Profile
	Specification Reference

	Virtual Compute
	infra.com.cfg.001
	CPU allocation ratio
	1:1
	1:1
	ra2.ch.005, ra2.ch.006

	Virtual Compute
	infra.com.cfg.002
	NUMA awareness
	Optional
	Must support
	ra2.k8s.006

	Virtual Compute
	infra.com.cfg.003
	CPU pinning capability
	Optional
	Must support
	ra2.k8s.009

	Virtual Compute
	infra.com.cfg.004
	Huge pages
	Optional
	Must support
	ra2.ch.001

	Virtual Storage
	infra.stg.cfg.002
	Storage Block
	Must support
	Must support
	ra2.stg.004

	Virtual Storage
	infra.stg.cfg.003
	Storage with replication
	Optional
	Must support
	N/A

	Virtual Storage
	infra.stg.cfg.004
	Storage with encryption
	Must support
	Must support
	N/A

	Virtual Storage
	infra.stg.acc.cfg.001
	Storage IOPS oriented encryption
	Optional
	Must support
	N/A

	Virtual Storage
	infra.stg.acc.cfg.002
	Storage capacity-oriented encryption
	Optional
	Optional
	N/A

	Virtual Networking
	infra.net.cfg.001
	IO virtualisation using virtio1.1
	Must support (1)
	Must support (1)
	N/A

	Virtual Networking
	infra.net.cfg.002
	The overlay network encapsulation protocol needs to enable ECMP in the underlay to take advantage of the scale-out features of the network fabric.(2)
	Must support VXLAN, MPLSoUDP, GENEVE, other
	No requirement specified
	N/A

	Virtual Networking
	infra.net.cfg.003
	Network Address Translation
	Must support
	Must support
	N/A

	Virtual Networking
	infra.net.cfg.004
	Security Groups
	Must support
	Must support
	ra2.k8s.014

	Virtual Networking
	infra.net.cfg.006
	Traffic patterns symmetry
	Must support
	Must support
	N/A

	Virtual Networking
	infra.net.acc.cfg.001
	vSwitch optimisation
	Optional
	Must support DPDK (3)
	ra2.ntw.010

	Virtual Networking
	infra.net.acc.cfg.002
	Support of HW offload
	Optional
	Optional, SmartNIC
	N/A

	Virtual Networking
	infra.net.acc.cfg.003
	Crypto acceleration
	Optional
	Optional
	N/A

	Virtual Networking
	infra.net.acc.cfg.004
	Crypto Acceleration Interface
	Optional
	Optional
	N/A

	Virtual Networking
	infra.net.acc.cfg.005
	AF_XDP
	Optional
	Optional
	N/A


Virtual Networking
(1) Might have other interfaces (such as SR-IOV VFs to be directly passed to a VM or a Pod) or NIC-specific drivers on Kubernetes nodes.
(2) In Kubernetes based infrastructures network separation is possible without an overlay (e.g.: with IPVLAN)
(3) This feature is not applicable for Kubernetes based infrastructures due to lack of vSwitch however workloads need access to user space networking solutions.
[bookmark: Xa47a3e90ec145d9ada2f9127d0e222554822bee][bookmark: _Toc184746560]Cloud Infrastructure Hardware Profile Requirements
Reference Model Requirements: Cloud Infrastructure Hardware Profile Requirements
	Reference Model Section [1]
	Reference
	Description
	Requirement for Basic Profile
	Requirement for High-Performance Profile
	Specification Reference

	Compute Resources
	infra.hw.cpu.cfg.001
	Minimum number of CPU sockets
	2
	2
	ra2.ch.008

	Compute Resources
	infra.hw.cpu.cfg.002
	Minimum number of cores per CPU
	20
	20
	ra2.ch.008

	Compute Resources
	infra.hw.cpu.cfg.003
	NUMA alignment
	N
	Y
	ra2.ch.008

	Compute Resources
	infra.hw.cpu.cfg.004
	Simultaneous multithreading/ Symmetric multiprocessing (SMT/SMP)
	Must support if available
	Optional
	ra2.ch.004

	Compute Resources
	infra.hw.cac.cfg.001
	GPU
	Optional
	Optional
	N/A

	Storage Configurations`
	infra.hw.stg.hdd.cfg.001
	Local storage HDD
	No requirement specified
	No requirement specified
	N/A

	Storage Configurations`
	infra.hw.stg.ssd.cfg.002
	Local storage SSD
	Should support
	Should support
	ra2.ch.009

	Network Resources
	infra.hw.nic.cfg.001
	Total number of NIC ports available in the host
	4
	4
	ra2.ch.013

	Network Resources
	infra.hw.nic.cfg.002
	Port speed specified in Gbps (minimum values)
	10
	25
	ra2.ch.014, ra2.ch.015

	Network Resources
	infra.hw.pci.cfg. 001
	Number of PCIe slots available in the host
	8
	8
	ra2.ch.016

	Network Resources
	infra.hw.pci.cfg.002
	PCIe speed
	Gen 3
	Gen 3
	ra2.ch.016

	Network Resources
	infra.hw.pci.cfg.003
	PCIe lanes
	8
	8
	ra2.ch.016

	Network Resources
	infra.hw.nac.cfg.001
	Cryptographic acceleration
	Optional
	Optional
	N/A

	Network Resources
	infra.hw.nac.cfg.002
	A SmartNIC that is used to offload vSwitch functionality to hardware
	Optional
	Optional (1)
	N/A

	Network Resources
	infra.hw.nac.cfg.003
	Compression
	Optional
	Optional
	N/A


(1) There is no vSwitch in case of containers, but a SmartNIC can be used to offload any other network processing.
[bookmark: X6a00385a01abe4ba5759a32fd4d0c30db45d31e][bookmark: _Toc184746561]Edge Cloud Infrastructure Hardware Profile Requirements
In the case of Telecom Edge Cloud Deployments, hardware requirements can differ from the above to account for environmental and other constraints. The Reference Model [1] includes considerations specific to deployments at the edge of the network. The infrastructure profiles "Basic" and "High Performance" as per the RM chapter on Profiles and Workload Flavours still apply, but a number of requirements of the above table are relaxed as follows:
Reference Model Requirements: Edge Cloud Infrastructure Hardware Profile Requirements
	Reference Model Section [1]
	Reference
	Description
	Requirement for Basic Profile
	Requirement for High-Performance Profile
	Specification Reference

	Telecom Edge Cloud: Infrastructure Profiles
	infra.hw.cpu.cfg.001
	sockets
	
	
	

	Telecom Edge Cloud: Infrastructure Profiles
	infra.hw.cpu.cfg.002
	Minimum number of Cores per CPU
	1
	1
	ra2.ch.008

	Telecom Edge Cloud: Infrastructure Profiles
	infra.hw.cpu.cfg.003
	NUMA alignment
	N
	Y (1)
	ra2.ch.008


Telecom Edge Cloud: Infrastructure Profiles.
(1) immaterial if the number of CPU sockets (infra.hw.cpu.cfg.001) is 1.
[bookmark: Xc502b1b3b64b7a41bf8f91c8875a0d522e8db5c][bookmark: _Toc184746562]Cloud Infrastructure Management Requirements
Reference Model Requirements: Cloud Infrastructure Management Requirements
	Reference Model Section [1]
	Reference
	Description
	Requirement (common to all Profiles)
	Specification Reference

	Cloud Infrastructure Management Capabilities
	e.man.001
	Capability to allocate virtual compute resources to a workload
	Must support
	N/A

	Cloud Infrastructure Management Capabilities
	e.man.002
	Capability to allocate virtual storage resources to a workload
	Must support
	N/A

	Cloud Infrastructure Management Capabilities
	e.man.003
	Capability to allocate virtual networking resources to a workload
	Must support
	N/A

	Cloud Infrastructure Management Capabilities
	e.man.004
	Capability to isolate resources between tenants
	Must support
	N/A

	Cloud Infrastructure Management Capabilities
	e.man.005
	Capability to manage workload software images
	Must support
	N/A

	Cloud Infrastructure Management Capabilities
	e.man.006
	Capability to provide information related to allocated virtualised resources per tenant
	Must support
	N/A

	Cloud Infrastructure Management Capabilities
	e.man.007
	Capability to notify state changes of allocated resources
	Must support
	N/A

	Cloud Infrastructure Management Capabilities
	e.man.008
	Capability to collect and expose performance information on virtualised resources allocated
	Must support
	N/A

	Cloud Infrastructure Management Capabilities
	e.man.009
	Capability to collect and notify fault information on virtualised resources
	Must support
	N/A


Cloud Infrastructure Management Capabilities.
[bookmark: X63c44028588877c0ef9c77b358fe0403d8dc7a6][bookmark: _Toc184746563]Cloud Infrastructure Monitoring Capabilities
Reference Model Requirements: Cloud Infrastructure Internal Performance Measurement Requirements
	Reference Model Section [1]
	Reference
	Description
	Requirement (common to all Profiles)
	Specification Reference

	Internal Performance Measurement Capabilities
	i.pm.001
	Capability to monitor host CPU Usage (in ns)
	Must support
	N/A

	Internal Performance Measurement Capabilities
	i.pm.002
	Capability to monitor per Pod CPU (Virtual compute resource) usage (in ns)
	Must support
	N/A

	Internal Performance Measurement Capabilities
	i.pm.003
	Capability to monitor host CPU Usage (in percentage)
	Must support
	N/A

	Internal Performance Measurement Capabilities
	i.pm.004
	Capability to monitor per Pod CPU (Virtual compute resource) usage (in percentage)
	Must support
	N/A

	Internal Performance Measurement Capabilities
	i.pm.005
	Capability to monitor packet count per physical or virtual node network interface
	Must support
	N/A

	Internal Performance Measurement Capabilities
	i.pm.006
	Capability to monitor octet (bytes) count per physical or virtual node network interface
	Must support
	N/A

	Internal Performance Measurement Capabilities
	i.pm.007
	Capability to monitor dropped packet count per physical or virtual node network interface
	Must support
	N/A

	Internal Performance Measurement Capabilities
	i.pm.008
	Capability to monitor errored packet count per physical or virtual node network interface
	Must support
	N/A

	Internal Performance Measurement Capabilities
	i.pm.009
	Capability to monitor amount of buffered memory (in KiB) on the node.
	Must support
	N/A

	Internal Performance Measurement Capabilities
	i.pm.010
	Capability to monitor amount of cached memory (in KiB) on the node.
	Must support
	N/A

	Internal Performance Measurement Capabilities
	i.pm.011
	Capability to monitor amount of free memory (in KiB) on the node.
	Must support
	N/A

	Internal Performance Measurement Capabilities
	i.pm.012
	Capability to monitor amount of slab memory (in KiB) on the node.
	Must support
	N/A

	Internal Performance Measurement Capabilities
	i.pm.013
	Capability to monitor amount of total memory (in KiB) on the node.
	Must support
	N/A

	Internal Performance Measurement Capabilities
	i.pm.014
	Capability to monitor amount of free storage space (in B) on the node and on volumes.
	Must support
	N/A

	Internal Performance Measurement Capabilities
	i.pm.015
	Capability to monitor amount of used storage space (in B) on the node and on volumes.
	Must support
	N/A

	Internal Performance Measurement Capabilities
	i.pm.016
	Capability to monitor amount of reserved storage space (in B) on the node and on volumes.
	Must support
	N/A

	Internal Performance Measurement Capabilities
	i.pm.017
	Capability to monitor the storage read latency (in ms) on the node and on volumes.
	Must support
	N/A

	Internal Performance Measurement Capabilities
	i.pm.018
	Capability to monitor the read operations rate (in IOPS) on the node and on volumes.
	Must support
	N/A

	Internal Performance Measurement Capabilities
	i.pm.019
	Capability to monitor the storage read throughput (in B/s) on the node and on volumes.
	Must support
	N/A

	Internal Performance Measurement Capabilities
	i.pm.020
	Capability to monitor the storage write latency (in ms) on the node and on volumes.
	Must support
	N/A

	Internal Performance Measurement Capabilities
	i.pm.021
	Capability to monitor the write operations rate (in IOPS) on the node and on volumes.
	Must support
	N/A

	Internal Performance Measurement Capabilities
	i.pm.022
	Capability to monitor the storage write throughput (in B/s) on the node and on volumes.
	Must support
	N/A


Internal Performance Measurement Capabilities.
[bookmark: X73d4a917de18be4e65d0afdac2ddfcd6735c64d][bookmark: _Toc184746564]Cloud Infrastructure Security Requirements
Reference Model Requirements: Cloud Infrastructure Security Requirements
	Reference Model Section [1]
	Reference
	Description
	Specification Reference

	System Hardening
	sec.gen.001
	The Platform must maintain the specified configuration.
	

	System Hardening
	sec.gen.002
	All systems part of Cloud Infrastructure must support password hardening as defined in the CIS Password Policy Guide [7]. Hardening: CIS Password Policy Guide
	Node Hardening: Securing Kubernetes Hosts

	System Hardening
	sec.gen.003
	All servers part of Cloud Infrastructure must support a root of trust and secure boot.
	

	System Hardening
	sec.gen.004
	The Operating Systems of all the server’s part of Cloud Infrastructure must be hardened by removing or disabling unnecessary services, applications, and network protocols, configuring operating system user authentication, configuring resource controls, installing and configuring additional security controls where needed, and testing the security of the Operating System. (NIST SP 800-123)
	Security Principles and Node Hardening

	System Hardening
	sec.gen.005
	The Platform must support Operating System level access control
	Node Hardening

	System Hardening
	sec.gen.006
	The Platform must support secure logging. Logging with root account must be prohibited when root privileges are not required.
	Restricting Direct Access to Nodes

	System Hardening
	sec.gen.007
	All servers part of Cloud Infrastructure must be Time synchronized with authenticated Time service.
	

	System Hardening
	sec.gen.008
	All servers part of Cloud Infrastructure must be regularly updated to address security vulnerabilities.
	Vulnerability Assessment

	System Hardening
	sec.gen.009
	The Platform must support Software integrity protection and verification and must scan source code and manifests.
	Securing the Kubernetes Orchestrator

	System Hardening
	sec.gen.010
	The Cloud Infrastructure must support encrypted storage, for example, block, object and file storage, with access to encryption keys restricted based on a need to know. Controlled Access Based on the Need to Know [8].
	

	System Hardening
	sec.gen.011
	The Cloud Infrastructure should support Read and Write only storage partitions (write only permission to one or more authorized actors).
	

	System Hardening
	sec.gen.012
	The Operator must ensure that only authorized actors have physical access to the underlying infrastructure.
	

	System Hardening
	sec.gen.013
	The Platform must ensure that only authorized actors have logical access to the underlying infrastructure.
	Securing the Kubernetes Orchestrator

	System Hardening
	sec.gen.014
	All servers part of Cloud Infrastructure should support measured boot and an attestation server that monitors the measurements of the servers.
	

	System Hardening
	sec.gen.015
	Any change to the Platform must be logged as a security event, and the logged event must include the identity of the entity making the change, the change, the date and the time of the change.
	

	Platform and Access
	sec.sys.001
	The Platform must support authenticated and secure access to API, GUI and command line interfaces.
	Securing the Kubernetes Orchestrator

	Platform and Access
	sec.sys.002
	The Platform must support Traffic Filtering for workloads (for example, Firewall).
	

	Platform and Access
	sec.sys.003
	The Platform must support secure and encrypted communications, and confidentiality and integrity of network traffic.
	Network Resources Use Transport Layer Security and Service Mesh

	Platform and Access
	sec.sys.004
	The Cloud Infrastructure must support authentication, integrity, and confidentiality on all network channels.
	Network Resources Use Transport Layer Security and Service Mesh

	Platform and Access
	sec.sys.005
	The Cloud Infrastructure must separate the underlay and overlay networks.
	

	Platform and Access
	sec.sys.006
	The Cloud Infrastructure must be able to utilise the Cloud Infrastructure Manager identity lifecycle management capabilities.
	Security Principles

	Platform and Access
	sec.sys.007
	The Platform must implement controls enforcing separation of duties and privileges, least privilege use and least common mechanism (Role-Based Access Control).
	Security Principles Securing the Kubernetes Orchestrator

	Platform and Access
	sec.sys.008
	The Platform must be able to assign the Entities that comprise the tenant networks to different trust domains. Communication between different trust domains is not allowed, by default.
	

	Platform and Access
	sec.sys.009
	The Platform must support creation of Trust Relationships between trust domains.
	

	Platform and Access
	sec.sys.010
	For two or more domains without existing trust relationships, the Platform must not allow the effect of an attack on one domain to impact the other domains either directly or indirectly.
	

	Platform and Access
	sec.sys.011
	The Platform must not reuse the same authentication credential (e.g., key-pair) on different Platform components (e.g., on different hosts, or different services).
	

	Platform and Access
	sec.sys.012
	The Platform must protect all secrets by using strong encryption techniques, and storing the protected secrets externally from the component
	

	Platform and Access
	sec.sys.013
	The Platform must provide secrets dynamically as and when needed.
	

	Platform and Access
	sec.sys.014
	The Platform should use Linux Security Modules such as SELinux to control access to resources.
	

	Platform and Access
	sec.sys.015
	The Platform must not contain back door entries (unpublished access points, APIs, etc.).
	

	Platform and Access
	sec.sys.016
	Login access to the platform's components must be through encrypted protocols such as SSH v2 or TLS v1.2 or higher. Note: Hardened jump servers isolated from external networks are recommended
	Securing the Kubernetes Orchestrator

	Platform and Access
	sec.sys.017
	The Platform must provide the capability of using digital certificates that comply with X.509 standards issued by a trusted certificate authority.
	

	Platform and Access
	sec.sys.018
	The Platform must provide the capability of allowing certificate renewal and revocation.
	

	Platform and Access
	sec.sys.019
	The Platform must provide the capability of testing the validity of a digital certificate (CA signature, validity period, non-revocation, identity).
	

	Platform and Access
	sec.sys.020
	The Cloud Infrastructure architecture should rely on Zero Trust principles to build a secure by design environment.
	

	Confidentiality and Integrity
	sec.ci.001
	The Platform must support Confidentiality and Integrity of data at rest and in-transit. by design environment.
	Securing the Kubernetes Orchestrator

	Confidentiality and Integrity
	sec.ci.002
	The Platform should support self-encrypting storage devices.
	

	Confidentiality and Integrity
	sec.ci.003
	The Platform must support confidentiality and integrity of data related metadata.
	

	Confidentiality and Integrity
	sec.ci.004
	The Platform must support confidentiality of processes and restrict information sharing with only the process owner (e.g., tenant).
	

	Confidentiality and Integrity
	sec.ci.005
	The Platform must support confidentiality and integrity of process-related metadata and restrict information sharing with only the process owner (e.g., tenant).
	

	Confidentiality and Integrity
	sec.ci.006
	The Platform must support confidentiality and integrity of workload resource utilization (RAM, CPU, storage, network I/O, cache, hardware offload) and restrict information sharing with only the workload owner (e.g., tenant).
	

	Confidentiality and Integrity
	sec.ci.007
	The Platform must not allow memory inspection by any actor other than the authorized actors for the entity to which memory is assigned (e.g., tenants owning the workload), for Lawful Inspection, and by secure monitoring services.
	

	Confidentiality and Integrity
	sec.ci.008
	The Cloud Infrastructure must support tenant networks segregation.
	Create and define Network Policies

	Confidentiality and Integrity
	sec.ci.009
	For sensitive data encryption, the key management service should leverage a Hardware Security Module to manage and protect cryptographic keys.
	

	Workload Security
	sec.wl.001
	The Platform must support workload placement policy.
	

	Workload Security
	sec.wl.002
	The Cloud Infrastructure must provide methods to ensure the platform's trust status and integrity (e.g., remote attestation, Trusted Platform Module).
	

	Workload Security
	sec.wl.003
	The Platform must support secure provisioning of workloads.
	Securing the Kubernetes Orchestrator

	Workload Security
	sec.wl.004
	The Platform must support location assertion (for mandated in-country or location requirements).
	

	Workload Security
	sec.wl.005
	The Platform must support the separation of production and non-production Workloads.
	Securing the Kubernetes Orchestrator

	Workload Security
	sec.wl.006
	The Platform must support the separation of Workloads based on their categorisation (for example, payment card information, healthcare, etc.).
	Securing the Kubernetes Orchestrator

	Workload Security
	sec.wl.007
	The Operator must implement processes and tools to verify VNF authenticity and integrity.
	Trusted Registry

	Image Security
	sec.img.001
	Images from untrusted sources must not be used.
	Trusted Registry

	Image Security
	sec.img.002
	Images must be scanned to be maintained free from known vulnerabilities.
	Trusted Registry

	Image Security
	sec.img.003
	Images must not be configured to run with privileges higher than the privileges of the actor authorized to run them.
	Runtime Security

	Image Security
	sec.img.004
	Images must only be accessible to authorised actors.
	

	Image Security
	sec.img.005
	Image Registries must only be accessible to authorised actors.
	

	Image Security
	sec.img.006
	Image Registries must only be accessible over secure networks that enforce authentication, integrity and confidentiality.
	Trusted Registry

	Image Security
	sec.img.007
	Image registries must be clear of vulnerable and out of date versions.
	Trusted Registry

	Image Security
	sec.img.008
	Images must not include any secrets. Secrets include passwords, cloud provider credentials, SSH keys, TLS certificate keys, etc.
	Secrets Management

	Image Security
	sec.img.009
	CIS Hardened Images should be used whenever possible.
	

	Image Security
	sec.img.010
	Minimalist base images should be used whenever possible.
	

	Security LCM
	sec.lcm.001
	The Platform must support secure provisioning, availability, and deprovisioning (secure clean-Up) of workload resources where secure clean-Up includes tear-down, defense against virus or other attacks.
	

	Security LCM
	sec.lcm.002
	Cloud operations staff and systems must use management protocols limiting security risk such as SNMPv3, SSH v2, ICMP, NTP, syslog and TLS v1.2 or higher.
	Securing the Kubernetes Orchestrator

	Security LCM
	sec.lcm.003
	The Cloud Operator must implement and strictly follow change management processes for Cloud Infrastructure, Cloud Infrastructure Manager and other components of the cloud, and platform change control on hardware.
	

	Security LCM
	sec.lcm.004
	The Cloud Operator should support automated templated approved changes.
	

	Security LCM
	sec.lcm.005
	Platform must provide logs and these logs must be regularly monitored for anomalous behavior.
	Enabling Logging and Monitoring

	Security LCM
	sec.lcm.006
	The Platform must verify the integrity of all Resource management requests.
	

	Security LCM
	sec.lcm.007
	The Platform must be able to update newly instantiated, suspended, hibernated, migrated and restarted images with current time information.
	Securing the Kubernetes Orchestrator

	Security LCM
	sec.lcm.008
	The Platform must be able to update newly instantiated, suspended, hibernated, migrated and restarted images with relevant DNS information.
	

	Security LCM
	sec.lcm.009
	The Platform must be able to update the tag of newly instantiated, suspended, hibernated, migrated and restarted images with relevant geolocation (geographic) information.
	

	Security LCM
	sec.lcm.010
	The Platform must log all changes to geolocation along with the mechanisms and sources of location information (i.e., GPS, IP block, and timing).
	

	Security LCM
	sec.lcm.011
	The Platform must implement security life cycle management processes including the proactive update and patching of all deployed Cloud Infrastructure software.
	

	Security LCM
	sec.lcm.012
	The Platform must log any access privilege escalation.
	

	Monitoring and Security Audit
	sec.mon.001
	The Platform must provide logs and these logs must be regularly monitored for events of interest. The logs must contain the following fields: event type, date/time, protocol, service or program used for access, success/failure, login ID or process ID, IP address and ports (source and destination) involved.
	

	Monitoring and Security Audit
	sec.mon.002
	Security logs must be time synchronised.
	

	Monitoring and Security Audit
	sec.mon.003
	The Platform must log all changes to time server source, time, date and time zones.
	

	Monitoring and Security Audit
	sec.mon.004
	The Platform must secure and protect audit logs (containing sensitive information) both in-transit and at rest.
	

	Monitoring and Security Audit
	sec.mon.005
	The Platform must monitor and audit various behaviours of connection and login attempts to detect access attacks and potential access attempts and take corrective actions accordingly.
	

	Monitoring and Security Audit
	sec.mon.006
	The Platform must monitor and audit operations by authorized account access after login to detect malicious operational activity and take corrective actions accordingly.
	

	Monitoring and Security Audit
	sec.mon.007
	The Platform must monitor and audit security parameter configurations for compliance with defined security policies.
	

	Monitoring and Security Audit
	sec.mon.008
	The Platform must monitor and audit externally exposed interfaces for illegal access (attacks) and take corrective security hardening measures.
	

	Monitoring and Security Audit
	sec.mon.009
	The Platform must monitor and audit service handling for various attacks (malformed messages, signalling flooding and replaying, etc.) and take corrective actions accordingly.
	

	Monitoring and Security Audit
	sec.mon.010
	The Platform must monitor and audit running processes to detect unexpected or unauthorized processes and take corrective actions accordingly.
	

	Monitoring and Security Audit
	sec.mon.011
	The Platform must monitor and audit logs from infrastructure elements and workloads to detected anomalies in the system components and take corrective actions accordingly.
	

	Monitoring and Security Audit
	sec.mon.012
	The Platform must monitor and audit traffic patterns and volumes to prevent malware download attempts.
	

	Monitoring and Security Audit
	sec.mon.013
	The monitoring system must not affect the security (integrity and confidentiality) of the infrastructure, workloads, or the user data (through back door entries).
	

	Monitoring and Security Audit
	sec.mon.014
	The Monitoring systems should not impact IAAS, PAAS, and SAAS SLAs including availability SLAs.
	

	Monitoring and Security Audit
	sec.mon.015
	The Platform must ensure that the monitoring systems are never starved of resources and must activate alarms when resource utilisation exceeds a configurable threshold.
	

	Monitoring and Security Audit
	sec.mon.016
	The Platform Monitoring components should follow security best practices for auditing, including secure logging and tracing.
	

	Monitoring and Security Audit
	sec.mon.017
	The Platform must audit systems for any missing security patches and take appropriate actions.
	Vulnerability Assessment

	Monitoring and Security Audit
	sec.mon.018
	The Platform, starting from initialization, must collect and analyze logs to identify security events, and store these events in an external system.
	Patch Management

	Monitoring and Security Audit
	sec.mon.019
	The Platform's components must not include an authentication credential, e.g., password, in any logs, even if encrypted.
	

	Monitoring and Security Audit
	sec.mon.020
	The Platform's logging system must support the storage of security audit logs for a configurable period of time.
	

	Monitoring and Security Audit
	sec.mon.021
	The Platform must store security events locally if the external logging system is unavailable and shall periodically attempt to send these to the external logging system until successful.
	

	Open Source Software
	sec.oss.001
	Open source code must be inspected by tools with various capabilities for static and dynamic code analysis.
	Vulnerability Assessment

	Open Source Software
	sec.oss.002
	The CVE (Common Vulnerabilities and Exposures) [9] must be used to identify vulnerabilities and their severity rating for open source code part of Cloud Infrastructure and workloads software.
	

	Open Source Software
	sec.oss.003
	Critical and high severity rated vulnerabilities must be fixed in a timely manner. Refer to the CVSS (Common Vulnerability Scoring System) [9] to know a vulnerability score and its associated rate (low, medium, high, or critical).
	

	Open Source Software
	sec.oss.004
	A dedicated internal isolated repository separated from the production environment must be used to store vetted open source content.
	Trusted Registry

	Open Source Software
	sec.oss.005
	A Software Bill of Materials (SBOM [11]) should be provided or build, and maintained to identify the software components and their origins.
	

	IaaC - Secure Design and Architecture Stage Requirements
	sec.arch.001
	Threat Modelling methodologies and tools should be used during the Secure Design and Architecture stage triggered by Software Feature Design trigger. It may be done manually or using tools like open source OWASP Threat Dragon.
	

	IaaC - Secure Design and Architecture Stage Requirements
	sec.arch.002
	Security Control Baseline Assessment should be performed during the Secure Design and Architecture stage triggered by Software Feature Design trigger. Typically done manually by internal or independent assessors.
	

	IaaC - Secure Code Stage Requirements
	sec.code.001
	Static Application Security Testing (SAST) must be applied during Secure Coding stage triggered by Pull, Clone or Comment trigger. Security testing that analyses application source code for software vulnerabilities and gaps against best practices. Example: open source OWASP range of tools.
	

	IaaC - Secure Code Stage Requirements
	sec.code.002
	Software Composition Analysis (SCA) should be applied during Secure Coding stage triggered by Pull, Clone or Comment trigger. Security testing that analyses application source code or compiled code for software components with known vulnerabilities. Example: open source OWASP range of tools.
	

	IaaC - Secure Code Stage Requirements
	sec.code.003
	Source Code Review should be performed continuously during Secure Coding stage. Typically done manually.
	

	IaaC - Secure Code Stage Requirements
	sec.code.004
	Integrated SAST via IDE Plugins should be used during Secure Coding stage triggered by Developer Code trigger. On the local machine: through the IDE or integrated test suites; triggered on completion of coding be developer.
	

	IaaC - Secure Code Stage Requirements
	sec.code.005
	SAST of Source Code Repository should be performed during Secure Coding stage triggered by Developer Code trigger. Continuous delivery pre-deployment: scanning prior to deployment.
	

	IaaC - Continuous Build, Integration and Testing Stage Requirements
	sec.bld.001
	Static Application Security Testing (SAST) should be applied during the Continuous Build, Integration and Testing stage triggered by Build and Integrate trigger. Example: open source OWASP range of tools.
	

	IaaC - Continuous Build, Integration and Testing Stage Requirements
	sec.bld.002
	SCA - Software Composition Analysis should be applied during the Continuous Build, Integration and Testing stage triggered by Build and Integrate trigger. Example: open source OWASP range of tools.
	

	IaaC - Continuous Build, Integration and Testing Stage Requirements
	sec.bld.003
	Image Scan must be applied during the Continuous Build, Integration and Testing stage triggered by Package trigger. Example: A push of a container image to a container registry may trigger a vulnerability scan before the image becomes available in the registry.
	

	IaaC - Continuous Build, Integration and Testing Stage Requirements
	sec.bld.004
	Dynamic Application Security Testing (DAST) should be applied during the Continuous Build, Integration and Testing stage triggered by Stage & Test trigger. Security testing that analyses a running application by exercising application functionality and detecting vulnerabilities based on application behaviour and response. Example: OWASP ZAP.
	

	IaaC - Continuous Build, Integration and Testing Stage Requirements
	sec.bld.005
	Fuzzing should be applied during the Continuous Build, Integration and testing stage triggered by Stage & Test trigger. Fuzzing or fuzz testing is an automated software testing technique that involves providing invalid, unexpected, or random data as inputs to a computer program. Example: GitLab Open Sources Protocol Fuzzer Community Edition.
	

	IaaC - Continuous Build, Integration and Testing Stage Requirements
	sec.bld.006
	Interactive Application Security Testing (IAST) should be applied during the Continuous Build, Integration and Testing stage triggered by Stage & Test trigger. Software component deployed with an application that assesses application behaviour and detects presence of vulnerabilities on an application being exercised in realistic testing scenarios. Example: Contrast Community Edition.
	

	IaaC - Continuous Delivery and Deployment Stage Requirements
	sec.del.001
	Image Scan must be applied during the Continuous Delivery and Deployment stage triggered by Publish to Artifact and Image Repository trigger. Example: GitLab uses the open source Clair engine for container image scanning.
	

	IaaC - Continuous Delivery and Deployment Stage Requirements
	sec.del.002
	Code Signing must be applied during the Continuous Delivery and Deployment stage triggered by Publish to Artifact and Image Repository trigger. Code Signing provides authentication to assure that downloaded files are from the publisher named on the certificate.
	

	IaaC - Continuous Delivery and Deployment Stage Requirements
	sec.del.003
	Artifact and Image Repository Scan should be continuously applied during the Continuous Delivery and Deployment stage. Example: GitLab uses the open source Clair engine for container scanning.
	

	IaaC - Continuous Delivery and Deployment Stage Requirements
	sec.del.004
	Component Vulnerability Scan must be applied during the Continuous Delivery and Deployment stage triggered by Instantiate Infrastructure trigger. The vulnerability scanning system is deployed on the cloud platform to detect security vulnerabilities of specified components through scanning and to provide timely security protection. Example: OWASP Zed Attack Proxy (ZAP).
	

	IaaC - Runtime Defence and Monitoring Requirements
	sec.run.001
	Component Vulnerability Monitoring must be continuously applied during the Runtime Defence and Monitoring stage and remediation actions must be applied for high severity rated vulnerabilities. Security technology that monitors components like virtual servers and assesses data, applications, and infrastructure for security risks.
	

	IaaC - Runtime Defence and Monitoring Requirements
	sec.run.002
	Runtime Application Self-Protection (RASP) should be continuously applied during the Runtime Defence and Monitoring stage. Security technology deployed within the target application in production for detecting, alerting, and blocking attacks.
	

	IaaC - Runtime Defence and Monitoring Requirements
	sec.run.003
	Application testing and Fuzzing should be continuously applied during the Runtime Defence and Monitoring stage. Fuzzing or fuzz testing is an automated software testing technique that involves providing invalid, unexpected, or random data as inputs to a computer program. Example: GitLab Open Sources Protocol Fuzzer Community Edition.
	

	IaaC - Runtime Defence and Monitoring Requirements
	sec.run.004
	Penetration Testing should be continuously applied during the Runtime Defence and Monitoring stage. Typically done manually.
	

	Compliance With Standards
	sec.std.001
	The Cloud Operator should comply with Center for Internet Security CIS Controls [8].
	

	Compliance With Standards
	sec.std.002
	The Cloud Operator, Platform and Workloads should follow the guidance in the CSA Security Guidance for Critical Areas of Focus in Cloud Computing (latest version) [12].
	

	Compliance With Standards
	sec.std.003
	The Platform and Workloads should follow the guidance in the OWASP Cheat Sheet Series (OCSS) [13].
	

	Compliance With Standards
	sec.std.004
	The Cloud Operator, Platform and Workloads should ensure that their code is not vulnerable to the OWASP Top Ten Security Risks [14].
	

	Compliance With Standards
	sec.std.005
	The Cloud Operator, Platform and Workloads should strive to improve their maturity on the OWASP Software Maturity Model (SAMM) [15].
	

	Compliance With Standards
	sec.std.006
	The Cloud Operator, Platform and Workloads should utilize the OWASP Web Security Testing Guide [16].
	

	Compliance With Standards
	sec.std.007
	The Cloud Operator, and Platform should satisfy the requirements for Information Management Systems specified in ISO/IEC 27001 [17]. ISO/IEC 27002:2013 - ISO/IEC 27001 is the international Standard for best-practice information security management systems (ISMSs).
	

	Compliance With Standards
	sec.std.008
	The Cloud Operator, and Platform should implement the Code of practice for Security Controls specified in ISO/IEC 27002:2013 (or latest) [17].
	

	Compliance With Standards
	sec.std.009
	The Cloud Operator, and Platform should implement the ISO/IEC 27032:2012 (or latest) [19] Guidelines for Cybersecurity techniques. ISO/IEC 27032 - ISO/IEC 27032 is the international Standard focusing explicitly on cybersecurity.
	

	Compliance With Standards
	sec.std.010
	The Cloud Operator should conform to the ISO/IEC 27035 standard for incidence management. ISO/IEC 27035 - ISO/IEC 27035 is the international Standard for incident management.
	

	Compliance With Standards
	sec.std.011
	The Cloud Operator should conform to the ISO/IEC 27031 standard for business continuity. ISO/IEC 27031 -ISO/IEC 27031 is the international Standard for ICT readiness for business continuity.
	

	Compliance With Standards
	sec.std.012
	The Public Cloud Operator must, and the Private Cloud Operator may be certified to be compliant with the International Standard on Awareness Engagements (ISAE) 3402 (in the US: SSAE 16). International Standard on Awareness Engagements (ISAE) 3402. US Equivalent: SSAE16.
	


[bookmark: kubernetes-architecture-requirements][bookmark: _Toc184746565]Kubernetes Architecture Requirements
The requirements in this section are to be delivered in addition to those in section Reference Model Requirements, and have been created to support the Principles defined in the first chapter Overview of this Reference Architecture.
The Reference Model (RM) defines the Cloud Infrastructure, which consists of the physical resources, virtualised resources and a software management system.
In virtualisation platforms, the Cloud Infrastructure consists of the guest operating system, hypervisor and, if needed, other software such as libvirt. The Cloud Infrastructure Management component is responsible for, among others, tenant management, resources management, inventory, scheduling, and access management.
With regards to containerisation platforms, the scope of the following Architecture requirements include the Cloud Infrastructure Hardware (e.g. physical resources), Cloud Infrastructure Software (e.g. Hypervisor (optional), Container Runtime, virtual or container Orchestrator(s), Operating System), and infrastructure resources consumed by virtual machines or containers.
Kubernetes Architecture Requirements
	Reference
	Category
	Sub-category
	Description
	Specification Reference

	gen.cnt.02
	General
	Cloud nativeness
	The Architecture must support immutable infrastructure.
	ra2.ch.017

	gen.cnt.03
	General
	Cloud nativeness
	The Architecture must run conformant Kubernetes as defined by the CNCF [20].
	ra2.k8s.001

	gen.cnt.04
	General
	Cloud nativeness
	The Architecture must support clearly defined abstraction layers - from the hardware infrastructure (supporting the platform) to the containerisation platform (the main concern of this Architecture) to the applications (workloads running on the platform).
	

	gen.cnt.05
	General
	Cloud nativeness
	The Architecture should support configuration of all components in an automated manner using openly published API definitions.
	

	gen.scl.01
	General
	Scalability
	The Architecture should support policy driven horizontal auto-scaling of workloads.
	

	gen.rsl.01
	General
	Resiliency
	The Architecture must support resilient Kubernetes components that are required for the continued availability of running workloads.
	ra2.k8s.004

	gen.rsl.02
	General
	Resiliency
	The Architecture should support resilient Kubernetes service components that are not subject to gen.rsl.01.
	ra2.k8s.002, ra2.k8s.003

	gen.avl.01
	General
	Availability
	The Architecture must provide High Availability for Kubernetes components.
	ra2.k8s.002, ra2.k8s.003, ra2.k8s.004

	gen.ost.01
	Openness
	Availability
	The Architecture should embrace open-based standards and technologies.
	ra2.crt.001, ra2.crt.002, ra2.ntw.002, ra2.ntw.006, ra2.ntw.007

	inf.com.01
	Infrastructure
	Compute
	The Architecture must provide compute resources for Pods.
	ra2.k8s.004

	inf.stg.01
	Infrastructure
	Storage
	The Architecture must support the ability for an operator to choose whether or not to deploy persistent storage for Pods.
	ra2.stg.004

	inf.ntw.01
	Infrastructure
	Network
	The Architecture must support network resiliency on the Kubernetes nodes.
	

	inf.ntw.02
	Infrastructure
	Network
	The Architecture must support redundant network connectivity to the Kubernetes nodes. At least two physical network connections are required for each physical Kubernetes node. For virtualized Kubernetes nodes, redundant network interfaces backed by redundant physical connections, are required on each virtualised Kubernetes node.
	

	inf.ntw.03
	Infrastructure
	Network
	The networking solution should be able to be centrally administered and configured.
	ra2.ntw.001, ra2.ntw.004

	inf.ntw.04
	Infrastructure
	Network
	The Architecture must support dual stack IPv4 and IPv6 for Kubernetes workloads.
	ra2.ch.007, ra2.k8s.010

	inf.ntw.05
	Infrastructure
	Network
	The Architecture must support capabilities for integrating SDN controllers.
	

	inf.ntw.06
	Infrastructure
	Network
	The Architecture must support more than one networking solution.
	ra2.ntw.005, ra2.ntw.007

	inf.ntw.07
	Infrastructure
	Network
	The Architecture must support the ability for an operator to choose whether or not to deploy more than one networking solution.
	ra2.ntw.005

	inf.ntw.08
	Infrastructure
	Network
	The Architecture must provide a default network which implements the Kubernetes network model.
	ra2.ntw.002

	inf.ntw.09
	Infrastructure
	Network
	The networking solution must not interfere with or cause interference to any interface or network it does not own.
	

	inf.ntw.10
	Infrastructure
	Network
	The Architecture must support Cluster wide coordination of IP address assignment.
	

	inf.ntw.13
	Infrastructure
	Network
	The platform must allow specifying multiple separate IP pools. Tenants are required to select at least one IP pool that is different from the control infrastructure IP pool or other tenant IP pools.
	

	inf.ntw.14
	Infrastructure
	Network
	The platform must allow NAT-less traffic (i.e., exposing the Pod IP address directly to the outside), allowing source and destination IP addresses to be preserved in the traffic headers from workloads to external networks. This is needed e.g. for signalling applications, using SIP and Diameter protocols.
	ra2.ntw.011

	inf.ntw.15
	Infrastructure
	Network
	The platform must support LoadBalancer Publishing Service (ServiceType)
	

	inf.ntw.16
	Infrastructure
	Network
	The platform must support Ingress.
	

	inf.ntw.17
	Infrastructure
	Network
	The platform should support NodePort Publishing Service (ServiceTypes).
	

	inf.ntw.18
	Infrastructure
	Network
	The platform should support ExternalName Publishing Service (ServiceTypes).
	

	inf.vir.01
	Infrastructure
	Virtual Infrastructure
	The Architecture must support the capability for containers to consume infrastructure resources abstracted by host operating systems that are running within a virtual machine.
	ra2.ch.005, ra2.ch.011

	inf.phy.01
	Infrastructure
	Physical Infrastructure
	The Architecture must support the capability for containers to consume infrastructure resources abstracted by host operating systems that are running within a physical server.
	ra2.ch.008

	kcm.gen.01
	Kubernetes Cluster
	General
	The Architecture must support policy driven horizontal auto- scaling of Kubernetes cluster.
	N/A

	kcm.gen.02
	Kubernetes Cluster
	General
	The Architecture must enable workload resiliency.
	ra2.k8s.004

	kcm.gen.03
	Kubernetes Cluster
	General
	The Architecture should enable automated TLS certificate management.
	ra2.k8s.020

	int.api.01
	API
	General
	The Architecture must leverage the Kubernetes APIs to discover and declaratively manage compute (virtual and bare metal resources), network, and storage.
	For Networking: ra2.ntw.001, ra2.ntw.008, ra2.app.006. Compute/storage not yet met.

	int.api.02
	API
	General
	The Architecture must support the usage of a Kubernetes application package manager using the Kubernetes API, like Helm v3.
	ra2.pkg.001

	int.api.03
	API
	General
	The Architecture must support stable features in its APIs.
	

	int.api.04
	API
	General
	The Architecture must support limited backward compatibility in its APIs. Support for the whole API must not be dropped, but the schema or other details can change.
	


[bookmark: high-level-architecture]


[bookmark: _Toc184746566]High Level Architecture
[bookmark: introduction-to-high-level-architecture][bookmark: _Toc184746567]Introduction to High Level Architecture
The Anuket Reference Architecture (RA2) for Kubernetes based cloud infrastructure is intended to be an industry standard and independent Kubernetes reference architecture that is not tied to any specific offering or distribution. No vendor-specific enhancements are required to achieve conformance with the Anuket specifications. Conformance to these specifications can be achieved by using upstream components or features that are developed by the open source community, and conformance is ensured by successfully running the RC2 conformance testing suite.
By using the Reference Architecture (RA2) for Kubernetes based cloud infrastructure specifications, operators can deploy infrastructure that will run any VNF or CNF that has successfully run on an RA2-conformant infrastructure. The purpose of this chapter is to outline all the components required to provide Telecom-grade Kubernetes in a consistent and reliable way. The specification of how to setup these components is detailed in the Component Level Architecture chapter.
Kubernetes is already a well-documented and widely deployed open source project of the Cloud Native Computing Foundation (CNCF). For information related to standard Kubernetes features and capabilities, refer to the standard Kubernetes documentation that can be found on the Kubernetes docs page [2]. The following chapters describe the specific features required by the Anuket Reference Architecture, and how they are expected to be implemented.
While this reference architecture provides options for modular components, such as service mesh, the focus of the Reference Architecture is on the abstracted interfaces and features that are required for Telecom workload management and execution.
Chapter 4 of the Reference Model (RM) [1] describes the hardware and software profiles that reflect the capabilities and features that the types of Cloud Infrastructure provide to the workloads. The figure below depicts a high-level view of the software features that apply to each instance profile (basic and high-performance).
[bookmark: X766935c74b3e3e39d65f6636d21fe64dc8b6e9d][image: figures/RM-ch05-sw-profile.png]
(from RM): NFVI software profiles
In addition, the Figure (NFVI hardware profiles and host associated capabilities shown below) depicts the hardware profile features that apply to each instance profile.
[bookmark: Xd40bfedc0dc5076c8ff0129cf32156ebacb5943][image: figures/RM_chap5_fig_5_4_HW_profile.png]
(from RM): NFVI hardware profiles and host associated capabilities
The features and capabilities described in the software and hardware profiles are considered throughout this RA, with the requirements traceability to the RM requirements formally documented in the Architecture Requirements of this RA.
[bookmark: infrastructure-services][bookmark: _Toc184746568]Infrastructure Services
[bookmark: container-compute-services][bookmark: _Toc184746569]Container Compute Services
The primary interface between the physical/virtual infrastructure and any container-relevant components is the Kubernetes Node Operating System. This is the OS within which the container runtime exists, and within which the containers run, and therefore, the OS whose kernel is shared by the referenced containers. This is shown in the figure Kubernetes Node Operating System below.
[bookmark: Kubernetes_Node_Operating_System][image: figures/ch03_hostOS.png]
Kubernetes Node Operating System
The Kubernetes Node OS (as with any OS) consists of two main components:
· Kernel space
· User space
The kernel is the core of the operating system, controlling all hardware resources and managing the interaction with software components. Kernel features include key containerisation capabilities, such as control groups (cgroups) and namespaces, used and managed by the container runtime to provide isolation between the user space processes. The kernel provides an API to applications running in the user space (which usually has its own southbound interface provided by an interpreter or libraries). This isolation also includes the container itself, as well as any processes running within it. The security of the Kubernetes Node OS and its relationship to the containers and the applications running within the containers, is essential to the overall security posture of the entire system. The platform must be appropriately secured to ensure that the processes running in one container cannot escalate their privileges on the node or otherwise affect processes running in an adjacent container. An example of this concept, together with further details, can be found in API and Feature Testing requirements.
It is important to note that the container runtime itself is also a set of processes that run in user space, and therefore also interact with the kernel via system calls. Many diagrams show containers as running on top of the runtime, or inside the runtime. More accurately, the containers themselves are simply processes running within an OS. The container runtime is simply another set of processes that are used to manage these containers (pull, run, delete, and so on) and the kernel features required to provide the isolation mechanisms (cgroups, namespaces, filesystems, and so on) between the containers.
[bookmark: container-runtime-services]Container Runtime Services
The Container Runtime is a component that runs within a Kubernetes Node Operating System (OS). It manages the underlying OS functionality, (such as cgroups and namespaces in Linux), in order to provide an isolated context within which container images can be executed. It also makes use of the infrastructure resources, such as compute, storage, networking and other I/O devices, abstracted by the Node OS, based on API instructions from the kubelet.
There are a number of different container runtimes. The simplest form of runtimes, the low-level container runtimes, only manage the operating system capabilities, such as cgroups and namespaces, and then run commands from within those cgroups and namespaces. An example of this type of runtime is runc, which underpins many of the higher-level runtimes and is considered a reference implementation of the Open Container Initiative (OCI) runtime spec. [29] This specification includes details on how an implementation (that is, an actual container runtime such as runc) must, for example, configure resource shares and limits (such as CPU, memory, IOPS) for the containers that Kubernetes (via the kubelet) schedules on that node. This is important to ensure that the features and capabilities described in the Reference Model [1] are supported by this RA and delivered by any downstream Reference Implementations (RIs) to the instance types defined in the RM.
Where low-level runtimes are used for the execution of a container within an operating system, the more complex and complete high-level container runtimes are used for the general management of container images - moving them to where they need to be executed, unpacking them, and then passing them to the low-level runtime, which then executes the container. These high-level runtimes also include a comprehensive API that other components, such as Kubernetes, can use to interact and manage the containers. An example of this type of runtime is Containerd, which provides the features described above, and depends on runc for execution.
For Kubernetes, the important interface to consider for container management is the Kubernetes Container Runtime Interface (CRI). This is an interface specification for any container runtime to integrate with the control plane (kubelet) of a Kubernetes node. The CRI allows to decouple the kubelet from the runtime that is running in the node OS, allowing to swap container runtime if it is compliant with CRI. Examples CRI-compliant runtimes include Containerd and cri-o, which are built specifically to work with Kubernetes.
To fulfill inf.vir.01, the architecture should support a container runtime which provides the isolation of the Operating System kernels.
The basic semantics of Kubernetes, and the information found in the manifests, define the built-in Kubernetes objects and their desired state. The main objects built into Kubernetes include:
Kubernetes built-in objects
	Pod and workloads
	Description

	Pod [30]
	A pod is a collection of containers that can run on a node. This resource is created by clients and scheduled onto nodes.

	ReplicaSet [31]
	A ReplicaSet ensures that a specified number of pod replicas are running at any given time.

	Deployment [32]
	A deployment enables declarative updates for pods and ReplicaSets.

	DaemonSet [33]
	A DaemonSet ensures that the correct nodes run a copy of a pod.

	Job [34]
	A job represents a task. It creates one or more pods and ensures that the specified number of successful completions is completed.

	CronJob [35]
	A CronJob manages time-based jobs, namely, once or repeatedly at specified times.

	StatefulSet [36]
	A StatefulSet represents a set of pods with consistent identities. Identities are defined as network and storage.


[bookmark: cpu-management-policies]CPU Management Policies
CPU management has policies to determine placement preferences to use for workloads that are sensitive to cache affinity or latency. Therefore, these workloads must not be throttled by the kubelet and their processes must not be scheduled across the CPU cores by the OS scheduler. Additionally, some workloads are sensitive to differences between the physical cores and the SMT, while others (such as DPDK-based workloads) are designed to run on isolated CPUs (such as on Linux with a cpuset-based selection of CPUs and isolcpus kernel parameters specifying cores isolated from the general SMP balancing and scheduler algorithms).
The Kubernetes CPU Manager [37] works with the Topology Manager. Special care needs to be taken of:
· Supporting isolated CPUs: Using kubelet Reserved CPUs and Linux isolcpus allows configuration where only isolcpus are allocatable to pods. Scheduling pods to such nodes can be influenced with taints, tolerations, and node affinity.
· Differentiating between physical cores and SMT: When requesting even number of CPU cores for pods, scheduling can be influenced with taints, tolerations, and node affinity.
[bookmark: X8db7d41016d001da1a59a52866173004cdef44c]Management of Memory and Huge Pages Resources
The Reference Model requires the support of huge pages in i.cap.018 which is supported by the upstream Kubernetes [38].
For the correct mapping of huge pages to scheduled pods, both need to have huge pages enabled in the operating system (configured in kernel and mounted with the correct permissions), as well as kubelet configuration. Multiple sizes of huge pages can be enabled, such as 2 MiB and 1 GiB.
For some applications, huge pages should be allocated to account for consideration of the underlying hardware topology. The Memory Manager [39] allows the feature guaranteed memory and huge pages allocation for pods in the Guaranteed QoS class. The Memory Manager feeds the Topology Manager with hints for the most suitable NUMA affinity.
[bookmark: hardware-topology-management]Hardware Topology Management
NUMA nodes are defined as server system architecture divisions of CPU sockets. Scheduling pods across NUMA boundaries can result in lower performance and higher latencies. This could be an issue for applications that require optimizations of CPU isolation, memory, and device locality.
Kubernetes supports Topology policy per node [40]. The Topology Manager receives topology information from Hint Providers which identify NUMA nodes and preferred scheduling. In the case of the pod with a Guaranteed QoS class having integer CPU requests, the static CPU Manager policy returns topology hints relating to the exclusive CPU. The Device Manager provides hints for the requested device.
If memory or huge pages are not considered by the Topology Manager, it can be done by the operating system providing best-effort local page allocation for containers, if there is sufficient free local memory on the node, or with a Control Groups (cgroups) cpuset subsystem that can isolate memory to a single NUMA node.
[bookmark: node-feature-discovery]Node Feature Discovery
Node Feature Discovery [41] (NFD) can run on every node as a daemon or as a job. NFD detects the hardware and software capabilities of each node and then advertises those capabilities as node labels. Those node labels can be used in scheduling pods by using the Node Selector or Node Affinity for pods that require such capabilities.
[bookmark: device-plugin-framework]Device Plugin Framework
Device Plugin Framework [42] advertises device hardware resources to kubelet, with which vendors can implement plugins for devices that may require vendor-specific activation and lifecycle management, and securely maps these devices to the containers.
The figure Device Plugin Operation below shows in four steps how device plugins operate on a Kubernetes node:
· 1: During setup, the cluster administrator (more in Operator Pattern) knows or discovers (as per Node Feature Discovery) what kind of devices are present on the different nodes, selects which devices to enable, and deploys the associated device plugins.
· 2: The plugin reports the devices it found on the node to the Kubelet device manager and starts its gRPC server to monitor the devices.
· 3: The user submits a pod specification (workload manifest file) requesting a certain type of device.
· 4: The scheduler determines a suitable node based on device availability and the local kubelet assigns a specific device to the pod's containers.
[bookmark: Device_Plugin_Operation][image: figures/Ch3_Figure_Device_Plugin_operation.png]
Device Plugin Operation
An example of an often-used device plugin is the SR-IOV Network Device Plugin [43]. The SR-IOV Network Device Plugin discovers and advertises SR-IOV Virtual Functions (VFs) available on a Kubernetes node, and is used to map VFs to scheduled pods. To use it, an SR-IOV CNI is required. A CNI multiplexer plugin (such as Multus CNI [182]) is also required to provision additional secondary network interfaces for VFs (beyond the primary network interface). During pod creation, the SR-IOV CNI allocates an SR-IOV VF to a pod’s network namespace using the VF information given by the meta plugin, and on pod deletion releases the VF from the pod.
With the Device Health in Pod Status feature, introduced in Kubernetes 1.31, Device Plugins can expose device health information in the allocatedResourcesStatus field of the Pod status. This enhancement allows device plugins to communicate the health of allocated devices, enabling the kubelet and cluster operators to identify and respond to device failures more effectively. Feature gate DeviceHealth must be enabled to use this capability. Telecom workloads can benefit from improved reliability by leveraging this feature to monitor the health of critical hardware accelerators and ensure continuous service availability.
[bookmark: hardware-acceleration]Hardware Acceleration
Hardware Acceleration Abstraction in RM [1] describes types of hardware acceleration (CPU instructions, Fixed function accelerators, Firmware-programmable adapters, SmartNICs and SmartSwitches), and usage for Infrastructure Level Acceleration and Application Level Acceleration.
Scheduling pods that require, or prefer to run on, nodes with hardware accelerators depend on the type of accelerator used:
· CPU instruction sets can be found with Node Feature Discovery
· Fixed-function accelerators, Firmware-programmable network adapters, and SmartNICs can be found and mapped to pods by using Device Plugin.
[bookmark: Xaf0232c7d5b943c6b9007d932d82145079f206e]Scheduling Pods with Non-resilient Applications
Non-resilient applications are sensitive to platform impairments on Compute-like pausing CPU cycles (for example, because of the OS scheduler) or Networking-like packet drops, reordering, or latencies. Such applications need to be carefully scheduled on nodes and preferably still decoupled from the infrastructure details of those nodes.
Categories of applications, requirements for scheduling pods and Kubernetes features
	No.
	Intensive on
	Not intensive on
	Using hardware acceleration
	Requirements for optimised pod scheduling

	1
	Compute
	Networking (dataplane)
	No
	CPU Manager

	2
	Compute
	Networking (dataplane)
	CPU instructions
	CPU Manager, NFD

	3
	Compute
	Networking (dataplane)
	Fixed-function acceleration, Firmware-programmable network adapters, or SmartNICs
	CPU Manager, Device Plugin

	4
	Networking (dataplane)
	
	No, or Fixed function acceleration, Firmware- programmable network adapters or SmartNICs
	Huge pages (for DPDK-based applications); CPU Manager with configuration for isolcpus and SMT (if supported); Multiple interfaces; NUMA topology; Device Plugin

	5
	Networking (dataplane)
	
	CPU instructions
	Huge pages (for DPDK-based applications); CPU Manager with configuration for isolcpus and SMT (if supported); Multiple interfaces; NUMA topology; Device Plugin; NFD


[bookmark: virtual-machine-based-clusters]Virtual Machine-based Clusters
Kubernetes clusters can implement worker nodes with "bare metal" servers (running Container Runtime on Linux host Operating Systems) or with virtual machines (VMs, running on a hypervisor).
When running in VMs, the following list of configurations shows what is needed for non-resilient applications:
· CPU Manager managing vCPUs that the hypervisor provides to the VMs.
· Huge pages enabled in the hypervisor, mapped to the VM, enabled in the guest OS, and mapped to the pod.
· Hardware Topology Management with NUMA enabled in the hypervisor, mapped into the VM, enabled in the guest OS, if needed, and mapped into the pod.
· If Node Feature Discovery and Device Plugin Framework are required, the required CPU instructions must be enabled in the VM virtual hardware. The required devices must be virtualised in the hypervisor or passed through to the Node VM, and mapped into the pods.
[bookmark: tls-certificate-management]TLS Certificate Management
Network functions (NFs) running in Kubernetes may require PKI TLS certificates for multiple purposes. For example, 3GPP TS 33.501 describes how Inter-NF communications must be secured using mutual TLS and OAuth. cert-manager [64] can automatically provision and manage TLS certificates in Kubernetes, in order for CNFs to use them for TLS communications. It can request PKI certificates from issuers, ensure the certificates are valid and up-to-date, and can renew them before their expiry. Network Functions that are deployed on Kubernetes clusters can delegate the lifecycle management of their certificates to cert-manager.
Example lifecycle steps are listed below:
1. On start-up, the CNF requests the certificate from cert-manager. The certificate parameters are specified using the Certificate Custom Resource Definition (CRD). The CRD includes details of the required X.509 fields and values, the issuing CA to be used, the lifetime, the renewal time, and the name of the K8s Secret resource where the certificate and private key should be stored. So the CNF just provides the intent (“what” the certificate should look like, “where” it should be stored, and “when” it should be renewed). The CNF does not need to be concerned with any aspect of “how” the certificate is obtained, since this is delegated to cert-manager. The certificate request can originate from any container in the CNF Pod- either the NFc “application”, or the service mesh (e.g. where deployed as a sidecar).
1. When it receives the certificate request, cert-manager will generate a new private key, then send a Certificate Signing Request (CSR) to the relevant issuing CA. The CA returns the signed certificate. One of the benefits of cert-manager is its “pluggable” architecture. It comes with built-in support for a number of issuing CA types and protocols, and developers can easily add support for new ones.
1. Once the certificate is returned by the relevant issuing CA, cert-manager stores the private key and certificate as a K8s Secret (specifically using the built-in “kubernetes.io/tls” Secret type). The Secret name is taken from the Certificate CRD.
1. The containers in the CNF Pods can access the K8s Secret, and use the certificate and private key. All entities belong to the same K8s namespace.
1. Renewal of the certificate before expiry is handled by cert-manager and is transparent to the CNF. Steps 2 and 3 above are repeated, and the CNF will receive the updated certificate when it next accesses the K8s Secret.
[bookmark: container-networking-services][bookmark: _Toc184746570]Container Networking Services
Kubernetes considers networking as a key component, with several distinct solutions. By default, Kubernetes networking is considered to be an “extension” to the core functionality, and is managed through the use of Network Plugins [44], which can be categorised based on the topology of the networks they manage, and the integration with the switching (such as VLAN vs tunnels) and routing (such as virtual vs physical gateways) infrastructure outside the Cluster:
· Layer 2 underlay plugins provide east/west ethernet connectivity between the pods, and north/south connectivity between the pods and the external networks by using the network underlay (such as VLANs on DC switches). When using the underlay for layer 2 segments, configuration is required on the DC network for every network.
· Layer 2 overlay plugins provide east/west pod-to-pod connectivity by creating overlay tunnels (for example, VXLAN/GENEVE tunnels) between the nodes, without requiring the creation of per-application layer 2 segments on the underlay. North-south connectivity cannot be provided.
· Layer 3 plugins create a virtual router (for example, BPF, iptables, and kubeproxy) in each node and can route traffic between multiple layer 2 overlays via these nodes*. North-south traffic is managed by peering (with BGP, for example) virtual routers on the nodes with the DC network underlay, allowing each pod or service IP to be announced independently.
However, for more complex requirements, such as providing connectivity through acceleration hardware, there are three approaches that can be taken. The Comparison of example Kubernetes networking solutions table below shows some of the differences between the networking solutions that consist of these options. It is important to note that different networking solutions require different descriptors from the Kubernetes workloads (specifically, the deployment artefacts, such as YAML files, and so on). Therefore, the networking solution should be agreed between the CNF vendors and the CNF operators. To allow easy integration of CNFs and the platforms, it is recommended to use either the plain CNI API resources or the API resources defined in the v1.2 of the Kubernetes Network Custom Resource Definition De-facto Standard [45].
· The Default CNI Plugin through the use of a deployment-specific configuration
· A multiplexer/meta-plugin that integrates with the Kubernetes control plane via a Container Network Interface (CNI) and allows for the use of multiple CNI plugins, in order to provide this specific connectivity that the default Network Plugin may not be able to provide (such as Multus).
Comparison of example Kubernetes networking solutions
	Requirement
	Networking Solution with Multus

	Additional network connections provider
	Multiplexer/meta- plugin

	The overlay network encapsulation protocol needs to enable ECMP in the underlay (infra.net.cfg.002)
	Supported via the additional CNI plugin

	NAT (infra.net.cfg.003)
	Supported via the additional CNI plugin

	Network Policies (Security Groups) (infra.net.cfg.004)
	Supported via a CNI Network Plugin that supports Network Policies

	Traffic patterns symmetry (infra.net.cfg.006)
	Depends on the CNI plugin that is being used

	Centrally administered and configured (inf.ntw.03)
	Supported via the Kubernetes API Server

	Dual stack IPv4 and IPv6 for Kubernetes workloads (inf.ntw.04)
	Supported via the additional CNI plugin

	Integrating SDN controllers (inf.ntw.05)
	Supported via the additional CNI plugin

	More than one networking solution (inf.ntw.06)
	Supported

	Choose whether or not to deploy more than one networking solution (inf.ntw.07)
	Supported

	Kubernetes network model (inf.ntw.08)
	Supported via the additional CNI plugin

	Do not interfere with or cause interference to any interface or network it does not own (inf.ntw.09)
	Supported

	Cluster-wide coordination of IP address assignment (inf.ntw.10)
	Supported via IPAM CNI plugin


For hardware resources that are needed by the Kubernetes applications, Device Plugins [42] can be used to manage those resources and advertise them to the kubelet for use by the Kubernetes applications. This allows resources such as “GPUs, high-performance NICs, FPGAs, InfiniBand adapters, and other similar computing resources that may require vendor-specific initialization and setup” to be managed and consumed via standard interfaces.
The figure Kubernetes Networking Architecture below shows the main building blocks of a Kubernetes networking solution:
· Kubernetes Control Plane: this is the core of a Kubernetes Cluster: the apiserver, the etcd cluster, the kube-scheduler, and the various controller-managers. The control plane (in particular the apiserver) provides a centralised point by which the networking solution is managed using a centralised management API.
· Default CNI Plugin (Cluster Network): this is the default Cluster network plugin that has been deployed within the Cluster to provide IP addresses to the pods.
· Note
· Support for IPv6 requires not only changes in the Kubernetes control plane, but also the use of a CNI Plugin that supports dual-stack networking.
· CNI multiplexer/meta-plugin: as described above, this is an optional component that integrates with the Kubernetes control plane via CNI, but allows for the use of multiple CNI plugins and the provision of multiple network connections for each Pod, as shown using additional CNI Plugin and net0 connection in the Pod. Note that the different network characteristics of the interfaces might require different networking technologies, which would potentially require different CNI plugins. Also note that this is only required for the High Performance profile. An example CNI implementation that meets these requirements is the Multus [182].
· CNI Plugin (Additional): this is a CNI plugin that is used to provide additional networking needs to Pods that are not provided by the default CNI plugin. This can include connectivity to underlay networks via accelerated hardware devices.
· Device Plugin: this is a Kubernetes extension that allows for the management and advertisement of vendor hardware devices. In particular, devices such as FPGA, SR-IOV NICs, SmartNICs, etc. can be made available to Pods by using Device Plugins. Note that alignment of these devices, CPU topology and huge pages will need the use of the Topology Manager [40].
· External / Application Load Balancing: As Kubernetes Ingress, Egress and Services have no support for all the protocols needed in telecommunication environments (Diameter, SIP, LDAP, etc) and their capacity is limited, the architecture includes the use of alternative load balancers, including external or ones built into the application. Management of external load balancers must be implemented via Kubernetes API objects.
· Other Features: these additional features that are required by the networking solution as a whole, may be delivered by the "Default CNI Plugin", or the "CNI multiplexer/meta-plugin" if it is deployed. For example:
· The integration of SDN solutions required by inf.ntw.05 is enabled via CNI integration.
· IP Address Management (IPAM) of the various networks can be provided by one or more IPAM plugins, which can be part of a CNI plugin, or some other component (i.e. external SDN solution) - it is key that there are no overlapping IP addresses within a Cluster, and if multiple IPAM solutions are used that they are coordinated (as required by inf.ntw.10).
· Service Mesh: The well-known service meshes are "application service meshes" that address and interact with the application layer 7 protocols (e.g.: HTTP) only. Therefore, their support is not required, as these service meshes are outside the scope of the infrastructure layer of this architecture.
[bookmark: Kubernetes_Networking_Architecture][image: figures/ch03_networking.png]
Kubernetes Networking Architecture
There are several different methods involved in managing, configuring and consuming networking resources in Kubernetes, including:
· The Default Cluster Network can be installed and managed by config files, Kubernetes API Server (e.g., Custom Resource Definitions) or a combination of the two.
· Additional networking management plane (e.g., CNI multiplexer/meta-plugin or federated networking manager) can be installed and managed by config files, Kubernetes API Server (e.g., Custom Resource Definitions) or a combination of the two.
· The connecting of Pods to the Default Cluster Network is handled by the Default CNI Plugin (Cluster Network).
· The connecting of Pods to the additional networks is handled by the additional networking management plane through the Kubernetes API (e.g., Custom Resource Definitions, Device Plugin API).
· Configuration of these additional network connections to Pods (i.e., provision of an IP address to a Pod) can either be managed through the Kubernetes API (e.g. Custom Resource Definitions) or an external management plane (e.g., dynamic address assignment from a VPN server).
There are several types of low latency and high throughput networks required by Telecom workloads: for example signalling traffic workloads and user plane traffic workloads. Networks used for signalling traffic are more demanding than what a standard overlay network can handle, but still do not need the use of user space networking. Due to the nature of the signalling protocols used, these type of networks require NAT-less communication documented in infra.net.cfg.003 and will need to be served by a CNI plugin with IPVLAN or MACVLAN support. On the other hand, the low latency, high throughput networks used for handling the user plane traffic, require the capability to use an accelerated user space networking technology.
Note: An infrastructure can provide the possibility to use SR-IOV with DPDK as an additional feature and still be conformant with Anuket.
[bookmark: af_xdp-architecture]AF_XDP Architecture
AF_XDP (Address Family for eXpress Data Path) is an address family optimized for high-performance packet processing applications, described in Reference Model Chapter 3 section Address Family For XDP (AF_XDP) [1].
[bookmark: AF_XDP_Operation][image: A diagram of a device plugin

Description automatically generated]
The [61] running with higher privileges, is loading the eBPF program. The AF_XDP Device Plugin provides the netdev name which the AF_XDP CNI moves into the pod namespace. That way the AF_XDP Socket file descriptor is provided (via UNIX domain socket) to the application container after the pod has started. The CNI provides support to set appropriate ethtool filters, and does not rename the netdev which remains in the UP state.
Such applications can have pods with multiple network interfaces of which one is AF_XDP, and on that interface run user space libraries for AF_XDP from project [62], or directly receive and send raw packets over AF_XDP. DPDK applications can use the [63].
[bookmark: kubernetes-networking-semantics][bookmark: _Toc184746571]Kubernetes Networking Semantics
Support for advanced network configuration management does not exist in core Kubernetes. Kubernetes is missing the advanced networking configuration component of Infrastructure as a Service (IaaS). For example, there is no network configuration API and there is no way to create L2 networks and instantiate network services such as L3aaS and LBaaS, and then connect them all together.
Kubernetes networking can be divided into two parts: built-in network functionality, available through the pod’s mandatory primary interface, and network functionality, available through the pod’s optional secondary interfaces.
[bookmark: X2f17741e33c4c9602b5d6db45d482418efc42b7]Built-in Kubernetes Network Functionality
Vanilla Kubernetes only allows for one network, the cluster network, and one network attachment for each pod. All pods and containers have a primary interface, which is created by Kubernetes during pod creation and attached to the cluster network. All communication to and from the pod is done through this interface. To only allow for one interface in a pod removes the need for traditional networking tools such as VRFs and additional routes and routing tables inside the pod network namespace.
The basic semantics of Kubernetes, and the information found in the manifests, defines the connectivity rules and behaviour without any references to IP addresses. This has many advantages: it makes it easy to create portable, scalable software services and network policies for them that are not location-aware and therefore can be executed more or less anywhere.
Kubernetes networking built-in objects
	Network objects
	Description

	Ingress [46]
	Ingress is a collection of rules that allow inbound connections to reach the endpoints defined by a backend. An Ingress can be configured to give services URLs that are reachable externally, load balance traffic, terminate SSL, offer name-based virtual hosting, and so on.

	Service [47]
	A service is a named abstraction of an application that runs on a set of pods. The application consists of a local port (for example, 3306) on which the proxy listens, and a selector that determines which pods answer requests sent through the proxy.

	EndpointSlices [48]
	Endpoints and EndpointSlices are a collection of objects that contain the IP addresses, (IPv4 and IPv6) of the pods that represent a service.

	Network Policies [49]
	A Network Policy defines which network traffic is allowed to ingress and egress from a set of pods.


There is no need to explicitly define internal load balancers, server pools, service monitors, firewalls, and so on. The Kubernetes semantics and the relationship between the different objects defined in the object manifests contains all the necessary information.
Example: The manifests for the my-service service and the deployment with the four load balanced pods of the my-app type.
Service:
apiVersion: v1
kind: Service
metadata:
        name: my-service
        spec:
                selector:
                        app: my-app
                ports:
                        - protocol: TCP
                                port: 123
Deployment:
apiVersion: apps/v1
kind: Deployment
metadata: name: my-app-deployment
spec:
        selector:
                matchLabels:
                        app: my-app
                        replicas: 4
                        template:
                                metadata:
                                        labels:
                                                app: my-app
                        spec:
                                containers:
                                        - name: my-app
                                          image: my-app-1.2.3
                                          ports:
                                          - containerPort: 123
This is all that is required to deploy four pods or containers that are fronted by a service that performs load balancing. The Deployment ensures that there are always four pods of the my-app type available. The Deployment is responsible for the full lifecycle management of the pods. This includes in-service updates and upgrades.
However, when implementing network service functions, such as VNFs/CNFs, that operate on multiple networks and require advanced networking configurations, additional capabilities are required.
[bookmark: Xe943eec7b3a0fde95e3cdbf065823736b511a25]Multiple Networks and Advanced Configurations
Kubernetes currently does not in itself support multiple networks, multiple-pod network attachments, or advanced network configurations. These are supported by using a Container Network Interface [50] multiplexer such as Multus [182]. A considerable effort is being invested to add better network support to Kubernetes. All such activities are coordinated through the Kubernetes Network Special Interest Group [51] and its sub-groups. One such group, the Network Plumbing Working Group [52] has produced the Kubernetes Network Custom Resource Definition De-facto Standard [45]. This document describes how secondary networks can be defined and attached to pods.
This de-facto standard defines, among other things, the following concepts:
Kubernetes multiple network concepts
	Definition
	Description

	Kubernetes Cluster-Wide default network
	This is a network to which all pods are attached according to the current behavior and requirements of Kubernetes. This is done by attaching the eth0 interface to the pod namespace.

	Network Attachment
	Network Attachment is a means of allowing a pod to communicate directly with a given logical or physical network. Typically (but not necessarily), each attachment takes the form of a kernel network interface placed into the pod’s network namespace. Each attachment may result in zero or multiple IP addresses being assigned to the pod.

	NetworkAttachmentDefinition object
	The NetworkAttachmentDefinition object defines the resource object that describes how to attach a pod to a logical or physical network. The annotation name is “k8s.v1.cni.cncf.io/networks”.

	Network Attachment Selection Annotation
	Network Attachment Selection Annotation selects one or more networks to which a pod must be attached.


Example: Define three network attachments and attach the three networks to a pod.
Green network
apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
  name:green-network
spec:
  config: '{
    "cniVersion": "0.3.0",
    "type": "plugin-A",
    "vlan": "1234"
  }'
Blue network
apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
  name:blue-network
spec:
  config: '{
    "cniVersion": "0.3.0",
    "type": "plugin-A",
    "vlan": "3456"
  }'
Red network
apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
  name:red-network
spec:
  config: '{
    "cniVersion": "0.3.0",
    "type": "plugin-B",
    "knid": "123456789"
  }'
Pod my-pod
kind: Pod
metadata:
  name: my-pod
  namespace: my-namespace
  annotations:
    k8s.v1.cni.cncf.io/networks: blue-network, green-network, red-network
This is enough to support basic network configuration management. It is possible to map L2 networks from an external network infrastructure into a Kubernetes system and attach pods to these networks. Support for IPv4 and IPv6 address management is, however, limited. The address must be assigned by the CNI plugin as part of the pod creation process.
[bookmark: container-storage-services][bookmark: _Toc184746572]Container Storage Services
Kubernetes supports the Container Storage Interface (CSI) as the stable solution for storage plugins (as of Kubernetes 1.31, in-tree plugins have been removed, and CSI drivers must be used instead).
Running containers require ephemeral storage on which to run themselves (that is, storage on which the unpacked container image is stored and from which it is executed). This ephemeral storage lives and dies with the container and is a directory on the worker node on which the container is running.
Note
This means that the ephemeral storage is mounted locally in the worker node filesystem. The filesystem can be physically external to the worker node (for example, iSCSI, NFS, and FC), but the container still references it as part of the local filesystem.
Additional storage could also be attached to a container using Kubernetes Volumes. This can be storage from the worker node filesystem (through hostPaths, although this is not recommended), or it can be external storage that is accessed using a Volume Plugin. Volume Plugins allow the use of a storage protocol (such as iSCSI and NFS) or a management API (such as Cinder and EBS) for attaching and mounting the storage into a pod. This additional storage that is attached to a container using a Kubernetes Volume does not live and die with the container, but instead follows the lifecycle of the pod of which the container is a part. This means the Volume persists across container restarts, if the pod itself is still running. However, it does not necessarily persist when a pod is destroyed. Therefore, it cannot be considered suitable for any scenario requiring persistent data. The lifecycle of the actual data depends on the Volume Plugin used and sometimes also the configuration of the Volume Plugin.
For those scenarios where data persistence is required, Persistent Volumes (PVs) are used in Kubernetes. PVs are resources in a Kubernetes Cluster that are consumed by Persistent Volume Claims (PVCs) and have a lifecycle that is independent of any pod that uses a PV. A pod uses a PVC as the volume in the pod spec. A PVC is a request for persistent storage (a PV) by a pod. By default, PVs and PVCs are manually created and deleted.
Kubernetes also provides Storage Classes. Storage Classes are created by cluster administrators and maps to storage attributes such as quality-of-service, encryption, data resilience, and so on. Storage Classes also enable the dynamic provisioning of Persistent Volumes (as opposed to the default manual creation). This can be beneficial for organizations where the administration of storage is performed separately from the administration of Kubernetes-based workloads.
Kubernetes does not place any restrictions on the storage that can be consumed by a workload, in terms of the requirements that are defined in the RM sections Storage Configurations (hardware) and Virtual Storage (software). The only difference is that Kubernetes does not have a native object storage offering. Addressing this capability gap directly is outside of the scope of this RA.
[bookmark: kubernetes-application-package-manager][bookmark: _Toc184746573]Kubernetes Application package manager
To manage the lifecycle (for example, install and configure, upgrade, and uninstall) of complex applications consisting of several pods and other Kubernetes objects, the Reference Architecture mandates the use of a specific Kubernetes Application package manager. The package manager must be able to manage the lifecycle of an application and provide a framework to customize a set of parameters for its deployment. The requirement for the clusters is to expose a Kubernetes API for the package managers to use in the lifecycle management of the applications they manage. This must comply with the CNCF CNF Conformance Test. As it is not recommended to use a Kubernetes Application package manager with a server side component installed in the Kubernetes cluster (for example, Tiller), Helm v3 [53] is the chosen Kubernetes Application package manager.
[bookmark: custom-resources][bookmark: _Toc184746574]Custom Resources
Custom resources [54] are extensions of the Kubernetes API that represent customizations of the Kubernetes installation. Core Kubernetes functions are also built using custom resources. This makes Kubernetes more modular. Two ways to add custom resources are the following:
· Custom Resource Definitions [55] (CRDs): Defining a CRD object creates new custom resource with a name and schema that are easy to use.
· API Server Aggregation [56]: This is an additional API that, in a flexible way, extends Kubernetes beyond the core Kubernetes API.
[bookmark: operator-pattern]Operator Pattern
A custom controller [57] is a control loop that watches a custom resource for changes and tries to keep the current state of the resource in sync with the desired state.
The Operator pattern [58] combines custom resources and custom controllers. Operators are software extensions to Kubernetes that capture operational knowledge and automate usage of custom resources to manage applications, their components, and cloud infrastructure. Operators can have different capability levels. According to the OperatorHub.io [59] repository, an operator can have the following different capability levels:
· Basic install: Automated application provisioning and configuration management.
· Seamless upgrades: Patch and minor version upgrades are supported.
· Full lifecycle: Application lifecycle and storage lifecycle (backup and failure recovery).
· Deep insights: Metrics, alerts, log processing, and workload analysis.
· Auto pilot: Horizontal/vertical scaling, automated configuration tuning, abnormality detection, and scheduling tuning.
[bookmark: platform-services][bookmark: _Toc184746575]Platform services
The archirecture may support functionalities on top of the infrastructure services. With Kubernetes and the cloud native paradigms the demarcation between infrastructure services and platform services are fuzzy. In this specification we considider every service what is provided by Kubernetes with the help of supporting components as infrastructure service, while all services provided by independent open source components are considered as platform services. Based on the specification of Chapter 5.1.5 of the Reference Model (RM) [1] the following platform services may be supported by an architecture:
· Data stores/databases
· Streaming and messaging
· Load balancer and service proxy
· Service mesh
· Security and compliance
· Monitoring
· Logging
· Application definition and image build
· CI/CD
· Ingress/egress controllers
· Network related services
· Coordination and service discovery
· Automation and configuration
· Secrets Store
· Tracing
[bookmark: X9a283c727b36273c2dde3a5baee060970c02454][bookmark: _Toc184746576]CaaS Manager - Cluster Lifecycle Management
Note
detailed requirements and the component specification of cluster LCM are out of scope for this release.
To provision multiple Kubernetes Clusters, which is a common scenario where workloads and network functions require dedicated, single-tenant clusters, the Reference Architecture provides support for a CaaS Manager, a component responsible for the lifecycle management of multiple Kubernetes clusters. This component is responsible for delivering an end-to-end lifecycle management (creation and installation, scaling, updating, deleting, and so on, of entire clusters), visibility and control of CaaS clusters, together with verification of security and compliance of Kubernetes clusters across multiple data centres and clouds. Specifically, the scope of the CaaS Manager comprises the following:
· Infrastructure (Kubernetes Clusters) provisioning. This comprises either of the following:
· LCM of control/worker VM nodes - via IaaS API.
· Bare metal provisioning for physical nodes.
· Control plane installation (that is, Kubernetes control plane components on the nodes).
· Node OS customization (for example, Kernel customization).
· Management of Cluster add-ons (for example, CNIs, CSIs, and Service Meshes).
The CaaS Manager maintains a catalogue of cluster templates. These templates are used to create clusters specific to the requirements of workloads, the underlying virtualization provider, and/or the specific server hardware to be used for the cluster.
The CaaS manager works by integrating with an underlying virtualization provider for VM-based clusters, or with bare metal management APIs for physical clusters, to create cluster nodes and provide other capabilities, such as node scaling (for example, provisioning a new node and attaching it to a cluster).
A CaaS Manager leverages the closed-loop desired state configuration management concept that Kubernetes itself enables. This means that the CaaS Manager takes the desired state of a CaaS cluster as input and the controller must be able to maintain that desired state through a series of closed loops.


[bookmark: component-level-architecture][bookmark: _Toc184746577]Component Level Architecture
[bookmark: Xdffb3e4f35ea5af6345f5d40b4e3c9905f0ee14][bookmark: _Toc184746578]Introduction to Component Level Architecture
This section describes in detail the Reference Architecture (RA2) for Kubernetes-based cloud infrastructure in terms of the functional capabilities and how they relate to the Reference Model (RM) requirements [1], that is, how the infrastructure profiles are determined, documented, and delivered.
The specifications defined in this section will be detailed with unique identifiers, which will follow the pattern: ra2.<section>.<index>, for example, ra2.ch.001 for the first requirement in the Kubernetes Node section. These specifications will then be used as requirements input for the Reference Implementation based on RA2 specifications (RI2) and any vendor or community implementations.
The Kubernetes Reference Architecture figure below shows the architectural components that are described in the subsequent sections of this chapter.
[bookmark: Kubernetes_Reference_Architecture][image: figures/ch04_k8s_architecture.png]
Kubernetes Reference Architecture
[bookmark: kubernetes-node][bookmark: _Toc184746579]Kubernetes Node
This section describes the configuration that will be applied to the physical or virtual machine and its Operating System. For a Kubernetes Node to be conformant with the Reference Architecture, it must be implemented according to the following specifications:
Node Specifications
	Ref
	Specification
	Details
	Requirement Trace
	Reference Implementation Trace

	ra2.ch.001
	Huge pages
	For the node's profile to qualify as high-performance, it must be possible to enable Huge pages (2048KiB and 1048576KiB) within the Kubernetes Node OS, exposing schedulable resources hugepages-2Mi and hugepages-1Gi.
	infra.com.cfg.004 Reference Model for Cloud Infrastructure (RM) [1] Chapter 5, section Virtual Compute
	Reference Implementation based on RA2 specifications (RI2) [66] Chapter 3, section Introduction

	ra2.ch.002
	SR-IOV capable NICs
	For the node's profile to qualify as high-performance, the physical machines on which the Kubernetes Nodes run must be equipped with NICs that are SR-IOV-capable.
	e.cap.013 Reference Model for Cloud Infrastructure (RM) [1] Chapter 4, section Exposed Performance Optimisation Capabilities
	Reference Implementation based on RA2 specifications (RI2) [66] Chapter 3, section Infrastructure Requirements

	ra2.ch.003
	SR-IOV Virtual Functions
	For the node's profile to qualify as high-performance, SR-IOV virtual functions (VFs) must be configured within the Kubernetes Node OS, as the SR-IOV Device Plugin does not manage the creation of these VFs.
	e.cap.013 Reference Model for Cloud Infrastructure (RM) [1] Chapter 4, section Exposed Performance Optimisation Capabilities
	Reference Implementation based on RA2 specifications (RI2) [66] Chapter 4, section Installation on Bare Metal Infrastructure

	ra2.ch.004
	CPU Simultaneous Multi-Threading (SMT)
	If SMT is supported, then it must be enabled in the BIOS on the physical machine on which the Kubernetes Node runs.
	infra.hw.cpu.cfg.004 Reference Model for Cloud Infrastructure (RM) [1] Chapter 5, section Compute Resources
	Reference Implementation based on RA2 specifications (RI2) [66] Chapter 3, section Infrastructure Requirements

	ra2.ch.005
	CPU Allocation Ratio - VMs
	For Kubernetes nodes running as Virtual Machines, the CPU allocation ratio between the vCPU and the physical CPU core must be 1:1.
	
	

	ra2.ch.006
	CPU Allocation Ratio - Pods
	To ensure the CPU allocation ratio between the vCPU and the physical CPU core is 1:1, the sum of the CPU requests and limits by the containers in the Pod specifications must remain less than the allocatable quantity of CPU resources (that is, requests.cpu < allocatable.cpu and limits.cpu < allocatable.cpu).
	infra.com.cfg.001 Reference Model for Cloud Infrastructure (RM) [1] Chapter 5, section Virtual Compute Profiles
	Reference Implementation based on RA2 specifications (RI2) [66] Chapter 3, section Infrastructure Requirements

	ra2.ch.007
	IPv6DualStack
	To support IPv4/IPv6 dual-stack networking, the Kubernetes Node OS must support and be allocated routable IPv4 and IPv6 addresses.
	
	

	ra2.ch.008
	Physical CPU Quantity
	The physical machines on which the Kubernetes nodes run must be equipped with at least two (2) physical sockets, each with at least 20 CPU cores.
	infra.hw.cpu.cfg.001 and infra.hw.cpu.cfg.002 from Reference Model for Cloud Infrastructure (RM) [1] Chapter 8, section Telco Edge Cloud: Infrastructure Profiles
	Reference Implementation based on RA2 specifications (RI2) [66] Chapter 3, section Infrastructure Requirements

	ra2.ch.009
	Physical Storage
	The physical machines on which the Kubernetes nodes run should be equipped with solid-state drives (SSDs).
	infra.hw.stg.ssd.cfg.002 from Reference Model for Cloud Infrastructure (RM) [1] Chapter 5, section Storage Configurations
	Reference Implementation based on RA2 specifications (RI2) [66] Chapter 3, section Infrastructure Requirements

	ra2.ch.010
	Local Filesystem Storage Quantity
	The Kubernetes nodes must be equipped with local filesystem capacity of at least 320 GB for unpacking and executing containers.
Note
Extra filesystem storage should be provisioned to cater for any overheads required by the Operating System and any required OS processes, such as the container runtime, Kubernetes agents, and so on.
	e.cap.003 from Reference Model for Cloud Infrastructure (RM) [1] Chapter 4, section Exposed Resource Capabilities
	Reference Implementation based on RA2 specifications (RI2) [66] Chapter 3, section Infrastructure Requirements

	ra2.ch.011
	Virtual Node CPU Quantity
	If using VMs, the Kubernetes nodes must be equipped with at least 16 vCPUs.
Note
Extra CPU capacity should be provisioned to cater for any overheads required by the Operating System and any required OS processes, such as the container runtime, Kubernetes agents, and so on.
	· e.cap.001 from Reference Model for Cloud Infrastructure (RM) [1] Chapter 4, section Exposed Resource Capabilities
	

	ra2.ch.012
	Kubernetes Node RAM Quantity
	The Kubernetes nodes must be equipped with at least 32 GB of RAM.
Note
Extra RAM capacity should be provisioned to cater for any overheads required by the Operating System and any required OS processes, such as the container runtime, Kubernetes agents, and so on.
	e.cap.002 from Reference Model for Cloud Infrastructure (RM) [1] Chapter 4, section Exposed Resource Capabilities
	Reference Implementation based on RA2 specifications (RI2) [66] Chapter 3, section Infrastructure Requirements

	ra2.ch.013
	Physical NIC Quantity
	The physical machines on which the Kubernetes nodes run must be equipped with at least four (4) Network Interface Card (NIC) ports.
	infra.hw.nic.cfg.001 from Reference Model for Cloud Infrastructure (RM) [1] Chapter 5, section NIC configurations
	Reference Implementation based on RA2 specifications (RI2) [66] Chapter 3, section Infrastructure Requirements

	ra2.ch.014
	Physical NIC Speed - Basic Profile
	The speed of the NIC ports housed in the physical machines on which the Kubernetes Nodes run for workloads matching the Basic Profile must be at least 10 Gbps.
	infra.hw.nic.cfg.001 from Reference Model for Cloud Infrastructure (RM) [1] Chapter 5, section NIC configurations
	Reference Implementation based on RA2 specifications (RI2) [66] Chapter 3, section Infrastructure Requirements

	ra2.ch.015
	Physical NIC Speed - High Performance Profile
	The speed of the NIC ports housed in the physical machines on which the Kubernetes nodes run for workloads matching the high-performance profile must be at least 25 Gbps.
	infra.hw.nic.cfg.001 from Reference Model for Cloud Infrastructure (RM) [1] Chapter 5, section NIC configurations
	Reference Implementation based on RA2 specifications (RI2) [66] Chapter 3, section Infrastructure Requirements

	ra2.ch.016
	Physical PCIe slots
	The physical machines on which the Kubernetes nodes run must be equipped with at least eight (8) Gen3.0 PCIe slots, each with at least eight (8) lanes.
	
	

	ra2.ch.017
	Immutable infrastructure
	Whether physical or virtual machines are used, the Kubernetes node must not be changed after it is instantiated. New changes to the Kubernetes node must be implemented as new node instances. This covers any changes from the BIOS, through the Operating System, to running processes and all associated configurations.
	gen.cnt.02 from Reference Architecture (RA1) for OpenStack based cloud infrastructure [67] Chapter 2, section General Recommendations
	Reference Implementation based on RA2 specifications (RI2) [66] Chapter 4, section Installation on Bare Metal Infrastructure

	ra2.ch.018
	NFD
	Node Feature Discovery [68] must be used to advertise the detailed software and hardware capabilities of each node in the Kubernetes Cluster.
	tbd
	Reference Implementation based on RA2 specifications (RI2) [66] Chapter 4, section Installation on Bare Metal Infrastructure

	ra2.ch.019
	AF_XDP Zero Copy capable netdevs
	AF_XDP Zero Copy capable netdevs (dependent on AF_XDP Zero Copy NIC driver) must be available in a compliant Kubernetes worker node if optional AF_XDP is used.
	e.cap.025 from Reference Model for Cloud Infrastructure (RM) [1] Chapter 4, section Exposed infrastructure capabilities
	

	ra2.ch.020
	Real-Time
	For Kubernetes nodes belonging to the rt-tsn (ref. Reference Model for Cloud Infrastructure (RM) [1] Chapter 2) flavour, Real-Time versions and/or configurations in BIOS, kernel and OS services
	e.cap.026 from Reference Model for Cloud Infrastructure (RM) [1] Chapter 4, section Exposed infrastructure capabilities
	


[bookmark: node-operating-system][bookmark: _Toc184746580]Node Operating System
For a Host OS to be compliant with this Reference Architecture, it must meet the following requirements:
Operating System requirements
	Ref
	Specification
	Details
	Requirement Trace
	Reference Implementation Trace

	ra2.os.001
	Linux Distribution
	A deb-/rpm-compatible distribution of Linux. It must be used for the control plane nodes. It can also be used for worker nodes.
	tbd
	tbd

	ra2.os.002
	Linux kernel version
	A version of the Linux kernel that is compatible with container runtimes and kubeadm - this has been chosen as the baseline because kubeadm is focused on installing and managing the lifecycle of Kubernetes and nothing else, hence it is easily integrated into higher-level tooling for the full lifecycle management of the infrastructure, cluster add-ons, and so on.
	tbd
	tbd

	ra2.os.003
	Windows server
	The Windows server can be used for worker nodes, but beware of the limitations.
	tbd
	tbd

	ra2.os.004
	Disposable OS
	In order to support gen.cnt.02 in Kubernetes Architecture Requirements (immutable infrastructure), the Host OS must be disposable, meaning the configuration of the Host OS (and associated infrastructure such as VM or bare metal server) must be consistent - e.g. the system software and configuration of that software must be identical apart from those areas of configuration that must be different such as IP addresses and hostnames.
	tbd
	tbd

	ra2.os.005
	Automated deployment
	This approach to configuration management supports lcm.gen.01 (automated deployments).
	tbd
	tbd


Table 4.3 lists the kernel versions that comply with this Reference Architecture specification.
Operating System versions
	OS Family
	Kernel Version(s)
	Notes

	Linux
	4.x
	The overlay filesystem snapshotter, used by default by containerd, uses features that were finalized in the 4.x kernel series.

	Linux
	>= 4.18
	If using optional AF_XDP (see ra2.ch.019).

	Linux
	rt/realtime
	If using optional Real-Time (see ra2.ch.020).

	Windows
	1809 (10.0.17763)
	For worker nodes only.


[bookmark: kubernetes][bookmark: _Toc184746581]Kubernetes
For the Kubernetes components to be conformant with the Reference Architecture they must be implemented according to the following specifications:
Kubernetes Specifications
	Ref
	Specification
	Details
	Requirement Trace
	Reference Implementation Trace

	ra2.k8s.001
	Kubernetes conformance
	The Kubernetes distribution, product, or installer used in the implementation must be listed in the Kubernetes Distributions and Platforms document [69] and marked (X) as conformant for the Kubernetes version defined in Required Component Versions.
	gen.cnt.03 in Kubernetes Architecture Requirements
	Reference Implementation based on RA2 specifications (RI2) [66] Chapter 4, section Installation on Bare Metal Infrastructure

	ra2.k8s.002
	Highly available etcd
	An implementation must consist of either three, five or seven nodes running the etcd service (can be colocated on the control plane nodes, or can run on separate nodes, but not on worker nodes).
	gen.rsl.02 in Kubernetes Architecture Requirements, gen.avl.01 in Kubernetes Architecture Requirements
	Reference Implementation based on RA2 specifications (RI2) [66] Chapter 4, section Installation on Bare Metal Infrastructure

	ra2.k8s.003
	Highly available control plane
	An implementation must consist of at least one control plane node per availability zone or fault domain to ensure the high availability and resilience of the Kubernetes control plane services.
	
	

	ra2.k8s.012
	Control plane services
	A control plane node must run at least the following Kubernetes control plane services: kube-apiserver, kube-scheduler and kube-controller-manager.
	gen.rsl.02 in Kubernetes Architecture Requirements, gen.avl.01 in Kubernetes Architecture Requirements
	Reference Implementation based on RA2 specifications (RI2) [66] Chapter 4, section Installation on Bare Metal Infrastructure

	ra2.k8s.004
	Highly available worker nodes
	An implementation must consist of at least one worker node per availability zone or fault domain to ensure the high availability and resilience of workloads managed by Kubernetes
	en.rsl.01 in Kubernetes Architecture Requirements, gen.avl.01 in Kubernetes Architecture Requirements, kcm.gen.02 in Kubernetes Architecture Requirements,
	

	ra2.k8s.005
	Kubernetes API Version
	An implementation must use a Kubernetes version as per the subcomponent versions table in Required Component Versions. In alignment with the Kubernetes Supported versions [70], the difference between the kubernetes release of the control plane nodes and the kubernetes release of the worker nodes must be at most 3 releases (i.e. a n-3 skew).
	
	

	ra2.k8s.006
	NUMA support
	When hosting workloads matching the high-performance profile, the TopologyManager and CPUManager feature gates must be enabled and configured in the kubelet. --feature-gates="…, TopologyManager=true,CPUManager=true" --topology-manager-policy=single-numa-node --cpu-manager-policy=static
Note
The TopologyManager feature is enabled by default in Kubernetes v1.18 and later, and the CPUManager feature is enabled by default in Kubernetes v1.10 and later.
	e.cap.007 in Cloud Infrastructure Software Profile Capabilities, infra.com.cfg.002 in Reference Model for Cloud Infrastructure (RM) [1], e.cap.013 Reference Model for Cloud Infrastructure (RM) [1] Chapter 8, section Exposed Performance Optimisation Capabilities
	

	ra2.k8s.007
	DevicePlugins feature gate
	When hosting workloads matching the high-performance profile, the DevicePlugins feature gate must be enabled. Additionally, to utilize device health reporting, the DeviceHealth feature gate should be enabled. --feature-gates="…,DevicePlugins=true,DeviceHealth=true,…"
Note
The DevicePlugins feature is enabled by default in Kubernetes v1.10 or later. Device plugins can report device health status directly in the Pod's allocatedResources field.
	Various, e.g. e.cap.013 in Reference Model for Cloud Infrastructure (RM) [1] Chapter 8, section Exposed Performance Optimisation Capabilities
	Reference Implementation based on RA2 specifications (RI2) [66] Chapter 4, section Installation on Bare Metal Infrastructure

	ra2.k8s.008
	System resource reservations
	To avoid resource starvation issues on the nodes, the implementation of the architecture must reserve compute resources for system daemons and Kubernetes system daemons such as kubelet, container runtime, and so on. Use the following kubelet flags: --reserved-cpus=[a-z], using two of a-z to reserve 2 SMT threads.
	i.cap.014 in Cloud Infrastructure Software Profile Capabilities
	

	ra2.k8s.009
	CPU pinning
	When hosting workloads matching the high-performance profile, in order to support CPU pinning, the kubelet must be started with the --cpu-manager-policy=static option.
Note
Only containers in Guaranteed pods - where CPU resource requests and limits are identical - and configured with positive-integer CPU requests will take advantage of this. All other pods will run on CPUs in the remaining shared pool.
	infra.com.cfg.003 in Reference Model for Cloud Infrastructure (RM) [1] Chapter 5, section
	

	ra2.k8s.010
	IPv6DualStack
	To support IPv6 and IPv4, the IPv6DualStack feature gate must be enabled on various components (requires Kubernetes v1.16 or later). kube-apiserver: --feature-gates="IPv6DualStack=true". kube-controller-manager: --feature-gates="IPv6DualStack=true" --cluster-cidr=<IPv4 CIDR>,<IPv6 CIDR> --service-cluster-ip-range=<IPv4 CIDR>, <IPv6 CIDR> --node-cidr-mask-size-ipv4 ¦ --node-cidr-mask-size-ipv6 defaults to /24 for IPv4 and /64 for IPv6. kubelet: --feature-gates="IPv6DualStack=true". kube-proxy: --cluster-cidr=<IPv4 CIDR>, <IPv6 CIDR> --feature-gates="IPv6DualStack=true"
Note
The IPv6DualStack feature is enabled by default in Kubernetes v1.21 or later.
	inf.ntw.04 in Kubernetes Architecture Requirements
	

	ra2.k8s.011
	Anuket profile labels
	To clearly identify which worker nodes are compliant with the different profiles defined by Anuket, the worker nodes must be labeled according to the following pattern: an anuket.io/profile/basic label must be set to true on the worker node if it can fulfill the requirements of the basic profile and an anuket.io/profile/network-intensive label must be set to true on the worker node if it can fulfill the requirements of the high-performance profile. The requirements for both profiles can be found in Architecture Requirements.
	
	

	ra2.k8s.012
	Kubernetes APIs
	Kubernetes Kubernetes Alpha API [21] are recommended only for testing, therefore all Alpha APIs must be disabled, except for those required by RA2 Ch4 Specifications currently NFD).
	
	

	ra2.k8s.013
	Kubernetes APIs
	Backward compatibility of all supported GA APIs of Kubernetes must be supported.
	
	

	ra2.k8s.014
	Security groups
	Kubernetes must support the NetworkPolicy feature.
	
	

	ra2.k8s.015
	Publishing Services (ServiceTypes)
	Kubernetes must support LoadBalancer Service (ServiceTypes) [22].
	
	

	ra2.k8s.016
	Publishing Services (ServiceTypes)
	Kubernetes must support Ingress [23].
	
	

	ra2.k8s.017
	Publishing Services (ServiceTypes)
	Kubernetes should support NodePort Service (ServiceTypes) [22].
	inf.ntw.17 in Kubernetes Architecture Requirements
	

	ra2.k8s.018
	Publishing Services (ServiceTypes)
	Kubernetes should support ExternalName Service (ServiceTypes) [22].
	
	

	ra2.k8s.019
	Kubernetes APIs
	Kubernetes Beta APIs must be disabled, except for existing APIs as of Kubernetes 1.24 and only when a stable GA of the same version does not exist, or for APIs listed in RA2 Ch6 list of Mandatory API Groups.
	int.api.04 in Kubernetes Architecture Requirements
	

	ra2.k8s.020
	TLS Certificate management for workloads
	Cert-manager [64] should be supported and integrated with a PKI certificate provider for workloads to request/renew TLS certificates. It must be configured to use strong hashing algorithms such as SHA-256 for all certificates. SHA-1 signed certificates are deprecated and will be rejected by default starting with Kubernetes 1.31.
	int.api.04 in Kubernetes Architecture Requirements
	kcm.gen.03


[bookmark: container-runtimes][bookmark: _Toc184746582]Container Runtimes
Container runtime specifications
	Ref
	Specification
	Details
	Requirement Trace
	Reference Implementation Trace

	ra2.crt.001
	Conformance with the Open Container Initiative (OCI) 1.0 runtime specification
	The container runtime must be implemented as per the OCI 1.0 [24] specification.
	gen.ost.01 in Kubernetes Architecture Requirements
	Reference Implementation based on RA2 specifications (RI2) [66] Chapter 4, section Installation on Bare Metal Infrastructure

	ra2.crt.002
	Kubernetes Container Runtime Interface (CRI)
	The Kubernetes container runtime must be implemented as per the Kubernetes Container Runtime Interface (CRI) [25]
	gen.ost.01 in Kubernetes Architecture Requirements
	Reference Implementation based on RA2 specifications (RI2) [66] Chapter 4, section Installation on Bare Metal Infrastructure


[bookmark: networking-solutions][bookmark: _Toc184746583]Networking Solutions
For the networking solutions to be conformant with the Reference Architecture, they must be implemented according to the following specifications:
Networking Solution Specifications
	Ref
	Specification
	Details
	Requirement Trace
	Reference Implementation Trace

	ra2.ntw.001
	Centralized network administration
	The networking solution deployed within the implementation must be administered through the Kubernetes API using native Kubernetes API resources and objects, or Custom Resources.
	inf.ntw.03 in Kubernetes Architecture Requirements
	Reference Implementation based on RA2 specifications (RI2) [66] Chapter 4, section Installation on Bare Metal Infrastructure

	ra2.ntw.002
	Default Pod Network - CNI
	The networking solution deployed within the implementation must use a CNI-conformant Network Plugin for the Default Pod Network, as the alternative (kubenet) does not support cross-node networking or Network Policies.
	gen.ost.01 in Kubernetes Architecture Requirements, inf.ntw.08 in Kubernetes Architecture Requirements
	Reference Implementation based on RA2 specifications (RI2) [66] Chapter 4, section Installation on Bare Metal Infrastructure

	ra2.ntw.003
	Multiple connection points
	The networking solution deployed within the implementation must support the capability to connect at least 5 connection points to each Pod, which are additional to the default connection point managed by the default Pod network CNI plugin.
	e.cap.004 in Cloud Infrastructure Software Profile Capabilities
	Reference Implementation based on RA2 specifications (RI2) [66] Chapter 4, section Installation on Bare Metal Infrastructure

	ra2.ntw.004
	Multiple connection points presentation
	The networking solution deployed within the implementation must ensure that all additional non-default connection points are requested by Pods using standard Kubernetes resource scheduling mechanisms, such as annotations, or container resource requests and limits.
	inf.ntw.03 in Kubernetes Architecture Requirements
	Reference Implementation based on RA2 specifications (RI2) [66] Chapter 4, section Installation on Bare Metal Infrastructure

	ra2.ntw.005
	Multiplexer/meta-plugin
	The networking solution deployed within the implementation may use a multiplexer/meta-plugin.
	inf.ntw.06 in Kubernetes Architecture Requirements, inf.ntw.07 in Kubernetes Architecture Requirements
	Reference Implementation based on RA2 specifications (RI2) [66] Chapter 4, section Installation on Bare Metal Infrastructure

	ra2.ntw.006
	Multiplexer/meta-plugin CNI conformance
	If used, the selected multiplexer/meta-plugin must integrate with the Kubernetes control plane via CNI.
	gen.ost.01 in Kubernetes Architecture Requirements
	Reference Implementation based on RA2 specifications (RI2) [66] Chapter 4, section Installation on Bare Metal Infrastructure

	ra2.ntw.007
	Multiplexer/meta-plugin CNI Plugins
	If used, the selected multiplexer/meta-plugin must support the use of multiple CNI-conformant Network Plugins.
	gen.ost.01 in Kubernetes Architecture Requirements, inf.ntw.06 Kubernetes Architecture Requirements
	Reference Implementation based on RA2 specifications (RI2) [66] Chapter 4, section Installation on Bare Metal Infrastructure

	ra2.ntw.008
	SR-IOV device plugin for high performance
	When hosting workloads that match the high-performance profile and require SR-IOV acceleration, a Device Plugin for SR-IOV must be used to configure the SR-IOV devices and advertise them to the kubelet.
	e.cap.013 in Reference Model for Cloud Infrastructure (RM) [1] Chapter 4, section Exposed Performance Optimisation Capabilities`
	Reference Implementation based on RA2 specifications (RI2) [66] Chapter 4, section Installation on Bare Metal Infrastructure

	ra2.ntw.009
	Multiple connection points with multiplexer / meta-plugin
	When a multiplexer/meta-plugin is used, the additional non-default connection points must be managed by a CNI-conformant Network Plugin.
	gen.ost.01 in Kubernetes Architecture Requirements
	Reference Implementation based on RA2 specifications (RI2) [66] Chapter 4, section Installation on Bare Metal Infrastructure

	ra2.ntw.010
	User plane networking
	When hosting workloads that match the high-performance profile, CNI network plugins that support the use of DPDK, VPP, and/or SR-IOV must be deployed as part of the networking solution.
	infra.net.acc.cfg.001 in Reference Model for Cloud Infrastructure (RM) [1], Chapter 5, section Virtual Networking Profiles
	Reference Implementation based on RA2 specifications (RI2) [66] Chapter 4, section Installation on Bare Metal Infrastructure

	ra2.ntw.011
	NATless connectivity
	When hosting workloads that require source and destination IP addresses to be preserved in the traffic headers, a NATless CNI plugin that exposes the pod IP directly to the external networks (e.g. Calico, MACVLAN or IPVLAN CNI plugins) must be used.
	inf.ntw.14 in Kubernetes Architecture Requirements
	

	ra2.ntw.012
	Device Plugins
	When hosting workloads matching the High Performance profile that require the use of FPGA, SR-IOV or other Acceleration Hardware, a Device Plugin for that FPGA or Acceleration Hardware must be used.
	e.cap.016 and e.cap.013 in Reference Model for Cloud Infrastructure (RM) [1], Chapter 4, section Exposed Performance Optimisation Capabilities`
	Reference Implementation based on RA2 specifications (RI2) [66] Chapter 4, section Installation on Bare Metal Infrastructure

	ra2.ntw.013
	Dual-stack CNI
	The networking solution deployed within the implementation must use a CNI-conformant network plugin that is able to support dual-stack IPv4/IPv6 networking.
	inf.ntw.04 in Kubernetes Architecture Requirements
	

	ra2.ntw.014
	Security groups
	The networking solution deployed within the implementation must support network policies.
	infra.net.cfg.004 Reference Model for Cloud Infrastructure (RM) [1] Chapter 5, section Virtual Networking Profiles
	

	ra2.ntw.015
	IPAM plugin for multiplexer
	When a multiplexer/meta-plugin is used, a CNI-conformant IPAM network plugin must be installed to allocate IP addresses for secondary network interfaces across all nodes of the cluster.
	inf.ntw.10 in Kubernetes Architecture Requirements
	

	ra2.ntw.016
	Kubernetes Network Custom Resource Definition De-Facto Standard-compliant multiplexer/meta-plugin
	When a multiplexer/meta-plugin is used, the multiplexer/meta-plugin must implement version 1.2 of the Kubernetes Network Custom Resource Definition De-facto Standard [26].
	gen.ost.01 in Kubernetes Architecture Requirements
	Reference Implementation based on RA2 specifications (RI2) [66] Chapter 4, section Installation on Bare Metal Infrastructure

	ra2.ntw.017
	Kubernetes Load Balancer
	The networking solution deployed within the implementation must include a L4 (TCP/UDP - except QUIC) Load Balancer to steer inbound traffic across the primary interfaces of multiple CNF pods.
	inf.ntw.15 in Kubernetes Architecture Requirements
	

	ra2.ntw.018
	Kubernetes Load Balancer - API
	The Load Balancer solution deployed per ra2.ntw.017 must support the Service type Loadbalancer API.
	inf.ntw.15 in Kubernetes Architecture Requirements
	

	ra2.ntw.019
	Kubernetes Load Balancer - API
	The Load Balancer solution deployed per ra2.ntw.017 may support the Gateway API additionally.
	inf.ntw.15 in Kubernetes Architecture Requirements
	

	ra2.ntw.020
	Kubernetes Load Balancer - Advertisements
	The Load Balancer solution deployed per ra2.ntw.017 must be capable of advertising the IPs of Services to external networks.
	inf.ntw.15 in Kubernetes Architecture Requirements
	

	ra2.ntw.021
	Kubernetes Load Balancer - Active/active Multipath
	The Load Balancer solution deployed per ra2.ntw.017 must support multi-path advertisements in an active/active design, allowing the same service IP to be advertised by multiple cluster nodes.
	inf.ntw.15 in Kubernetes Architecture Requirements
	

	ra2.ntw.022
	Kubernetes Load Balancer - High Availability
	The networking solution deployed per ra2.ntw.017 must be capable of fast failover. Upon node or pod failure, it must redirect traffic (i.e., advertisements/routes must be updated) in less than 5 seconds.
	inf.ntw.15 in Kubernetes Architecture Requirements
	

	ra2.ntw.023
	Time Sensitive Networking
	Timing accuracy with PTP Hardware Clock and synchronization with SyncE.
	e.cap.027 from Reference Model for Cloud Infrastructure (RM) [1] Chapter 4, section Exposed infrastructure capabilities
	


[bookmark: storage-components][bookmark: _Toc184746584]Storage Components
For the storage solutions to be conformant with the Reference Architecture they must be implemented according to the following specifications:
Storage solution specifications
	Ref
	Specification
	Details
	Requirement Trace
	Reference Implementation Trace

	ra2.stg.001
	Ephemeral storage
	An implementation must support ephemeral storage, for the unpacked container images to be stored and executed from, as a directory in the filesystem on the worker node on which the container is running. See the Container runtimes section above for more information on how this meets the requirement for ephemeral storage for containers.
	
	

	ra2.stg.002
	Kubernetes Volumes
	An implementation may attach additional storage to containers using Kubernetes Volumes.
	
	

	ra2.stg.003
	Kubernetes Volumes
	An implementation may use Volume Plugins (see ra2.stg.005 below) to allow the use of a storage protocol (such as iSCSI and NFS) or management APIs (such as Cinder and EBS) for the attaching and mounting of storage into a Pod.
	
	

	ra2.stg.004
	Persistent Volumes
	An implementation may support Kubernetes Persistent Volumes (PV) to provide persistent storage for Pods. Persistent Volumes exist independent of the lifecycle of containers and/or pods.
	inf.stg.01 in Kubernetes Architecture Requirements
	

	ra2.stg.005
	Storage Volume Types
	An implementation must support the following Volume types: emptyDir, ConfigMap, Secret, and PersistentVolumeClaim. Other Volume plugins may be supported to allow for the use of a range of backend storage systems.
	
	

	ra2.stg.006
	Container Storage Interface (CSI)
	An implementation may support the Container Storage Interface (CSI). In-tree storage plugins for Ceph have been removed in Kubernetes 1.31, so corresponding CSI drivers must be used. To support CSI, the feature gates CSIDriverRegistry and CSINodeInfo must be enabled. The implementation must use a CSI driver (full list of CSI drivers [27]). An implementation may support ephemeral storage through a CSI-compatible volume plugin. In this case, the CSIInlineVolume feature gate must be enabled. An implementation may support Persistent Volumes through a CSI-compatible volume plugin. In this case, the CSIPersistentVolume feature gate must be enabled.
	
	

	ra2.stg.007
	Storage Classes
	An implementation should use Kubernetes Storage Classes to support automation and the separation of concerns between providers of a service and consumers of the service.
	
	


Note
This Reference Architecture does not include any specifications for object storage, as this is neither a native Kubernetes object, nor something that is required by CSI drivers. Object storage is an application-level requirement that would ordinarily be provided by a highly scalable service offering, rather than being something an individual Kubernetes cluster could offer.
[bookmark: service-meshes][bookmark: _Toc184746585]Service Meshes
Application service meshes are not in the scope of the architecture. The service mesh is a dedicated infrastructure layer for handling service-to-service communication. It is recommended to secure service-to-service communications within a cluster and to reduce the attack surface. The benefits of the service mesh framework are described in Using Transport Layer Security and Service Mesh. In addition to securing communications, the use of a service mesh extends Kubernetes capabilities regarding observability and reliability.
Network service mesh specifications are handled in Networking solutions.
[bookmark: kubernetes-application-package-managers][bookmark: _Toc184746586]Kubernetes Application Package Managers
For the application package managers to be conformant with the Reference Architecture, they must be implemented according to the following specifications:
Kubernetes Application Package Managers Specifications
	Ref
	Specification
	Details
	Requirement Trace
	Reference Implementation Trace

	ra2.pkg.001
	API-based package management
	A package manager must use the Kubernetes APIs to manage application artifacts. Cluster-side components such as Tiller must not be required.
	int.api.02 in Kubernetes Architecture Requirements
	

	ra2.pkg.002
	Helm version 3
	All workloads must be packaged using Helm (version 3) charts.
	
	


Helm version 3 has been chosen as the Application packaging mechanism to ensure compliance with the ONAP ASD NF descriptor specification [28] and ETSI SOL-001 rel. 4 MCIOP specification [71].
[bookmark: kubernetes-workloads][bookmark: _Toc184746587]Kubernetes Workloads
For the Kubernetes workloads to be conformant with the Reference Architecture, they must be implemented according to the following specifications:
Kubernetes Workload specifications
	Ref
	Specification
	Details
	Requirement Trace
	Reference Implementation Trace

	ra2.app.006
	Consumption of additional, non-default connection points
	Any additional non-default connection points must be requested with workload annotations or resource requests and limits within the container spec passed to the Kubernetes API Server.
	int.api.01 in Kubernetes Architecture Requirements
	N/A

	ra2.app.007
	Host Volumes
	Workloads must not use hostPath volumes [77], as Pods with identical configuration (such as those created from a PodTemplate) may behave differently on different nodes due to different files on the nodes.
	kcm.gen.02 in Kubernetes Architecture Requirements
	N/A

	ra2.app.008
	Infrastructure dependency
	Workloads must not rely on the availability of the control plane nodes for the successful execution of their functionality (that is, loss of the control plane nodes may affect non-functional behaviours, such as healing and scaling. However, components that are already running will continue to do so without issue).
	TBD
	N/A

	ra2.app.009
	Device plugins
	Workload descriptors must use the resources advertised by the device plugins to indicate their need for an FPGA, SR-IOV, or other acceleration device.
	TBD
	N/A

	ra2.app.010
	Node Feature Discovery (NFD)
	If the workload requires special hardware or software features from the worker node, these requirements must be described in the workload descriptors using the labels advertised by Node Feature Discovery [68].
	TBD
	N/A

	ra2.app.011
	Published helm chart
	Helm charts of the CNF must be published in a helm registry and must not be used from local copies.
	CNF Testsuite, Rationale, Test if the Helm chart is published: helm_chart_published [78]
	N/A

	ra2.app.012
	Valid Helm chart
	Helm charts of the CNF must be valid and should pass the helm lint validation.
	CNF Testsuite, Rationale, Test if the Helm chart is valid: helm_chart_valid [79]
	N/A

	ra2.app.013
	Rolling update
	Rolling updates of the CNF must be possible using Kubernetes deployments.
	CNF Testsuite, Rationale, To test if the CNF can perform a rolling update: rolling_update [80]
	N/A

	ra2.app.014
	Rolling downgrade
	Rolling downgrades of the CNF must be possible using Kubernetes deployments.
	CNF Testsuite, Rationale, To check if a CNF version can be downgraded through a rolling_downgrade: rolling_downgrade [81]
	N/A

	ra2.app.015
	CNI compatibility
	The CNF must use CNI compatible networking plugins.
	CNF Testsuite, Rationale, To check if the CNF is compatible with different CNIs: cni_compatibility [82]
	N/A

	ra2.app.016
	Kubernetes API stability
	The CNF must not use any Kubernetes alpha APIs, except for those required by the specifications in this chapter (for example, NFD).
	CNF Testsuite, Rationale, To check if the CNF is compatible with different CNIs: cni_compatibility [82]
	N/A

	ra2.app.017
	CNF resiliency (node drain)
	The CNF must not lose data. It must continue to run, and its readiness probe outcome must be Success, even in the event of a node drain and consequent rescheduling.
	CNF Testsuite, Rationale, Test if the CNF crashes when node drain occurs: node_drain [83]
	N/A

	ra2.app.018
	CNF resiliency (network latency)
	The CNF must not lose data. It must continue to run, and its readiness probe outcome must be Success, even if network latency of up to 2000 ms occurs.
	CNF Testsuite, Rationale, Test if the CNF crashes when network latency occurs: pod_network_latency [84]
	N/A

	ra2.app.019
	CNF resiliency (pod delete)
	The CNF must not lose data. It must continue to run, and its readiness probe outcome must be Success, even if a pod delete occurs.
	CNF Testsuite, Rationale, Test if the CNF crashes when disk fill occurs: disk_fill [85]
	N/A

	ra2.app.020
	CNF resiliency (pod memory hog)
	The CNF must not lose data. It must continue to run, and its readiness probe outcome must be Success, even if a pod memory hog occurs.
	CNF Testsuite, Rationale, Test if the CNF crashes when pod memory hog occurs: pod_memory_hog [86]
	N/A

	ra2.app.021
	CNF resiliency (pod I/O stress)
	The CNF must not lose data. It must continue to run, and its readiness probe outcome must be Success, even if pod I/O stress occurs.
	CNF Testsuite, Rationale, Test if the CNF crashes when pod io stress occurs: pod_io_stress [87]
	N/A

	ra2.app.022
	CNF resiliency (pod network corruption)
	The CNF must not lose data. It must continue to run, and its readiness probe outcome must be Success, even if pod network corruption occurs.
	CNF Testsuite, Rationale, Test if the CNF crashes when pod network corruption occurs: pod_network_corruption [88]
	N/A

	ra2.app.023
	CNF resiliency (pod network duplication)
	The CNF must not lose data. It must continue to run, and its readiness probe outcome must be Success, even if a pod network duplication occurs.
	CNF Testsuite, Rationale, Test if the CNF crashes when pod network duplication occurs: pod_network_duplication [89]
	N/A

	ra2.app.024
	CNF resiliency (pod DNS error)
	The CNF must not lose data. It must continue to run, and its readiness probe outcome must be Success, even if a pod DNS error occurs.
	
	N/A

	ra2.app.025
	CNF local storage
	The CNF must not use local storage.
	CNF Testsuite, Rationale, To test if the CNF uses local storage: no_local_volume_configuration [90]
	N/A

	ra2.app.026
	Liveness probe
	All Pods of the CNF must have livenessProbe defined.
	CNF Testsuite, Rationale, To test if there is a liveness entry in the Helm chart: liveness [91]
	N/A

	ra2.app.027
	Readiness probe
	All Pods of the CNF must have readinessProbe defined.
	CNF Testsuite, Rationale, To test if there is a readiness entry in the Helm chart: readiness [92]
	N/A

	ra2.app.028
	No access to container daemon sockets
	The CNF must not have any of the container daemon sockets (for example, /var/run/docker.sock, /var/run/containerd.sock or /var/run/crio.sock) mounted.
	
	N/A

	ra2.app.029
	No automatic service account mapping
	Non-specified service accounts must not be automatically mapped. To prevent this, the automountServiceAccountToken: false flag must be set in all Pods of the CNF.
	CNF Testsuite, Rationale, To check if there is automatic mapping of service accounts: service_account_mapping [93]
	N/A

	ra2.app.030
	No host network access
	Host network must not be attached to any of the Pods of the CNF. The hostNetwork attribute of the Pod specifications must be False, or it should not be specified.
	CNF Testsuite, Rationale, To check if there is a host network attached to a pod: host_network [94]
	N/A

	ra2.app.031
	Host process namespace separation
	The Pods of the CNF must not share the host process ID namespace or the host IPC namespace. The Pod manifests must not have the hostPID or the hostIPC attribute set to true.
	CNF Testsuite, Rationale, To check if containers are running with hostPID or hostIPC privileges: host_pid_ipc_privileges [95]
	N/A

	ra2.app.032
	Resource limits
	All containers and namespaces of the CNF must have defined resource limits for at least the CPU and memory resources.
	CNF Testsuite, Rationale, To check if containers have resource limits defined: resource_policies [96]
	N/A

	ra2.app.033
	Read only filesystem
	All the containers of the CNF must have a read-only filesystem. The readOnlyRootFilesystem attribute of the Pods in their securityContext should be set to true.
	CNF Testsuite, Rationale, To check if containers have immutable file systems: immutable_file_systems [97]
	N/A

	ra2.app.034
	Container image tags
	All the referred container images in the Pod manifests must be referred by a version tag pointing to a concrete version of the image. The latest tag must not be used.
	Kubernetes documentation: Images [113]
	N/A

	ra2.app.035
	No hardcoded IP addresses
	The CNF must not have any hardcoded IP addresses in its Pod specifications.
	CNF Testsuite, Rationale, To test if there are any (non-declarative) hardcoded IP addresses or subnet masks in the K8s runtime configuration: hardcoded_ip_addresses_in_k8s_runtime_configuration [98]
	N/A

	ra2.app.036
	No node ports
	The service declarations of the CNF must not contain a nodePort definition.
	[107]
	N/A

	ra2.app.037
	Immutable config maps
	ConfigMaps used by the CNF must be immutable.
	[109]
	N/A

	ra2.app.038
	Horizontal scaling
	If the CNF supports scaling, increasing and decreasing its capacity must be implemented using horizontal scaling. If horizontal scaling is supported, automatic scaling must be possible using Kubernetes Horizontal Pod Autoscaler (HPA) [110] feature.
	TBD
	N/A

	ra2.app.039
	CNF image size
	The different container images of the CNF should not be bigger than 5GB.
	CNF Testsuite, Rationale, To check if the CNF has a reasonable image size: reasonable_image_size [100]
	N/A

	ra2.app.040
	CNF startup time
	The startup time of the Pods of a CNF should not exceed 60 seconds, where the startup time is the time between the starting of the Pod and the readiness probe outcome registering Success.
	CNF Testsuite, Rationale, To check if the CNF have a reasonable startup time: reasonable_startup_time [101]
	N/A

	ra2.app.041
	No privileged mode
	Pods of the CNF must not run in privileged mode.
	CNF Testsuite, Rationale, To check if there are any privileged containers: privileged_containers [102]
	N/A

	ra2.app.042
	No root user
	Pods of the CNF must not run as a root user.
	CNF Testsuite, Rationale, To check if any containers are running as a root user (checks the user outside the container that is running dockerd): non_root_user [103]
	N/A

	ra2.app.043
	No privilege escalation
	None of the containers of the CNF should allow privilege escalation.
	CNF Testsuite, Rationale, To check if any containers allow for privilege escalation: privilege_escalation [104]
	N/A

	ra2.app.044
	Non-root user
	All the Pods of the CNF must be able to execute with a non-root user having a non-root group. Both the runAsUser and the runAsGroup attributes must be set to a value greater than 999.
	CNF Testsuite, Rationale, To check if containers are running with non-root user with non-root membership: non_root_containers [105]
	N/A

	ra2.app.045
	Labels
	The Pods of the CNF should define at least the following labels: app.kubernetes.io/name, app.kubernetes.io/version and app.kubernetes.io/part-of
	Kubernetes documentation: Recommended Labels [111]
	N/A

	ra2.app.046
	Log output
	The Pods of the CNF must direct their logs to sdout or stderr. This enables the treatment of the logs as event steams.
	The Twelve Factor App: Logs [65]
	N/A

	ra2.app.047
	Host ports
	The Pods of the CNF should not use the host ports. Using the host ports ties the CNF to a specific node, thereby making the CNF less portable and scalable.
	CNF Testsuite, Rationale, To test if there are host ports used in the service configuration: hostport_not_used [106]
	N/A

	ra2.app.048
	SELinux options
	If SELinux is used in the Pods of the CNF, the options used to escalate privileges should not be allowed. The options spec.securityContext.seLinuxOptions.type, spec.containers[].securityContext.seLinuxOptions.type, spec.initContainers[].securityContext.seLinuxOptions, and spec.ephemeralContainers[*].securityContext.seLinuxOptions.type must either be unset altogether or set to one of the following allowed values container_t, container_init_t, or container_kvm_t.
	
	N/A


[bookmark: additional-required-components][bookmark: _Toc184746588]Additional Required Components
This chapter should list any additional components needed to provide the services defined in the chapter Infrastructure Services (for example, Prometheus).
[bookmark: platform-service-components][bookmark: _Toc184746589]Platform Service Components
The architecture may support additional platform services, this chapter defines the requirements for the platform service components when the platform service is supported.
Platform service components requirements
	Reference
	Platform service category
	Requirement
	RM reference

	ra2.plat.001
	Data stores/databases
	The platform may support any open source datastore or database technology
	Reference Model [1] Chapter 5.1.5

	ra2.plat.002
	Streaming and messaging
	The platform may support any Streaming and messaging technology
	Reference Model [1] Chapter 5.1.5

	ra2.plat.003
	Load balancer and service proxy
	If an external load balancer is used it must be exposed via the LoadBalancer property of the Kubernetes Service [108]
	Reference Model [1] Chapter 5.1.5

	ra2.plat.004
	Load balancer and service proxy
	If a load balancer is supported it must support workload resource scaling
	pas.lb.001 in Reference Model [1] Chapter 5.1.5

	ra2.plat.005
	Load balancer and service proxy
	If a load balancer is supported it must support resource resiliency
	pas.lb.002 in Reference Model [1] Chapter 5.1.5

	ra2.plat.006
	Load balancer and service proxy
	If a load balancer is supported it must support scaling and resiliency in the local environment
	pas.lb.003 in Reference Model [1] Chapter 5.1.5

	ra2.plat.007
	Load balancer and service proxy
	If a load balancer is supported it must support OSI Layer 3/4 load balancing
	pas.lb.004 in Reference Model [1] Chapter 5.1.5

	ra2.plat.008
	Load balancer and service proxy
	If a load balancer is supported it must support round-robin load balancing
	pas.lb.005 in Reference Model [1] Chapter 5.1.5

	ra2.plat.009
	Load balancer and service proxy
	If a load balancer is supported it must create event logs with the appropriate severity levels (catastrophic, critical, and so on)
	pas.lb.006 in Reference Model [1] Chapter 5.1.5

	ra2.plat.010
	Load balancer and service proxy
	If a load balancer is supported it must support monitoring of endpoints
	pas.lb.006 in Reference Model [1] Chapter 5.1.5

	ra2.plat.011
	Load balancer and service proxy
	If a load balancer is supported it must support Direct Server Return (DSR)
	pas.lb.006 in Reference Model [1] Chapter 5.1.5

	ra2.plat.012
	Load balancer and service proxy
	If a load balancer is supported it must support stateful TCP load balancing
	pas.lb.006 in Reference Model [1] Chapter 5.1.5

	ra2.plat.013
	Load balancer and service proxy
	If a load balancer is supported it must support UDP load balancing
	pas.lb.006 in Reference Model [1] Chapter 5.1.5

	ra2.plat.014
	Load balancer and service proxy
	If a load balancer is supported it must support load balancing and the correct handling of fragmented packets
	pas.lb.006 in Reference Model [1] Chapter 5.1.5

	ra2.plat.015
	Service mesh
	If a service mesh is supported the service must should support the Service Mesh Interface [112]
	Reference Model [1] Chapter 5.1.5

	ra2.plat.016
	Monitoring
	The platform may support any open source monitoring technology
	Reference Model [1] Chapter 5.1.5

	ra2.plat.017
	Logging
	The platform may support any open source logging technology
	Reference Model [1] Chapter 5.1.5

	ra2.plat.018
	Logging
	If a logging framework is supported it must support log management from multiple distributed sources
	pas.lb.006 in Reference Model [1] Chapter 5.1.5

	ra2.plat.019
	Logging
	If a logging framework is supported it must manage log rotation at configurable periods
	pas.lb.006 in Reference Model [1] Chapter 5.1.5

	ra2.plat.020
	Logging
	If a logging framework is supported it must manage log rotation at configurable log file status (%full)
	pas.lb.006 in Reference Model [1] Chapter 5.1.5

	ra2.plat.021
	Logging
	If a logging framework is supported it must manage archival and retention of logs for configurable periods by different log types
	pas.lb.006 in Reference Model [1] Chapter 5.1.5

	ra2.plat.022
	Logging
	If a logging framework is supported it must ensure log file integrity (no changes, particularlychanges that may affect the completeness, consistency, and accuracy, including event times, of the log file content) different log types
	pas.lb.006 in Reference Model [1] Chapter 5.1.5

	ra2.plat.023
	Logging
	If a logging framework is supported it must monitor log rotation and log archival processes
	pas.lb.006 in Reference Model [1] Chapter 5.1.5

	ra2.plat.024
	Logging
	If a logging framework is supported it must monitor the logging status of all the log sources
	pas.lb.006 in Reference Model [1] Chapter 5.1.5

	ra2.plat.025
	Logging
	If a logging framework is supported it must ensure that the clock of each logging host is synchronized to a common time source
	pas.lb.006 in Reference Model [1] Chapter 5.1.5

	ra2.plat.026
	Logging
	If a logging framework is supported it must support the reconfiguring of logging as needed, based on policy changes, technology changes, and other factors
	pas.lb.006 in Reference Model [1] Chapter 5.1.5

	ra2.plat.027
	Logging
	If a logging framework is supported it must support the documenting and reporting of anomalies in log settings, configurations, and processes
	pas.lb.006 in Reference Model [1] Chapter 5.1.5

	ra2.plat.028
	Logging
	If a logging framework is supported it must support the correlating of entries from multiple logs that relate to the same event
	pas.lb.006 in Reference Model [1] Chapter 5.1.5

	ra2.plat.029
	Logging
	If a logging framework is supported it must support the correlating of multiple log entries from a single source or multiple sources, based on logged values (for example, event types, timestamps, and IP addresses)
	pas.lb.006 in Reference Model [1] Chapter 5.1.5

	ra2.plat.030
	Application definition and image build
	Kubernetes Application package managers must follow the specifications defined in Chapter 4.9 Kubernetes Application Package Managers
	Reference Model [1] Chapter 5.1.5

	ra2.plat.031
	CI/CD
	The platform may support any open source CI/CD technology
	Reference Model [1] Chapter 5.1.5

	ra2.plat.032
	Ingress/egress controllers
	The platform may support any open source Ingress/egress controllers technology
	Reference Model [1] Chapter 5.1.5

	ra2.plat.033
	Ingress/egress controllers
	The platform may support any open source Ingress/egress controllers technology
	Reference Model [1] Chapter 5.1.5

	ra2.plat.034
	Ingress/egress controllers
	If an egress controller is supported it must provide fixed and consistent source IP addresses for any given egress traffic.
	

	ra2.plat.035
	Ingress/egress controllers
	If an egress controller is supported it must support several source IP addresses on egress control.
	

	ra2.plat.036
	Ingress/egress controllers
	If an egress controller is supported it must provide a way to preserve the client IP address on egress control
	

	ra2.plat.037
	Ingress/egress controllers
	If an ingress and egress controller is supported it must support symmetric IP/VIP for ingress and egress
	

	ra2.plat.038
	Ingress/egress controllers
	If an egress controller is supported it must provide capabilities to route and isolate egress traffic based on traffic types (OAM, Signaling, etc), connected to e.g., to separate VRFs
	

	ra2.plat.039
	Ingress/egress controllers
	If an egress controller is supported it must support VLAN tagging for egress traffic
	

	ra2.plat.040
	Ingress/egress controllers
	If an egress controller is supported it must support the separation for overlapping destination address.
	

	ra2.plat.041
	Network service
	The platform may support any open source network service technology
	Reference Model [1] Chapter 5.1.5

	ra2.plat.042
	Coordination and service discovery
	The platform may support any open source coordination and service discovery technology
	Reference Model [1] Chapter 5.1.5

	ra2.plat.043
	Automation and configuration
	The platform may support any open source automation and configuration technology
	Reference Model [1] Chapter 5.1.5

	ra2.plat.044
	Key management
	The platform may support any open source key management technology
	Reference Model [1] Chapter 5.1.5

	ra2.plat.045
	Tracing
	The platform may support any open source tracing technology
	Reference Model [1] Chapter 5.1.5


[bookmark: kubernetes-cluster-lifecycle-management][bookmark: _Toc184746590]Kubernetes Cluster Lifecycle Management
This section describes the requirements for Kubernetes Cluster Lifecycle Management (LCM). A CaaS Manager is an architectural block responsible for the automated lifecycle management of Kubernetes clusters. It provides a centralized platform for performing operations like cluster creation, scaling, upgrades, and destruction. These guidelines align with the lifecycle management principles outlined in [1] Chapter 9, emphasizing automation, modularity, and decoupling of deployment and test steps. This adherence ensures consistent and reliable cluster operations throughout their lifecycle.
As there is no Reference Implementation for this part of the specification, the following table includes examples of implementation from the Cluster API spec, a sub-project of the Kubernetes Cluster Lifecycle SIG [114].
Kubernetes Cluster Lifecycle Management specifications
	Ref
	Specification
	Details
	Requirement Trace
	Reference Implementation Trace

	ra2.lcm.001
	Cluster Creation and Destruction
	The CaaS Manager must support automated cluster creation and destruction. This includes provisioning the underlying infrastructure and installing the Kubernetes control plane and worker nodes.
	Reference Model [1] Chapter 9 - Infrastructure lifecycle management automation
	Cluster API: Cluster object

	ra2.lcm.002
	Cluster Scaling
	The CaaS Manager must support automated cluster scaling. This includes scaling the number of worker nodes up or down based on demand.
	Reference Model [1] Chapter 9 - Infrastructure lifecycle management automation
	Cluster API: MachineDeployment object, scaling feature

	ra2.lcm.003
	Cluster Upgrades
	The CaaS Manager must support automated cluster upgrades. This includes upgrading the Kubernetes control plane and worker nodes to newer versions.
	Reference Model [1] Chapter 9 - Infrastructure lifecycle management automation
	Cluster API: MachineDeployment object, upgrade strategies

	ra2.lcm.004
	Cluster Object
	The CaaS Manager API must support a "Cluster" object. Represents a Kubernetes cluster.
	Reference Model [1] Chapter 9 - Infrastructure lifecycle management automation
	Cluster API: Cluster object

	ra2.lcm.005
	Node Object
	The CaaS Manager API must support a "Node" object. Represents a single machine in the cluster, either a control plane or worker node.
	Reference Model [1] Chapter 9 - Infrastructure lifecycle management automation
	Cluster API: Machine object

	ra2.lcm.006
	Node Pool Object
	The CaaS Manager API must support a "Node Pool" object. Represents a group of similar nodes with shared characteristics (e.g., machine type, labels).
	Reference Model [1] Chapter 9 - Infrastructure lifecycle management automation
	Cluster API: MachineSet object (for managing homogeneous groups of Machines)

	ra2.lcm.007
	Node Deployment Strategy
	The CaaS Manager API must support defining a strategy for node deployments, such as rolling updates or blue/green deployments.
	Reference Model [1] Chapter 9 - Infrastructure lifecycle management automation
	Cluster API: MachineDeployment object with rolling update strategies

	ra2.lcm.008
	Node Health Check
	The CaaS Manager must support mechanisms for monitoring the health of nodes in the cluster and taking appropriate actions (e.g., replacing unhealthy nodes).
	Reference Model [1] Chapter 9 - Infrastructure lifecycle management automation
	Cluster API: MachineHealthCheck object (and integrations with provider-specific health checking)

	ra2.lcm.009
	Node Initialization Configuration
	The CaaS Manager must support providing initial configuration data for nodes during their creation, such as cloud-init scripts or other bootstrap mechanisms.
	Reference Model [1] Chapter 9 - Infrastructure lifecycle management automation
	Cluster API: BootstrapConfig object (e.g., using KubeadmConfigTemplate)


[bookmark: security-guidance]


[bookmark: _Toc184746591]Security Guidance
[bookmark: introduction-to-security-guidance][bookmark: _Toc184746592]Introduction to Security Guidance
Securing Kubernetes requires a multi-layered security approach to protect cloud-native applications. The following best practices are recommended:
· Security testing should be fully integrated into the CI/CD pipelines of all stakeholders (e.g., vendors and operators).
· Automated security policies should flag builds with identified issues.
· Image registries should be monitored to automatically block or replace images with known vulnerabilities. Policies should also govern what can be deployed and who can deploy from the registry.
· A layered packaging model should be adopted to support separation of concerns during image builds.
The following functionalities are recommended for securing Kubernetes platforms:
· Image certification (vulnerability scanning) and signing.
· Role-Based Access Control (RBAC).
· Secret management.
· Addressing the limitations of hard Kubernetes cluster multitenancy:
· For tenants without strict multitenancy requirements (such as multiple development teams within the same organization), namespaces can provide sufficient separation.
· For strict multitenancy, a dedicated Kubernetes cluster per tenant is recommended.
· Integration with other security tools, such as monitoring and alerting systems.
[bookmark: security-perimeters][bookmark: _Toc184746593]Security Perimeters
Securing applications and workloads on Kubernetes involves securing several layers. Each layer requires its own perimeter security:
· Container Registry: The container registry stores and manages container images. Access must be secured to prevent unauthorized access and image tampering.
· Container Images: Container images are lightweight, portable executables containing software and dependencies. Before uploading to a registry, images should undergo security checks, including vulnerability analysis and scans. Images should also be signed by trusted sources.
· Containers: A container is a running instance of a container image. Containers should be prevented from accessing underlying OS capabilities (e.g., loading kernel modules, mounting OS directories) and should not run in privileged mode.
· Pods: A pod represents a set of running containers in a Kubernetes cluster. Kubernetes' Pod Security Policies define conditions for pod execution, ensuring necessary checks are performed.
· Kubernetes Node (Worker Node): A Kubernetes node (worker node) is a physical or virtual server running workloads. Unsecured nodes pose a significant threat. Nodes should be hardened by disabling unused ports, prohibiting root access, etc.
· Kubernetes Control Plane Node: An unsecured control plane node presents a significant threat. These nodes should be hardened by disabling unused ports, prohibiting root access, etc.
· Kubernetes Control Plane: The Kubernetes control plane orchestrates containers, exposing APIs and interfaces for managing their lifecycle. API communication should be secured using mechanisms such as TLS encryption and API authentication (e.g., via LDAP).
[bookmark: security-principles][bookmark: _Toc184746594]Security Principles
Core principles for securing cloud-native applications include:
· Deploy only secure and trusted applications and code.
· Deploy applications only from validated and verified images.
· Deploy applications only from trusted registries.
· Secure Kubernetes container orchestration with administrative boundaries between tenants:
· Use Namespaces to establish security boundaries between tenants.
· Create and define cluster Network Policies.
· Implement cluster-wide pod security policies.
· Enable audit logging.
· Isolate sensitive workloads using Namespaces.
· Secure tenant metadata access.
· Segment container networks using security zoning and network standards.
· Harden the host OS running the containers.
· Use container-aware runtime defense tools.
· Enable Role-Based Access Control (RBAC).
[bookmark: node-hardening][bookmark: _Toc184746595]Node Hardening
[bookmark: Xf048093e28a0862f6a206626d510074bf0ca1ad][bookmark: _Toc184746596]Node Hardening: Securing the Kubernetes Hosts
Operating systems and applications often have insecure default settings (open ports, enabled services). Kubernetes nodes must be secured, hardened, and correctly configured according to established security frameworks (e.g., CIS benchmarks). These benchmarks provide configuration standards and best practices for hardening digital assets.
[bookmark: restricting-direct-access-to-nodes][bookmark: _Toc184746597]Restricting Direct Access to Nodes
Restrict root/administrative access to Kubernetes nodes and avoid direct access for operational tasks (debugging, troubleshooting, etc.).
[bookmark: vulnerability-assessment][bookmark: _Toc184746598]Vulnerability Assessment
Regular vulnerability assessments are crucial for IT risk management. Implement vulnerability scanner tools (e.g., OpenVAS, or other open source or commercial tools) to identify and mitigate threats and vulnerabilities.
[bookmark: patch-management][bookmark: _Toc184746599]Patch Management
A robust patch management process should be implemented to address security vulnerabilities, ensure compliance, maintain uptime, and enable feature enhancements.
[bookmark: securing-the-kubernetes-orchestrator][bookmark: _Toc184746600]Securing the Kubernetes Orchestrator
Kubernetes control plane API communication must be secured using TLS encryption, API authentication (e.g., via LDAP), etc. Unsecured control plane nodes represent a significant threat; harden them by disabling unused ports and prohibiting root access.
Security recommendations for the orchestration manager include:
· Cluster management network isolation to protect the control plane and restrict administrative command execution. Use network isolation techniques, configure RBAC on the cluster manager, and configure node service accounts using the principle of least privilege.
· Enforce access control on registries using unique credentials to limit who can control builds or add images.
· Use TLS for all network access.
· Configure user roles and access levels to ensure segregation of duties.
· Do not co-locate container and non-container services on the same node.
· Do not run containers as root.
· Implement multi-factor authentication for all administrative access.
· Harden the configuration using Center for Internet Security (CIS) benchmarks for container runtimes and Kubernetes.
· Deploy security products providing allowlisting, behavior monitoring, and anomaly detection to prevent malicious activity.
· Avoid privileged container applications through policy management to mitigate potential attacks.
· Integrate with other security ecosystems (SIEM).
· Isolate environments (dev/test/production) within the cluster.
· Create administrative boundaries between resources using namespaces and avoid using default namespaces.
· Enable Seccomp to restrict actions available within container applications.
· Limit discovery by restricting access to cluster management metadata on configurations, containers, and nodes.
[bookmark: X0616b51a5e2f15fb4f7da1140f0bff3e5b0a774][bookmark: _Toc184746601]Control Network Access to Sensitive Ports
Kubernetes clusters use a range of ports, making them potential attack targets. Configure authentication and authorization on the cluster and nodes. The Kubernetes documentation [115] details default ports. Block access to unnecessary ports and limit access to the Kubernetes API server to trusted networks only.
Control Plane Node(s):
	Protocol
	Port Range
	Purpose

	TCP
	6443
	Kubernetes API Server

	TCP
	2379-2380
	etcd server client API

	TCP
	10250
	Kubelet API

	TCP
	10259
	kube-scheduler

	TCP
	10257
	kube-controller-manager


Worker Nodes:
	Protocol
	Port Range
	Purpose

	TCP
	10250
	Kubelet API

	TCP
	30000-32767
	NodePort Services


[bookmark: controlling-access-to-the-kubernetes-api][bookmark: _Toc184746602]Controlling Access to the Kubernetes API
The Kubernetes API is a primary security target. Control access and allowed actions carefully.
[bookmark: Xdd669d83f803a8f2c0a99095f91b6e879e1d4ce][bookmark: _Toc184746603]Using Transport Layer Security and Service Mesh
Secure inter-service communication within the cluster using TLS, encrypting all traffic by default. Kubernetes expects default TLS encryption for API communication; most installation methods facilitate certificate creation and distribution.
Note
Some components and installation methods might enable local ports over HTTP. Administrators should review component settings to identify potential unsecured traffic.
Service meshes (e.g., Linkerd, Istio) provide default TLS encryption and additional telemetry. A service mesh uses layer 7 proxies for service-to-service communication, comprising data plane (proxies paired with microservices) and control plane (proxy configuration, TLS certificate and policy management) components. NIST SP 800-204A Building Secure Microservices-based Applications Using Service-Mesh Architecture [116] and NIST SP 800-204B Attribute-based Access Control for Microservices-based Applications Using a Service Mesh [117] provide guidance on deploying service meshes.
[bookmark: api-authentication-and-authorization][bookmark: _Toc184746604]API Authentication and Authorization
Secure Kubernetes cluster connections using the following authentication mechanisms:
· Configure user roles and access levels for segregation of duties (RBAC).
· Use multi-factor authentication for all administrative access.
· Use token-based or certificate-based service and session authentication.
· Integrate with existing identity management platforms (e.g., SAML, AD) for access control.
[bookmark: Xa5813cfbf68a99a4c9435ce519327bfc63497cf][bookmark: _Toc184746605]Restricting Access to etcd and Encrypting Contents Within etcd
etcd, a critical Kubernetes component storing state and secrets, requires robust protection. Write access to the API server's etcd grants root access to the entire cluster; even read access can be exploited for privilege escalation.
The Kubernetes scheduler uses etcd to find unscheduled pods, sending them to available kubelets. The API server validates submitted pods before writing them to etcd. Directly writing to etcd bypasses many security mechanisms (e.g., PodSecurityPolicies).
Use strong credentials (e.g., mutual TLS authentication via client certificates) for API server-etcd communication. Isolate etcd servers behind a firewall accessible only by the API servers.
[bookmark: controlling-access-to-the-kubelet][bookmark: _Toc184746606]Controlling Access to the Kubelet
Kubelets expose HTTPS endpoints controlling nodes and containers. Production clusters should enable kubelet authentication and authorization (unauthenticated access is insecure by default).
[bookmark: securing-the-kubernetes-dashboard][bookmark: _Toc184746607]Securing the Kubernetes Dashboard
The Kubernetes dashboard, a web application for cluster management (not a core Kubernetes component), requires careful security configuration. Many tutorials create highly privileged service accounts, making it a vulnerability (Reference: Tesla cloud resources are hacked to run cryptocurrency-mining malware [118]).
To prevent dashboard attacks:
· Do not publicly expose the dashboard without additional authentication.
· Enable RBAC to limit the dashboard's service account privileges.
· Review and restrict the service account's assigned privileges.
· Implement granular permissions per user.
· Block dashboard requests from internal pods using network policies (kubectl proxy will still function).
· Verify that no cluster admin role binding exists (a vulnerability in versions prior to 1.8).
· Deploy the dashboard with an authenticating reverse proxy and multi-factor authentication (using embedded OpenID Connect (OIDC) id_tokens or Kubernetes Impersonation). This allows using user credentials instead of a privileged ServiceAccount, suitable for on-prem and managed cloud clusters.
[bookmark: X77b1ba13cf316504ffb7efe7bb1fca3a23edc97][bookmark: _Toc184746608]Using Namespaces to Establish Security Boundaries
Kubernetes namespaces provide the first level of isolation between components. Apply security controls (network policies, pod policies, etc.) to workloads in separate namespaces.
[bookmark: separating-sensitive-workloads][bookmark: _Toc184746609]Separating Sensitive Workloads
Run sensitive workloads on dedicated nodes to minimize the impact of a compromise. This reduces the risk of accessing sensitive applications through less secure applications sharing a runtime or host. Node pools and Kubernetes namespaces can facilitate this separation.
[bookmark: creating-and-defining-network-policies][bookmark: _Toc184746610]Creating and Defining Network Policies
Network policies control network access to cloud-native applications. Define clear ingress and egress policies and modify default policies (e.g., blocking or allowing traffic from other namespaces/clusters) where policy support is enabled.
[bookmark: running-the-latest-version][bookmark: _Toc184746611]Running the Latest Version
Regularly update to the latest Kubernetes release to benefit from new security features and patches.
[bookmark: securing-platform-metadata][bookmark: _Toc184746612]Securing Platform Metadata
Kubernetes metadata contains sensitive information (including kubelet admin credentials). Secure it using encryption to prevent theft and privilege escalation.
· Limit access to cluster management metadata (configurations, containers, nodes).
· Ensure all metadata is encrypted and network access runs over TLS.
[bookmark: enabling-logging-and-monitoring][bookmark: _Toc184746613]Enabling Logging and Monitoring
Enable and monitor audit logs for anomalous or unauthorized API calls, paying close attention to authorization failures. Logging, monitoring, and alerting are critical for Kubernetes security.
[bookmark: runtime-security][bookmark: _Toc184746614]Runtime Security
Container runtime best practices include:
· Integrate runtime processes with Security Information and Event Monitoring (SIEM).
· Use container-aware runtime defense tools.
· Ensure all applications are from secure and verified images.
· Do not run applications with root privileges.
· Properly segment sensitive workloads using namespaces or clusters to limit the impact of compromises.
[bookmark: secrets-management][bookmark: _Toc184746615]Secrets Management
Apply the principle of least privilege to secrets management in Kubernetes:
· Applications should only access necessary secrets.
· Use different secrets for different environments (production, development, testing).
Protect secret values (sensitive data) at rest and in transit. TLS encrypts traffic between Kubernetes control plane and worker nodes.
Avoid storing secrets in scripts or code; instead, provide them dynamically at runtime. Use a secure data repository (key manager, vault) for sensitive data (SSH keys, API keys, database credentials). Retrieve credentials on demand over secure channels to prevent writing unprotected data to disk. Back up key manager or vault encryption keys using a FIPS 140-2 Hardware Security Module.
· Check for hardcoded passwords, keys, and other sensitive items in container applications.
· Use security tools to automate scanning for hardcoded sensitive items.
[bookmark: trusted-registry][bookmark: _Toc184746616]Trusted Registry
Use trusted container registries accepting images only from validated sources. For third-party images, establish a formal validation process ensuring compliance with security requirements. Enforce access control using unique credentials to limit who can control builds or add images.
· Secure registry network access using TLS/SSL/VPN.
· Validate and scan container applications for viruses and vulnerabilities. Deploy only images signed with trusted keys.
· Use image versioning to ensure the latest certified applications are deployed.
· Trusted registries should reject improperly signed containers.
· Use approved registries for production images.
· Consider using third-party products for pre- and post-deployment container validation.
Remove stale, unsafe, and vulnerable images from the registry (using time triggers and image labels).
[bookmark: isolation][bookmark: _Toc184746617]Isolation
[bookmark: vm-versus-container-isolation][bookmark: _Toc184746618]VM versus Container Isolation
Directly comparing container and VM isolation is misleading. They differ fundamentally:
· VMs: Provide hard isolation at the layers underlying application software.
· Containers: Rely on OS, container runtime, and Kubernetes software-based mechanisms. Container workloads are sets of Linux processes; additional software-based isolation (e.g., kernel namespaces) is possible.
The primary isolation mechanism in Kubernetes should be VM-based or physical machine-based. Deploy multiple applications in the same Kubernetes cluster only after careful planning and verification of their compatibility. The default recommendation is one namespace per Cloud-Native Network Function (CNF).
[bookmark: X9356776cdd19f9f2d58c77b71221933881a6aae][bookmark: _Toc184746619]Container Isolation in the Kubernetes Cluster
[bookmark: namespaces]Namespaces
Use Kubernetes namespaces for resource isolation within a cluster. Do not use them to isolate deployment stages (development, production, testing). Dedicated clusters provide the most reliable separation for sensitive workloads.


[bookmark: api-and-feature-testing-requirements][bookmark: _Toc184746620]API and Feature Testing requirements
[bookmark: X809f4e3cd06a218586d015f7cd6f0077466ae50][bookmark: _Toc184746621]Introduction to API and Feature Testing requirement
The CNCF has defined a [119] to help the community to write and run tests, and to contribute, analyze, and act upon test results. This chapter maps the requirements written in the previous chapters as mandatory Special Interest Group features. It enforces the overall requirements traceability to testing, especially those offered for [120]. The Anuket Reference Conformance testing matches the features and tests defined here.
[bookmark: kubernetes-feature-gate-policy][bookmark: _Toc184746622]Kubernetes feature gate policy
[121] are a set of key-value pairs that describe the Kubernetes features. The components of the control plane of the Kubernetes Clusters can be run with different Feature Gate settings.
A feature can be in the Alpha, Beta, or General Availability (GA) stage:
· Alpha features are disabled by default. Breaking API changes may be expected. They may contain bugs, and support may be dropped.
· Beta features are disabled by default. They are well tested, and support will not be dropped, although breaking API changes may happen. As of 1.24, any existing Beta feature will continue to be enabled by default. However, new beta APIs and features will not be enabled by default after Kubernetes 1.24. For more information, see [122]
· GA features are stable. They are always enabled and cannot be disabled.
Only those Kubernetes features can be made mandatory in this Reference Architecture which are GA or were Beta before Kubernetes 1.24.
A list of feature gates is available here [121].
[bookmark: kubernetes-api-policy][bookmark: _Toc184746623]Kubernetes API policy
The [123] supports all operations and communications between components, and external user commands. Everything in the Kubernetes platform is treated as an API object. Different API versions indicate different levels of stability and support. An API can have Alpha, Beta or Stable versions. The version of APIs that are backed by a feature will match the stage of the feature itself (i.e. Alpha, Beta or GA or Stable).
The policy for RA2 to include Kubernetes APIs as mandatory is as follows:
In these Reference Architecture APIs, only those APIs which are in any of the following stages are mandatory:
· Stable.
· Beta when introduced before Kubernetes version 1.24.
· Alpha or Beta when required by RA2 Ch4 specifications, or when included on the list of Mandatory API Groups below.
The Kubernetes API reference is available here [124].
The list of [125] that are mandatory is as follows:
Mandatory API Groups
	Group
	Version

	admissionregistration.k8s.io
	v1

	apiextensions.k8s.io
	v1

	apiregistration.k8s.io
	v1

	apps
	v1

	authentication.k8s.io
	v1

	authorization.k8s.io
	v1

	autoscaling
	v1, v2

	batch
	v1

	certificates.k8s.io
	v1

	coordination.k8s.io
	v1

	core
	v1

	discovery.k8s.io
	v1

	events.k8s.io
	v1

	flowcontrol.apiserver.k8s.io
	v1

	networking.k8s.io
	v1

	node.k8s.io
	v1

	policy
	v1

	rbac.authorization.k8s.io
	v1

	scheduling.k8s.io
	v1

	storage.k8s.io
	v1


[bookmark: _Toc184746624][bookmark: api-machinery-special-interest-group-126]API Machinery Special Interest Group [126]
API Machinery Special Interest Group
	Labels
	Mandatory
	Description

	Conformance
	X
	Kubernetes conformance test

	None
	X
	Kubernetes mainstream features

	Feature:ComprehensiveNamespaceDraining
	X
	The deletion of namespaces should always be fast (all 100 namespaces in 150 seconds).

	Feature: CrossNamespacePodAffinity [135]
	
	The CrossNamespacePodAffinity feature verifies the ResourceQuota with the cross namespace pod affinity scope using scope-selectors.

	Feature: PodPriority [135]
	X
	The PodPriority feature verifies the ResourceQuota's priority class scope against a pod with a different priority class.

	Feature:ScopeSelectors
	X
	Verify ResourceQuota with terminating scopes through scope selectors

	Feature: StorageVersionAPI [137]
	
	Enable the storage version API.

	Feature:WatchList [121]
	
	Enable support for streaming initial state of objects in watch requests.


[bookmark: _Toc184746625][bookmark: apps-127]Apps [127]
Apps Special Interest Group
	Labels
	Mandatory
	Description

	Conformance
	X
	Kubernetes conformance test

	None
	X
	Kubernetes mainstream features

	Feature: DaemonSetUpdateSurge [138]
	
	The Daemon set should surge the pods onto the nodes when the specification is updated and the update strategy is RollingUpdate.

	Feature: IndexedJob [139]
	
	The IndexedJob feature should create pods for an indexed job with completion indexes.

	Feature: StatefulSet [140]
	
	The StatefulSet feature should create a working zookeeper cluster.

	Feature:StatefulUpgrade
	
	The StatefulUpgrade feature should maintain a functioning cluster.

	Feature: SuspendJob [141]
	
	The SuspendJob feature should not create pods when they have been created in a suspended state.

	Feature: TaintEviction [142]
	
	All pods on the unreachable node should be marked as NotReady when the node condition is set to NotReady. All pods should be evicted after eviction timeout has passed.

	Feature: TTLAfterFinished [143]
	X
	The job should be deleted once it has finished, after the TTL has elapsed.


[bookmark: _Toc184746626][bookmark: auth-special-interest-group-128]Auth Special Interest Group [128]
Auth Special Interest Group
	Labels
	Mandatory
	Description

	Conformance
	X
	Kubernetes conformance test

	None
	X
	Kubernetes mainstream features

	Feature: BoundServiceAccountTokenVolume [144]
	
	The ServiceAccount admission controller migration upgrade should maintain a functioning cluster.

	Feature:ClusterTrustBundle [121]
	
	Enable ClusterTrustBundle objects and kubelet integration.

	Feature:NodeAuthenticator
	X
	The kubelet's main port 10250 should reject requests with no credentials.

	Feature:NodeAuthorizer
	X
	Setting existing and non-existent attributes should return with a Forbidden error, not a NotFound error.

	NodeFeature:FSGroup
	X
	ServiceAccounts should set ownership and permission when RunAsUser or FsGroup is present.


[bookmark: _Toc184746627][bookmark: X7a9f232b06dce3a8910d273a767156ea15d950c]Cluster Lifecycle Special Interest Group [129]
Cluster Lifecycle Special Interest Group
	Labels
	Mandatory
	Description

	Conformance
	X
	Kubernetes conformance test

	None
	X
	Kubernetes mainstream features

	Feature:BootstrapTokens
	X
	The BootstrapTokens feature should delete the token secret when the secret has expired.


[bookmark: _Toc184746628][bookmark: Xed1d7a8dc5bc8069e367fc9c1d66507ab649b52]Instrumentation Special Interest Group [130]
Instrumentation Special Interest Group
	Labels
	Mandatory
	Description

	Conformance
	X
	Kubernetes conformance test

	None
	X
	Kubernetes mainstream features

	Feature:Elasticsearch
	
	The Elasticsearch feature should check that the Kibana logging instance is alive.

	Feature: StackdriverAcceleratorMonitoring
	
	Stackdriver Monitoring should have accelerator metrics.

	Feature:StackdriverCustomMetrics
	
	Stackdriver Monitoring should run Custom Metrics - Stackdriver Adapter for the new resource model.

	Feature:StackdriverExternalMetrics
	
	Stackdriver Monitoring should run Custom Metrics - Stackdriver Adapter for external metrics.

	Feature:StackdriverMetadataAgent
	
	Stackdriver Monitoring should run Stackdriver Metadata Agent.

	Feature:StackdriverMonitoring
	
	


[bookmark: _Toc184746629][bookmark: network-special-interest-group-131]Network Special Interest Group [131]
Network Special Interest Group
	Labels
	Mandatory
	Description

	Conformance
	X
	Kubernetes conformance test.

	None
	X
	Kubernetes mainstream features.

	Feature:Example
	
	The example feature should create a pod that uses DNS.

	Feature:Ingress
	
	The Ingress feature should prevent ingress creation if more than one IngressClass is marked as a default.

	Feature: IPv6DualStack [145]
	
	IPv4/IPv6 dual-stack networking enables the allocation of both IPv4 and IPv6 addresses to Pods and Services. IPv4/IPv6 dual-stack networking is enabled by default for your Kubernetes cluster from 1.21 onwards, allowing the simultaneous assignment of IPv4 and IPv6 addresses.

	Feature:kubemci
	
	The kubemci feature should create ingress with a preshared certificate.

	Feature:KubeProxyDaemonSetMigration
	
	The upgrade of kube-proxy from static pods to a DaemonSet should maintain a functioning cluster.

	Feature:KubeProxyDaemonSetUpgrade
	
	The upgrade of kube-proxy from static pods to a DaemonSet should maintain a functioning cluster.

	Feature:NEG
	
	The NEG feature should sync the endpoints to NEG.

	Feature:NoSNAT
	X
	The NoSNAT feature should be able to send traffic between the Pods without SNAT.

	Feature:Networking-IPv4
	X
	Networking-IPv4 should provide an IPv4 connection for the containers.

	Feature:Networking-IPv6
	
	Networking-IPv6 should provide an IPv6 connection for the containers.

	Feature:Networking-Performance
	X
	Measure network responsiveness, latency (both RTT and OWD), and throughput with the iperf2 tool.

	Feature:NetworkPolicy
	
	NetworkPolicy between the server and the client should enforce a policy to allow traffic only from a different namespace, based on NamespaceSelector.

	Feature:PerformanceDNS
	
	The PerformanceNDS feature should answer DNS queries for a maximum number of services per cluster.

	Feature:SCTP
	
	SCTP should allow the creation of a basic SCTP service with the pod and the endpoints.

	Feature:SCTPConnectivity
	
	The Pods should function for intra-pod communication: sctp.

	Feature:ServiceCIDRs [146]
	
	Track IP address allocations for Service cluster IPs using IPAddress objects.


[bookmark: _Toc184746630][bookmark: node-special-interest-group-132]Node Special Interest Group [132]
Node Special Interest Group
	Labels
	Mandatory
	Description

	Conformance
	X
	Kubernetes conformance test.

	None
	X
	Kubernetes mainstream features.

	Feature:DynamicResourceAllocation [121]
	
	Enables support for resources with custom parameters and a lifecycle that is independent of a Pod.

	Feature:Example
	X
	The liveness pods should be automatically restarted.

	Feature: ExperimentalResourceUsageTracking
	
	Resource tracking for 100 pods per node.

	Feature:GPUUpgrade
	
	The Control Plane node upgrade should not disrupt the GPU Pod.

	Feature:InPlacePodVerticalScaling [121]
	
	Enables in-place Pod vertical scaling.

	Feature:NodeLogQuery [121]
	
	Enables querying logs of node services using the /logs endpoint.

	Feature:PodGarbageCollector
	
	The PodGarbageCollector feature should handle the creation of 1000 pods.

	Feature:PodLifecycleSleepAction [121]
	
	Enables the sleep action in Container lifecycle hooks.

	Feature:RegularResourceUsageTracking
	
	Resource tracking for 0 pods per node.

	Feature:SidecarContainers [121]
	
	Allow setting the restartPolicy of an init container to Always so that the container becomes a sidecar container (restartable init containers).

	Feature:UserNamespacesSupport [121]
	
	Enable user namespace support for Pods.

	Feature: ProbeTerminationGracePeriod [147]
	X
	The probing container should override timeoutGracePeriodSeconds when the LivenessProbe field is set.

	NodeFeature: DownwardAPIHugePages [148]
	
	Downward API tests for huge pages should provide the container's limits.hugepages-pagesize, and requests.hugepages-pagesize as environmental variables.

	NodeFeature: PodReadinessGate [149]
	X
	The Pods should support the pod readiness gates.

	NodeFeature:RuntimeHandler
	
	The RuntimeClass feature should run a Pod requesting a RuntimeClass with a configured handler.

	NodeFeature: Sysctls [150]
	X
	The Sysctls feature should not launch unsafe, but not explicitly enabled sysctls on the node.


[bookmark: _Toc184746631][bookmark: scheduling-special-interest-group-133]Scheduling Special Interest Group [133]
Scheduling Special Interest Group
	Labels
	Mandatory
	Description

	Conformance
	X
	Kubernetes conformance test.

	None
	X
	Kubernetes mainstream features.

	Feature:GPUDevicePlugin
	
	The GPUDevicePlugin feature runs Nvidia GPU Device Plugin tests.

	Feature: LocalStorageCapacityIsolation [151]
	X
	The LocalStorageCapacityIsolation feature validates local ephemeral storage resource limits of pods that are allowed to run.

	Feature:Recreate
	
	The Recreate feature runs Nvidia GPU Device Plugin tests with a recreation.


[bookmark: _Toc184746632][bookmark: storage-special-interest-group-134]
Storage Special Interest Group [134]
Storage Special Interest Group
	Labels
	Mandatory
	Description

	Conformance
	X
	Kubernetes conformance test.

	None
	X
	Kubernetes mainstream features.

	Feature:ExpandInUsePersistentVolumes
	
	

	Feature:Flexvolumes
	
	

	Feature:RecoverVolumeExpansionFailure [121]
	
	Enables users to edit their PVCs to smaller sizes so as they can recover from previously issued volume expansion failures.

	Feature:SELinux
	
	

	Feature:GKELocalSSD
	
	

	Feature:VolumeSnapshotDataSource
	
	

	Feature:Volumes
	X
	

	Feature:vsphere
	
	

	Feature:Windows
	
	

	NodeFeature:EphemeralStorage
	X
	

	NodeFeature:FSGroup
	X
	


[bookmark: conformance-testing][bookmark: _Toc184746633]Conformance testing
The objective of this section is to provide an automated mechanism to validate Kubernetes based cloud infrastructure against the standard set of requirements defined in Architecture Requirements. Through this validation mechanism, a provider of cloud infrastructure will be able to test their cloud infrastructure's conformance to this reference architecture. This will ease the integration of network functions into operator environments that host compatible cloud infrastructures, thereby reducing cost, complexity, and time of integration.
The overall workstream requires the close coordination of the following:
· Requirements - The agreed upon capabilities and conditions that a compliant cloud infrastructure must provide or satisfy.
· Tests - The verification mechanism that determines that a given cloud infrastructure complies with one or more requirements.
· Conformance Specifications - The definition of the requirements, tests, and circumstances (test case integration, etc.) that must be met to be deemed conformant.
[bookmark: requirements-and-testing-principles][bookmark: _Toc184746634]Requirements and Testing Principles
In addition to the description of the test case integration and tooling, Cloud Infrastructure Reference Architecture managed by OpenStack [152] defines the requirements and the testing principles to which every Anuket Conformance test suite must comply as this one for Kubernetes.
In two words, the verification, validation, and conformance processes leverage existing Anuket testing knowledge (projects) and experience (history) by utilising the toolchain design already in-place.
The Kubernetes based cloud infrastructure suite MUST utilise the Anuket test case integration toolchain to deliver overall integration, the same end user actions, and a unique test result format (e.g. Anuket test result database) needed by the end users and any test case result verification program.
To reach all goals in terms of verification, validation, compliance, and conformance, all test cases MUST be delivered as Docker containers [153] to simplify the CI toolchain setup including:
· the common test case execution
· the unified way to manage all the interactions with the CI/CD components and with third-parties (e.g. dump all test case logs and results for conformance)
The Docker containers proposed by the test projects MUST also embed the Xtesting Python package [154] and the related test case execution description files [155] as required by Xtesting.
Xtesting CI [176] leverages the common test case execution proposed by Xtesting. Thanks to a simple test case list, this tool deploys plug-and-play CI/CD toolchains in a few commands [156] to run this Conformance testing.
See Cloud Infrastructure Reference Architecture managed by OpenStack [152] for more details.
[bookmark: test-case-traceability][bookmark: _Toc184746635]Test Case traceability
[bookmark: kubernetes-api-testing]Kubernetes API testing
The primary objectives of the e2e tests [120] are to ensure a consistent and reliable behavior of the Kubernetes code base, and to catch hard-to-test bugs before users do, when unit and integration tests are insufficient. They are partially selected for the Software Conformance Certification program [20] run by the Kubernetes community (under the aegis of the CNCF).
Anuket shares the same goal to give end users the confidence that when they use a certified product they can rely on a high level of common functionality. Then the Conformance testing starts with the test list defined by the Certified Kubernetes Conformance Program [20] which is expected to grow according to the ongoing requirement traceability.
End-to-End Testing [120] basically asks for focus and skip regexes to select or to exclude single tests:
· focus basically matches Conformance or Testing Special Interest Groups [119] in sub-sections below
· skip excludes the SIG labels listed as optional in API and Feature Testing requirements.
The Reference Conformance suites must be stable and executed on real deployments. Then all the following labels are defacto skipped in the End-to-End Testing [120]:
· alpha
· Disruptive
· Flaky
It is worth mentioning that no alpha or Flaky test can be included in Conformance as per the rules.
[bookmark: k8s-conformance]K8s Conformance
It must be noted that the default K8s Conformance [20] testing is disruptive thus this Conformance testing rather picks non-disruptive-conformance [157] testing as defined by Sonobuoy [158].
focus: [Conformance]
skip:
· [Disruptive]
· NoExecuteTaintManager
[bookmark: api-machinery-testing]API Machinery Testing
focus: [sig-api-machinery]
skip:
· [alpha]
· [Disruptive]
· [Flaky]
· [Feature:CrossNamespacePodAffinity]
· [Feature:CustomResourceValidationExpressions]
· [Feature:StorageVersionAPI]
· [Feature:WatchList]
See API Machinery Special Interest Group [126] and API and Feature Testing requirements for more details.
[bookmark: apps-testing]Apps Testing
focus: [sig-apps]
skip:
· [alpha]
· [Disruptive]
· [Flaky]
· [Feature:DaemonSetUpdateSurge]
· [Feature:IndexedJob]
· [Feature:StatefulSet]
· [Feature:StatefulSetAutoDeletePVC]
· [Feature:StatefulUpgrade]
· [Feature:SuspendJob]
See Apps Special Interest Group [127] and API and Feature Testing requirements for more details.
[bookmark: auth-testing]Auth Testing
focus: [sig-auth]
skip:
· [alpha]
· [Disruptive]
· [Flaky]
· [Feature:BoundServiceAccountTokenVolume]
· [Feature:ClusterTrustBundle]
· [Feature:PodSecurityPolicy]
See Auth Special Interest Group [128] and API and Feature Testing requirements for more details.
[bookmark: cluster-lifecycle-testing]Cluster Lifecycle Testing
focus: [sig-cluster-lifecycle]
skip:
· [alpha]
· [Disruptive]
· [Flaky]
See Cluster Lifecycle Special Interest Group [129] and API and Feature Testing requirements for more details.
[bookmark: instrumentation-testing]Instrumentation Testing
focus: [sig-instrumentation]
skip:
· [alpha]
· [Disruptive]
· [Flaky]
· [Feature:Elasticsearch]
· [Feature:StackdriverAcceleratorMonitoring]
· [Feature:StackdriverCustomMetrics]
· [Feature:StackdriverExternalMetrics]
· [Feature:StackdriverMetadataAgent]
· [Feature:StackdriverMonitoring]
See Instrumentation Special Interest Group [130] and API and Feature Testing requirements for more details.
[bookmark: network-testing]Network Testing
The regexes load.balancer, LoadBalancer and Network.should.set.TCP.CLOSE_WAIT.timeout are currently skipped because they haven't been covered successfully neither by the upstream kubernetes gate [159] nor by the Anuket verification [160].
Please note that a couple of tests must be skipped by name below as they are no appropriate labels.
focus: [sig-network]
skip:
· [alpha]
· [Disruptive]
· [Flaky]
· [Feature:Example]
· [Feature:Ingress]
· [Feature:IPv6DualStack]
· [Feature:kubemci]
· [Feature:KubeProxyDaemonSetMigration]
· [Feature:KubeProxyDaemonSetUpgrade]
· [Feature:NEG]
· [Feature:Networking-IPv6]
· [Feature:NetworkPolicy]
· [Feature:PerformanceDNS]
· [Feature:ProxyTerminatingEndpoints]
· [Feature:SCTP]
· [Feature:SCTPConnectivity]
· [Feature:ServiceCIDRs]
· DNS configMap nameserver
· load.balancer
· LoadBalancer
· Network.should.set.TCP.CLOSE_WAIT.timeout
See Network Special Interest Group [131] and API and Feature Testing requirements for more details.
[bookmark: node-testing]Node Testing
focus: [sig-node]
skip:
· [alpha]
· [Disruptive]
· [Flaky]
· [Feature:DynamicResourceAllocation]
· [Feature:ExperimentalResourceUsageTracking]
· [Feature:GRPCContainerProbe]
· [Feature:GPUUpgrade]
· [Feature:InPlacePodVerticalScaling]
· [Feature:KubeletCredentialProviders]
· [Feature:NodeLogQuery]
· [Feature:PodGarbageCollector]
· [Feature:PodLifecycleSleepAction]
· [Feature:RegularResourceUsageTracking]
· [Feature:SidecarContainers]
· [Feature:UserNamespacesSupport]
· [Feature:UserNamespacesStatelessPodsSupport]
· [NodeFeature:DownwardAPIHugePages]
· [NodeFeature:RuntimeHandler]
See Node Special Interest Group [132] and API and Feature Testing requirements for more details.
[bookmark: scheduling-testing]Scheduling Testing
focus: [sig-scheduling]
skip:
· [alpha]
· [Disruptive]
· [Flaky]
· [Feature:GPUDevicePlugin]
· [Feature:Recreate]
See Scheduling Special Interest Group [133] and API and Feature Testing requirements for more details.
[bookmark: storage-testing]Storage Testing
It should be noted that all in-tree driver testing, [Driver:+], is skipped. Conforming to the upstream gate [159], all PersistentVolumes NFS testing is also skipped. The following exclusions are about the deprecated in-tree GitRepo volume type [161]:
· should provision storage with different parameters
· should not cause race condition when used for git_repo
Please note that a couple of tests must be skipped by name below as they are no appropriate labels.
focus: [sig-storage]
skip:
· [alpha]
· [Disruptive]
· [Flaky]
· [Driver:+]
· [Feature:ExpandInUsePersistentVolumes]
· [Feature:Flexvolumes]
· [Feature:GKELocalSSD]
· [Feature:VolumeSnapshotDataSource]
· [Feature:Flexvolumes]
· [Feature:RecoverVolumeExpansionFailure]
· [Feature:SELinux]
· [Feature:vsphere]
· [Feature:Volumes]
· [Feature:Windows]
· [NodeFeature:EphemeralStorage]
· PersistentVolumes.NFS
· should provision storage with different parameters
· should not cause race condition when used for git_repo
See Storage Special Interest Group [134] and API and Feature Testing requirements for more details.
[bookmark: kubernetes-api-benchmarking]Kubernetes API benchmarking
Rally [162] is a tool and framework that performs Kubernetes API benchmarking.
Functest Kubernetes Benchmarking [163] proposed a Rally-based test case, xrally_kubernetes_full [164], which iterates 10 times the mainline xrally-kubernetes [162] scenarios.
At the time of writing, no KPI is defined in Architecture Requirements which would have asked for an update of the default SLA (maximum failure rate of 0%) proposed in Functest Kubernetes Benchmarking [163]
Functest xrally_kubernetes_full [163]:
Kubernetes API benchmarking
	Scenarios
	Iterations

	Kubernetes.create_and_delete_deployment
	10

	Kubernetes.create_and_delete_job
	10

	Kubernetes.create_and_delete_namespace
	10

	Kubernetes.create_and_delete_pod
	10

	Kubernetes.create_and_delete_pod_with_configmap_volume
	10

	Kubernetes.create_and_delete_pod_with_configmap_volume [2]
	10

	Kubernetes.create_and_delete_pod_with_emptydir_volume
	10

	Kubernetes.create_and_delete_pod_with_emptydir_volume [2]
	10

	Kubernetes.create_and_delete_pod_with_hostpath_volume
	10

	Kubernetes.create_and_delete_pod_with_secret_volume
	10

	Kubernetes.create_and_delete_pod_with_secret_volume [2]
	10

	Kubernetes.create_and_delete_replicaset
	10

	Kubernetes.create_and_delete_replication_controller
	10

	Kubernetes.create_and_delete_statefulset
	10

	Kubernetes.create_check_and_delete_pod_with_cluster_ip_service
	10

	Kubernetes.create_check_and_delete_pod_with_cluster_ip_service [2]
	10

	Kubernetes.create_check_and_delete_pod_with_node_port_service
	10

	Kubernetes.create_rollout_and_delete_deployment
	10

	Kubernetes.create_scale_and_delete_replicaset
	10

	Kubernetes.create_scale_and_delete_replication_controller
	10

	Kubernetes.create_scale_and_delete_statefulset
	10

	Kubernetes.list_namespaces
	10


The following software versions are considered to benchmark Kubernetes v1.29 (latest stable release) selected by Anuket:
Software versions
	Software
	Version

	Functest
	v1.29

	xrally-kubernetes
	1.1.1.dev14+g2ffa85a


[bookmark: dataplane-benchmarking]Dataplane benchmarking
Kubernetes perf-tests repository [165] hosts various Kubernetes-related performance test related tools especially netperf [166] which benchmarks Kubernetes networking performance.
As listed in netperf's README [166]'s README, the 5 major network traffic paths are combination of pod IP vs virtual IP and whether the pods are co-located on the same node versus a remotely located pod:
· same node using pod IP
· same node using cluster/virtual IP
· remote node using pod IP
· remote node using cluster/virtual IP
· same node pod hairpin to itself using cluster/virtual IP
It should be noted that netperf [166] leverages iperf [167] (both TCP and UDP modes) and Netperf [168].
At the time of writing, no KPI is defined in Anuket chapters which would have asked for an update of the default SLA proposed in Functest Kubernetes Benchmarking [163].
[bookmark: security-testing]Security testing
There are a couple of opensource tools that help securing the Kubernetes stack. Amongst them, Functest Kubernetes Security [169] offers two test cases based on kube-hunter [170] and kube-bench [171].
kube-hunter [170] hunts for security weaknesses in Kubernetes clusters and kube-bench [171] checks whether Kubernetes is deployed securely by running the checks documented in the CIS Kubernetes Benchmark [172].
kube-hunter [170] classifies all vulnerabilities as low, medium, and high. In context of this conformance suite, all vulnerabilities are only printed for information.
Here are the vulnerability categories [173] tagged as high by kube-hunter [170]:
· ExposedSensitiveInterfacesTechnique
· MountServicePrincipalTechnique
· ListK8sSecretsTechnique
· InstanceMetadataApiTechnique
· ExecIntoContainerTechnique
· SidecarInjectionTechnique
· NewContainerTechnique
· GeneralPersistenceTechnique
· HostPathMountPrivilegeEscalationTechnique
· PrivilegedContainerTechnique
· ClusterAdminBindingTechnique
· CoreDNSPoisoningTechnique
· DataDestructionTechnique
· GeneralDefenseEvasionTechnique
· CVERemoteCodeExecutionCategory
· CVEPrivilegeEscalationCategory
At the time of writing, none of the Center for Internet Security (CIS) rules are defined as mandatory (e.g., sec.std.001: The Cloud Operator should comply with Center for Internet Security CIS Controls) else it would have required an update of the default kube-bench [171] behavior (all failures and warnings are only printed) as integrated in Functest Kubernetes Security [169].
The following software versions are considered to verify Kubernetes v1.29 (latest stable release) selected by Anuket:
Software versions
	Software
	Version

	Functest
	v1.29

	kube-hunter
	0.6.8

	kube-bench
	v0.6.10


[bookmark: opensource-cnf-onboarding-and-testing]Opensource CNF onboarding and testing
Running opensource containerized network functions (CNF) is a key technical solution to ensure that the platforms meet Network Functions Virtualization requirements.
Functest CNF offers 2 test cases which automatically onboard and test Clearwater IMS [174] via kubectl and Helm. It’s worth mentioning that this CNF is covered by the upstream tests (see clearwater-live-test [175]).
The following software versions are considered to verify Kubernetes v1.29 (latest stable release) selected by Anuket:
Software versions
	Software
	Version

	Functest
	v1.29

	clearwater
	release-130

	Helm
	v3.3.1


[bookmark: test-cases-traceability-to-requirements][bookmark: _Toc184746636]Test Cases Traceability to Requirements
The following test case must pass as they are for Reference Conformance:
Mandory test cases
	Container
	Test suite
	Criteria
	Requirements

	opnfv/functest-kubernetes-smoke:v1.29
	xrally_kubernetes
	PASS
	Kubernetes API testing

	opnfv/functest-kubernetes-smoke:v1.29
	k8s_conformance
	PASS
	Kubernetes API testing

	opnfv/functest-kubernetes-smoke:v1.29
	k8s_conformance_serial
	PASS
	Kubernetes API testing

	opnfv/functest-kubernetes-smoke:v1.29
	sig_api_machinery
	PASS
	Kubernetes API testing

	opnfv/functest-kubernetes-smoke:v1.29
	sig_api_machinery_serial
	PASS
	Kubernetes API testing

	opnfv/functest-kubernetes-smoke:v1.29
	sig_apps
	PASS
	Kubernetes API testing

	opnfv/functest-kubernetes-smoke:v1.29
	sig_apps_serial
	PASS
	Kubernetes API testing

	opnfv/functest-kubernetes-smoke:v1.29
	sig_auth
	PASS
	Kubernetes API testing

	opnfv/functest-kubernetes-smoke:v1.29
	sig_cluster_lifecycle
	PASS
	Kubernetes API testing

	opnfv/functest-kubernetes-smoke:v1.29
	sig_instrumentation
	PASS
	Kubernetes API testing

	opnfv/functest-kubernetes-smoke:v1.29
	sig_network
	PASS
	Kubernetes API testing

	opnfv/functest-kubernetes-smoke:v1.29
	sig_node
	PASS
	Kubernetes API testing

	opnfv/functest-kubernetes-smoke:v1.29
	sig_scheduling_serial
	PASS
	Kubernetes API testing

	opnfv/functest-kubernetes-smoke:v1.29
	sig_storage
	PASS
	Kubernetes API testing

	opnfv/functest-kubernetes-smoke:v1.29
	sig_storage_serial
	PASS
	Kubernetes API testing

	opnfv/functest-kubernetes-security:v1.29
	kube_hunter
	PASS
	Security testing

	opnfv/functest-kubernetes-security:v1.29
	kube_bench_master
	PASS
	Security testing

	opnfv/functest-kubernetes-security:v1.29
	kube_bench_node
	PASS
	Security testing

	opnfv/functest-kubernetes-benchmarking:v1.29
	xrally_kubernetes_full
	PASS
	Kubernetes API benchmarking

	opnfv/functest-kubernetes-benchmarking:v1.29
	netperf
	PASS
	Dataplane benchmarking

	opnfv/functest-kubernetes-cnf:v1.29
	k8s_vims
	PASS
	Opensource CNF onboarding and testing

	opnfv/functest-kubernetes-cnf:v1.29
	helm_vims
	PASS
	Opensource CNF onboarding and testing


[bookmark: kubernetes-testing-cookbook][bookmark: _Toc184746637]Kubernetes Testing Cookbook
At the time of writing, the CI description file is hosted in Functest and only runs the containers selected here. It will be completed by the next Anuket mandatory test cases and then a new CI description file will be proposed in a shared tree.
Xtesting CI [176] <https://galaxy.ansible.com/collivier/xtesting>__ only requires internet access, GNU/Linux as Operating System and asks for a few dependencies as described in Deploy your own Xtesting CI/CD toolchains [177] <https://github.com/collivier/ansible-role-xtesting>`__:
· python-virtualenv
· git
Please note the next two points depending on the GNU/Linux distributions and the network settings:
· SELinux: you may have to add --system-site-packages when creating the virtualenv (“Aborting, target uses selinux but python bindings (libselinux-python) aren’t installed!”)
· Proxy: you may set your proxy in env for Ansible and in systemd for Docker [178]
To deploy your own CI toolchain running Anuket Compliance:
virtualenv functest-kubernetes --system-site-packages
. functest-kubernetes/bin/activate
pip install ansible
ansible-galaxy install collivier.xtesting
ansible-galaxy collection install ansible.posix community.general community.grafana kubernetes.core community.docker community.postgresql
git clone https://gerrit.opnfv.org/gerrit/functest-kubernetes functest-kubernetes-src
(cd functest-kubernetes-src && git checkout -b stable/v1.29 origin/stable/v1.29)
ansible-playbook functest-kubernetes-src/ansible/site.cntt.yml
[bookmark: configure-kubernetes-api-testing]Configure Kubernetes API testing
Place the kubeconfig configuration file corresponding to the Kubernetes cluster under test in the following location on the machine running the cookbook:
/home/opnfv/functest-kubernetes/config
[bookmark: run-kubernetes-conformance-suite]Run Kubernetes conformance suite
Open http://127.0.0.1:8080/job/functest-kubernetes-v1.29-daily/ in a web browser, login as admin/admin and click on “Build with Parameters” (keep the default values).
If the System under test (SUT) is Anuket compliant, a link to the full archive containing all test results and artifacts will be printed in functest-kubernetes-v1.29-zip’s console. Be free to download it and then to send it to any reviewer committee.
To clean your working dir:
deactivate
rm -rf functest-kubernetes-src functest-kubernetes


[bookmark: gaps-innovation-and-development][bookmark: _Toc184746638]Gaps, Innovation, and Development
[bookmark: X169945b0dd2f31a072cf31a4db8b1c93a9dd857][bookmark: _Toc184746639]Introduction to Gaps, Innovation, and Development
Functional gaps exist between available open source technology and this Reference Architecture's (RA) or Reference Model's (RM) requirements. This chapter details these gaps and proposes solutions. This may identify and target various "upstream" community projects for development efforts.
[bookmark: gap-template][bookmark: _Toc184746640]Gap Template
Related requirements: List requirement references (e.g., abc.xyz.00) from RA2 or RM addressed by this gap.
Baseline project: Identify the upstream project (e.g., Kubernetes) where the gap exists. If none, state "none".
[bookmark: Xd8300deba3e15b308fd401628227168407ea391][bookmark: _Toc184746641]Container Run-Time Interfaces Towards NFVI Resources
This describes the southbound interface from the container to IaaS-provided infrastructure resources; e.g., the network interface type presented to a running container.
[bookmark: Xbcaedf75f6e7defe02778b834d997f3134bb51d][bookmark: _Toc184746642]Multitenancy and Workload Isolation with Kubernetes
Related requirements: e.man.004, sec.ci.008, sec.wl.005, sec.wl.006
Baseline project: Kubernetes
Gap description: Kubernetes currently lacks robust multitenancy, preventing secure infrastructure resource sharing among untrusted tenants. This poses security risks when separating workloads by category (e.g., production vs. non-production). Tenant network segmentation is also needed, while maintaining central administration. Beyond security, this creates operational challenges. Deploying many CNFs in one cluster risks version and configuration conflicts, and software lifecycle management problems. Lack of isolation increases cascading failure risk.
Proposals & Resolution: Kubernetes isn't a single-cluster solution. Industry case studies (Alibaba Cloud Blog: What Can We Learn from Twitter's Move to Kubernetes [179], YouTube: Kubernetes Failure Stories, or: How to Crash Your Cluster - Henning Jacobs [180], CNCF Blog: Demystifying Kubernetes as a service – How Alibaba cloud manages 10,000s of Kubernetes clusters [181]) and CNCF surveys show growing multi-cluster deployments within organizations. A multi-cluster approach addresses security and software lifecycle management challenges.
Without in-cluster multitenancy, separate clusters provide necessary CNF isolation (based on vendor, environment, category, or independent lifecycles). Co-locating similar CNFs allows for simultaneous upgrades, while separate clusters accommodate independent upgrades for CNFs with different versions, configurations, and dependencies.
However, managing numerous clusters at scale poses significant operational challenges if done manually. Operators should carefully consider their multi-cluster management strategy, including application management.
[bookmark: Xd909b5b89214345612ed41d85032fa7d0059a77][bookmark: _Toc184746643]Kubernetes as a VM-based VNF Orchestrator
Related requirements: None.
Baseline project: Kubernetes, Kubevirt
Gap description: Kubernetes and a CRI-compliant runtime should support VNF execution without altering VNF architecture or deployment artifacts.
[bookmark: X307375005475a78db2bc56fb2f0e147c38e47de][bookmark: _Toc184746644]Native Multiple Network Interfaces on Pods
Related requirements: Virtual Network Interface Specifications (Chapter 4 of Reference Model for Cloud Infrastructure (RM) [1])
Baseline project: Kubernetes
Gap description: Kubernetes lacks native support for multiple Pod interfaces, requiring a CNI multiplexer (like GitHub: Multus-CNI [182]). Network service implementation (Network Policies, Ingress, Egress, Load Balancers) depends on the multiplexer and its CNI plugins, leading to inconsistency.
Status: A KEP (Google Docs: KEP: MultiNetwork podNetwork object [183]) aims to natively support multiple Pod interfaces.
[bookmark: dynamic-network-management][bookmark: _Toc184746645]Dynamic Network Management
Related requirements: inf.ntw.03 (chapters/chapter02:kubernetes architecture
requirements)
Baseline project: Kubernetes
Gap description: Kubernetes lacks an API for network service management (e.g., VPNs). A CNI plugin (GitHub: Multus-CNI [182]) or integration with SDN controllers (using NetConf, etc.) is needed to provide APIs for network services and connect VPNs (e.g., L3VPN) to CNFs on demand.
[bookmark: control-plane-efficiency][bookmark: _Toc184746646]Control Plane Efficiency
Related requirements: None
Baseline project: Kubernetes
Gap description: Multi-site/availability zone deployments often utilize multiple Kubernetes clusters for security, multitenancy, fault tolerance, resilience, and latency. This creates Kubernetes control plane node overhead. More efficient multi-cluster operation is needed to meet non-functional requirements.
[bookmark: X2c90646c7c6704e3c5f8fe567ecb5afb0897c2a][bookmark: _Toc184746647]Interoperability with VRF-based Networking
Related requirements: None
Baseline project: Kubernetes
Gap description: L3 VRFs/VPNs are commonly used for traffic separation (signaling, charging, LI, O&M). CNFs must interoperate with existing network elements, requiring Kubernetes Pod connection to L3 VPNs (currently only possible via Multus). However, network orchestration (connecting the interface to a gateway router terminating the L3 VPN) is not handled by Kubernetes, and lacks a production-grade open source solution.
Note
While possible with IaaS, this creates an undesirable dependency between Kubernetes workload orchestration and IaaS infrastructure orchestration.
[bookmark: hardware-topology-aware-huge-pages][bookmark: _Toc184746648]Hardware Topology-Aware Huge Pages
Related requirements: infra.com.cfg.004 and infra.com.cfg.002 (Virtual Compute Profiles, Chapter 5 of Reference Model for Cloud Infrastructure (RM) [1]).
Baseline project: Kubernetes
Gap description: The Memory Manager (alpha feature in v1.21) is addressed in Management of Memory and Huge Pages Resources.
[bookmark: user-namespaces-in-kubernetes][bookmark: _Toc184746649]User Namespaces in Kubernetes
Related requirements: e.man.004 (Cloud Infrastructure Management Capabilities, Chapter 4 of Reference Model for Cloud Infrastructure (RM) [1]), inf.ntw.03 (Platform and Access Requirements, Chapter 2 of Reference Architecture (RA1) for OpenStack based cloud infrastructure [67])
Baseline project: Kubernetes
Gap description: Kubernetes lacks namespace-scoped UIDs. CNFs requiring system privileges must run in privileged mode or use random system UIDs. Random UIDs cause errors when setting kernel capabilities (e.g., VLAN trunking) or sharing data via persistent storage. Privileged mode is insecure; random UIDs are error-prone. Proper user namespaces (alpha in Kubernetes 1.25 Kubernetes Docs: User Namespaces [184], KEP KEP-127: Support User Namespaces in stateless pods [185]) are needed.


[bookmark: X233d9e39099828b03a1170b2b56c2ebe02d121b][bookmark: _Toc184746650]Appendix A - Guidance For workload isolation (Multitenancy) with Kubernetes for application vendors
[bookmark: overview-of-appendix-a][bookmark: _Toc184746651]Overview of Appendix A
Problem statement: A single Kubernetes Cluster does not provide hard multitenancy* by design. Within a Cluster, the Kubernetes Namespace is a mechanism to provide Soft isolation multitenancy. A Kubernetes Namespace does provide isolation by means of role-based access control (RBAC), Resource Isolation, and Network Policy. However, they are still within the same trust domain and a potential breach of the Cluster Admin Role could have serious ramifications across the entire Cluster and all its Kubernetes Namespaces. Therefore, it is necessary to define various use cases or ways to build Multitenancy Deployment Models and define the Best Practices to secure each Model. The Kubernetes Namespace is a logical representation of namespace (boundary for resources) within the Kubernetes Cluster. This is different from the Wikipedia: Linux Namespaces [186], which are defined at the operating system kernel level.
[image: figures/Model1-ns.png]
Network service
[image: figures/Model2-cluster-isolation.png]
Cluster isolation
Use cases:
1. Two CNFs which are in the same trust domain (for example, they are from the same vendor) are running in a container infrastructure.
1. Two CNFs which are in different trust domains (for example, they are from different vendors) are running in a container infrastructure.
[bookmark: solution-areas][bookmark: _Toc184746652]Solution areas
The scope is to identify the solution area which is needed to secure the CNF workloads. Securing the platform might happen as part of it. However, it is not directly the focus or objective here.
1. Isolation of platform and tenant deployment based on the solution model.
1. Separate CICD, manifest, and image repository for platform and tenants.
1. Isolation of networking per tenant.
1. Securing the CNF workload network traffic using a network policy and service mesh.
1. RBAC rules and secrets management for each tenant.
1. Separate isolated view of logging, monitoring, alerting, and tracing per tenant.
[bookmark: multitenancy-models][bookmark: _Toc184746653]Multitenancy Models
Solution models :
1. Soft Multitenancy: Separate Kubernetes Namespace per tenant within a single Kubernetes cluster. The same Kubernetes Cluster and its control plane are shared between multiple tenants.
1. Hard Multitenancy: Separate Kubernetes cluster per tenant. The Kubernetes clusters can be created using baremetal nodes or virtual machines, either in the private cloud or the public cloud. The workloads do not share the same resources, and the clusters are isolated.
[bookmark: X2268b9f673b2d67b29bdcfb0ae2fa47e80137b4][bookmark: _Toc184746654]Soft multitenancy with Kubernetes Namespaces per tenant
Soft multitenancy with namespaces per tenant can be implemented, resulting in a multitenant cluster, in which multiple trusted workloads share a cluster and its control plane. This is mainly recommended to reduce management overheads when the tenants belong to the same trust domain, and have the same cluster configuration requirements (including release, add-ons, and so on).
The tenants share the cluster control plane and API, including all add-ons, extensions, CNIs, CSIs, and any custom resources and controllers.
To manage access control, the Kubernetes RBAC must be configured with rules to allow specific tenants to access only the objects within their own namespace, using a Role Object to group the resources within a namespace, and a RoleBinding Object to assign it to a user or a group of users within a namespace.
To prevent or allow network traffic between Pods to belong to different namespaces, NetworkPolicy must also be created.
Resource quotas enable the cluster administrator to allocate CPU and memory to each namespace, limiting the amount of resources the objects belonging to that namespace can consume. This may be configured, in order to ensure that all tenants use no more than the resources that are assigned to them.
By default, the Kubernetes scheduler runs pods belonging to any namespace on any cluster node. If it is required that pods from different tenants are run on different hosts, then affinity rules should be created by using the desired Node Labels on the pod definition. Alternatively, node taints can be used to reserve certain nodes for a predefined tenant.
[bookmark: X3d4c23ba3d8e0b798f46f2b9d2f2c4cb415276b][bookmark: _Toc184746655]Hard multitenancy with dedicated Kubernetes clusters per tenant
When tenants do not belong to the same trust domain, or the requirements on the cluster setup and configuration are irreconcilable, hard multitenancy must be implemented by creating multiple Kubernetes clusters for each tenant or group of compatible tenants.
All the default design decisions for Kubernetes clusters apply in this case. No special segregation or capacity management needs to be set up within the clusters.
From an operational perspective, the increased computational and operational overheads and the Cluster LCM (including cluster provisioning automation) are the most impactful aspects.
[bookmark: _Toc327548013][bookmark: _Toc327548213][bookmark: _Ref329687100][bookmark: _Toc184746656]
Document Management
[bookmark: _Toc327548014][bookmark: _Toc327548214][bookmark: _Toc184746657]Document History
	Version
	Date
	Brief Description of Change
	Approval Authority
	Editor / Company

	1.0
	28/11/2023
	New PRD (CR1001).
	OIG
	Riccardo Gasparetto Stori / Vodafone
Gergely Csatary /Nokia
Petar Torre / Intel

	2.0
	10/06/2025
	Major CR 
Update to Anuket Pieman and Quinnipiac releases
	OIG
	Riccardo Gasparetto Stori / Vodafone
Gergely Csatary /Nokia
Petar Torre / Intel
Cédric Ollivier / Orange


[bookmark: _Toc327548015][bookmark: _Toc327548215][bookmark: _Toc184746658]Other Information
	Type
	Description

	Document Owner
	Networks Group

	Editor / Company
	Riccardo Gasparetto Stori / Vodafone
Gergely Csatary / Nokia
Petar Torre / Intel



It is our intention to provide a quality product for your use. If you find any errors or omissions, please contact us with your comments. You may notify us at prd@gsma.com
Your comments or suggestions & questions are always welcome.
V2.0 	Page 10 of 10
image1.jpeg




image2.png
CNF

1 1
q 1

Manages (via Kubernetes API)

Kubernetes-based Application /
VNF Management

CNF Components | | CNF Components
(Pods, Volumes, |{ (Pods, Volumes,
ConfigMaps, etc.) || ConfigMaps, etc.)

Kubernetes-based Application
Package Management

Out of RA2 Scope

Kubernetes cluster

7

Kubernetes Worker Node
Services (kubelet, kube-proxy)

Kubernetes Container Runtime

Kubernetes Control Node

Services (kube-apiserver,

controller-managers, DNS,
N, etc.)

Kubernetes
configuration
store (etcd)

Kubernetes Container Runtime

Kubernetes Worker Node OS

Kubernetes Control Node OS

Kubernetes Worker Node
(Virtual / Physical)

Kubernetes Control Node
(Virtual / Physical)

Provides resources to

Manages resources via Kubernet

controller (e.g. kubevirt) Provides resources to

Physical / virtual compute, storage
and network hardware resources

In RA2 Scope

Kubernetes-based Application

Artefact Storage
Container Helm Chart
Registry Repo (e.g.)

Manages via Kubernetes
Cloud Providers or
custom controller (e.g.
CRDs, Operator)

Manages Virtual or physical hardware

infrastructure manager





image3.png
High Performance





image4.png
Network Intensive E

HW Offloads
(e.g. SmartNIC) HDD/SSD

Basic

NUMA
SMT/HT #NIC

#CPU #Cores





image5.png
User Space
Contaner Rurime
(e, run, conanerd
/ Docker, CRI, ki)
User Sotware
User Software User Software | Applications
| Applications: | Applications:
ntrprter |
ntrprter | ntrprter | orary
Gy Gy
Gier OS packages
Container Container (e.g. yum, openssl, vim,
gt et
System Calls
Caroups 0S Kemel namespaces
Kernel Space
Fosiacied [ medated a0ee%s © )
s
cru Memory Vo Devicss® | %% qrves
Network acapters
Otner Pl devices
~GPUcards

- Acceleration hardware




image6.png
Kubernetes Node

Kubelet ‘ .

: GRPC Device Plugin
— Device Manager 9

b
‘ . Workload Device A '
Device B /

. Device A
Device C





image7.png
Kubernetes Control Plane

(apiserver, kube-scheduler, etcd, controlier-managers)

[P
[ T
[ '
Extemalload | _ _, H
Balancer H
'
R ' Default CNI
' Plugin CNI multiplexer / meta-plugin
’

Application (Cruster Networ)

Service Mesh

o

Device Plugin 1

e CNI Plugin N Plugn
(luster Notwor| | (Additenal) | (Additonal)
I
I
I
I
eth0 eth0 net0 :
i
Pod \ '
)
------ - I
I
I
I
: . '
Cluster Network

Other Network 1

HW Device 1

Other Features
(Features that can be delivered
as part of GNI, or by a meta-
plugin)

1PAM Plugin

NetworkPolices

IPV4/IPVG dual stack

ECMP.

Resilience

"SDN controller
integration

Other Network 2





image8.png
AF_XDP socket

Subfunction

XSK map FD Device Plugin
load XDP on subfunction create subfunction
User space
XDP

Kernel space

C

CN

subfunction
created

Linux

Driver

NIC




image9.png
Kubernetes cluster

Kubernetes Worker Node
Services (kubelet, kube-proxy)

Kubernetes Container Runtime

Kubernetes Worker Node OS

Kubernetes Master Node

Services (kube-apiserver,

controller-managers, DNS,
CNlI, etc.)

Kubernetes Containmmg

Kubernetes
configuration
store (etcd)

Kubernetes Master OS

Kubernetes Worker Node Machine (Virtual /

Kubernetes Master Machine (Virtual /
Physical)
A

Physical)

. Manages resources via
Provides resources {o Kubernetes controller (e.g.

/

Provides resources to

kubevirty

Physical / virtual compute, storage and network infrastructure
(aligns with NFVI)

Kubernetes-based Application

Artefact Storage
Container Helm Chart
Registry Repo (e.g.)

Manages via
Kubernetes Cloud
Providers or custom
controller (e.g. CRDs,
ator)

Manages

Virtual or physical infrastructure
management (largely aligns with

VIM)





image10.png
Model1 - Namespace Isolation
(Separate Namespace per Vendor within single Kubernetes Cluster)

Namespace-2 (Vendor-2)

® 2
0| [s@
AF

PCF

Naf
N

AUSF

Namespace-3 (Vendor-3)





image11.png
Model2- Cluster Isolation
(Separate Cluster per Vendor)

Nsmf
A
SMF

Cluster-3 (Vendor-3) Cluster-4 (Vendor-4)





