
GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 1 of 51

Standard Diagnostic Logging

Version 5.0

23 September 2021

This is a Non-binding Permanent Reference Document of the GSMA

Security Classification: Non-confidential

Access to and distribution of this document is restricted to the persons permitted by the security classification. This document is subject to

copyright protection. This document is to be used only for the purposes for which it has been supplied and information contained in it must not be

disclosed or in any other way made available, in whole or in part, to persons other than those permitted under the security classification without

the prior written approval of the Association.

Copyright Notice

Copyright © 2021 GSM Association

Disclaimer

The GSM Association (“Association”) makes no representation, warranty or undertaking (express or implied) with respect to and does not accept

any responsibility for, and hereby disclaims liability for the accuracy or completeness or timeliness of the information contained in this document.

The information contained in this document may be subject to change without prior notice.

Compliance Notice

The information contain herein is in full compliance with the GSM Association’s antitrust compliance policy.

This Permanent Reference Document is classified by GSMA as an Industry Specification, as such it has been developed and is maintained by

GSMA in accordance with the provisions set out in GSMA AA.35 - Procedures for Industry Specifications.

GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 2 of 51

Table of Contents

1 Introduction 4

1.1 Overview 4

1.2 Scope 5

1.3 Definitions 5

1.4 Abbreviations 6

1.5 References 7

2 Standard Diagnostic Interface Overview 9

2.1 MDMI Architecture Supporting Multiple Feeds 10

2.1.1 UICC/eUICC specific logging 12

2.1.2 Data White-listing 13

2.1.3 Logging during power-up 14

2.2 MIB Discovery Database 14

3 Cross Platform Compatibility 15

4 Use of SNMP 17

4.1 Method of SNMP Message Exchange 17

5 MDMI 17

5.1 MDMI Native Interface 17

5.1.1 MdmiCreateSession 18

5.1.2 MdmiCloseSession 18

5.1.3 MdmiGet 19

5.1.4 MdmiSet 19

5.1.5 MdmiInvoke 20

5.1.6 MdmiSetEventCallback 20

5.1.7 MdmiSubscribe 21

5.1.8 MdmiUnsubscribe 21

5.1.9 MdmiGetSessionStats 21

5.2 MDMI Java Interface 22

5.2.1 MdmiCreateSession 22

5.2.2 MdmiCloseSession 22

5.2.3 MdmiGet 23

5.2.4 MdmiSet 23

5.2.5 MdmiInvoke 24

5.2.6 MdmiSetEventCallback 24

5.2.7 MdmiSubscribe 25

5.2.8 MdmiUnsubscribe 25

5.2.9 MdmiGetSessionStats 25

5.3 MIB 26

6 Security 26

6.1 Example of a JSON Command Token 28

6.1.1 Steps for Building the Token 28

6.1.2 Steps for Parsing the Token 30

6.2 Log Security 32

GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 3 of 51

6.2.1 Introduction 32

6.2.2 Log Mask Management 32

7 MDMI Implementation 33

7.1 MDMI MIB 33

7.2 MDMI Log Record Structure 33

7.2.1 MDMI Message 34

Annex A UICC/eUICC Whitelist 36

Annex B Source Code 50

Annex C Document Management 51

C.1 Document History 51

Other Information 51

GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 4 of 51

1 Introduction

1.1 Overview

The purpose of this document is to provide a standardized method to log modem data and

messaging on a device, eliminating the need for tethered logging. The primary user of the

logging tool is expected to be mobile network operators.

Possible use cases are listed below:

 Report the geo-location of the device and key RF parameters (RSRP, RSSI, SINR

etc.) to determine network coverage

 Present geo-located events on maps to allow better call drop analysis

 Capture handover statistics to debug handover issues

 Report VoLTE (Voice over LTE) call statistics (e.g. Delay, Jitter and Packet Loss) to

aid in VoLTE analysis

 Real time reporting on the device

 Data throughput

 Txpower

 Cell selection

 RF parameters

The operator will be able to log with any device/chipset compliant to the interface outlined in

this document by downloading a compliant application. The logs will be saved on the device

and uploaded to an operator server. This document provides the APIs (Application

Programming Interfaces) and MIB (Management Information Base) to capture the modem

and other components' log data; and the security protocol to authenticate the device before

logging can be initiated. The API source code is available on the GSMA GitHub site, the

manufacturers and application vendors are encouraged to download this source code to

implement the standard logging solution.

The API defined in this document to retrieve the modem and other components' log data are

part of the MDMI (Modem Diagnostic Monitoring Interface). Using the MDMI, the diagnostic

application will be able to retrieve information from the components being logged, such as a

KPI or a protocol message. MDMI is modelled on and is defined using a standardized

format, SNMP (Simple Network Management Protocol). As per SNMP convention, all

information retrieved from the components being logged, is passed as objects and are

defined in the MIB. There are some advantages of using this framework to define the

interface to the modem. However, MDMI diverges from the SNMP specification in several

ways. In particular, MDMI cannot be implemented by the use of SNMP tools without

additional effort.

This document is organized as follows:

Section 2 introduces the MDMI (Modem Diagnostic Monitoring Interface) and presents an

overview of how it utilizes SNMP (Simple Network Management Protocol). This overview

includes illustrations of support for multiple diagnostic feeds.

https://github.com/GSMATerminals/TSG-Standard-Diag-Public

GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 5 of 51

Note: The previous version of this specification illustrated an architecture for

logging the modem component alone.

Section 3 presents architectures on the device to implement the standard diagnostic

interface

Section 4 describes how SNMP has been adapted for use in MDMI, including an overview

of the types of information that MDMI makes available, the relationships between the

different application components, and method that is used for exchanging messages.

Section 5 outlines MDMI, including the functions that must be implemented, and provides an

overview of the MIB (Management Information Base), which defines all the messages, KPIs

(Key Performance Indicators) and commands that must be made available.

Section 6 describes the Security Architecture Design for MDMI, including both the

authentication of the device required before logging can take place, and the security of the

log data. Authentication methods for both an on board tool and remote log session control

are disucssed.

Annex A References the UICC/eUICC white list.

Annex B References the source code location.

Annex C Document History.

1.2 Scope

The initial scope of the GSMA standard diagnostic logging interface (version 1.0) was

restricted to engineering builds for LTE and Wi-Fi only. Scope is now expanded to include

additional technologies such as Wi-Fi calling, eMBMS, IMS, UICC/eUICC. Further expansion

of the scope requires further study.

1.3 Definitions

Term Description

ASN.1 BER The encoding used to pack a Log Record, as in SNMP

DM App Diagnostic Monitoring Application - any app that uses MDMI

Commercial Build Software that is available to an end user or customer.

Engineering Build

Software provided by an OEM to a network operator for the sole purpose of

testing by the network operator and its representatives, and not for release to

customers.

Event A Log Record pushed by MDMI to a DM App

KPI Key Performance Indicator - KPI Log Records report KPIs

Log Record
A single piece of diagnostic information from MDMI, either pulled from MDMI by

a DM App, or pushed by MDMI to the DM App

MDMI Modem Diagnostic Monitoring Interface - interface defined by this document

MDMI Session
An identifier MDMI uses to identify a particular DM App - this will be assigned

during MDMI initialization

MDMI Value The contents of a Log Record - either KPIs or a protocol message - encoded

GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 6 of 51

Term Description

using ASN.1 BER into a buffer of bytes

MIB
Management Information Base – set of diagnostic objects that can be managed

by SNMP

OID Object ID – the unique identifier for an SNMP object

Protocol Message A Log Record containing an OTA message of a particular protocol

SNMP Simple Network Management Protocol

SNMP Agent
The provider of diagnostic information - in MDMI, the OEM writes a library

conforming to this requirement that acts as an SNMP agent

SNMP Manager The user of SNMP Agent - in MDMI, this would be a component of a DM app

SNMP Object A unit of diagnostic information defined in the MIB

SNMP Trap
SNMP terminology for a message pushed from agent to manager - in MDMI, we

use the term "Event" synonymously

1.4 Abbreviations

Term Description

API Application Programming Interface

ASN Abstract Syntax Notation

BDN Barred Dialling Numbers

BER Basic Encoding Rules

DM Diagnostic Monitoring

eMBMS Evolved Multimedia Broadcast Multicast Services

eUICC
 A removable or non-removable UICC which enables the remote and/or local

management of Profiles in a secure way

FDN Fixed Dialling Numbers

GUTI Globally Unique Temporary Identifier

HMAC Hash Message Authentication Code

IPC Inter-Process Communication

IMSI International Mobile Subscriber Identity

IMEI International Mobile Equipment Identity

JSON Java Script Object Notation

KPI Key Performance Indicator

NAS Non-Access Stratum

MCC Mobile Country Code

MDMI Modem Diagnostic Monitoring Interface

MIB Management Information Base

MNC Mobile Network Code

MSIN Mobile Subscriber Identification Number

OEM Original Equipment Manufacturer

GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 7 of 51

Term Description

OID Object ID

P-TMSI Packet – Temporary Mobile Subscriber Identity

PDU Protocol Data Unit

PIN Personal Identification Number

PUK Personal Identification Number Unlock Key

PUSCH Physical Uplink Shared Channel

RSRP Reference Signal Received Power

RSRQ Reference Signal Received Quality

RSSI Received Signal Strength Indicator

RTCP RTP Control Protocol

RTP Real Time Transfer Protocol

RRC Radio Resource Control

SINR Signal to Noise Ratio

SIP Session Initiation Protocol

SNMP Simple Network Management Protocol

SW Software

TCP Transmission Control Protocol

TLS Transport Layer Security

TMSI Temporary Mobile Subscriber Identity

UDP User Datagram Protocol

UICC Universal Integrated Circuit Card

UTF Unicode Transformation Format

1.5 References

Several standards were used to develop MDMI. They are listed here as a reference.

References

SNMP

SNMP standards were used to define the MIB and messaging format.

Structure and Identification of
Management Information

http://www.ietf.org/rfc/rfc1155.txt

SNMP http://www.ietf.org/rfc/rfc1157.txt

MIB http://www.ietf.org/rfc/rfc1212.txt

MIB-2 http://www.ietf.org/rfc/rfc1213.txt

SNMP Traps http://www.ietf.org/rfc/rfc1215.txt

3GPP

http://www.ietf.org/rfc/rfc1155.txt
http://www.ietf.org/rfc/rfc1157.txt
http://www.ietf.org/rfc/rfc1212.txt
http://www.ietf.org/rfc/rfc1213.txt
http://www.ietf.org/rfc/rfc1215.txt

GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 8 of 51

References

All logged messages should be reported in their original format without modification, as described by
the 3GPP standard.

RRC 36.331 - Evolved Universal Terrestrial Radio Access (E-
UTRA); Radio Resource Control (RRC); Protocol specification

NAS 24.301 - Non-Access-Stratum (NAS) protocol for Evolved
Packet System (EPS)

MAC 36.321 - Evolved Universal Terrestrial Radio Access (E-
UTRA); Medium Access Control (MAC) protocol specification

PDCP 36.323 - Evolved Universal Terrestrial Radio Access (E-
UTRA); Packet Data Convergence Protocol (PDCP)
specification

RLC 36.322 - Evolved Universal Terrestrial Radio Access (E-
UTRA); Radio Link Control (RLC) protocol specification

TS 31.121 UICC-terminal interface; Universal Subscriber Identity Module
(USIM) application test specification

TS 31.124 Mobile Equipment (ME) conformance test specification;
Universal Subscriber Identity Module Application Toolkit
(USAT) conformance test specification

TS 34.108 Common test environments for User Equipment (UE);
Conformance testing

TS 51.010 Digital cellular telecommunications system; Mobile Station
(MS) conformance specification;

IP

IP Packets (and all protocol messages contained therein) logged should also be in their original format
without modification, as described by IETF.

IPv4 http://www.ietf.org/rfc/rfc791.txt

IPv6 http://www.ietf.org/rfc/rfc2460.txt

ETSI

TS 102 221 http://www.etsi.org/deliver/etsi_ts/102200_102299/102221/

TS 102 223 http://www.etsi.org/deliver/etsi_ts/102200_102299/102223/

TS 102 613 http://www.etsi.org/deliver/etsi_ts/102600_102699/102613/

GSMA

TS.26 NFC Handset Requirements https://www.gsma.com/newsroom/gsmadocuments/

PDATA.12 http://www.gsma.com/identity/wp-
content/uploads/2017/01/PDATA.12-SIM-Toolkit-Device-
Requirements-to-improve-Mobile-Connect-Customer-
Experience-v1.0.pdf

http://www.ietf.org/rfc/rfc791.txt
http://www.ietf.org/rfc/rfc2460.txt
http://www.etsi.org/deliver/etsi_ts/102200_102299/102221/
http://www.etsi.org/deliver/etsi_ts/102200_102299/102223/
http://www.etsi.org/deliver/etsi_ts/102600_102699/102613/
https://www.gsma.com/newsroom/gsmadocuments/
http://www.gsma.com/identity/wp-content/uploads/2017/01/PDATA.12-SIM-Toolkit-Device-Requirements-to-improve-Mobile-Connect-Customer-Experience-v1.0.pdf
http://www.gsma.com/identity/wp-content/uploads/2017/01/PDATA.12-SIM-Toolkit-Device-Requirements-to-improve-Mobile-Connect-Customer-Experience-v1.0.pdf
http://www.gsma.com/identity/wp-content/uploads/2017/01/PDATA.12-SIM-Toolkit-Device-Requirements-to-improve-Mobile-Connect-Customer-Experience-v1.0.pdf
http://www.gsma.com/identity/wp-content/uploads/2017/01/PDATA.12-SIM-Toolkit-Device-Requirements-to-improve-Mobile-Connect-Customer-Experience-v1.0.pdf

GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 9 of 51

References

SGP.23 https://www.gsma.com/newsroom/all-documents/sgp-23-v1-0-
rsp-test-specification/

ISO

ISO/IEC 7816-3 Identification cards -- Integrated circuit cards -- Part 3: Cards
with contacts -- Electrical interface and transmission protocols

ISO/IEC 7816-4 Identification cards -- Integrated circuit cards -- Part 4:
Organization, security and commands for interchange

2 Standard Diagnostic Interface Overview

The standard logging interface is referred to in this document as the Modem

Diagnostic Monitoring Interface (MDMI), which is an application programming

interface (API) and a messaging interface between Diagnostic Monitoring (DM)

applications running on a mobile device and the device component being logged.

The modem is the main component that is logged. MDMI enables DM applications to

monitor and control the activities of the component being logged. The messaging

interface is based on a modified version of the Simple Network Management Protocol

(SNMP).

Table 1 outlines an example use case of primary functions of this interface, and how

SNMP is used to achieve this function.

Function Example Mechanism

Interrogate What is the device's current
RSRP?

SNMP GetRequest

Configure Set Airplane Mode On SNMP SetRequest

Command Make a telephone call SNMP SetRequest

Log Subscribe Subscribe to all RRC Messages Specify Mask: SNMP SetRequest

Receive Information: Event (SNMP
Trap)

Table 1 Primary Functionality

The information that can be retrieved through MDMI can be described as SNMP
objects, or Log Records. Types of Log Records are listed in Table 2

Type Examples Pushed/Pulled Format Definition

KPI Log Record

 RSRP

 PUSCH Tx Power

 Path Loss
Push or Pull Defined in MIB

Protocol Message Log
Record

 RRC Messages

 NAS Messages

 IP Packets
Push

 Header defined in
MIB

 Payload defined by
relevant standard

Command Result Log
 Success of Phone

Call Push Defined in MIB

GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 10 of 51

Record Location
determined by Fix

Configuration Log Record
 Device Name

 MDMI Version Pull Defined in MIB

Table 2 Log Record Types

As illustrated in Figure 1, the device OEMs are expected to implement an SNMP

agent that provides the MDMI programming interface specified in this document.

Access to the interface may be restricted to DM applications which are approved by

the network operator receiving the engineering build (see Section 6). The operating

system may prohibit access to the interface by applications which are not approved

by the network operator. DM applications developed by third parties utilize the MDMI

programming interface to monitor and control the device component being logged. As

an example, when invoked by a DM application using MDMI, the SNMP Agent in the

application processor (A-processor) could interact with the modem in the B-processor

via inter-process communication (IPC) to perform the monitoring and control

functions requested by the DM application. MDMI is generically defined with the goal

that it is implementable by an OEM, regardless of the device operating system or the

device chipset. As such, a DM application using MDMI should run on any such

device without modification.

2.1 MDMI Architecture Supporting Multiple Feeds

Figure 1 illustrates possible modem chipset architecture with multiple data sources

and an MDMI Agent for each source. All pairs of source and agent support the same

MDMI interface as currently specified by either through native MDMI.h file or through

java IMdmiInterface.aidl file.

DM Application discovers the Agent library by consulting the MIB Discovery

Database.

DM applications developed by third parties will develop the MDMI Manager to link to

each of the multiple MDMI Agents and will utilize the MDMI interfaces to monitor and

control the each of the data sources.

When the DM application invokes a data source’s MDMI agent, using MDMI, the

MDMI agent in the application processor (A-Processor) will then interact with its

corresponding data source (e.g. Modem, Wi-Fi, or eMBMS middleware) to perform

the monitoring and controlling functions typically requested by an MDMI DM

application.

The data requested by the DM application and collected by the MDMI agents will be

returned to the MDMI manager through the corresponding MDMI Interface. How to

handle the incoming traffic from multiple feeds is out of scope of this specification.

The MDMI agents are required to implement only those OIDs from the MDMI MIB

tree that are relevant to the data source they handle. In Figure 2, this means that:

 The MDMI LTE Modem Agent will log OIDs corresponding to the LTE branch

of the MIB tree based on the MIB Discovery Database

GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 11 of 51

 The MDMI Wi-Fi Agent will log OIDs corresponding to the Wi-Fi branch of the

MIB tree based on the MIB Discovery Database.

 The MDMI eMBMS Agent will log OIDs corresponding to the eMBMS branch

of the MIB tree based on the MIB Discovery Database.

 The MDMI IMS Agent will log OIDs corresponding to the IMS branch of the

MIB tree based on MIB Discovery Database.

 The MDMI Modem Agent can log the OID’s corresponding to both the LTE

and IMS branches of MIB tree based on MIB Discovery Database.

 The same apply to other branches of the MIB tree

Figure 1 Example of Chipset Architecture with Multiple Sources and Agents

Figure 2 illustrates the generic device architecture, with support for a variety of

sources: multiple sources within one chip, sources from multiple chips, and sources

within the A-processor. In all cases, each source interfaces with its own MDMI Agent.

A-Processor

DM App

MDMI
Manager

MDMI Modem Agent

MDMI

MDMI Wi-Fi Agent

MDMI

MDMI eMBMS Agent

MDMI

B-Processor

Modem

Wi-Fi

eMBMS

Middleware

Subscribe

Get

Set

Commands

… …

GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 12 of 51

Figure 2 Generic Device Architecture

The requirements for MDMI multiple feeds are summarized as follows:

1. Individual MDMI Agents are needed in the A-Processor for logging each data

source, whether from the A-Processor or from the B-Processor

2. Multiple data sources from a single chip in the B-Processor require separate

MDMI Agents for each feed

3. Each MDMI Agent will be implemented either in java or native. DM App

discovers the Agent library name by reading the MIB Discovery

Database(com.gsma.mdmi.db)

4. When Agent is implemented in native, the agent provides a unique .so library.

The exposed .so library implements the MDMI interface, as specified in the

header file (MDMI.h)

5. When Agent is implemented in java, the agent provides a java jar file. The jar

file exposes an AIDL interface (IMdmiIInterface.aidl) The Agent implements

the AIDL interface in a service. DM App binds to the service and issues the

AIDL calls to the MDMI interface

2.1.1 UICC/eUICC specific logging

UICC/eUICC logging has been added as one of the MDMI feeds. This enables logging

between the UICC/eUICC and the device baseband. The interface between UICC and the

device is defined by the contacts C6 and C7 of the UICC. Two different protocols are

B-Processor

Chip B

A-Processor

DM App

MDMI
Manage
r

MDMI Agent
1 MDMI

MDMI Agent 2

MDMI

MDMI Agent 3

MDMI

Feed 3

Chip A

Feed 1

Feed 2

MDMI Agent 4

MDMI

Feed 4

Subscribe

Get

Set

Commands

GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 13 of 51

provided with these contacts and these are the general UICC communication protocol

(ISO/IEC 7816-3, 7816-4) between UICC and the device baseband and the specific SWP

(Single Wire Protocol) between UICC and CLF (ContactLess Frontend, NFC) (ETSI TS 102

613).

For the ISO interface, APDU commands and responses between the UICC and device

baseband are logged. SWP protocol logging is not added to MDMI at this time and will be re-

visited later.

An eUICC contains overall the same functionalities as the UICC with additional features

introduced. The basic logging will cover traditional UICCs as well as eUICCs. The structure

and format of APDU commands and responses being logged are defined in ETSI TS 102

221 and TS 102 223.

2.1.2 Data White-listing

APDU logging can result in critical information being captured in the logs or being exposed

outside the baseband. There are several types of data which shall be protected and not

included in the logging –

1. Data belonging to the user is sensitive and should not be logged. Examples include

phonebook (includes user PIN/PUK), SMS and call logs (FDN, BDN, time of call &

duration of incoming/outgoing calls etc.). Exposing this data in logs that are uploaded

externally may cause privacy concerns. In general, many of the writable EFs in the

UICC fall in this category, with a few exceptions.

2. Some data also needs to be restricted to the modem. Main concern relates to the

result of authentication algorithm (Ck and Ik). Some other examples of parameters

that shall be masked are TMSI, P-TMSI, P-TMSI signature, GSM Ciphering key Kc,

GPRS Ciphering key KcGPRS, GUTI and parameters related to WLAN authentication

and identity.

3. Care must be taken to guard the integrity of STK exchanges as specified by GSMA

doc PDATA.12.

4. GSMA TS.26 has the requirement that the device shall not log any APDU or AID

exchanged in a communication with an applet located on the SE.

5. Some of the Toolkit – Proactive Commands contain sensitive data that shall not be

logged. This includes all commands/responses related to user key input, menus,

multimedia etc.

Integrity of the sensitive data shall be preserved by masking the sensitive data in the

payload. Annex A includes a list of data which shall be excluded from the logging.

For engineering builds using Test UICCs or eUICC Test Profiles, data shall not be masked,

since all debugging and logging information may be needed.

The following IMSI values SHALL enable full logging of UICC and eUICC data: (IMSI

logically values, EF 6F 07, 3GPP TS 31.102 section 4.2.2)

MCC MNC

(2 or 3 digits)

MSIN Reference specification

GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 14 of 51

MCC MNC

(2 or 3 digits)

MSIN Reference specification

001 Any value Any value 3GPP TS 51.010-1, A4.3.3

3GPP TS 31-124, 27.22.2a

246 81 3579 3GPP TS 31.121, 5.1.2.4.1

246 081 3579 3GPP TS 31.121, 4.1.1.1

246 81 1111111111 3GPP TS 51.010-1, 27.4.4.1

246 813 111111111 3GPP TS 51.010-1, 27.4.4.1

246 81 3579 3GPP TS 51.010-1, 27.10a.4.1

3GPP 31.124 27.22.4.7.2.4/5

246 81 357X 3GPP TS 51.010-1, 27.10a.4.1

442 01 Any value 3GPP TS 34.108, 8.3.2.2 plus
restriction in sect 8.3.2.2

299 811 1234 56789

GSMA SGP.23, A.1

299 821 1234 56779

299 821 1234 56769

299 843 4567 89012

299 811 1234 56789

299 811 1234 56779

299 883 4567 89012

299 893 4567 89012

X: Means any value in the range 0 to 9.

2.1.3 Logging during power-up

The modem starts initialization of the UICC/eUICC very early, likely before any pipe is
established between the Application Processor for logging APDUs with SDL. This may lead
to loss of power-up logs. Additionally it may not be possible for an application or user to
restart the UICC/eUICC.

The SDL implementations shall incorporate mechanisms to prevent the power-up logs from
being lost since these are one of the most critical components of UICC/eUICC logging.
Caching of the power up logs at the modem is one possible solution, but it is implementation
dependent.

2.2 MIB Discovery Database

DM App consults the MIB Discovery database to discover the Agent name for a feed based

on the Category OID. Category OID specifies the parent OID. DM App consults the

corresponding Agent library name for all the child OID’s in the Category OID.

This data base has two columns <Category Oid, Agent Name>

Examples of tuples in the Database can be as below

GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 15 of 51

<”1.1”, “lib_mdmi_debug.so”>

<”1.2”, “lib_mdmi_lte.so”>

<”1.3”, “lib_mdmi_wcdma.so”>

<”1.4”, “lib_mdmi_embms.so”>

<”1.6”, “com.gsma.mdmi.ImsService.jar”>

<”1.7”, “com.gsma.mdmi.WifiService.jar”>

<”1.8”, “lib_mdmi_gsm.so”>

<”1.9”, “lib_mdmi_umts.so”>

<”1.10”, “lib_mdmi_ltemiddleware.so”>

<”1.11”, “lib_mdmi_hsupa.so”><”1.12”, “lib_mdmi_hsdpa.so”>

3 Cross Platform Compatibility

MDMI is generically defined with the goal that it is implementable by one or more chip

vendors, regardless of the device operating system or the device chipset. Consequently, a

DM application using MDMI should run on any such device without modification.

This library has been designed to make integrating a DM app onto devices as seamless as

possible. To the extent possible, the usage should be identical across devices, chipsets,

OEMs and even operating systems. However, due to underlying differences between current

mobile operating systems, some differences will be inevitable.

Figure 3 shows an example of an Android implementation of the architecture in Figure 1.

Figure 4 shows an example of implementing the same architecture on an alternate platform.

In both operating systems, the OEM will provide a library making all the functionality of

MDMI available to a DM app. On the Android, the .so libraries will be pre-installed on the

system. A DM app, once installed, will dynamically link to the libraries to use the functionality

of MDMI. On alternate platforms, pre-installing the library may not be possible, due to

platform restrictions. The libraries will be prepared by the chipset vendors and provided to

the developer of the DM App as dll files. The dll files will be compiled directly into the DM

app. The DM App will have to be recompiled for each version of the libraries.

GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 16 of 51

Figure 3 Example of Android Implementation

Figure 4 Example of Alternate Implementation

Android Example

Modem

DM App (.apk)

Wi-Fi Chip
eMBMS

MW

MDMI

Interface (.jar)

WiFi Chip

Driver

MDMI

Interface (.so)

eMBMS MW

Driver

MDMI

Interface (.so)

Modem Driver

MDMI Usage

Developed by
DM Vendor

Developed by

DM Vendor

MDMI1

Provided by

Chipset

Vendors, linked

dynamically

Provided by

Chipset Vendors

Provided by

Chipset Vendors

Alternate Example

Modem

DM App

Wi-Fi Chip
eMBMS

MW

MDMI

Interface
MDMI

Interface

MDMI

Interface

MDMI Usage

Developed by
DM Vendor

Developed by

DM Vendor

MDMI1

Provided by

Chipset

Vendors, packed

into DM App

Provided by

Chipset Vendors

Provided by

Chipset Vendors

Modem Driver eMBMS MW

Driver
WiFi Chip

Driver

Chipset Vendor

Interface2

GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 17 of 51

4 Use of SNMP

The MDMI interface is based on SNMP, in spite of their differences (notably, that the

interface is not over UDP/IP). The reason for basing the interface on SNMP is to make use

of a standardized monitoring and control interface structure. As described in Section 3, the

DM application includes the functionality of a SNMP Manager, and the MDMI module, which

provides a programming interface to extract modem information, acts as a SNMP Agent.

The desired implementation can be achieved with SNMPv1 and, only a subset of SNMPv1 is

used.

The MIB defines all log objects that are available through MDMI. These are organized

hierarchically, and each object has an OID as identifier. Some are available to be read, and

others can be both read and written. Some are available to be pushed to the DM App as

events once the DM App has subscribed to them. The MIB also defines the exact syntax of

each field in each object. The scope of these objects covers a set of KPIs and protocol

messages, as well as some basic configuration items and commands. The design is

extensible so that more KPIs, protocols and commands can be added in future releases.

4.1 Method of SNMP Message Exchange

SNMP operates over UDP. MDMI replaces this with function calls in which a buffer is

passed from the DM App to the SNMP Agent and vice versa. This buffer will contain the

SNMP requests/responses encoded in the same way SNMP is encoded (ASN.1 BER

encoding scheme, see references in section 1 for more details). Both open source and

commercial libraries exist to encode and decode ASN.1, and are widely used in many other

telecommunication protocols.

An application can either pull logs from MDMI by using a "Get" message, or the application

can request that logs to be pushed to it by specifying which events should be sent from the

MDMI to the DM App. When events are to be pushed, the DM App must specify the function

MDMI will use as a pointer using MdmiSetEventCallback, and specifying the events that

are requested using MdmiSubscribe.

5 MDMI

The basics of the API are described below. Devices implementing MDMI must conform to

these definitions precisely.

5.1 MDMI Native Interface

Each required function is listed in the tables below with:

 Function Name - the name of the function

 Signature - the exact function signature that must be implemented

 Arguments - name and explanation of the arguments passed to the function

 Return Value - value returned by the function

GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 18 of 51

5.1.1 MdmiCreateSession

This function creates a MDMI session that is used in subsequent MDMI calls to identify the

caller.

Function Name MdmiCreateSession

Signature MdmiError MdmiCreateSession

 (const wchar_t* address,

 MdmiSession* session);

Arguments address: address of the MDMI device to open. May be ignored if the system has

only one device

session: session object that will be set upon success. This will be used by the

caller in subsequent calls to MDMI.

Return Value MDMI_NO_ERROR on success otherwise an error

5.1.2 MdmiCloseSession

This function closes the MDMI session.

Function Name MdmiCloseSession

Signature MdmiError MdmiCloseSession

 (MdmiSession* session);

Arguments session: session object that will be closed. If close is succesful, the session

object is set to 0, indicating invalid session

Return Value MDMI_NO_ERROR on success otherwise an error

GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 19 of 51

5.1.3 MdmiGet

This function gets the value of a specific object, as specified by that object's OID.

Function Name MdmiGet

Signature MdmiError MdmiGet

 (MdmiSession session,

 const MdmiObjectName* name,

 MdmiValue* value);

Arguments session: identifies the session

name: OID of the value

value: value to be read. If the read is succesful, the actual value is read into

this pointer. Upon return the ownership of this pointer is transferred to caller
and must be freed when no longer needed

Return Value MDMI_NO_ERROR on success otherwise an error

5.1.4 MdmiSet

This function sets the value of a specific object, as specified by that object's OID.

Function Name MdmiSet

Signature MdmiError MdmiSet

 (MdmiSession session,

 const MdmiObjectName* name,

 const MdmiValue* value);

Arguments session: identifies the session

name: OID of the value

value: value to be set

Return Value MDMI_NO_ERROR on success otherwise an error

GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 20 of 51

5.1.5 MdmiInvoke

This function invokes a command through MDMI. Commands are defined in the MIB and

identified by an OID.

Function Name MdmiInvoke

Signature MdmiError MdmiInvoke

 (MdmiSession session,

 const MdmiObjectName* name,

 const MdmiValue* value);

Arguments session: identifies the session

name: OID of the command to invoke

value: optional value of the command (can be null)

Return Value MDMI_NO_ERROR on success otherwise an error

5.1.6 MdmiSetEventCallback

This function sets the call back function that will be used for pushed events.

Function Name MdmiSetEventCallback

Signature MdmiError MdmiSetEventCallback

 (MdmiSession session,

 MdmiEventCallback callback,

void* state);

Arguments session: identifies the session

callback: The callback function pointer. This value will replace previous value.

Setting this value to NULL will stop event callbacks. See MDMI.h for
definition of the callback.

state: Optional state that will be passed when callback function is called

Return Value MDMI_NO_ERROR on success otherwise an error

GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 21 of 51

5.1.7 MdmiSubscribe

This function specifies an object, which should be reported via trap message whenever it is

updated.

Function Name MdmiSubscribe

Signature MdmiError MdmiSubscribe

 (MdmiSession session,

 const MdmiObjectName* name);

Arguments session: identifies the session

eventName: identifies the event to be registered. Multiple registrations will still

result in only one event being generated

Return Value MDMI_NO_ERROR on success otherwise an error

5.1.8 MdmiUnsubscribe

This function removes an object from the list of objects that should be reported via trap

message.

Function Name MdmiUnsubscribe

Signature MdmiError MdmiUnsubscribe

 (MdmiSession session,

 const MdmiObjectName* name);

Arguments session: identifies the session

eventName: identifies the event to be deregistered

Return Value MDMI_NO_ERROR on success otherwise an error

5.1.9 MdmiGetSessionStats

This function gets the statistics of the session.

Function Name MdmiGetSessionStats

Signature void MdmiGetSessionStats

 (MdmiSession session, MdmiSessionStats* stats);

Arguments session: identifies the session

stats: the statistics to be returned

Return Value MDMI_NO_ERROR on success otherwise an error

GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 22 of 51

5.2 MDMI Java Interface

 Each required function is listed in the tables below with:

 Function Name - the name of the function

 Signature - the exact function signature that must be implemented

 Arguments - name and explanation of the arguments passed to the function

 Return Value - value returned by the function

5.2.1 MdmiCreateSession

This function creates a MDMI session that is used in subsequent MDMI calls to identify the

caller.

Function Name MdmiCreateSession

Signature int MdmiCreateSession(in String address, out MdmiSession

session);

Arguments address: address of the MDMI device to open. May be ignored if the system has

only one device

session: session object that will be set upon success. This will be used by the

caller in subsequent calls to MDMI.

Return Value MDMI_NO_ERROR on success otherwise an error

5.2.2 MdmiCloseSession

This function closes the MDMI session.

Function Name MdmiCloseSession

Signature int MdmiCloseSession(in MdmiSession session);

Arguments session: session object that will be closed. If close is succesful, the session

object is set to 0, indicating invalid session

Return Value MDMI_NO_ERROR on success otherwise an error

GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 23 of 51

5.2.3 MdmiGet

This function gets the value of a specific object, as specified by that object's OID.

Function Name MdmiGet

Signature int MdmiGet(in MdmiSession session, in MdmiObjectName

name, out MdmiValue value);

Arguments session: identifies the session

name: OID of the value

value: value to be read. If the read is succesful, the actual value is read into

this pointer. Upon return the ownership of this pointer is transferred to caller
and must be freed when no longer needed

Return Value MDMI_NO_ERROR on success otherwise an error

5.2.4 MdmiSet

This function sets the value of a specific object, as specified by that object's OID.

Function Name MdmiSet

Signature int MdmiSet(in MdmiSession session, in MdmiObjectName name,

in MdmiValue value);

Arguments session: identifies the session

name: OID of the value

value: value to be set

Return Value MDMI_NO_ERROR on success otherwise an error

GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 24 of 51

5.2.5 MdmiInvoke

This function invokes a command through MDMI. Commands are defined in the MIB and

identified by an OID.

Function Name MdmiInvoke

Signature int MdmiInvoke(in MdmiSession session,in MdmiObjectName

name,in MdmiValue value);

Arguments session: identifies the session

name: OID of the command to invoke

value: optional value of the command (can be null)

Return Value MDMI_NO_ERROR on success otherwise an error

5.2.6 MdmiSetEventCallback

This function sets the call back function that will be used for pushed events.

Function Name MdmiSetEventCallback

Signature int MdmiSetEventCallback(in MdmiSession session, in

IMdmiEventCallback callback, in CallbackState state);

Arguments session: identifies the session

callback: The callback function pointer. This value will replace previous value.

Setting this value to NULL will stop event callbacks. See MDMI.h for
definition of the callback.

state: Optional state that will be passed when callback function is called

Return Value MDMI_NO_ERROR on success otherwise an error

GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 25 of 51

5.2.7 MdmiSubscribe

This function specifies an object, which should be reported via trap message whenever it is
updated.

Function Name MdmiSubscribe

Signature int MdmiSubscribe(in MdmiSession session, in MdmiObjectName

eventName);

Arguments session: identifies the session

eventName: identifies the event to be registered. Multiple registrations will still

result in only one event being generated

Return Value MDMI_NO_ERROR on success otherwise an error

5.2.8 MdmiUnsubscribe

This function removes an object from the list of objects that should be reported via trap

message.

Function Name MdmiUnsubscribe

Signature int MdmiUnsubscribe(in MdmiSession session, in

MdmiObjectName eventName);

Arguments session: identifies the session

eventName: identifies the event to be deregistered

Return Value MDMI_NO_ERROR on success otherwise an error

5.2.9 MdmiGetSessionStats

This function gets the statistics of the session.

Function Name MdmiGetSessionStats

Signature int MdmiGetSessionStats(in MdmiSession session, out

MdmiSessionStats stats);

Arguments session: identifies the session

stats: the statistics to be returned

Return Value MDMI_NO_ERROR on success otherwise an error

GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 26 of 51

5.3 MIB

The MIB is modelled on SNMPv1 (see section 1.5 References). It provides a set of objects

which can be retrieved and set through the MDMI. It does, however, diverge from SNMPv1.

6 Security

This section defines the Security Architecture Design for MDMI.

The operator owned server manages both authentication and log sessions in devices. User

is authenticated prior to a session initiated by an on board application. In the case of remote

session management, a command token is sent from server to the device.

The token is passed to the component being logged, by the diagnostic application, where

the integrity of the token is verified and then parsed.

Selective logging, based on log mask setting in the command token, is enabled. Logs are

collected by the diagnostic application, prior to sending them to the operator server.

All transmissions to / from the server shall use TLS version 1.2 or higher to ensure security

of the user authentication information, command tokens, and log data while in transit. If the

operating system provides for certificate revocation / update check, this should be used.

Note: The MDMI API for log session control functions, such as the log mask setting, is used

for the development phase of the device and diagnostic application.

6. Operating System Restrictions and Policy enforcement – Permissions, Group ID

enforcement, package Name, UID, package signature along with policy enforcement

using SeLinux is incorporated in devices. This is to ensure only operator authorized

on board log applications have access to the MDMI interface. Specification of group

ID, permissions and policies are operator specific.

7. User Authentication – Server validates user with login credentials (user name and

password), as supplied by user launching the application, thereby restricting only

authenticated users to log into the diagnostic system. Additional checks based on

IMEI, MSISDN, IMSI and user's group are used to restrict devices log and reports to

specific users or user group.

8. Secure Channel – Command tokens are sent to the device from the server via a

secure channel. As noted above, the secure channel shall use TLS version 1.2 or

higher, and certificate revocation / update check shall be used if available.

9. Command Set for remote log session – JSON packets are used to define

command tokens (ON/OFF, Time to Live, Log Privilege level, Log groups). JSON

Packets are integrity protected and can be interpreted only by the modem (which has

the public key of policy certificate).

Log Data – The log mask limits the scope of the logging information. The log mask can be

set by a user or privileges enforced by the SW load. If log data cannot be transmitted to the

server immediately, it shall be stored securely on the device, in a manner such that

untrusted applications are unable to access the log data.

GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 27 of 51

Figure 5 Security Call Flow

The logs contain the privacy information of device hardware and software thus all

transmissions to / from the server shall use TLS version 1.2 or higher to ensure security.

Besides, it is recommended to perform authentication between device modem, diagnosis

platform and operator’s server when the device is sending modem logs to the server. Figure

5 shows the device modem logs transmission authentication process.

(Note: this process is applicable for engineering device log transmission not for the

commercial device)

1. Launch the diagnostic application platform on device by sending the user’s name and

password.

2. The diagnostic application platform allocates and stores IDs based on the target device

modem log to be collected. Then diagnostic application platform sends IDs to different

device modems. For example, the diagnostic application platform allocates ID1: 0001 for

logs from device A modem and allocates ID2: 0002 for logs from device B modem.

3. The device will then store the received ID that allocated for its modem log. For example,

device A modem will store ID1 and device B modem will store ID2.

4. If the logs of the target device modem (e.g. A) are required, the device will send the

stored ID (e.g., 0001) to the diagnostic APP.

5. After verifying the ID send from modem is matched with the allocated ID (e.g. 00001).

Diagnostic APP will send the User Name, Password, allocated ID to the server. Server

will launch user authentication and then based on the information above produce the

related token for this user.

User Modem
Diagnostic

App

Operator

Server

Launch

Operator
Certificate

loaded

User Name & Password

Get ID

Return ID
TLS with SSL Cert,

User Name,
Password, ID

Authentication OK

JSON Command
Token, signed with
policy certificate

Enable Token

Token OK

Log Data
Log Data

GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 28 of 51

6. A command token is sent from server to the diagnostic application (the token is signed

with policy certificate), then device will receive the token that sent from the diagnostic

application.

7. Since the key of policy certificate is stored within the modem, the integrity of the token is

verified and then parsed on device: The device will decrypt the token and obtain the

corresponding ID.

8. The device then verify that the Decrypted ID is matched with the stored ID (e.g. 0001),

then respone the “Token OK” to diagnostic platform.

9. The logging modem on device will enable the related logging. Device will send the

modem logs to the Diagnostic APP.

10. The Diagnostic APP transfers the modem logs to the Operator Server by the secure

channel.

6.1 Example of a JSON Command Token

An example of a command token sent from operator server to the device, is provided below:

 "token_id", identifier for a token for the operator server

 "session_id", identifier for a particular log session

 "device_id", IMEI of the device

 "validity", length of log session

 "diag_cmd", diagnostic command

 "diag_mask", diagnostic log mask, specify what needs to be logged. Example, all

RRC messages.

{

"diag_token":["token_id":"0xaf010230405", "session_id" : "0x1234435",
"device_id":"990000862471854","validity" : "8/6/2015 5:00:00PM EST",
"diag_cmd":"start_log", "diag_mask":"dnp3cm9ja3M="],

"signature":"OGI0ZDM4NTY0MzMyYTVmYWI2OGRhNTMzMmJmNWY5MThhZjU5ZWViNQ
=="

}

6.1.1 Steps for Building the Token

Although JSON does not mandate an order of the elements, an order is specified below, to

enable correct HASH functions.

Server builds Hash of the "diag_token" array, for integrity protection, using the steps
specified below:

10. Starting Values of the Token, SERVER_PUBLIC_KEY and SERVER_PRIVATE_KEY

are defined.

Note: The SERVER_PUBLIC_KEY is contained in the component being logged

and within the corresponding Certificate.

GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 29 of 51

{"diag_token":["token_id":"0xaf010230405", "session_id" : "0x1234435",
"device_id":"990000862471854","validity" : "8/6/2015 5:00:00PM EST",
"diag_cmd":"start_log", "diag_mask":"dnp3cm9ja3M="], "signature_algorithm":"sha256RSA",
"signature":"dRMxJCdBtMx/9q8RMiH8/719SB9roDNimYCdt43vp/7d3IEVuaj65aoYni+rwyMl

wmRXOJ3aqXJ4cxMGWJsJOSeKg/bcWlnHeDowPhoBxY3rj661kBI67QgDuI8X2KqCTMpI3
2hcGARJG0Xd4XyQdPLYTOmElPwm9a7Ckc3sOuM03dQoIqbs802HP8P0XWX/QyEOpZ2n
9yib6XIQSMzRSl+gM36PAQO8Fz/q/pUyBZOL7Mvnne9nOyssh7TJVLXcKkDwElKf3zr8CJ8
nCLY8kPhi5EqaW3zq/SlKo7GRHjBFDljoc2ke568QlxejG20mI2VYrw6wqaPCgdHs1k3Wmw
=="}

11. Extract all JSON Keys and Values only under "diag_token"

"token_id":"0xaf010230405"

"session_id" : "0x1234435"

"device_id":"990000862471854"

"validity" : "8/6/2015 5:00:00PM EST"

"diag_cmd":"start_log"

"diag_mask":"dnp3cm9ja3M="

12. Sort JSON Keys Pairs alphabetically, using ASCII UTF-8 characters (no special

characters). Numbers get sorted in increasing trend.

1: "device_id":"990000862471854"

2: "diag_cmd":"start_log"

3: "diag_mask":"dnp3cm9ja3M="

4: "session_id" : "0x1234435"

5: "token_id":"0xaf010230405"

6: "validity" : "8/6/2015 5:00:00PM EST"

13. Concatenate All Key and Values without any delimiters. ASCII representation is used

with UTF-8 characters. The output herein is called "Value Key Pair String"

device_id990000862471854diag_cmdstart_logdiag_maskdnp3cm9ja3M=session_id0

x1234435token_id0xaf010230405validity8/6/2015 5:00:00PM EST

14. Execute HASH over the "Value Key Pair String"

SHA256(device_id990000862471854diag_cmdstart_logdiag_maskdnp3cm9ja3M=session_i

d0x1234435token_id0xaf010230405validity8/6/2015 5:00:00PM EST) =

b78340828893b65963ed5777f138c4f930cb59dc2b85a2077c54bc1b90de3539

15. Sign the Hash value with the corresponding Private Key of Server,

SERVER_PRIVATE_KEY

Signature shall be done using binary value, and not hex

GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 30 of 51

SIGN(b78340828893b65963ed5777f138c4f930cb59dc2b85a2077c54bc1b90de3539) =

signature.bin

16. Base64 Encode Signature & Insert into JSON Token

{"diag_token":["token_id":"0xaf010230405", "session_id" : "0x1234435",

"device_id":"990000862471854","validity" : "8/6/2015 5:00:00PM EST",

"diag_cmd":"start_log", "diag_mask":"dnp3cm9ja3M="], "signature_algorithm":"sha256RSA",

"signature":"dRMxJCdBtMx/9q8RMiH8/719SB9roDNimYCdt43vp/7d3IEVuaj65aoYni+rwyMl

wmRXOJ3aqXJ4cxMGWJsJOSeKg/bcWlnHeDowPhoBxY3rj661kBI67QgDuI8X2KqCTMpI3

2hcGARJG0Xd4XyQdPLYTOmElPwm9a7Ckc3sOuM03dQoIqbs802HP8P0XWX/QyEOpZ2n

9yib6XIQSMzRSl+gM36PAQO8Fz/q/pUyBZOL7Mvnne9nOyssh7TJVLXcKkDwElKf3zr8CJ8

nCLY8kPhi5EqaW3zq/SlKo7GRHjBFDljoc2ke568QlxejG20mI2VYrw6wqaPCgdHs1k3Wmw

=="}

6.1.2 Steps for Parsing the Token

The diagnostic application determines target component, by using a token ID. The

component that receives the token shall use the following method to parse the

token.

1. Obtain the value, ensure that the fields “signature_algorithm”, “signature” are populated

and validate for format conformance (i.e. length)

{"diag_token":["token_id":"0xaf010230405", "session_id" : "0x1234435",

"device_id":"990000862471854","validity" : "8/6/2015 5:00:00PM EST",

"diag_cmd":"start_log", "diag_mask":"dnp3cm9ja3M="], "signature_algorithm":"sha256RSA",

"signature":"dRMxJCdBtMx/9q8RMiH8/719SB9roDNimYCdt43vp/7d3IEVuaj65aoYni+rwyMl

wmRXOJ3aqXJ4cxMGWJsJOSeKg/bcWlnHeDowPhoBxY3rj661kBI67QgDuI8X2KqCTMpI3

2hcGARJG0Xd4XyQdPLYTOmElPwm9a7Ckc3sOuM03dQoIqbs802HP8P0XWX/QyEOpZ2n

9yib6XIQSMzRSl+gM36PAQO8Fz/q/pUyBZOL7Mvnne9nOyssh7TJVLXcKkDwElKf3zr8CJ8

nCLY8kPhi5EqaW3zq/SlKo7GRHjBFDljoc2ke568QlxejG20mI2VYrw6wqaPCgdHs1k3Wmw

=="}

2. Extract all JSON Keys and Values under "diag_token" only

"token_id":"0xaf010230405"

"session_id" : "0x1234435"

"device_id":"990000862471854"

"validity" : "8/6/2015 5:00:00PM EST"

"diag_cmd":"start_log"

"diag_mask":"dnp3cm9ja3M="

3. Sort JSON Keys Pairs alphabetically, using ASCII UTF-8 characters (no special

characters). Numbers get sorted in increasing trend..

1: "device_id":"990000862471854"

GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 31 of 51

2: "diag_cmd":"start_log"

3: "diag_mask":"dnp3cm9ja3M="

4: "session_id" : "0x1234435"

5: "token_id":"0xaf010230405"

6: "validity" : "8/6/2015 5:00:00PM EST"

4. Concatenate All Key and Values without any delimiters. ASCII representation is used

with UTF-8 characters. The output herein is called "Value Key Pair String"

device_id990000862471854diag_cmdstart_logdiag_maskdnp3cm9ja3M=session_id0x12

34435token_id0xaf010230405validity8/6/2015 5:00:00PM EST

5. Execute HASH Over the "Value Key Pair String". to obtain HASH_A. The hash algorithm

is specified in “signature_algorithm”

SHA256(device_id990000862471854diag_cmdstart_logdiag_maskdnp3cm9ja3M=session_i
d0x1234435token_id0xaf010230405validity8/6/2015 5:00:00PM EST) =
b78340828893b65963ed5777f138c4f930cb59dc2b85a2077c54bc1b90de3539 = HASH_A

6. Extract “signature” field from JSON token, it should be Base64 encoded. Perform a

Base64 Decode.

BASE64_DECODE(dRMxJCdBtMx/9q8RMiH8/719SB9roDNimYCdt43vp/7d3IEVuaj65aoYni

+rwyMl

wmRXOJ3aqXJ4cxMGWJsJOSeKg/bcWlnHeDowPhoBxY3rj661kBI67QgDuI8X2KqCTMpI3

2hcGARJG0Xd4XyQdPLYTOmElPwm9a7Ckc3sOuM03dQoIqbs802HP8P0XWX/QyEOpZ2n

9yib6XIQSMzRSl+gM36PAQO8Fz/q/pUyBZOL7Mvnne9nOyssh7TJVLXcKkDwElKf3zr8CJ8

nCLY8kPhi5EqaW3zq/SlKo7GRHjBFDljoc2ke568QlxejG20mI2VYrw6wqaPCgdHs1k3Wmw

==") = SIGNATURE_RAW_BYTE_VALUE_HMAC

7. Utilize the Public Key (SERVER_PUBLIC_KEY), to decrypt output from Step #5

(SIGNATURE_RAW_BYTE_VALUE_HMAC) This will yield HASH_B

8. If HASH_B = HASH_A, then signature verification is successful. Token signature is valid.

 Else abort the process and declare that signature verification failed.

9. Perform any additional checks per token policy (i.e. validity period, device_id, etc.).

10. If steps #7 and #8 are successful, integrity of token is verified and the logging component

is ready for parsing commands and enabling related logging

Note: The Hashing algorithm and asymmetric encryption algorithm can be defined

by the network operator i.e. the implementer. The implementer can enhance

the steps by using industry standard algorithms such as HMAC.

GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 32 of 51

SHA-1 has known weaknesses and shall not be used.

6.2 Log Security

6.2.1 Introduction

At this time, since the scope of the logging per this document is restricted to engineering

builds end-to-end, encryption between the modem and the diagnostic app is not considered.

In this initial phase, the log mask can be used to control the content of the log via user opt

in/consent and privileges enforced by the SW load to address consumer privacy concerns. If

commercial builds are supported in the future, encryption will need to be revisited at that

time to prevent the log content from getting to unauthorized users.

6.2.2 Log Mask Management

The user/consumer payload, such as voice and emails, are most sensitive due to privacy

issues. The best method to manage privacy concerns is an a priori setting, before logging

starts. Log mask can be set such that all user payload (IP/UDP/TCP/RTP) are not logged,

only the header information of these protocols will be logged.

Note: For SIP and RTCP, if packet logging is turned on, both header and payload

shall be logged. This is because the payload of SIP and RTCP includes

session options which are used for debug and analysis. This should not be a

concern since consumer data is not available in SIP and RTCP payloads.

The log mask setting can be managed by an application configuration/consent where a user

is provided an option/interface to select what data can be logged. The log mask can also be

enforced with the SW load. For example, the operator field engineers may receive a load

where all log masks are available, but if 3rd party vendors are testing for the operator, they

may get a load where certain log masks cannot be enabled.

The log mask choices can be either packet header only logging, or packet payload logging. If

the user opts for packet header only logging, the user can further select any combination of

the following:

1. IP header,

17. UDP header,

18. TCP header,

19. SIP header and payload,

20. RTP header,

21. RTCP header and payload

If the user opts for packet payload logging, the user can further select any combination of the

following:

2. IP header and payload,

3. UDP header and payload,

4. TCP header and payload,

5. SIP header and payload,

6. RTP header and payload,

7. RTCP header and payload

GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 33 of 51

7 MDMI Implementation

Although MDMI is modelled on SNMP, there are several exceptions:

 The MDMI MIB does not fully follow the SNMP standard.

 The MDMI messaging interface uses a log record structure that follows an expanded

version of the SNMP message standard.

7.1 MDMI MIB

 The MDMI OIDs do follow the hierarchical structuring rules defined in SNMP/MIB-2.1

 Some MDMI OIDs correspond to data types not allowed in SNMP/MIB-2, although

allowed by ASN.1 syntax. Examples are

 Boolean

 Special data types – these are objects with multiple values. The objects have an

OID, but the individual values do not.

An example is ServingCellMeasurement (with its own OID), which includes the

variables PCI, RSRP, RSRQ, RSSI, and SINR (none of which have an OID).

Because of these deviations from SNMP/MIB-2, implementations of the MDMI spec should

not be based on the use of standard SNMP tools for generating the structures of the MDMI

OIDs from the MDMI MIB file.

7.2 MDMI Log Record Structure

The interface between the DM application and the MDMI.so library follows a simplified and

expanded version of the SNMP messaging format. Specifically, the message is implemented

as an “MDMIValue” structure. The “data” element in that structure is a concatenation of

“Length,” “Timestamp,” and “MDMI Message” as indicated in the following table.

Field Length
(bytes)

Description

Length 4 The length of the entire MDMI log record, in bytes, including Length itself,
Timestamp and MDMI Message. For example, if the length of the MDMI log
record is 10 bytes, the Length field should be [0x00, 0x00, 0x00, 0x0A].

Timestamp 8 The modem timestamp when the log record is constructed, given as the
number of milliseconds since the January 1, 2015, 00:00:00 GMT epoch.
For example, if the time is January 1, 2015, 01:00:00 GMT, which is
3,600,000 ms past the epoch, the Timestamp field should be [0x00, 0x00,
0x00, 0x00, 0x00, 0x36, 0xEE, 0x80]

MDMI
Message

varies The MDMI message, constructed according to the MDMI MIB. This includes
the exceptions indicated in Section 7.1.The MDMI message, constructed
according to the MDMI MIB. This includes the exceptions indicated in
Section 7.1. Please refer to the Implementation Guideline for details.

1 RFC1213, http://www.ietf.org/rfc/rfc1213.txt

GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 34 of 51

7.2.1 MDMI Message

An MDMI message consists of a header indicating the PDU type followed by an (OID, value)

pair.

There are three types of MDMI calls, each with a corresponding PDU type for a

corresponding SNMP Message:

1. MdmiGet(), with corresponding PDU Type = GetResponse

22. MdmiSubscribe(), with corresponding PDU Type = Trap

23. MdmiInvoke(), with corresponding PDU Type = SetRequest

Figure 6 shows an example of the MDMI log record used with MdmiGet(). The particular call

is for “deviceName,” which has an OID of 1.1.1.1, and the corresponding value is

“MDMI_TEST_DEVICE.” The call is made at January 1, 2015, 01:00:00 GMT, which is

3,600,000 ms past the epoch.

Figure 6 Log Record for GetResponse / deviceName

The constituent fields are

 The Length is 4 + 8 + 25 = 37 = 0x25

 The Timestamp is 3600000 = 0x36EE80

 The PDU Type is encoded as a2 17

 The OID is encoded as 06 03 29 01 01.

o The first byte 06 is the type of Object Identifier.

o The second byte 03 is the length of the following Data field. (ASN.1 BER

specifies how to encode lengths greater than 255.)

o The remaining 3 bytes specify the OID, following ASN.1 BER

 The first two numbers of any OID (x.y) are encoded as one value, using the

formula (40*x) + y. Therefore, the first two numbers of the OID are encoded as

(40*1) + 1 = 41 = 0x29.

 The subsequent numbers in the OID are each encoded as one byte per

number.

 The Value is encoded as 04 10 4d 44 4d 49 5f 54 45 53 54 5f 44 45 56 49 43 45.

o The first byte 04 is the type of Octet String.

OID Value

SNMP PDU Type (GetResponse/Trap/SetRequest)
Length Timestamp

a2 17 06 03 29 01 01 04 10 4d444d495f544553545f444556494345 00 00 00 00 00 36 EE 80 00 00 00 25

GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 35 of 51

o The second byte 10 is the length of the following Data field, which is 16.

o The remaining 16 bytes form the octet string of “MDMI_TEST_DEVICE”.

GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 36 of 51

Annex A UICC/eUICC Whitelist

The following symbols are used in the tables below to define the UICC/eUICC white list.

 ✕ -- indicates that the file cannot be traced

 ❗ -- indicates that only part of the file can be traced

 ✓ -- indicates that the entire file can be traced

Files under USIM

The following tables describe all the files present in the USIM application.

EFs with the UPDATE condition is not as administrative access (ADM), are described in the
following slides. EFs that cannot be updated by the terminal are not covered.

These EFs normally contain static information, which are not sensitive, as it neither has user
data nor any secret keys.

File name ID Content

EF
LI
 (Language

Indication)

6F05 Information about the language of the user ✕

EF
Keys

 (Ciphering and

Integrity Keys)

6F08 Ciphering key CK, integrity key IK, and key set

identifier KSI
✕

EF
Keys

 (Ciphering and

Integrity Keys)

6F08 Ciphering key CK, integrity key IK, and key set

identifier KSI
✕

EF
KeysPS

 (Ciphering

and Integrity Keys for

Packet Switched

domain)

6F09 Ciphering key CKPS, integrity key IKPS, and key set

identifier KSIPS for the packet switched (PS) domain
✕

EF
PLMNwAcT

 (User

controlled PLMN

selector with Access

Technology)

6F60 Defines the preferred PLMNs of the user in priority

order
✓

EF
ACMmax

 (ACM

maximum value)

6F37 Maximum value of the accumulated call meter ✓

EF
ACM

 (Accumulated

Call Meter)

6F39 Total number of units for both current call and

preceding calls
✓

EF
PUCT

 (Price per Unit

and Currency Table)

6F41 Price per Unit and Currency Table (PUCT), which

may be used to compute the cost of calls
✓

EF
CBMI

 (Cell Broadcast

Message identifier

selection)

6F45 The type of content of the cell broadcast messages

that the subscriber wants the UE to accept
✕

GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 37 of 51

File name ID Content

EF
FPLMN

 (Forbidden

PLMNs)

6F7B List of forbidden PLMNs ✓

EF
LOCI

 (Location

Information)

6F7E Contains Temporary Mobile Subscriber Identity

(TMSI), Location Area Information (LAI) and Location

update status.

❗

TMSI & LAI

values must be

masked

EF
CBMIR

 (Cell

Broadcast Message

Identifier Range

selection)

6F50 Ranges of cell broadcast message identifiers that the

subscriber wants the UE to accept
✕

EF
PSLOCI

 (Packet

Switched location

information)

6F73 Contains Packet Temporary Mobile Subscriber

Identity (P-TMSI), P-TMSI signature value, Routing

Area Information (RAI), and Routing Area update

status

✕

EF
FDN

 (Fixed Dialling

Numbers)

6F3B Contains Fixed Dialling Numbers (FDN) ❗

At least alpha

and dialling

number must

be masked for

privacy

EF
SMS

 (Short

messages)

6F3C Short messages (and parameters) which have been

received or are to be sent
✕

EF
MSISDN

 (MSISDN) 6F40 MSISDN(s) related to the subscriber ✓

EF
SMSP

 (Short

message service

parameters)

6F42 Short Message Service header Parameters, such as

service centre address
✓

EF
SMSS

 (SMS status) 6F43 Status information relating to the short message

service (that is, Memory Capacity Exceeded)
✓

EF
EXT2

 (Extension2) 6F4B Extension data of an FDN ❗

Only extension

data must be

masked (similar

to EF
FDN

)

EF
SMSR

 (Short

message status

reports)

6F47 Short message status reports, which are received by

the UE from the network
✓

EF
ICI

 (Incoming Call

Information)

6F80 Time of the call and duration of the incoming calls ✕

EF
OCI

 (Outgoing Call

Information)

6F81 Time of the call and duration of the outgoing calls ✕

GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 38 of 51

File name ID Content

EF
ICT

 (Incoming Call

Timer)

6F82 Accumulated incoming call timer duration ✓

EF
OCT

 (Outgoing Call

Timer)

6F83 Accumulated outgoing call timer duration ✓

EF
EXT5

 (Extension5) 6F4E Extension data of EF
ICI

, EFOCI and EF
MSISDN

 ✕

EF
CCP2

 (Capability

Configuration

Parameters 2)

6F4F Parameters of required network and bearer

capabilities and terminal configurations associated

with a call established

✓

EF
AaeM

 (Automatic

Answer for eMLPP

Service)

6FB6 Priority levels for which the ME shall answer

automatically to incoming calls
✓

EF
Hiddenkey

 (Key for

hidden phone book

entries)

6FC3 Hidden key to display the phone book entries that are

marked as hidden
✕

EF
BDN

 (Barred Dialling

Numbers)

6F4D Barred Dialling Numbers (BDN) ❗

At least alpha

and dialling

number must

be masked for

privacy.

EF
EXT4

 (Extension4) 6F55 Extension data of a BDN ❗

Only extension

data must be

masked.

EF
EST

 (Enabled

Services Table)

6F56 List of enabled services ✓

EF
ACL

 (Access Point

Name Control List)

6F57 List of allowed APNs (Access Point Names) ✕

EF
DCK

(Depersonalisation

Control Keys)

6F2C Storage for the depersonalization control keys

associated with the OTA depersonalization cycle
✓

EF
START-HFN

(Initialization values

for Hyperframe

number)

6F5B Values of START
CS

 and START
PS

 of the bearers that

were protected by the keys in EF
KEYS

 or EF
KEYSPS

at

release of the last CS or PS RRC connection

✕

EFNETPAR (Network
Parameters)

6FC4 Information concerning the cell frequencies ✓

EFMBDN (Mailbox
Dialling Numbers)

6FC7 Dialling numbers to access mailboxes ✓

GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 39 of 51

File name ID Content

EFEXT6 (Extension6) 6FC8 Extension data of an MBDN ✓

EFMBI (Mailbox
Identifier)

6FC9 Information to associate mailbox dialling numbers in
EFMBDN with a message waiting indication group type
and subscriber profile

✓

EFMWIS (Message
Waiting Indication
Status)

6FCA Status of indicators that define whether a Voicemail,
Fax, Electronic Mail, Other or Videomail message is
waiting

✓

EFCFIS (Call
Forwarding Indication
Status)

6FCB Status of indicators that are used to record whether
call forward is active

✓

EFEXT7 (Extension7) 6FCC Extension data of a CFIS ✓

EFMMSN (MMS
Notification)

6FCE MMS notifications and parameters received by the
UE

✓

EFEXT8 (Extension 8) 6FCF Extension data of an MMS Notification ✓

EFMMSUP (MMS User
Preferences)

6FD1 Multimedia Messaging Service User Preferences,
which can be used by the ME for user assistance in
preparation of mobile multimedia messages

✕

EFMMSUCP (MMS User
Connectivity
Parameters)

6FD2 Values for Multimedia Messaging Connectivity
Parameters used by the ME for MMS network
connection

✓

EFVGCSS (Voice Group
Call Service Status)

6FB2 Status of activation for the VGCS group identifiers ✓

EFVBSS (Voice
Broadcast Service
Status)

6FB4 Status of activation for the VBS group identifiers ✓

EFGBABP (GBA
Bootstrapping
parameters)

6FD6 AKA Random challenge (RAND) and Bootstrapping
Transaction Identifier (B-TID) associated with a GBA
bootstrapping procedure

✕

EFEPSLOCI (EPS
location information)

6FE3 Contains Globally Unique Temporary Identifier
(GUTI), Last visited registered Tracking Area Identity
(TAI) and EPS update status.

❗

GUTI & TAI

must be

masked

EFEPSNSC (EPS NAS
Security Context)

6FE4 EPS NAS Security context ✕

EFFDNURI (Fixed
Dialling Numbers URI)

6FED List of FDN stored in URI address format ✕

EFBDNURI (Barred
Dialling Numbers URI)

6FEE List of BDN stored in URI address format ✕

Files under USIM/DF Phonebook

GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 40 of 51

Many files in the DF-Phonebook contain sensitive data from privacy perspective, hence they
should not be traced.

Many files do not have a fixed file ID, but this is derived based on the parsing of the EF-PBR.
To avoid issues during the tracing, it is recommended to avoid logging all EFs that have a
non-fixed file ID.

The above list only includes EFs that can be updated by the user and have a fixed file ID.

File name ID Content
EF

PSC
 (Phone book

Synchronization

Counter)

6F22 Used to construct the phone book identifier (PBID) to

determine whether the accessed phone book is the

same as previous access

✕

EF
CC

 (Change

Counter)

6F23 Used to detect changes made to the phone book
✕

EF
PUID

 (Previous

Unique Identifier)

6F24 Previously used unique identifier (UID)
✕

Files under USIM/DF GSM-ACCESS

File name ID Content
EF

Kc
 (GSM Ciphering

key Kc)

4F20 Ciphering key Kc and the ciphering key sequence

number n for enciphering in a GSM access network
✕

EF
KcGPRS

 (GPRS

Ciphering key

KcGPRS)

4F52 Ciphering key KcGPRS and the ciphering key

sequence number n for GPRS
✕

EF
CPBCCH

 (CPBCCH

Information)

4F63 Information concerning the CPBCCH to reduce the

search of CPBCCH carriers when selecting a cell
✓

Files under USIM/DF WLAN

File name ID Content
EF

Pseudo
 (Pseudonym) 4F41 Temporary user identifier (pseudonym) for subscriber

identification
❗

Pseudonym

length is ok, but

Pseudonym

must be

masked

EF
UPLMNWLAN

 (User

controlled PLMN

selector for I-WLAN

Access)

4F42 Preferred PLMNs to be used for WLAN PLMN

Selection
✓

GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 41 of 51

File name ID Content
EF

UWSIDL
 (User

controlled WLAN

Specific Identifier List)

4F44 User preferred list of WLAN-specific identifier (WSID)

for WLAN selection in priority order
✓

EF
WRI

 (WLAN Re-

authentication Identity)

4F46 List of parameters linked to a re-authentication

identity to be used in fast re-authentication
✕

EF
WLRPLMN

 (I-WLAN

Last Registered

PLMN)

4F4A I-WLAN Last Registered PLMN Selection
✓

Files under USIM/DF HNB

File name ID Content
EF

ACSGL
 (Allowed CSG

Lists)

4F81 CSG ID, HNB name, and CSG type in allowed CSG

lists controlled by user
✕

EF
CSGT

 (CSG Type) 4F82 CSG Type
✓

EF
HNBN

 (Home NodeB

Name)

4F83 Home NodeB Name
✕

Files under USIM/DF ProSe

File name ID Content
EF

PROSE_GC
 (ProSe

Group Counter)

4F09 PTK ID and Counter associated with the PGK

currently in use for a ProSe Group
✕

Files under USIM/Other DFs

The following DFs are present in the USIM application, but do not contain any EF that can
be updated by the terminal:

 DF-SoLSA

 DF-MexE

 DF-ACDC

Files under TELECOM

The TELECOM DF contains many files for backward compatibility with 2G terminals. These
EFs must not be accessible by a 3G device.

Those EFs can potentially contain sensitive information and must not be logged.

GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 42 of 51

DF-PHONEBOOK is also present under TELECOM. The same rules discussed for the
phonebook inside the USIM apply, as the structure is same.

The below table provides the analysis for the remaining EFs in the TELECOM DF:

File name ID Content

EF
ICE_DN

 (In Case of

Emergency – Dialling

Number)

6FE0 Number formatted in-case-of-emergency information
❗

At least alpha

and dialling

number must

be masked for

privacy.

EF
ICE_FF

 (In Case of

Emergency – Free

Format)

6FE1 Free formatted in-case-of-emergency information
✕

EF
PSISMSC

 (Public

Service Identity of the

SM-SC)

6FE5 Public Service Identity of the SM-SC for SMS over IP
✓

EF
ICE_graphics

 (In Case

of Emergency –

Graphics)

5F50

/

4F21

ICE graphical information
✕

EF
MML

 (Multimedia

Messages List)

5F3B

/

4F47

MM data stored in EF
MMDF

✕

EF
MMDF

 (Multimedia

Messages Data File)

5F3B

/

4F48

Multimedia Messages data
✕

UICC Commands for USIM

This table provides details about logging concerns for each command used by the
terminal, while interacting with the USIM.

Command Description Analysis

STATUS Used by the terminal for polling and to

complete USIM initialization or start its

termination.

✓

SELECT

DEACTIVATE

FILE

ACTIVATE FILE

SEARCH

RECORD

These commands perform operations on EFs

present in the UICC card, but without

exposing the content of those files.

✓

READ BINARY

UPDATE

BINARY

READ RECORD

UPDATE

RECORD

INCREASE

These commands perform operations on EFs

present in the UICC card, either writing or

reading their content.

❗

Behaviour depends on the specific

EF that is accessed.

GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 43 of 51

Command Description Analysis

RETRIEVE

DATA

SET DATA

VERIFY PIN

CHANGE PIN

DISABLE PIN

ENABLE PIN

UNBLOCK PIN

These commands perform various operations

on the PIN of the UICC. The value of the PIN

is clearly sensitive data and should not be

logged. Anyway, other parts of the

transaction, such as number of remaining

attempts or length of the PIN can be logged.

❗

Only the PIN/PUK values must be

masked, while the rest of the

command can be logged.

MANAGE

CHANNEL

Used to open or close logical channels
✓

TERMINAL

CAPABILITY

Used to provide terminal capabilities to the

UICC
✓

AUTHENTICATE Authentication command
❗

See next table

This Table provides details about logging concerns for the AUTHENTICATE command used
by the terminal, while interacting with the USIM.

Author context P2 Description Analysis

GSM context 0x80 The command contains RAND.

The response contains the SRES and Kc.
✕

3G context 0x81 The command contains RAND and AUTN.

The response contains 1 byte for the result, followed

by RES, CK, IK and optionally Kc.

Alternatively, the response might contain the AUTS

for resynchronization.

✕

VGCS/VBS context 0x82 The command contains Vservice_Id, VK_Id and

VSTK_RAND.

The response contains 1 byte for the result, followed

by the VSTK.

✕

GBA context –

Bootstrapping Mode

0x84 The command contains RAND and AUTN.

The response contains 1 byte for the result, followed

by RES or AUTS.

✕

GBA context – NAF

Derivation Mode

0x84 The command contains NAF_ID and IMPI.

The response contains 1 byte for the result, followed

by Ks_ext_NAF.

✕

MBMS context 0x85 TBC
❗

TBC

Local Key

Establishment mode

0x86 TBC
❗

TBC

Toolkit

GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 44 of 51

It is difficult to classify the content of toolkit, as it depends on the applets running in the
UICC. For example, the DISPLAY TEXT command could potentially be used to display
sensitive data to the user.

There is a document published by GSMA (PDATA.12) with this requirement:

The potential issues are not limited to those commands and the above requirement may be
applicable to all STK exchanges (even if few commands are called out specifically).

Three ways are identified:

 Avoid logging all toolkit interactions.

 Allow logging of only some commands (for example, REFRESH) and mask other

commands (for example, SEND SHORT MESSAGE).

 Peek into each TLV inside each command to log only those that are safe (for

example, the Command details TLV inside the SEND SHORT MESSAGE is ok, while

the 3GPP-SMS TPDU is not).

Approach Pros and cons

1 Avoid logging all toolkit interactions Pros:

 Very simple to implement.

 compliant with requirement in PDATA.12.

Cons:

 Debugging of specific issues can become

problematic, as much information exchanged

between terminal and UICC is lost.

2 Allow logging of only some commands

(for example, REFRESH) and mask

other commands

Pros:

 Still simple to implement, as the type of

proactive command or ENVELOPE can be

identified easily.

Cons:

 For some commands, the entire command is

dropped from the logs, even if a large part of it

does not contain sensitive information.

3 Peek into each TLV inside each

command to log only those that are safe

Pros:

 Gives maximum control, allowing to only mask

in the log fields that contain potentially

sensitive data.

Cons:

 Very complex to implement, as logic is required

to decode the APDU right when it is received

from the UICC.

Recommendation: Approach # 2 is a good compromise between the need to log toolkit
interaction and the possibility to maintain low complexity.

GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 45 of 51

All proactive commands and terminal responses have the same structure at the beginning.
None of these contain sensitive information, while they can be useful for debugging.

Proactive command Terminal response

Proactive UICC command Tag

Length

Command details

Device Identities

Command details

Device Identities

Result

In case of both proactive commands and terminal responses, the specific type of command
can be easily identified from the Command details. This can be extracted easily.

Proposal

 Extract the type of command from the “Command details”.

 Trace only the header (to be explicitly defined) for messages marked as ❗ in the next

table.

 Trace the entire data for proactive commands marked as ✓ in the next table.

Proactive
command

Usage Command Response

DISPLAY TEXT Displays a text

message, and/or an icon
❗

Command might contain

sensitive data to be

displayed to the user

✓

GET INKEY Display text and/or an

icon and expects the

user to enter a single

character.

❗

Command might contain

sensitive data to be

displayed to the user

❗

Response contains key

from user, which can be

sensitive.

GET INPUT Displays text and/or an

icon and any response

string entered by the

user is passed

transparently to the

UICC

❗

Command might contain

sensitive data to be

displayed to the user

❗

Response contains string

typed by user, which can

be sensitive.

MORE TIME Allows the Card

Application Toolkit (CAT)

task in the UICC more

time for processing

✓ ✓

PLAY TONE Plays an audio tone.
✓ ✓

POLL INTERVAL Requests how often the

terminal shall send

STATUS commands

related to Proactive

Polling

✓ ✓

SET-UP MENU Supplies a set of menu

items to be integrated

with the menu system

❗

Command might contain

✓

GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 46 of 51

Proactive
command

Usage Command Response

sensitive data to be

displayed to the user

SELECT ITEM Supplies a set of items

from which the user may

choose one.

❗

Command might contain

sensitive data to be

displayed to the user

✓

SEND SHORT

MESSAGE

Requests the terminal to

send a short message
❗

Command might contain

sensitive data in the SMS

payload

✓

SET UP CALL Request to set up a

voice call
❗

Command might contain

sensitive data, such as

phone number

✓

REFRESH Notifies the terminal of

the changes to the UICC

configuration that have

occurred as the result of

a Network access

application (NAA)

application activity.

✓ ✓

POLLING OFF Disables the Proactive

Polling
✓ ✓

PROVIDE LOCAL

INFORMATION

Requests the terminal to

send current local

information to the UICC

✓ ❗

Response might contain

sensitive data, such as

IMEI or location.

SET UP EVENT

LIST

Supply a set of events

that UICC must receive
✓ ✓

PERFORM CARD

APDU

Requests the terminal to

send an APDU

command to the

additional card

❗

Command might contain

sensitive data in the

APDU.

❗

Command might contain

sensitive data in the

APDU.

POWER OFF

CARD

Requests the terminal to

close a session with the

additional card

✓ ✓

POWER ON

CARD

Requests the terminal to

start a session with the

additional card

✓ ✓

GET READER

STATUS

Requests the terminal to

get information about all

interfaces or the

indicated interface to

additional card

reader(s).

✓ ✓

GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 47 of 51

Proactive
command

Usage Command Response

TIMER

MANAGEMENT

Manages timers running

physically in the terminal
✓ ✓

SET UP IDLE

MODE TEXT

Supplies a text string to

be displayed by the

terminal as an idle mode

text

❗

Command might contain

sensitive data to be

displayed to the user

✓

RUN AT

COMMAND

Sends an AT Command

to the terminal as though

initiated by

an attached TE

❗

Command might contain

sensitive data.

❗

Response might contain

sensitive data.

SEND DTMF

COMMAND

Send a DTMF string

after a call has been

successfully established

❗

DTMF sequence can be a

sensitive code

✓

LANGUAGE

NOTIFICATION

Notifies the terminal

about the language

currently used for any

text string

✓ ✓

LAUNCH

BROWSER

Requests a browser in

the terminal to open a

specified URL.

❗

URL might contain

sensitive data

✓

OPEN CHANNEL Opens a channel to

transmit data
❗

Command might contain

sensitive data such as

server address

✓

CLOSE

CHANNEL

Close a channel
✓ ✓

RECEIVE DATA Returns data from a

channel
✓ ❗

Response might contain

sensitive data received

over the channel.

SEND DATA Sends data on a channel
❗

Command might contain

sensitive data to be sent

over the channel

✓

GET CHANNEL

STATUS

Returns the channel

status
✓ ✓

SERVICE

SEARCH

Searches for the

availability of a service in

the environment of the

terminal

✓ ✓

GET SERVICE

INFORMATION

Looks for the complete

service record related to

a service

✓ ✓

GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 48 of 51

Proactive
command

Usage Command Response

DECLARE

SERVICE

Downloads into the

terminal service

database the services

that the card provides as

a server

✓ ✓

SET FRAMES Instructs the terminal to

divide the screen into

multiple rectangular

regions

✓ ✓

GET FRAMES

STATUS

Returns status of the

frames
✓ ✓

RETRIEVE

MULTIMEDIA

MESSAGE

Instructs the terminal to

retrieve a multimedia

message

❗

Command might contain

sensitive data

✓

SUBMIT

MULTIMEDIA

MESSAGE

Instructs the terminal to

submit a multimedia

message

❗

Command might contain

sensitive data

✓

DISPLAY

MULTIMEDIA

MESSAGE

Displays a multimedia

message
❗

Command might contain

sensitive data

✓

ACTIVATE Activates a specified

interface
✓ ✓

CONTACTLESS

STATE

CHANGED

Informs the terminal

when the contactless

functionality in the UICC

has been enabled or

disabled

✓ ✓

COMMAND

CONTAINER

Send a CAT command

to an eCAT

(encapsulated CAT)

client by encapsulation

❗

Command might contain

sensitive data.

❗

Response might contain

sensitive data.

ENCAPSULATED

SESSION

CONTROL

Ends an encapsulated

command session with

an eCAT client

✓ ✓

A separate analysis is required for ENVELOPE commands. The specific ENVELOPE type
can be recognized by the first byte and the first byte is the only common part for all
ENVELOPE commands.

Many ENVELOPE commands contain sensitive information, such as position, and phone
numbers.

Proposal

 Extract the type of ENVELOPE from the first byte.

 Trace only the ENVELOPE type for messages marked as ❗ in the next table.

 Trace the entire data of the ENVELOPE for messages marked as ✓ in the next table.

GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 49 of 51

ENVELOPE Usage Command Response

MENU

SELECTION

Indicates the menu

selected by the user
❗

Command might contain

sensitive data.

✓

CALL CONTROL Allows the UICC to

modify or reject an

outgoing

voice/SMS/data call

❗

Command might contain

sensitive data.

❗

Response might contain

sensitive data.

TIMER

EXPIRATION

Indicates expiration of a

timer started by the

UICC

✓ ✓

EVENT

DOWNLOAD

Used to communicate

event to the UICC.
❗

Depends on specific

event, but often contains

sensitive data

✓

MMS TRANSFER

STATUS

Informs the UICC about

transfer of MMS
✓ ✓

MMS

NOTIFICATION

DOWNLOAD

Provides MMS

notification to the UICC
❗

Command might contain

sensitive data

✓

TERMINAL

APPLICATIONS

Provides list of terminal

applications
✓ ✓

ENVELOPE

CONTAINER

Used to send

ENVELOPE by eCAT

client

❗

Command might contain

sensitive data.

❗

Response might contain

sensitive data.

SERVICE LIST Provides a secure

method for the terminal

to retrieve CAT

related information

stored in the service

tables of NAAs

❗

Command might contain

sensitive data

✓

SMS-PP DATA

DOWNLOAD

Allows the data

download via SMS

Point-to-point, often

used for remote

management of the

UICC

❗

Command might contain

sensitive data.

❗

Response might contain

sensitive data.

USSD DATA

DOWNLOAD

Allows the data

download via USSD
❗

Command might contain

sensitive data.

❗

Response might contain

sensitive data.

Geographical

Location

Reporting

Reports the GPS

location to the UICC
❗

Command might contain

sensitive data.

✓

ProSe Report Stores the ProSe report

in the UICC
❗

Depends on specific

✓

GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 50 of 51

ENVELOPE Usage Command Response

event, but often contains

sensitive data.

Non-telecom Channels

In recent years, the number of clients sending APDUs to the UICC for non-telecom
applications has increased. Non-telecom applications refer to all applications that are not
defined by 3GPP or 3GPP2.

SIM Alliance has standardized the Open Mobile APIs to allow a client to exchange APDUs
with a UICC.

The modem has no information on what type of application is accessed and exchanged
between the application on the device and the UICC.

GSMA TS.26 contains the following requirement.

To comply with GSMA requirements, masking is recommended for:

 the AID in all SELECT by DF name commands sent from the terminal to the UICC.

 all APDUs exchanged on logical channels where a non-telecom application is

selected.

 The log can contain the CLA and INS byte, but it must not show anything else.

Annex B Source Code

Open source code is publicly available for vendors who are complying with the GSMA TSG

standard diagnostic interface standard at GSMA site:

 https://github.com/GSMATerminals/TSG-Standard-Diag-Public.

 Summary of the files available are listed below.

 MDMI.h - header file specifying the MDMI interface.

 MDMI-MIB.txt - MIB file specifying log objects to be referenced in MDMI messages.

 Mdmi_sample_setgetinvoke.txt - example source code demonstrating MDMI usage

for MdmiGet, MdmiSet, and MdmiInvoke.

 README.txt – MDMI Implementation guideline and revision history.

 Note: A user account must be created at the following site before access to the

GitHub site.

 https://github.com/

https://github.com/GSMATerminals/TSG-Standard-Diag-Public
https://github.com/

GSM Association Non-confidential

Official Document TS.31 - Standard Diagnostic Logging

V5.0 Page 51 of 51

Annex C Document Management

C.1 Document History

Version Date Brief Description of Change Approval

Authority

Editor /

Company

1.0 January

2016

New PRD TS.31 TSG#21

PSMC

Carol Becht /

Verizon

2.0 April 2016 Clarify use of SNMP

 Description of MDMI Implementation

and log record structure Add

definition of 'Engineering build'

 Add additional clarification and

requirements on security

TSG

Carol Becht /

Verizon

3.0 July 2016 Update architecture to support

multiple diagnostic feeds

 Modify JSON token generation

method to specify order of items (to

enable correct HASHing)

TSG

Carol Becht /

Verizon

4.0 November

2017

 Extend to UICC and eUICC logging

 MDMI Library Discovery Database

and MDMI Java Interface

 For details see CR1004

TSG#30

Dhruv Khettry /

Verizon

5.0 Sept 2021 Update with CR 1007 adding clarity to the

flow diagram in Fig 5

TSG#45

ISAG#12

Paul Gosden /

GSMA

Other Information

Type Description

Document Owner Terminal Steering Group

Editor / Company Paul Gosden GSMA

It is our intention to provide a quality product for your use. If you find any errors or omissions,

please contact us with your comments. You may notify us at prd@gsma.com

Your comments or suggestions & questions are always welcome.

mailto:prd@gsma.com

