
GSM Association  Non-confidential
TS.20 Smarter Apps for Smarter Phones, v2.0 

V2.0 Page 1 of 67 

 

 

Smarter Apps for Smarter Phones! 
A guide to improve apps connectivity, power consumption,  

user experience, security, and device battery life. 

Version 2.0 

12 February 2013 

This is a Non-binding Permanent Reference Document of the GSMA 

Security Classification: Confidential - Full, Rapporteur, and Associate Members 
Access to and distribution of this document is restricted to the persons permitted by the security classification. This document is confidential to the 
Association and is subject to copyright protection. This document is to be used only for the purposes for which it has been supplied and 
information contained in it must not be disclosed or in any other way made available, in whole or in part, to persons other than those permitted 
under the security classification without the prior written approval of the Association.  

Copyright Notice 
Copyright © 2013GSM Association 

Disclaimer 
The GSM Association (“Association”) makes no representation, warranty or undertaking (express or implied) with respect to and does not accept 
any responsibility for, and hereby disclaims liability for the accuracy or completeness or timeliness of the information contained in this document. 
The information contained in this document may be subject to change without prior notice. 

Antitrust Notice 
The information contain herein is in full compliance with the GSM Association’s antitrust compliance policy. 



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 2 of 67 

To the developers:  

Smartphones have changed the way information is accessed. They have catapulted the 
development and distribution of mobile apps to a new level.  

However, unlike fixed networks, the mobile environment places constraints on the resources 
available to apps on the mobile device. For example, the power consumption of each 
application can have an extreme impact on battery life. The frequency of device-server 
communication needs to strike a balance between delivering a good user experience while 
not draining the battery or impacting the user’s phone bill (e.g. when roaming). High traffic 
levels can cause signalling overload in the network, triggering delays that impact the app 
performance and user experience.  
 
Understanding and applying key principles of the mobile environment will help you improve 
your app’s connectivity, data and power consumption and security. This will improve the user 
experience, and help to create and maintain the popularity of your app.  
This document explains key differences between fixed and mobile environments, and 
highlights key principles to bear in mind when developing applications for mobile devices. It 
also provides detailed tips for Android, Windows Phone and iOS.  

The following table outlines key recommendations with detailed explanations in later 
chapters. Considering these will help to make your app even smarter.  

High level recommendations:  

Term Description: 

 
Relevance  Guideline For more details 

Usability/ Asynchrony Techniques such as pipelining 
and asynchrony should be used 
to ensure that the client 
operates smoothly 

Sections 2.2.1, 4.1.1, 
4.2.1, 4.3.1 

Efficient network connection 
usage 

Use strategies that minimise 
and optimise data traffic and 
avoid unnecessary data 
transfers, especially when 
roaming. 

Section 2.3 
Background/ foreground modes 
Deactivate background 
processes when not required. 
Section 2.3, 3.6, 4.2.8 

Background/ foreground modes Deactivate background 
processes when not required. 

Section 2.3, 3.6, 4.2.8 

Background/ foreground modes, 
Scheduling 

Design polling applications to 
aggregate their network 
activities. 

Section 2.3, 3.6, 4.2.9 

Connection loss and error 
handling 

Applications should be resilient 
to changing network conditions 
and errors. 

Section 3.2 

Compression Applications using HTTP should 
support compression. 

Section 3.5 

Data push Applications should use push 
services in preference to polling. 

Section 3.6, 4.2.5, 4.3.3 

 

These guidelines have been compiled with inputs from developers, operators and terminal 
vendors. Updated versions will be provided, enhancing the contents and extending the 
scope to other relevant technologies and platforms. Although the underlying focus of the 
guidelines are predicated on addressing relevant issues in the context of wireless 
connectivity, similar issues may require attention in a wider context. AQUA (App Quality 



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 3 of 67 

Alliance) has published its ‘Best Practice Guidelines, AQuA Test criteria for Android’ that 
complement the current document. 

We want to continuously improve the content of this document. Should you wish to 
contribute, please contact us at devguide@gsma.com 

Alternatively you can join the dedicated W3C community discussion at: 
http://www.w3.org/community/networkfriendly/ 

 



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 4 of 67 

Table of Contents 
 
1  Introduction 6 

1.1  Overview 6 
1.2  Scope 6 
1.2.1  Who should read this document 7 
1.2.2  Organisation of the document 7 
1.3  Definition of Terms 7 

2  Network friendliness 8 
2.1  Requirements and constraints in mobile broadband 8 
2.2  Smooth user experience 9 
2.2.1  Asynchrony 9 
2.2.2  Non-blocking user interface 11 
2.2.3  Offline mode 12 
2.2.4  Bandwidth awareness 13 
2.3  Efficient network connection usage 13 

3  Ideal mobile application 15 
3.1  Asynchrony 15 
3.2  Connection loss and error handling 16 
3.3  Security 22 
3.4  Efficient traffic usage 25 
3.4.1  Cloud-based transformations 25 
3.4.2  Media Transcoding 26 
3.4.3  Presence 27 
3.4.4  Email 28 
3.5  Compression 28 
3.6  Background / Foreground modes 29 
3.7  Application Scaling 31 

4  Detailed Recommendations 32 
4.1  iOS 32 
4.1.1  Asynchrony 32 
4.1.2  Connection loss and error handling 33 
4.1.3  Caching 34 
4.1.4  Security 36 
4.1.5  Push notifications 37 
4.1.6  Data formats 38 
4.1.7  Compression 39 
4.1.8  Background / Foreground modes 39 
4.1.9  Scheduling 41 
4.2  Android™ 41 
4.2.1  Asynchrony 41 
4.2.2  Offline mode 45 
4.2.3  Caching 46 
4.2.4  Security 48 
4.2.5  Push notifications 49 
4.2.6  Data formats 49 
4.2.7  Compression 49 
4.2.8  Background / Foreground modes 51 
4.2.9  Scheduling 52 
4.2.10  Spreading network activity timing among different devices 52 



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 5 of 67 

4.3  Windows Phone 54 
4.3.1  Asynchrony 54 
4.3.2  Connection loss and error handling 59 
4.3.3  Caching 62 
4.3.4  Security 63 
4.3.5  Push notifications 64 
4.3.6  Data formats 64 
4.3.7  Compression 65 
4.3.8  Background / Foreground modes 65 
4.3.9  Scheduling 65 

5  References 66 
Document Management 67 

Document History 67 
 
 
 

 

Note: The content of this developer guide will (soon) be made available online under: 
http://www.gsma.com/smarterappsguidelines for easy use and ability to feedback or enhance. 

 



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 6 of 67 

 

1 Introduction  

1.1 Overview  

The rapid rise in demand for mobile data has taken key industry stakeholders by surprise, 
particularly the network operators at the forefront of delivering services to customers. A 
direct consequence of the huge success in the uptake of data services is a greatly increased 
signalling load at the network level independent of the volume of data traffic. End-users and 
application developers are unaware of increased signalling load as this is only visible to 
network operators/service providers. However, increased signalling load impacts 
smartphone users, who can experience rapid battery drainage, unresponsive user interface, 
slow network access and non-functional applications.  

As use of smartphone applications increases, so does the signalling load on a 
disproportionate scale. This is caused by a number of factors, but aspiring enthusiasts are 
one of the main culprits, (perhaps with a background in developing desktop applications) 
who are translating their ideas into network-unfriendly apps that can be easily installed on 
smartphones.  

As a result, network operators are facing the challenge of unprecedented signalling load that 
is out of proportion to the level of data usage.  

The industry has responded by introducing the ‘fast dormancy’ feature. This means the 
mobile device notifies the network that its data session is complete, and requests the device 
be moved to a more battery efficient state controlled by the network. This has been 
implemented in what is known as 3GPP release 8.  

A number of other aspects relating to the development of network-friendly smartphone apps 
need to be considered. These include:  

a) Optimal use of wireless connectivity on target platforms by third party developers 
o This leads to better data bandwidth usage 

 
b) Competent development of third party apps that are user and network friendly 

o This provides a much improved user experience and can improve battery 
efficiency 
 

c) Identifying and addressing underlying peculiarities in smartphone software 
platforms 

o This improves network performance, user friendliness and battery 
consumption 
 

d) Robust handling of failures 
o This can reduce battery consumption and reduce unnecessary data 

bandwidth usage 

1.2 Scope 

This document is designed to provide as much information as possible to all developers 
(private application designers, operators or OEMs) to encourage a better approach in 
developing mobile apps.  

By following the guidelines and recommendations, developers will be better equipped to 
create fit-for-purpose apps; mobile operators will see a reduced strain on mobile networks 
leading to  more responsive and reliable apps and improved battery life.  

 

 



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 7 of 67 

 

Network efficient apps will benefit developers by:  

 Improving the overall user experience of apps, making them more responsive, 
providing more control to users, and providing better user experience due to less 
loaded/congested networks  

 Improving reliability in the mobile network environment  
 Providing higher levels of user satisfaction by reducing traffic levels, potentially 

resulting in lower customer bills and improved device battery life  

The scope of these developer guidelines is limited to:  

 General guidelines for native apps that require mobile network connectivity  
 Specific guidelines for iOS, Android and Windows Phone. These specific guidelines 

should be updated periodically as target platforms evolve over time  

The theoretical parts of Sections 3 and 4 are generic; they can be applied to any other 
platforms. 

This document does not provide guidelines on:  

 Generic user interface  
 Complete device security, it only highlights what is available per platform  
 Back end implementation  
 The higher levels of security required in rare cases for specific apps serving banking 

or enterprise systems  
 Web applications (HTML 5): Relevant developer guidelines have already been 

published on 14 December 2010 by W3C (Mobile Web Application Best Practices)  
http://www.w3.org/TR/2010/REC-mwabp-20101214/  

 M2M (Machine to Machine)  

1.2.1 Who should read this document 

The document is not meant to explain the basics of developing a mobile app. It is aimed at 
developers (private application designers, operators or OEMs) who are able to develop or 
intend to develop mobile network-dependent apps. The “Detailed Recommendations” in 
Chapter 4 are aimed at improving the quality of apps relying on mobile network connectivity, 
and explain how to overcome the challenges that mobile networks introduce.  

1.2.2 Organisation of the document 

Chapter 2 provides the relevant background and lays down the fundamental constraints that 
are generic to all mobile platforms.  

Chapter 3 considers the characteristics of an ‘ideal’ app/platform, to demonstrate optimal 
use of network connectivity.  

Chapter 4 maps the outcome of preceding chapters to target platforms, highlighting specific 
functionality or limitations to further assist developers.  

1.3 Definition of Terms 

Term   Description 

3G 
3G is short for 3rd Generation, and usually to refer to mobile networks offering data rates 
over 200kbit/s 

3GPP 

The 3rd Generation Partnership Project (3GPP) is a global telecomm organization that 
defines and maintains standards and recommendations for the deployment of the GSM 
family of network. 



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 8 of 67 

APIs 

Application Programming Interface (API) is a source code based specification intended to 
be used as an interface by software components to 
communicate with each other. An API may include specifications for routines, data 
structures, object classes, and variables 

EDGE 
Enhanced Data rates for GSM Evolution (EDGE) is a mobile network technology offering 
download speeds up to 236.8kbit/s 

FACH 
Forward Access Channel (FACH) is a radio channel used in UMTS networks that provides 
limited connectivity with battery drain than a dedicated radio connection 

FIN 
FIN is a finish message; it is a TCP segment with the FIN bit set, indicating that a device 
wants to terminate the connection 

GPRS 
General Packet Radio Service (GPRS) is a mobile network technology offering download 
speeds up to 60kbit/s 

JSON 

JavaScript Object Notation, is a lightweight text-based open standard, designed for 
human-readable data interchange. It is derived from the 
JavaScript scripting language for representing simple data structures and associative 
arrays, called objects 

2 Network friendliness 

Today’s mobile broadband downlink speeds can range from 1.8 Mb/s upwards.  

In contrast, fixed line broadband based on cable-modem or ADSL/DSL technologies 
provides a connection speed of up to 50Mb/s downlink. Fixed line broadband deploys less 
complex technologies than mobile broadband, and Wi-Fi offers very limited terminal mobility. 
Mobile networks differ from fixed broadband networks in that they have limited variable 
bandwidth, higher latency and a non-permanent communication channel. Loss of Internet is 
not considered abnormal.  

Mobile networks have their own specific requirements and constraints, and even a Wi-Fi 
connection may not deliver the steady connectivity of the fixed network. As a developer, you 
should take these into account as you design and build your apps. These requirements and 
constraints are described in the following section.  

2.1 Requirements and constraints in mobile broadband 

 Limited bandwidth: The available bandwidth for mobile networks may vary depending 
on the geographic coverage and the underlying technologies used. On average it is 
lower than a Wi-Fi connection. In addition, when the mobile consumer is on the move, 
the bandwidth can dynamically step up or down 

 Data is not always free: Outside monthly allocations and bundled price plans, mobile 
data usage can be expensive particularly when roaming. This can mean high bills for 
users  

 Battery life: Mobile terminals are a miniaturised feast of technologies powered by a 
battery. When in full operation, the battery runs a processor with an active screen and 
data communication over the mobile network. Transferring large amounts of data puts 
the radio access into high drive mode. Add an active colour screen and the battery 
can drain in just a few hours. Considered use of the network, screen and processor 
resources when designing an app can dramatically improve battery life. For example, 
serving ads is popular with free apps but it can dramatically impact battery life and 
bandwidth usage. This could be improved by reducing the number/frequency of 
different ads being downloaded, or by introducing an ad-free (often paid) version that 
doesn’t contain ads. Network connectivity: Mobile networks cannot by nature 
guarantee reliable connectivity at all times. Blind coverage spots, the limitations of 
deployed technologies, switching between cells, or moving in heavily built-up areas, 



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 9 of 67 

can all result in lost data packets, increased latency, reduced network speed, and 
connectivity interruption  

 Security: Users do not always have direct control over their choice of wireless access 
networks. They can be connected to public Wi-Fi hotspots or in extreme cases even 
to spoofed networks, so privacy can be compromised or identity stolen. 
Authentication, secure protocols and a cautious approach to content transmission 
should be adopted by all developers  

When network communication is optimised, the overall user experience is greatly improved. 
Developers should adopt all possible methods of optimal data transmission (efficient 
protocols, caching, compression, data aggregation, pipelining, etc.).  

Although many mobile users have access to Wi-Fi networks at home, work or public places, 
their primary access to the Internet is via the mobile network. Developers often do not take 
this into account and do not perform rigorous field testing in the mobile environment – hoping 
instead that users will find a reliable connection. Development in simulated environments 
running on fast and well-connected laboratory machines may never uncover real-life user 
experiences. Therefore day-to-day testing of your app on a device connected to a 
commercial mobile network is essential. 

2.2 Smooth user experience 

Although network efficiency may be understood as the most effective use of bandwidth, it is 
also important to pay attention to the reality of mobile devices and mobile networks. All users 
today know that a mobile connection can be lost or data transfer delayed. The user 
experience of network friendly apps should be adjusted accordingly to smooth the impact of 
such issues. 

2.2.1 Asynchrony 

The first assumption to be made is that any response in a mobile network environment might 
be delayed or not delivered at all. To ensure a smooth user experience, an app’s 
architecture should not solely rely on a sequence of responses, but be ready to deliver some 
results to the user even if not all the data has arrived.  

A basic item list explains the problem in general terms. Figure 1 shows the sequence of 
requests required to download if all requests had been made synchronously:  

 

 

Figure 1: Synchronous requests 

In this example the list contains three items. 

If the same requests were sent in parallel, then the timeline will be as shown in Figure 2:  

 



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 10 of 67 

 

 

Figure 2:  Asynchronous requests  

Should the network connection be reliable with constant speed, the user will not notice the 
requests had been sent in parallel. The overall loading time will not show a tangible 
difference. However, such an arrangement can only exist in ‘ideal’ networks, with no 
latencies and connection interruptions.  

In reality, the same sequence could potentially result in the arrangement in Figure 3, where a 
requested image may be received much later and some requests might not receive any 
response at all. 

 

Figure 3: Asynchronous request in in reality 

 
If an app waits to receive every single response and does not progressively show results to 
the user before completion of the entire cycle (as described above), the user might simply 
face a blank screen.  
Network connections should be arranged in an asynchronous manner. This separation will  
ensure that delayed responses will not block the user interaction entirely.  
Where possible, the user should be able to see the progress of data loading. This could be  
achieved by using progress bars, placeholders or a simple network indicator. In Figure 4,  
text information can be displayed already when the list is loaded without waiting for images  
to arrive. As soon as an image is loaded it can be displayed immediately. 



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 11 of 67 

 

Figure 4: Timeline of asynchronous request  

 

Apps should assume that any of the requested responses may fail to arrive. An appropriate  
user interface should keep the user informed of the progress without giving the impression  
that the software has crashed or hung. 

2.2.2 Non-blocking user interface 

A blocking User Interface (UI) is where the user is faced with a single UI element that 
prevents use of the mobile device. These can pop up from an app if there is a delay in 
receiving data, or when the app logic’s decision tree is unable to proceed because it has 
encountered a missing data item.  

In reality it is not necessary for an app to block the user from other operations. Even during a 
login process, when a user cannot progress any further within that app until access is 
granted, it should be possible to use other device applications.  

In most cases, network operation should be completed in the background, allowing the user 
to cancel or switch to other views. It is inconvenient to the user to allow a web browser to 
block the screen with the message “Loading” until the page completes. 

 



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 12 of 67 

 

 

Figure 5: Non-blocking user interface examples 

When designing an app’s UI and its decision tree it is important to distinguish between a 
user-initiated network connection and an application-driven activity. This can define how the 
user is notified of progress and errors.  

For example, if the user requests a web page to be loaded and the browser fails to connect 
to the server, then a modal error message (dialogue/information box) should be displayed. 
However, if an image has not been delivered, it would be more sensible to show 
placeholders with broken images instead.  

Another example of an unhelpful error message occurs in some offline games. Whenever 
these games are launched on an unconnected device, an error message is often shown that 
reads “Could not connect to server”, probably as a result of failure to send game statistics 
back to the server. The user is not expecting any result from a server, and these irrelevant 
messages can create an unnecessary and annoying break in the user experience.  

2.2.3 Offline mode 

There are occasions when a mobile device cannot connect or remain connected to the 
network, so it is important that developers take the following into consideration when building 
an app:  

 If the network connection drops, the user should be alerted as to why an operation 
could not be completed  

 To prevent data loss, users should be able to save current or active data with the 
option to retry/resume the activity when reconnected to the network  

Examples of user disappointment include losing a long text string typed on a mobile device 
keyboard when it should be clear that the application cannot send the text to the server; or 
after downloading a huge chunk of data, finding it impossible to resume downloading and 
having to start the whole process all over again 

 The user should be notified of any functionality that is not available in offline mode  
 It is best practice to enable continued use of an app with data stored in offline mode 

for later synchronisation when the network connection is re-established  
 The app should be capable of scanning for data connectivity in background mode 

without affecting operation in offline mode  



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 13 of 67 

2.2.4 Bandwidth awareness 

Apps with excessive network dependency, such as audio or video streaming, require an 
assured level of data transmission speed. Considering the variety of wireless technologies 
such as GPRS, EDGE, 3G or Wi-Fi, it would be sensible for the app to first ascertain the 
access network and connection quality in order to request the appropriate quality of content 
from the server; and notify the user about the possible additional cost of using mobile data. If 
the app needs a more precise estimation of speed, then it would be reasonable to measure 
or dynamically adjust the quality of streamed data according to latencies.  

The app should be capable of adapting to changes in access network and data speed at any 
given time, and make allowances for users leaving a Wi-Fi Hotspot, for example, or a mobile 
network handover from 3G to GPRS.  

2.3 Efficient network connection usage 

The constraints and limitations of wireless technologies have already been highlighted. 
Operating within these limitations means the frugal use of any data upload/download that 
impacts a user’s mobile data plan charges when roaming, user experience responsiveness, 
and device battery life. Any optimisation of traffic will be appreciated by users, so double 
check if all network transfers are really necessary, protocols are chosen optimally, and 
caching is used appropriately.  

Apart from data traffic, there are a few behaviours in a 3G network that need additional 
consideration. These are caused by the implementation of Fast dormancy, a feature that 
aims to minimise network signalling and battery consumption, both key issues given the 
increasing number of smartphones and online applications.  

When a device requests data to be sent or received over a mobile network, the device 
switches from an idle to a dedicated channel state that consumes about 60-100 times more 
power compared to the idle mode. However, the very process of switching requires sending 
network signalling messages that also take a certain amount of time. Keeping the device in a 
high power state is not an ideal option as the battery will drain rapidly.  

Between the idle and dedicated channel states there are few more 3GPP radio resource 
control (RRC) states that come into use. Fast dormancy technology defines an algorithm that 
dictates when a device can be switched to lower state after the last data transmission. 
Figure 6 below shows how the power drops after a certain period of inactivity in data 
transfer. Times T1 and T2 are network dependent.  

 



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 14 of 67 

Figure 6: Power Consumption – Example 1 

Once the state has switched to idle, establishing a new data connection may require the 
exchange of between 24-28 signals with the network, which could take one to two seconds.  

This is an example of when the app has many short connections over a specific period of 
time: 

 

Figure 7: Power Consumption – Example 2 

The red-hatched areas in Figure 7 show the overhead in battery usage compared to Figure 8 
when all data connections are synchronised and completed in the same time.  

 

Figure 8: Power Consumption – Example 3 

Although most the timers and conditions of switching between the channel states are 
network dependent, it is good to at least have an example of the approximate 
characteristics.  

According to tests that have been done by XMPP Foundation:  

Dedicated channel (the highest level) consumes about 380mA which can drain an average 
smartphone battery in less than four hours. The time before dropping to the lower state is 
approximately eight seconds  

FACH (shared channel – intermediate level) consumes about 140mA. In order to keep this 
state and prevent switching into the higher power mode, the packet sizes must be around 
128 bytes and after deducting TCP and TLS overheads this leaves only about 70 bytes of 
actual data. Timeout before switching to the lower state is around eight seconds. Battery life 
can reach a maximum of around seven hours in this mode.  



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 15 of 67 

The general recommendation is to transfer data in one go and not spread network activities. 
This should be done across multiple apps where possible and within apps (see 2.2.1).  

In the ‘across apps’ scenario, the available scheduling mechanisms of the OS or the target 
application framework should be used. These are meant to ensure that the app’s network 
activities, such as HTTP requests, are synchronised with other applications to achieve the 
behaviour explained in Figure 8 (for an example, see 4.2.9 for details on scheduling in the 
case of Android).  

The same principle applies to push notifications too. Unless your app has real-time 
requirements you should not push notifications more often than you would have polled (sent 
a request to see if new data is available), if push was not available.  

References XMPP on Mobile Devices: http://xmpp.org/extensions/xep-0286.html#sect-
id115219  

3 Ideal mobile application 

We have already established the type of constraints that mobile apps need to address, 
where critical resources (such as battery, memory and processor) have certain limits.  

Key generic characteristics of functionality or user case scenarios are addressed in 
subsequent sections.  

 

3.1 Asynchrony 

The concept of asynchrony has already been introduced briefly in chapter 2. There are two 
main aspects to asynchronous network connections:  

 Network connections should not block the main thread responsible for handling user 
interface and system events 

 If network requests do not depend on each other, they should be handled in parallel 
 Asynchronous networking would always imply separate threads; although it makes 

the tracking of results and the state of an app non-trivial. This drawback, however, is 
well understood and competent solutions provided.  

App architecture is driven by the APIs that platform vendors provide. To a great extent, the 
quality of most app implementations is dependent on the platform vendor’s level of generic 
API support and optimisation at a platform level. For example, creating separate threads and 
managing them effectively should already be part of the underlying features of a target 
platform. This can save you time and money as you don’t need to re-invent the wheel.  

In this context the ideal APIs should have the following features:  

 Creation and management of the network connections can be done from the main 
thread; however, the calls can lead to separate threads that are managed by 
framework transparent to the user  

 All changes of states, received data, errors and timeouts are event driven 
 The connection can be cancelled at any time  

The design of APIs allows the simple management of several connections at the same time 
Developers are recommended to establish connections within a single connectivity session 
whenever it is possible to avoid losing dedicated channel state, which is described in Section 
2.3. This reduces network signalling and, depending on the communication pattern, can 
make a significant impact on device battery life. 



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 16 of 67 

3.2 Connection loss and error handling 

Monitoring connectivity status and error handling are extremely important as mobile 
networks are by definition not in a constant state.  

Most platforms provide information on current connections. It is essential to check if the 
device is actually connected. Sometimes it is necessary to identify the type of connection: 
mobile network or, for example, Wi-Fi.  

Although the actual bandwidth cannot be predicted precisely (as it depends on many factors, 
like signal strength, current network load, etc.), developers may assume that:  

 Wi-Fi networks are generally faster than mobile networks  
 Traffic over Wi-Fi is relatively cheaper in comparison, or free  

If checks show the device is not connected, the app can switch to offline mode and let the 
user work with cached data only. This avoids handling inevitable network exceptions and 
notifications for each network error; the overall user experience is much smoother if constant 
error messages can be avoided. However, if the app switches into offline mode, it is best 
practice to monitor the device connectivity status so the app can switch back into online 
mode once a connection is established. At this point, data synchronisation between the 
server and client can be initiated or resumed. 

Request types  

When establishing the connection, different approaches can be used to display the status to 
the user and determine how to handle any network issues. A network request can be 
identified as user initiated if it is going to deliver the main information requested by the user. 
User initiated network requests can also be considered as primary.  

Non-user initiated requests are those created by scheduled activities or triggered by a 
change in a system state, such as geo-location tracking or sending usage statistics to a 
server.  

Secondary requests usually occur as a result of the primary request and do not bring any 
critical information to the user. Examples of secondary requests could be an image in a 
friends list (the list of names is critical), style sheets or images in web page. 

Cancellation  

Ideally, the user should see the progress of a primary request. It is also sensible to make the 
primary request cancellable, but this depends on the nature of the content and how it 
displays in the UI.  

As a general rule if it is possible to perform any other operations on the same UI screen, it is 
a good practice to ensure ‘cancel’ is available as an option.  

A good example when cancellation improves usability is the web browser, which is just 
another network-enabled application. A user can load different web pages on the same 
screen, so if the loading of one page takes too long, or there is a mistake in entering the 
address, the user can cancel the request and open a different web site.  

When the primary request is cancelled, all secondary requests should be cancelled 
automatically.  

Error handling  

Mobile apps should always be prepared to handle situations when network requests fail. 
Most secondary requests can fail without a major impact on the user experience. Sometimes 
it is appropriate to indicate subtly in the UI that information for a secondary request cannot 
be delivered, such as broken image placeholders in web browsers or silhouette images in a 
contacts list.  



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 17 of 67 

When a primary request fails, it means that the main functionality cannot be completed and 
this is where error handling becomes important for the user experience.  

As proposed earlier, it makes sense to distinguish between a user initiated request and non-
user initiated (scheduled). If the request was user initiated and the information is expected to 
be delivered rapidly, then a modal error notification such as ‘Retry’ or ‘Retry later’ is 
appropriate. If a request is supposed to take longer time, and the user expects delivery to be 
guaranteed, for example, downloading music, an electronic book or a digital issue of a 
magazine, then in case of network failure, the app can automatically try to re-establish the 
connection. If up to five attempts have failed, then the request can be suspended (but not 
cancelled) with an option for manual resume later. It is also important to not lose any 
downloaded data and to be able to resume the download from the place where it has 
stopped rather than starting from scratch.  

Retry mechanisms can vary and depend on the importance and volume of downloaded data. 
Possible solutions can be:  

 Simple counting of failed attempts since the connection was first established (often 
the easiest solution).  

 The number of failed attempts within a certain period of time.  

For example, if the connection is lost more than five times within an hour, then the request 
can be suspended. This can be a more reliable technique to avoid short but regular network 
problems, such as when a device is moving away from one network cell to another. The 
connection can be lost when the device switches between cells, but when the cell is 
providing good coverage; the request can be processed successfully.  
 
Regardless of the mechanism chosen, it is important to ensure that a failed operation will 
only be retried a limited number of timers. Without such a limit, an application may retry a 
failed operation for days or weeks while running in the background incurring data bandwidth 
usage and battery drain. 

If the request is not user initiated then error notification can be either non-modal with a retry 
option or not shown at all. However, if the request is scheduled and repetitive, then it would 
make sense to change the interval dynamically to avoid re-establishing connections too 
frequently during network loss over a long period of time. Recommended retry intervals are 
one minute, then five minutes, and then 15 minutes. More frequent retries will drain the 
battery rapidly.  

Resuming large downloads  

The HTTP protocol supports requesting parts of files that can be used for resuming 
downloads. If the server supports it and the content can be returned split (i.e. content is not 
dynamic), then the server may include HTTP Header as described in sections 14.5 and 3.12 
of RFC2616: 

 

Accept‐Ranges: bytes 

 

The client can send subsequent requests for part of the file, specifying the download, for 
example, download first 500 bytes  

 

Range: bytes=0‐499 

 

Or for segment starting from 9500th byte: 

 



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 18 of 67 

Range: bytes=9500‐ 

 

The response HTTP Status 206 (Partial Content) will show if the requested range is correct, 
otherwise, there will be status 416 (Requested range not satisfiable). See Section 14.35 of 
RFC2616 for more details.  

Section 3.f below describes how the verification of cached version can be done in HTTP 
using an ETag (entity tag). It is also possible to retrieve partial content with preceding 
verification of the content version by the HTTP request header If-Range, as specified in 
Section 14.27 of RFC2616. The idea is that the value of the If-Range header should contain 
the ETag value and the same request should also have a Range header specifying what part 
of content is to be received if the ETag is valid. If the server verifies the ETag, then the 
partial content should be returned, otherwise, the full version of the updated content will be 
sent.  

Though the client can also use a Range header with conditional headers such as If-
Unmodified-Since or If-Match, if the condition fails then client should handle the HTTP status 
code and a new request for retrieving the updated content. The If-Range header can help to 
do this in a single request using either ETag or last modified date.  

Support for resuming downloads is extremely important for large content transfers on mobile 
devices, especially with the growing number of tablet devices, where quality of content is 
relatively high for a big display size. For instance, a single issue of a digital magazine can be 
200-400 Mb. It is not acceptable for the user to have to download the whole file again if the 
network fails after already downloading several hundred megabytes.  

 

In summary:  

1. Check connection availability.  
2. In offline mode use cached data.  

a) For any outgoing request that includes user-entered data, the data should be 
saved locally and an attempt made to deliver to the server.  

b) If delivery of the request fails, then the user should be asked if the request 
should be retried or retried later (with permanent saving in case the application 
is terminated).  

If the primary request is done in online mode, then a progress indicator should be used to 
keep the user notified.  

a) If the primary request is supposed to take more than one minute and the user 
expects to get the result however long it takes (download application, song, 
new magazine issue, e-book, etc.), then automatic retry should be 
implemented.  

b) If several consecutive retries have failed, then manual retry can be 
implemented  

c) It is good to indicate the progress of secondary requests, however, failure of 
them is not important and can be displayed only as a special placeholder 
(broken image placeholder for instance).  

d) If the request is user initiated then error notification can be modal.  
e) For repetitive scheduled requests, the retry interval should increase 

dynamically during long periods with no network connectivity.  
f) Applications often fail to determine whether or not the user has any credit 

remaining if on a PAYG tariff. Lack of credit is quite common, and a status that 
may last for some time, so the application should specifically avoid making 



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 19 of 67 

repeated requests as the returned error messages will clog up the network 
and may not reflect the reality of the issue.  

Caching  

Caching is using the most effective means of data storage or transfer. For network 
applications, especially in mobile networks, the cache becomes essential. However, there 
are a few common challenges to address in terms of overall reliability, and ensuring the 
delivery of up-to-date information to the user.  

 

Figure 9: Caching 

Although the entire client/server solution may contain many different levels of cache, 
generally two categories are supported: local cache and server cache. Local cache is used 
to minimise the number of network requests and enable faster delivery of results. The server 
cache works with the local cache to decrease the amount of data transferred via the 
network, whilst ensuring that the user gets the latest version of the information.  

Figure 9 above shows the journey of a regular request from a mobile client to a web server:  

 During the first stage the client checks if the requested content is stored in local 
cache and if it is still valid. If so, the data is sent to the user immediately without 
sending any requests to the network  

 If the local cache contains data but needs validation, the client includes a version or 
checksum or the last modified date of the content that client already has. If the server 
cannot find a newer version of the content, it notifies the client that the local version 
can be used without sending the whole file over the network  

 If there is no local version of the file, or the data is not up-to-date, then the server 
sends the latest version over the network. With proprietary implementations (depends 
on the nature of the requested data), it might be possible to send only changes to the 
local version  

When designing an app, it is best practice to define the types of content that will be used and 
specify the caching strategy accordingly:  

 Content can be cached without further validation. For example, if content has a 
unique identifier and cannot be modified on the server side, such as static photos in 
user albums (usually new photos can be added or old photos deleted, but not 
modified)    

 Content can be cached locally, but needs validation with the server. A good example 
is the user’s profile or profile picture which usually does not change very often but 
occasionally may be updated. 

 Content cannot be cached at all. Examples: audio streaming, chat, etc.  

Depending on the privacy of the content and security of local storage, some cacheable 
content should not be kept on device.  



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 20 of 67 

Local caches face the following problems:  

 Size limitations – Device storage is always limited and depending on the app or the 
data, the cache should be limited to the corresponding size. Sometimes, it may be 
worth giving the user an option to define cache size as it will improve the perceived 
speed of the app for the user 

 Invalidation of content – Usually web content has expiration date that can be 
defined by the server; however, it also can be defined manually depending on the 
nature of the data 

 Prioritisation of content – As storage is limited, eventually the cache will be full. 
New entries in the cache should replace old ones with lower priority. The cache 
storage may have different strategies for this – removing the least frequent used, the 
oldest or the biggest entries  

With HTTP version 1.1 the cache control became part of the standard and is well described 
in section 14.9 of RFC2616: which sets out the options for defining if content can be cached, 
the expiry date and the versioning of the content.  

The HTTP protocol defines a mechanism for checking if the client’s cache has the same 
version as the server. If the server recognises that the client has the up-to-date version of 
the requested data, then the response will consist only of HTTP headers and the whole 
content is not sent which can considerably reduce the network traffic.  

The general idea is that on the first request the server sends a response with an additional 
header that can indicate the version of the content. The second request already comes from 
the client with information about the version to the server and if the server does not have any 
updates to it, it replies with HTTP Status Code 304 (Not Modified), or, otherwise, it sends the 
full content with the new version indication.  

The version can be indicated simply by the last modified date in the Last-Modified HTTP 
response header (See Section 14.29 of RFC2616 for more details). The consequent request 
should come with HTTP request header “If-Modified-Since”, as defined in Section 14.25 of 
RFC2616 or “If-Unmodified-Since”, as defined in Section 14.28 of RFC2616.  

Example  

First request: 

 

GET /image.png HTTP/1.1 

Host: www.example.com 

Connection: keep‐alive 

First response: 

 

HTTP/1.1 200 OK 

Cache‐Control: max‐age=31536000 

Content‐Type: image/png 

Date: Mon, 21 Feb 2011 12:41:47 GMT 

Expires: Tue, 21 Feb 2012 12:41:47 GMT 

ETag: "11f‐49bc3eabc9c80" 

Last‐Modified: Tue, 08 Feb 2011 11:47:46 GMT 

Content‐Length: 28702 

Connection: Keep‐Alive 



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 21 of 67 

Consequent request: 

 

GET /image.png HTTP/1.1 

Host: www.example.com 

If‐Modified‐Since: Tue, 08 Feb 2011 11:47:46 GMT 

Connection: keep‐alive 

Response: 

 

HTTP/1.1 304 Not Modified 

Date: Mon, 21 Feb 2011 12:44:07 GMT 

This example shows that consequent requests can produce huge savings. In this case the 
response is short headers that are less than 1KB rather than 28KB of actual content, and 
reliability in delivering up-to-date content. If the server had a more recent copy of the picture, 
it would reply with 200 status and the full content instead of 304 HTTP status.  

Content can also be marked with an ETag (see Section 3.11 of RFC2616) and these must 
be unique across all versions of all entities associated with a particular resource.  

When the ETag is received from the server, then the client can use HTTP request headers:  
 “If-Match” [RFC2616 section 14.24] – to deliver only the version that is requested, 

otherwise HTTP Status Code 412 (Precondition Failed) is returned  
 “If-None-Match” [RFC2616 section 14.26] – to deliver only if the server has any other 

versions other than the client has, otherwise HTTP Status Code 304 (Not Modified)  
 And “If-Range” [RFC2616 section 14.27] – to deliver part of file (using Range header) 

only if ETag matches, otherwise the whole file is delivered.  

Taking the same example, the first response also includes the ETag, so the consequent 
requests either contain either only one condition or both conditions for the ETag and last 
modified date, for example:  

Example : 

Consequent request: 

 

GET /image.png HTTP/1.1 

Host: www.example.com 

If‐None‐Match: "11f‐49bc3eabc9c80" 

Connection: keep‐alive 

 

Response: 

 

HTTP/1.1 304 Not Modified 

Date: Mon, 21 Feb 2011 12:44:07 GMT 

When selecting a caching strategy, it is important for developers to evaluate the pros and 
cons of each mechanism, as differences in server implementations may have a significant 
impact on reliability and efficiency of the caching solution. Both Last-Modified-Since and 
ETag mechanisms have their own pros and cons, so bear in mind the following points:  

 When the same content is distributed between multiple servers, unsynchronised time 
or an unsynchronised ETag generation algorithm can lead to inconsistent marking of 



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 22 of 67 

the content and therefore inconsistent responses from the servers. Server clusters or 
cloud based services are usually prone to such issues.  

 For frequently changing or time sensitive contents (such as strongly related elements 
of the same data) preference should be given to the ETag mechanism, as it handles 
sub-second update issues. 

 

 

3.3 Security 

Although many aspects of security apply to both mobile apps and mobile platforms, this 
section addresses network security, covering secure data exchange between the mobile 
device and cloud web services. The key aspects are:  

 Classification of information  
 Authentication of users on web services  
 Secure data exchange  

The following aspects of security must always be taken into consideration by developers, but 
they are out of the scope of this document. 

Device Security  

Aspects of device access security, such as device unlock and remote wipe of storage in 
case of device loss 

Content protection  

Access control to user’s personal data including personal contact information, address book, 
call history, SMS messages, mobile wallets, current location, passwords, VPN keys, etc.  

 Encryption of locally stored data  
 Protection against attacks  
 Internal and external factors, damage caused by malicious software and viruses  

Classification of information  

When designing mobile apps, it is important to understand user concerns about data privacy.  

In a simplistic way the data is classified as:  



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 23 of 67 

 Public: Information which is freely available on the Internet, can be found by other 
users, and cannot be associated with a particular user  

 Private: The data which can be associated with an identifiable user, leading to 
compromised security  

 

 

Below is an example list:  

 Use case #1: The app provides read-only access to the information which can be 
easily found on the Internet by  other users  

Classification: Public  

 Use case #2: The app presents the same information as in Use Case #1, but some 
feedback is collected and stored in the cloud. This can be customer preferences, 
history of articles viewed, user comments or rating of the content. 

Classification: Private – as data associated with the user can be potentially used 
against him. The same data can be classified as Public if it is anonymised – this 
however, must be made clear to the user. User consent is required in both cases  

 Use case #3: A productivity application, such as “TODO list”, which synchronises 
data to the cloud. 

Classification: Private – the user could store sensitive information within the app, 
such as holiday dates, which can potentially indicate the location of the user. User 
consent is required  

 Use case #4: A messaging or social networking app 

Classification: Private – the user can exchange sensitive information which could 
potentially compromise his security. User consent is required  

When the data flow and sensitivity of transferred information is understood, it is a good time 
to estimate the impact on the user of monitoring (“Sniffing”) of such traffic by an 
unauthorised party. Sniffing of user traffic may occur over Internet connections provided by 
public Wi-Fi access points, those provided by small businesses, or any other  unregulated 
access point. It may take seconds for an intruder to intercept an authentication token and 
impersonate the user. A number of examples of such intrusions can be found on YouTube, 
including impersonation of users on social networks.  

Authentication  

Access to any Private data must be controlled and this is normally achieved by 
authenticating the client. The most basic authentication is achieved by validation of a pre-
registered client ID with a password. Although client ID is most frequently just a personal 
email address of the user, device ID can also represent a client.  

It is important to differentiate device authentication from device identification, where the latter 
does not require password validation and is often used by mobile network operators just to 
trace customers. Solutions relying on device identification pose a security threat if the mobile 
device contains or accesses Private data. Transfer of the mobile device to a different person 
if lost, stolen or sold, will automatically provide access to the data of the previous user.  

Static device IDs such as serial number, telephone number or IMEI in clear form should 
never be used. Obscured device IDs (can be hash code based on the listed IDs) or 
automatically provisioned Unique Identifiers (UID) are acceptable and considered to be a 
good practice.  



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 24 of 67 

User authentication can also be implemented by integration into third-party authentication 
providers, such as Google ID, FaceBook ID or Microsoft Passport. For this reason, refer to 
APIs provided by these vendors or adopt open protocol OAuth (http://oauth.net).  

Authentication must be performed every time the app establishes a new session.  

Whichever approach is used for this purpose, it is important to ensure that:  

 Authentication is performed using secure authentication protocols – Basic 
authentication over HTTPS is sufficient but over HTTP it is not enough. HTTP digest 
would be more appropriate, but again only becomes sufficiently secure over HTTPS. 
In some cases, a combination of stronger authentication over encrypted channel 
(SSL/TLS) is required. Proprietary implemented authentication must be performed 
over secure SSL/TLS based communication channel  

 When a session is established, user or device credentials are not exchanged over an 
unsecured connection, so that session IDs, application PINs, service passwords, etc. 
are never exposed as these will provide an open door for intruders  

 Apps should have an intelligent built-in logic to ensure all parameters related to user 
credentials (e.g. passwords, etc.) are populated prior to sending an authorisation 
request to the server  

Strong Authentication  

 Multi-factor authentication involves a combination of two or more stages. A variety of 
approaches exists – one example is a combination of user and server authentication, 
where verification of the server is performed by the client using additional security 
certificates. This type of authentication is used by businesses for implementation of 
Virtual Private Networks (VPNs).  

Secure data exchange  

 Implementation of secure communication using HTTP over SSL/TLS protocols 
(HTTPS) within the applications is not always favoured due to the effort involved. 
However, extra effort is needed for the implementation of secure solutions, and the 
investment you make in the security of your app will be recognised and appreciated 
by users. In many cases, the additional effort may be only the requirement to 
purchase and install a trusted certificate on the server and update the client to use 
HTTPS instead of HTTP.  

 Encryption/decryption of traffic may have an impact on user experience, as additional 
processing time at both ends contributes to higher latency. This also has an impact 
on battery life. On high-end devices these drawbacks are addressed by hardware 
accelerated encryption, which maximises app performance.  

Input Validation  

The consequences of invalidated user input can be crashing apps, loss of data or theft of 
sensitive information as malware exploits breaches such as buffer overflow, format string 
vulnerabilities, stack overflow or race conditions.  

Although many programming languages check input in standard APIs to prevent buffer 
overflows, native languages such as C, C++ and Objective C put this responsibility on the 
developer. Even though managed languages do aim for prevention, they still may be linked 
to native C libraries, and sometimes, open-source libraries that are not protected from 
defects and potential security problems.  

Ideal platform  

An ideal platform would:  

 Support seamless secure user and server authentication 
 Provide secure transport by default 



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 25 of 67 

 Provide secure storage for credentials  

3.4 Efficient traffic usage  

3.4.1 Cloud-based transformations 

There is a category of mobile apps that use data from public resources such as news web 
sites. However, using public resources which are not under your control poses several risks 
as they fail to exploit standardised APIs, and are often inefficient:  

 The format of data (HTML code) can be changed at any time which may cause app 
failure on the user’s device.  

The amount of data that is required for the app might be significantly more than actually 
necessary, thus increasing network traffic and latency.  

In this case, it is highly recommended to check if there are any APIs (web services) provided 
from the public resource that are standardised, less likely to be changed and contain less 
unnecessary mark-up information.  

Note that the API should not be used to deliver excessive amount of data to the app; 
otherwise its performance will decrease dramatically.  

If no APIs are available, then you can also consider creating your own web service in order 
to have full control over the protocol and data being transferred between mobile device and 
server. In this case, even if the website changes its HTML code, then only the web service 
should be updated with the client remaining unchanged.  

Many third party tools exist that can be used to transform content. A good example is Yahoo 
Pipes (http://pipes.yahoo.com). This provides a graphical user interface to aggregate, 
manipulate and mash up content from different sources around the web. Results can be 
delivered as RSS or JSON.  

A few examples of types of operations that can be done with Yahoo Pipes:  

 Fetch data from different sources like feeds, web pages, Google or Yahoo search, 
Flickr photos  

 Custom input data can be used as an external parameter – i.e. a search query  
 String manipulations such as regular expressions, text analyser, translation, etc.  
 Location builder from a string  
 Mathematical operations  
 Filtering and sorting of the result  

The picture below shows an example Yahoo Pipe that aggregates the results of search from 
four different sources, sorts the items by date and filters out non-unique titles, and compiles 
a result of maximum 40 news stories. It is also possible to combine the feeds of different 
languages and automatically translate them before aggregation  

 



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 26 of 67 

 

Figure 10: Yahoo Pipes solution 

3.4.2 Media Transcoding 

If the inefficiency in text based data formats can be improved by compression, the case for 
media formats – pictures, audio and video – is somewhat more complex as the quality of the 
media has a huge impact on its size. Therefore special care should be taken when 
transferring media.  

Most mobile phones have fairly low (i.e. few-megapixel) cameras; however if an app uploads 
a picture taken by this camera for a social network website, which will reduce the size of any 
picture, there is no point in sending the image in its original quality. The difference in size 
can be around 30-50 times, which can also be the time difference taken in uploading the 
picture.  

The same applies for downloading pictures. If the picture is supposed to be displayed only 
on the mobile device, then there is no point in downloading the original file size. This is 
always applicable, for example, for thumbnails; however, for full-screen photos some 
additional overhead might be allowed to allow users scaling up the image.  

The size of video files can be enormous if a smartphone has an HD camera; in this case it 
might not be possible to upload a video over the mobile network without transcoding to a 
smaller, lower quality file.  

If an app has video playback functionality, then a few points should be taken into account:  

 It is better to not to exceed the resolution of the display where the video is going to be 
played (mobile device display or external display)  
 

If the video is played in real time, then the bandwidth of the current network should be  
checked to identify the appropriate bit rate of video that can be played without constant  
delays. Progressive download and download resuming (section 3.2) may be used  

Apple lays down strict requirements for online video in apps. If the video exceeds either 10 
minutes duration or 5 Mb of data in a five minute period, you are required to use HTTP Live 
streaming; otherwise Progressive Download can be used.  



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 27 of 67 

As an alternative mechanism, MPEG DASH (Dynamic Adaptive Streaming over HTTP) 
provides a standardized, adaptive streaming protocol solution to use network resource 
efficiently. 

Previously there were several commercial products for adaptive streaming such as Apple’s 
HTTP Live streaming, MS’s Smooth Streaming or Adobe’s HTTP Dynamic Streaming. But In 
practice however, media service providers have adopted the streaming solution associated 
to the platform through which they delivered their media content, there was no 
interoperability between them. Acting on the demand from the industry, a standard for 
adaptive streaming, DASH was issued by MPEG. 

More information about MPEG DASH can be found in <ISO/IEC 23009-1:2012>. 

The ideal APIs on the platform to ensure that developers can leverage media transcoding 
would be:  

 Basic image resizing  
 Codecs that allow quality reduction (and size) of the audio file  
 Reducing quality and resolution in order to reduce the size of the video file  
 Support of media streaming protocols such as DASH, HTTP Live Streaming or RTSP  

3.4.3 Presence 

With the growth of presence-based services, it is important to manage high traffic and 
balance load generated by the services. Presence event distribution systems may generate 
numerous and unnecessary traffic such as separate presence subscription requests for 
multiple target users thus increasing the load on the mobile network. As such many common 
methods have been developed to reduce the network traffic generated by Presence event 
distribution systems.  

Developers should consider applying such methods to their application to reduce the 
network traffic. 

However, some optimization techniques may lengthen the delivery time of presence update, 
preventing users from receiving presence in a timely manner. For this reason, developers 
should also consider prioritizing presence information to be delivered when adopting some of 
these techniques 

3.4.3.1 Bundling of individual presence subscription requests 

Based on traditional mechanism, a presence subscription request is sent for each target 
user individually. When the number of target users to subscribe is large, Application 
developers should consider reducing the number of subscription requests by bundling them 
in a single request to reduce the network traffic generated. 

For example, in SIP-based mechanism, RLS (Resource List Server) is a mechanism for 
subscribing to a list of target users. Instead of sending individual subscription requests, the 
watcher (requesting user) sends a single subscription request that contains a list of 
presentities (target users) to the RLS. Based on the list of presentities, the RLS sends 
multiple individual subscription requests to the presence server on behalf of the watcher. 
More detailed information about RLS can be found in <IETF RFC4662 A Session Initiation 
Protocol (SIP) Event Notification Extension for Resource Lists>.  

3.4.3.2 Partial publication 

Partial publication is a mechanism in which the target user sends only the parts of presence 
information that have changed since the previous update. Initially, complete presence 
information is sent to the watcher (requesting user) and then only parts of presence 
information are sent, reducing the amount of necessary data transferred over the network. 



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 28 of 67 

An example of mechanism for partial publication can be found in IETF draft-simple-partial-
pidf format <IETF RFC 5262 Presence Information Data Format (PIDF) Extension for Partial 
Presence>. This technique does not reduce the number of presence notifications but 
reduces the size of the notifications. A watcher device can construct then the complete 
presence information from the partial publication received. 

3.4.4 Email 

Applications that send or receive email should carefully consider how to address a number  

of special cases specific to email: 

a) Large message size 
 

Many servers limit the maximum size of a message that can be sent. When sending large  
messages that may include pictures or video content, it is recommended that the application  
check the maximum message size supported by the server before sending the message to  
avoid wasting a large amount of data bandwidth and battery power transmitting a message  
that the server will not accept. This mechanism is described in RFC1870. 
Similarly, when downloading messages it is recommended to check the message size  
before downloading it to avoid unnecessarily downloading email messages which may be  
arbitrarily large and may not be able to stored or displayed correctly on the device. 

b) Frequent polling for messages 
 

If possible, it is recommended to use a Push Server to notify the application when new  
messages are available on the server. If this is not supported, the client must periodically  
poll the server to check for new messages. Polling is very resource intensive on the device  
and frequent polling can have a significant impact on battery life. Developers are advised to  
carefully select the default and supported polling intervals in their application. 
As a best practice, a default polling interval of 60-minutes is suggested with a minimum  
polling interval of no less than 15-minutes. 

c) Error handling / retries 

 

Special care needs to be taken when re-sending email messages that failed. In many cases, 
it is possible for the client to determine that the failure is permanent and the message can 
never be successfully sent – for example 5xx series errors in SMTP – these cases should 
never lead to a retry. 
In cases where a network error or temporary server error occurred, the number of retries 
should be limited and staggered over time to limit the potential impact on data bandwidth 
and battery life. This is especially important if the client does not limit the maximum size of 
email messages since each attempt could lead to multiple MB of network traffic. 

3.5 Compression 

The HTTP protocol defines the mechanism of transferring data in compressed ways, if the 
server can support it, and most do. Enabling compression is a very simple task for the most 
popular web servers.  

Compression can be very effective for XML or JSON formatted text data, by reducing the 
overall size by 80% on average. For binary contents, like photos or videos, however, 
compression does not make much difference.  

The main idea of the HTTP compression is that if the client supports any of the standard 
compression methods such as GZip, Deflate (zlib) or LZW, then it mentions it in the request 
to the server. If the server supports the listed methods it can send a compressed response.  



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 29 of 67 

The indication that the client supports compressions is sent via HTTP Header Accept-
Encoding.  

Example request indicating that client supports GZip and Deflate compression methods: 

 

GET  /  HTTP/1.1 
Accept‐Encoding:  gzip,  deflate 
Host: www.example.com 

 

Example response indicating that content is compressed: 

 

HTTP/1.1 200 OK 

Content‐Length: 438 

Content‐Type: text/html; charset=UTF‐8 

Content‐Encoding: gzip 

… 

… 

 

RFC2616 section 14.3 and section 3.9 explain the Accept-Encoding header in more detail, 
and particularly, tips on defining the priorities (importance) of using different methods. The 
HTTP compression technique includes negotiation, to make sure that both the client and 
server support the same compression methods, so even more efficient methods can be 
implemented for certain types of content.  

In order to simplify compression, the ideal API for HTTP client would support the main 
compression methods GZip, Deflate (zlib) and compress (LZW) with the corresponding 
Accept-Encoding header added by default and the content decompressed by default. 
However, you would also be able to disable or redefine handling of compression in order to 
support custom methods.  

References Request compression  

http://httpd.apache.org/docs/2.0/mod/mod_deflate.html#input 

Speed Web delivery with HTTP compression  

http://www.ibm.com/developerworks/web/library/wa-httpcomp/ 

RFC2616  

http://www.ietf.org/rfc/rfc2616.txt 

3.6 Background / Foreground modes 

Most mobile platforms support some distinction between background and foreground modes 
for apps. The precise distinction varies from platform to platform but typically an app is said 
to be in the background if no part of its UI is visible and the user is unable to interact with it.  

Given that a user interaction is not possible, careful consideration should be given to this 
aspect of app design to ensure that unnecessary network resources are not being used 
while in background mode. This will generally help to improve the user experience of the 
foreground application.  

More specifically the app will receive some indication from the platform when a transition 
between modes occurs and should take advantage of this to gracefully release (or otherwise 
disable) the following application components: 



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 30 of 67 

 Handlers  
 Timers  
 Network transactions  
 Memory/Objects  
 Media codecs  
 File & databases  

Special attention should be given to apps that interact with the network on a regular basis as 
this drains the device battery and generates signalling traffic. In most cases the app should 
be prevented from interacting with the network whilst in background mode, as there is no 
way to present results, unless a notifications system is used. Idle screen widgets (e.g. 
weather / news) are common culprits here; however, this does not apply for apps such as 
instant messengers, as they need a constant connection.  

There can be no hard and fast rules in this area – for instance a music player is likely to want 
to continue to decode audio even when in background mode. At the very least you should 
review the detailed operation of your app in each state to ensure its resource footprint is 
appropriate.  

Similarly, apps that do need to interact with the network whilst in background mode should 
consider alternative approaches. For example it may be possible to batch the transactions of 
several apps so the background app can “piggy-back” its transactions. This batching 
capability may be provided by the platform itself; it is particularly important for background 
events when there is no user interaction with the phone (e.g. the phone is on a desk). A 
common reason for background apps to access the network is to poll a server, however a 
better approach is to use push notification (if supported).  

The HTTP “Keep-Alive” mechanism is frequently used as the basis for push notification 
systems, but this only works well if there is a centralised client side component for 
receiving/routing notifications (i.e. as part of the platform e.g. Android GCM ).  

If push notifications are not available or not suitable, keep-alive connections can be used to 
replicate a push notification mechanism and avoid frequent polling of data. The main 
advantage of keep-alive over polling is that the connection can be kept open without 
frequent transfer of data, enabling the mobile state to switch to lower power. However, if 
anything needs to be delivered from the server, this can happen immediately. It is also 
necessary to make sure that the connection is still alive by sending non-frequent data 
packets (minimum 10 minutes, but slightly less than30 minutes seem to be the optimal 
setting as many firewall/NAT’s timeout TCP connection after 30-minutes). 

Some platforms provide a richer (more fine grained) application lifecycle than others. You 
should exploit the lifecycle to  its fullest to achieve the best user experience.  

It may be desirable, for example, to retain a group of thumbnails across several application 
states that represent the “active” cycle of the app (where “active” might encompass 
background as well as foreground modes) but release them across states that represent a 
less active cycle. Failing to consider the target lifecycle can result in apps that perform well  
on one platform having poor performance on another.  

You should also consider altering your app’s resource footprint in response to changes in the 
mobile device state. In some cases these may fall within the scope of the application 
lifecycle (e.g. an incoming phone call is likely to result in the app making a transition to 
background mode). Other changes may lead to a different form of notification (apps may 
need to register to receive screen lock event notifications for instance). A useful approach is 
to treat each state transition as a separate use-case and identify those cases that impact on 
the app. This would, for example, show that in the case of the music player mentioned 
earlier it might be worth shutting down the audio decoder task when the speaker is muted.  



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 31 of 67 

Another aspect to highlight is that many apps seem to trigger network activity (e.g. polling, 
status update) when the screen display turns on and the device wakes up from sleep mode. 
The intention may be to obtain/update the latest information when the user starts interacting 
with the device. However, the screen display may turn on regardless of the user’s intention 
to interact with the device, and the device screen may remain locked. For example, the 
screen display may just turn on due alarm clocks or the user tapping the screen display to 
check time. Thus, to avoid unnecessary network signalling / draining of device battery, it is 
recommended to trigger such network activity when requested explicitly rather than being 
triggered by the event of screen display turning on. 

3.7 Application Scaling 

Your app should be designed to ensure that network activity is not concentrated at specific 
times and is tolerant of geographical loading problems  

 Handsets are frequently synchronised to a standard clock source, so frequent 
updates using exact times (especially for apps that are used by many users) may 
cause short overloads to the application servers and the radio network. A better 
example of how to do this is Antivirus tools which launch update requests back to 
servers independently of one another.  Perhaps the most popular example is RSS 
feed used in browser application. They may result in delayed responses and 
impacting user experience. Designing an app to spread network activity timing across 
different devices would reduce such overloads, and improve app performance and 
device battery life. 

 To illustrate the point let us take a closer look at the RSS feed example (where it can 
also be implemented as a native application) 

 RSS newsfeed may require the RSS reader on handsets to check for updates on 
servers periodically (e.g. every 30min), but not necessarily at exact times (e.g. 
XXhr:00min, XXhr:30min). In such cases, it would be ideal to evenly spread the 
network activity timings (i.e. the timings which the RSS readers checks for updates) 
across devices as in Figure 10a below. 

 

Device 1

Device 0

Device n

・
・
・

12:00 12:30 13:00

Device 1

Device 0

Device n

・
・
・

12:00 12:30 13:00

Undesirable application behavior

(App’s NW activity timing aligned across devices)

Ideal application behavior

(App’s NW activity timing spread across devices)

 
 

Figure 10a: Spreading an App’s NW activity timing  

 

 One way to realise such behaviour would be to schedule network activity timings 
using relative times (e.g. “30min from the current time”), and using a timing which 
would not be aligned across devices as the base timing. For example, the base timing 
can be the time when the device bootup. 

 Weather widgets may require data retrieval from servers at exact times of a day (e.g. 
05hr:00min, 11hr:00min, 17hr:00min) when the latest information is made available. 
In such cases, it would be better to spread the network activity timings (i.e. the 



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 32 of 67 

timings which the weather widgets retrieves data) across devices within an 
acceptable time window (e.g. 5min) as in Figure 10b below. 

 

Acceptab le time window o f  NW activ ity

Device 1

Device 0

Device n

・
・
・

11:00 11:05

Undesirable application behavior

(App ’s NW activ ity timing  aligned across devices)

Better application  behavior

(App ’s NW activity timing  spread  across devices)

Device 1

Device 0

Device n

・
・
・

11:00 11:05

Timing when NW activity is needed 
(e.g . timing  when server updates inf o )   

 

Figure 10b: Spreading an App’s NW activity timing within an acceptable window  

 Such behaviour can be realised by including a random offset (within a desired time 
window) when scheduling network activities. E.g. “Activity at 17hr:00min + offset”, 
where the offset is defined with a random function having an uniform distribution 
within the desired window. 

 Developers are recommended to avoid, as much as possible, using exact times for 
an app’s network activities, and to use randomisation design techniques to spread 
network activity timings across different devices. The network capacity of a local area 
will be significantly lower than the product of the number of handsets and their 
assigned bandwidth. On occasions there may be large numbers of users in a specific 
location. In general, apps should use some randomisation design techniques to 
spread network synching and connectivity load.  

4 Detailed Recommendations 

4.1 iOS 

4.1.1 Asynchrony 

An app’s main thread is responsible for all activities including handling of the system 
messages, input events, etc. iOS makes sure that the main thread is always alive by a 
mechanism called WatchDog. This can terminate the process if it does not respond within 
approximately 20 seconds. Therefore, if any synchronous operations are called, you need to 
be sure that these operations can be completed as fast as possible. This becomes critical in 
the mobile network environment, as network timeouts are much longer than the WatchDog’s. 
For example, domain name resolution will be timed out after 30 seconds if there is no 
response from the network.  

iOS APIs are designed to simplify development as much as possible, and in most cases you 
don’t even need to think about creating separate threads, as everything is done 
transparently and asynchronously. However, some of the methods hide synchronous 
networking which should be used very carefully and only in separate threads. Apple provided 
a list of such methods in WWDC’10 which is:  



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 33 of 67 

 Utility methods:  

-initWithContentsOfUrl:  

+stringWithConten-tsOfURL:  
 DNS:  

gethostbyname  

gethostbyaddr  

NSHost (Mac OS X)  

+sendSynchronousRequest:returningResponse:error:  

As explained earlier, network asynchrony is not just calling network functions from the main 
thread to not block UI, but also handling requests and responses independently from each 
other. This can be done by using request queues and, although the standard iOS SDK does 
not provide this functionality, there are a few third party libraries that do.  

iOS is a trademark or registered trademark of Cisco in the U.S. and other countries and is 
used under licence by Apple Inc.1  

“Three20” library wraps Foundation’s classes such as NSURLRequest, NSURLConnection 
to add an extra functionality, for example, more advanced caching, queues and retry 
mechanism. The advantage of using the “Three20” network module can be significant if the 
network activities are integrated with any other “Three20” modules, especially with its user 
interface.  

Another library that gives rich network functionality is ASIHTTPRequest. Unlike “Three20”, 
this library wraps lower level C API – CFNetwork, however, it is an Objective C library. Some 
developers may even prefer ASIHTTPRequest rather than standard Foundation API, as it 
implements many additional features such as:  

 Request queue  
 Simple API for sending POST requests with files attached and post values  
 Tracking progress of a single request or the whole queue with automatic update of 

UIProgressView  
 gzip compressed request bodies  
 Resuming interrupted downloads Section 3.2  
 Background-mode requests  
 Client certificates support Section 3.4  
 Automatic support of network indicator  
 Automatic retry  
 Persistent connections – to reuse single HTTP connections for a several small 

requests  

References  

ASIHTTPRequest documentation  

http://allseeing-i.com/ASIHTTPRequest/How-to-use 

Three20  

http://three20.info/ 

4.1.2 Connection loss and error handling 

As described in Section 3.2, it is good idea to make your app aware of the device connection 
status. If there is no connection, the app can switch to offline mode, avoiding network errors 
and protecting the user experience.  



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 34 of 67 

Apple provides sample code in the “Reachability” project (see reference below) which can be 
used for detecting network status and notifying changes. The method 
reachabilityForInternetConnection would be appropriate for most of the cases.  

If the app detects that there is no Internet connection and offline mode should be used, then 
local data shall be used. The simplest solution without building a local database would be to 
use standard NSURLRequest, but with custom cache storage that supports on-disk cache 
(as described in Section 4.1.3) and cache policy parameter set to 
NSURLRequestReturnCacheDataDontLoad. This will avoid pointless attempts to establish a 
network connection, and will return the result immediately, if anything has been cached. The 
rest of the app can be left unchanged with error handling as if it was using the network.  

For any network request that uploads data to a server regardless of size, for instance, 
uploading a picture, or updating status on a social network, it is advisable to use the Task 
Completion API to ensure content is delivered even if the user minimises the app. It is also 
important to ensure entered content is not lost if the network connection drops, and that the 
task can be retried without the need to re-enter the data or retake the picture.  

Long downloads, such as music files, digital issues of magazines or any other large files, 
should be resumable. If the server and the content support HTTP partial download, the 
request for restoring the download from any part of the file can be initiated by adding the 
HTTP Range header: 

 

// Requests part of file starting from 1024th byte 

[URLRequest setValue: @"bytes=1024‐" forHTTPHeaderField: @"Range"]; 

 

References  

Reachability  

http://developer.apple.com/library/ios/samplecode/Reachability/ 

Network reachability  

http://blog.ddg.com/?p=24 

4.1.3 Caching 

The Foundation framework provides simple to use cache management, giving developers 
control over what can be cached and where. Standard NSURLCache is very limited, 
although the full Mac OS X2 version supports on-disk and on-memory caches, the iOS 
version can store only in memory. Furthermore, by default the capacity of memory cache 
gets set to zero, meaning that even memory cache will not work if it is not enabled explicitly.  

A simple test shows that memory capacity is set to zero by WebView (even if it is not used in 
the UI) from a separate thread. To make the matters worse, the point at which this happens 
is not documented. A simple and reliable workaround is to subclass NSURLCache and 
redefine method setMemoryCapacity which will ignore all calls with value 0 and will pass 
through all other values to the original method.  

Example 

 

‐(void)setMemoryCapacity:(NSUInteger)memoryCapacity { 

    if (memoryCapacity == 0) { 

        return; 

    } 



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 35 of 67 

 

    [super setMemoryCapacity:memoryCapacity]; 

} 

 

The standard class NSURLRequest includes a parameter cachePolicy that can retrieve the 
following values:  

 NSURLRequestUseProtocolCachePolicy – the default cache policy for the protocol 
that is being used for the particular URL request. Suitable for most of the cases in 
online mode  

 NSURLRequestRelaodIgnoringCacheData – ignores any local cache and will try to 
load data from the originating source. Suitable for online mode and for certain use 
cases, when data should not be cached, for example, for keep-alive connections  

 NSURLRequestReturnCacheDataElseLoad – returns data from cache even if it is 
expired. If there is no cached version, then it will try to download the data from the 
originating source. Suitable for certain types of content such as static photos  

 NSURLRequestReturnCacheDataDontLoad – returns data only if it has been stored 
in local cache and does not attempt to retrieve it from the origination source if there is 
no cached version. Suitable for offline mode  

Example:  

 

// Creating URL request 

NSURLRequest  *theRequest  =  [NSURLRequest  requestWithUrl: 
    [NSURL URLWithString:@”http://www.hudriks.com/example.html”] 

    cachePolicy:NSUrlRequestUseProtocolCachePolicy 

    timeoutInterval:60.0]; 

 

// Initiation the connection with the request 

NSURLConnection  *theConnection  =  [[NSURLConnection  alloc] 
    initWithRequest:theRequest delegate:self]; 

 

if (theConnection) { 

    // Prepare for receiving the data 

} else { 

    // Handle the error 

} 

 

The framework also allows the response to be altered before it gets stored into local cache 
by implementing connection:willCacheResponse:. Usually, this method is used to avoid 
caching of some private data, and some implementations do not cache any traffic that goes 
through encrypted protocols such as HTTPS.  

If in-memory cached is used, it would be reasonable to clean up the cached data if the 
application receives a  memory warning.  

Currently, the standard NSURLCache does not support all features of HTTP cache such as 
conditional HTTP request  

headers, for instance, “If-None-Match”, “If-Modified-Since”, described in Section 3.3.  



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 36 of 67 

Although, the default NSURLCache is very limited and cannot help much for implementing 
offline mode, the API still gives a solid framework that can be used for simple integration of 
your own implementation of cache or subclass of NSURLCache class.  

There are a few implementations of custom cache classes:  

 “Three20” framework (see reference below), that has been developed for Facebook , 
also gives a choice of cache storage such as Memory, Disk or Network and provides 
separate in-memory storage specifically for images to optimise performance. 
However, their cache is not subclass of NSURLCache and requires using their 
request classes as well  

 SDURLCache – subclass of NSURLCache with on-disk cache support  

Cache in web applications  

Key facts from Yahoo!’s research into how mobile Safari works on the iPhone regarding 
caching can be used for designing and implementing web applications:  

http://yuiblog.com/blog/2008/02/06/iphone-cacheability/  

In order to be cached by Safari, the HTTP content should include either “Expires” or “Cache-
Control” header.  

 

Expires: <Expiration time in GMT Format> 

Cache‐Control: max‐age = <Expiration time in seconds> 

 

The browser’s cache applies a limit to the cacheable content, which should not be larger 
than 25 KB (or 15 KB according to the latest tests) of uncompressed data. Even if it is 
transferred using HTTP compression, the browser will still uncompress it before trying to put 
it into cache. This means, that the correct distribution of content over small files and the 
minimisation of each file, particularly, JavaScript, CSS and HTML, becomes highly important 
for the performance of mobile web applications.  

References  

Three20 Framework  

https://github.com/facebook/three20 

SDURLCache class  

https://github.com/rs/SDURLCache  

URL Loading System Programming Guide  

https://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/URLLoadingSys
tem/URLLoadingSystem.html  

4.1.4 Security 

Although the iOS operating system is based on Mac OS X and most of the security has been 
inherited from there because of the differences in the usage, there are some discrepancies 
in the APIs and security models.  

iOS security is based on three main services in the Core Services layer, which are:  

 Keychain Services – secure storage of passwords, keys, certificates and other 
secrets  

 Certificate, Key and Trust Services – creating and managing certificates, creating 
encryption keys, encryption and decryption of data, signing and verification of digital 
signatures   



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 37 of 67 

 Randomisation Services – cryptographically secure pseudorandom numbers  

On a higher level, CFNetwork and subsequently URL Loading System use these services, 
for instance for providing secure transport protocols and supporting SSL and HTTPS 
connections.  

Core OS

Applications

Keychain Services
Certificate, Key and Trust 

Services
Randomization Services

CFNetwork

Core Services

 

Figure 11: CFNetwork Component Diagram 

Keychain Services in iOS has a major difference from the Mac OS X version. In Mac OS X, 
Keychain securely saves passwords and if an application requests information, the user is 
asked to give permission by entering his password.  

In iOS the device is already secured by PIN number, and, therefore the user is not asked to 
enter any passwords or confirmations. However, Keychain allows access only to signed 
apps, each has individual storage and cannot access information from any other 
applications.  

As mentioned earlier, URL Loading System supports the HTTPS protocol by default, so 
developers do not need to put any extra effort in establishing a secure connection with the 
server (if the server also supports HTTPS).  

Apple has also done a great job in supporting developers and we highly recommend that you 
take note of the following documents from the Apple Developer Network:  

 Secure Coding Guide: covers all aspects of security, not only network security. 
Explains in detail topics such as buffer overflow, stack overflow, input validation, how 
these can be used by attackers to run malicious code and how this can be avoided. 
The design of secure user interface is also touched on in the document which 
explains that security should not compromise usability of an app ¦  

 Security Overview: gives more details about cryptography and secure APIs in iOS 
and Mac OS X  

 Keychain Services Programming Guide: contains a section related to keychain 
services in iOS and gives guidance about how the relevant APIs should be used  

 Certificate, Key, and Trust Services Programming Guide: Explains how the APIs 
for managing and using certificates and encryption/decryption of the data should be 
used. 

4.1.5 Push notifications 

Apple Push Notification service (APNs) is a robust and highly efficient service for 
propagating information from the cloud to iOS devices. Each device establishes an 
accredited and encrypted connection with the service and receives notifications over this 
persistent connection. Apps are notified about information waiting for them on their back end 



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 38 of 67 

servers, and expected to pull this information from the server. If the app is not running, 
notification is handled through the UI and alerts the user to launch the app.  

More details on APNs are available at:  

https://developer.apple.com/library/mac/#documentation/NetworkingInternet/Conceptual/Re
moteNotificationsPG/Introduction/Introduction.html 

4.1.6 Data formats  

JSON 

JSON is very popular these days and some web sites provide access to their APIs only 
using JSON rather than XML.  

The most widely used Objective-C JSON parsers are YAJL, JSON Framework and Touch 
JSON (see references below). Each has its own advantages and disadvantages.  

YAJL is sequential access parser which is similar to SAX parser for XML. As it does not 
need to keep all data in memory, the obvious advantages are low memory footprint and 
parsing speed which would be suitable for huge amounts of data or even streams of data.  

The Touch JSON library shows good results in speed benchmark and it has a very simple to 
use API. For example, to parse JSON into NSDictionary object, the code looks like this:  

 

SBJSON *jsonParser = [[SBJSON new] autorelease]; 

NSString *jsonString = ...; 

return [jsonParser objectWithString:jsonString error:NULL]; 

 

It can be even simpler by using NSString extensions: 

 

NSString *jsonString = ...; 

return [jsonString JSONValue]; 

 

Encoding to JSON can be done by NSObject extension: 

 

NSString *jsonString = ...; 

NSDictionary *data = ...; 

 

jsonString = [data JSONRepresentation]; 

XML  

iOS SDK provides only the event-driven XML parser NSXMLParser which works in the same 
way as the SAX parser, but instead of callback functions it sends messages to its delegate:  

 parser:didStartElement:namespaceURI:qualifiedName:attributes:  
 parser:foundCharacters:  
 parser:didEndElement:namespaceURI:qualifiedName:  

There is also an alternative third party event-driven XML parser called AQXMLParser that 
gives considerable memory savings.  

If the app needs a tree-based parser, despite memory consumption, it is possible to use the 
libxml2 library that is already included on the iPhone, however, it is a pure-C interface. The 



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 39 of 67 

other alternative might be using Objective-C Touch XML framework which is a wrapper for 
the libxml2 library.  

As a rule of thumb, light-weight protocols should be used as they are much more suited to 
the mobile environment. A good example is using REST where possible instead of SOAP as 
REST protocols are much more suited to the mobile environment. 

References  

YAJL  

http://github.com/gabriel/yajl-objc 

JSON Framework  

http://github.com/stig/json-framework 

Touch JSON  

http://github.com/schwa/TouchJSON 

AQXMLParser  

http://github.com/AlanQuatermain/aqtoolkit 

Touch XML  

http://github.com/schwa/TouchXML  

4.1.7 Compression 

iOS supports compression (gzip and deflate) by default and automatically adds “Accept-
Encoding” header to all requests and then decompress the response. This increases the 
efficiency of data traffic.  

ASIHTTPRequest library supports gzip only and “Three20” also supports gzip and deflate as 
it wraps the standard NSURLRequest.  

4.1.8 Background / Foreground modes 

With version 4, iOS started supporting multitasking on almost all devices apart from the 
iPhone 2G, iPhone 3G and corresponding models of the iPod Touch. However, the iOS 
version is not the same as the multitasking that developers are used to on desktop operating 
systems. The main difference is that iOS multitasking limits background activities due to the 
limited resources of the mobile device and the different usage of mobile apps.  

iOS gives developers seven different background services that can be implemented in apps 
 Fast application switching – suspending the app with preservation of its state and 

quick resume  
 Push notifications – delivery of backend information to an app not currently running 

in foreground mode  
 Local notifications – scheduling of delivery of push-style notifications, while an app 

is suspended or closed   
 Background audio – playing audio content through the unified playback system on 

the device while an app is in background mode  
 Task completion – gives extra time to complete a task in background  
 Location and navigation – tracking the location changes  
 Voice over IP – making and receiving calls using an Internet connection  

Almost all these services may involve network activities (apart from fast application switching 
and local notifications), and extra care should be taken to not reduce device battery 
performance or overload the network.  



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 40 of 67 

Push notification is a well optimised technology compared to polling data. However, if not 
used carefully, it can cause problems in the network, mainly related to simultaneous 
broadcast of notifications to many devices (latest news, promotional offers, etc).  

Other background services such as background audio, task completion, location and 
navigation and VoIP can be used for establishing frequent network connections, and can 
therefore drain the battery very quickly. The general advice here is to consider which data 
requires immediate delivery and which can be aggregated with its delivery postponed.  

The Task Completion API gives some flexibility for developers to run almost any code, 
however, the intention is to give the app extra time to finish activities initiated while the app is 
in background mode. As soon as these are complete, the app can be suspended without 
using any resources.  

This can be very useful for network operations that may take long time or require a certain 
level of reliability, for instance uploading pictures, or sending a text message/email. To start 
a connection in background mode, method beginBackgroundTaskWithExpirationHandler: in 
UIApplication should be called and when the activity is finished or it has failed, then 
endBackgroundTask: should be called iOS. 

However, if the Task Completion API is not used, then the corresponding delegates for 
NSURLConnection are still called after resuming the app. If this happens within the network 
timeout (by default, 60 seconds), then the response may still be delivered, otherwise, 
delegate didFailWithError: is called.  

Backward compatibility  

As multitasking is not supported on the iPhone 3G and 2G and the iPod Touch 1st and 2nd 
generations, even if they have iOS 4 installed, it is important to check if an app can use the 
corresponding APIs on the device.  

This can be done as follows:  

 

[[UIDevice currentDevice] isMultitaskingSupported] 

 

Or 

 

if([someObject respondsToSelector: @selector(methodForMultitasking)) { 

    ! [someObject methodForMultitasking]; 

} else { 

    // ... 

} 

 

Network usage  

In order to maintain connections in VoIP applications, iOS provides a mechanism to set a 
keepalive handler with setKeepAliveTimeout:handler: on UIApplication, which will be called 
automatically by the system. The minimum interval is 10 minutes, however, using slightly 
less than 30 minutes seems to be the most optimal for maximising battery life.  

The operating system does not guarantee that keepalive handler will be called exactly at the 
requested time, as it performs various optimisations for waking up the system and aligning 
several timers to be triggered simultaneously.  



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 41 of 67 

To ensure optimal use of resources, apps should share a TCP connection where possible.  
Therefore, a single TCP session should be used for all communication but if this is not 
possible, no more than four TCP connections should be used at any one time.  

Similarly, apps should not keep connections open when they have completed their task(s). 
All TCP sessions should be torn down correctly with FINs and should not be left in an 
undetermined state. This removes the need for a persisting state in the mobile 
(memory/battery) and in the network.  

Device states  

Apart from supporting multitasking, the app should also be aware of different states, such as 
screen lock/unlock, switching to phone call and back. In the main, this can be done by 
handling applicationDidBecomeActive:, applicationWillResignActive:. If there are any heavy 
operations that use the device’s resources (graphics, network), then it would be better to 
suspend them if possible.  

iOS also allows the app to prevent the device from going to sleep mode as follows 

 

[[UIApplication sharedApplication] setIdleTimerDisabled: YES] 

 

If the app relies on a network connection and needs to be connected even when the device 
is in sleep mode, then the parameter UIRequiresPersistentWi-Fi shouldl be added into 
Info.plist file. Without this parameter, any Wi-Fi connectivity will be disconnected after a 
while.  

References Audio  

Session in screen lock  

https://developer.apple.com/library/ios/#documentation/Audio/Conceptual/AudioSessionProg
rammingGuide/Introduction/Introduction.html 

4.1.9 Scheduling 

Scheduling the network activities of a third party app in synch with requests from other third 
party apps is not supported on iOS. 

4.2 Android™  

4.2.1 Asynchrony 

Section 2.2.1 sets out the generic principles surrounding the use of asynchrony to enhance 
user experience during network activity. These principles are as applicable to Android as to 
other platforms.  

It may be worthwhile extending the technique slightly to introduce some notion of “throttling” 
to avoid fully saturating the available bandwidth. This will improve the overall user 
experience (by allowing network requests from other parts of the UI to be met) and improve 
resilience to adverse network conditions (a fully saturated connection is more likely to lead to 
failed requests).  

4.2.1.1 Implementation Details 

Android implements the subset of the Apache Http APIs org.apache.http to support network 
activity using the “blocking” I/O model. Non-blocking I/O org.apache.http.impl.nio is not 
supported at present, so apps need to implement asynchrony using standard Java 
constructs and the supporting classes provided by the Android framework.  



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 42 of 67 

Figure 12 shows the classes required to support asynchrony in a simple Android app that 
fetches and displays a bitmap from the network in response to a button press. It consists of 
two activities MainActivity, ShowBitmapActivity and a helper class AsyncHttpReq.  

 

Figure 12: Asynchrony example 

Figure 14 shows the execution sequence of the app. Broadly speaking this has five phases, 
each of which run asynchronously with each other.  



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 43 of 67 

 

 

Figure 13: Asynchrony example – Sequence diagram 

Each phase illustrates a different aspect of asynchrony:  

 The application’s MainActivity class is responsible for creating the initial UI (including 
a button click listener).  More importantly it creates an instance of Handler that will be 
used to receive asynchronously coarse-grained  status messages during the course 
of the HTTP request  
 

The button listener’s onClick method is invoked asynchronously when the user presses the 
button. At this point an instance of AsyncHttpReq is constructed and its Thread is started  
Some time later the Thread associated with the AsyncHttpReq will run. It sends a message 
back to the handler to indicate that processing of the request has begun. A further message 
is sent with the result when the request is complete (or times out). These messages are sent 
asynchronously  

HTTP activity uses the blocking APIs and may take some time to complete depending on 
network conditions and image size  

When the handler receives a message indicating that the request has been successful it 
starts the UI to display the bitmap  



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 44 of 67 

This example does not implement throttling, as each request will be processed as soon as 
the associated Thread is run, potentially saturating the available bandwidth. In its simplest 
form throttling could be implemented using a queue and limiting the number of 
simultaneously active requests.  

After Android 1.5 a lightweight method is introduced by the platform to simplify the task. A 
utility class called AsyncTask is written to provide a simple way to achieve background 
processing, without worrying too much about the low-level details (threads, message loops 
etc). It provides call-back methods that help to schedule tasks and also to easily update the 
UI whenever required – demonstrated in the article “Painless Threading” (see below).  

However, please bear in mind that AsyncTask is a lightweight solution with some limits:  

 AsyncTask uses a static internal work queue with a hard-coded limit of 10 elements. 
Trying to download 30 images from the server, for example, would cause the work 
queue to quickly overflow and many tasks would get rejected  

 AsyncTask can’t survive its Activity being torn down by the OS and recreated. If this 
behavior is not desired, it is recommended to use a Service instead 

a) AsyncTask is meant to be used for short operations of around a few seconds 
only 

 It is not possible to interact with background thread and exceptions are not well 
handled  

In most cases, AsyncTask is acceptable, but for complex cases where the above limits arise, 
you would need to build your own worker/handler solution.  

References  

Painless Threading  

http://developer.android.com/resources/articles/painless-threading.html  

4.2.1.2 Non-Blocking User Interface 

Unresponsive user interfaces are perhaps the most common cause of user frustration with a 
particular app. With Android, unavoidable delays and unresponsive applications typically 
lead to a blocked UI.  

Unavoidable Delays  

It is quite common for an app to be faced with unavoidable delays, for instance when 
downloading large files from the network or processing large images. However even when a 
delay is unavoidable the app should try to ensure that the UI is not blocked.  

Android provides some UI widgets to help to improve the user experience during these 
delays. When the delay is known to be brief (less than five seconds, for instance) it is 
acceptable to use the ProgressDialog (see Figure 14).  

 

Figure 14: Android ProgressDialog 

 

 

These still block the UI but are at least preferable to a frozen screen. For longer delays the 
ProgressBar view can be incorporated as part of the layout and driven from a helper thread 
associated with the current Activity. This allows the other parts of the UI to remain active.  

Unresponsive Applications  



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 45 of 67 

When an app blocks the Android UI for more than a few seconds, the “Application Not 
Responding” (ANR) message will display, requiring the user to choose whether to continue 
with or abandon the app.  

 

Figure 15: Activity Not Responding Dialog 

Clearly this is highly undesirable. In most cases, the user will close the app, and the internal 
data-structures will need to be recomputed if the user subsequently reruns the app.  

To avoid this, apps should be structured to minimise the amount of work done in any 
methods that run in the main thread (typically the Activity life-cycle methods e.g. onCreate(), 
onResume()). For Activities, the easiest way to do this is to offload the work to a child thread 
and provide a Handler class which the child can use to indicate when the work is complete.  

Garbage collection can also lead to noticeable delays in the user interface. To a certain 
extent this is unavoidable but minimising the number of objects that are created in main 
thread methods will help.  

4.2.2 Offline mode 

A common problem with mobile app design is the default assumption that a connection is 
always available, and the lack of a connection is treated as a corner case or error condition. 
This approach is reinforced through the common use of emulators (which are effectively 
always connected) during the development process.  

A safer approach is to assume that a connection is seldom available and design the 
architecture of the app accordingly. This approach tends to encourage the development of 
stronger abstractions between the app and its data and this in turn is likely to lead to an 
architecture that lends itself more easily to the kind of asynchronous implementation 
discussed earlier. Taking this approach to its logical extreme, apps would direct all network 
traffic to a local service implementing  a shared intelligent local persistent cache.  

Whatever approach you decide to take, Android provides several options for storing and 
accessing persistent data.  

References  

Data Storage  

http://developer.android.com/guide/topics/data/data-storage.html 

Bandwidth Awareness  

The Android Connectivity Manager can be used to determine the connection state, and the 
application can also register to receive status updates. An instance of NetworkInfo can be 
obtained via the Android Connectivity Manager, and with it, it is possible to determine if the 
currently used Network interface is roaming and possibly limit network traffic. 



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 46 of 67 

Where a throttling strategy has been used, (as outlined in Section 4.2.1), the connection 
status can be used to dynamically alter the throttle settings e.g. to increase the number of 
simultaneous requests that are allowed when a Wi-Fi connection is present.  

4.2.3 Caching 

Android’s browser makes use of internal APIs to support HTTP caching. These APIs are not 
available to other applications and so extra effort is needed if caching is to be supported. 
According to RFC-2616, a possible sequence diagram could be as in Figure 16 on the 
following page:  

 
Figure 16: Http Caching – Sequence diagram 

The full implementation of HTTP cache is laborious. Apache HttpClient implements 
CachingHttpClient, a drop-in replacement for a DefaultHttpClient, to provide an HTTP/1.1-
compliant caching layer, but it is not available under Android. The flow in Figure 16 has to be 
implemented manually. A simple conditional get can be implemented as below:  

 

class ConditionalGetExample { 

    String entityTag = ""; 

    String lastModified = ""; 

     

    public void start() throws HttpException, IOException { 

        HttpClient client = new DefaultHttpClient(); 



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 47 of 67 

        HttpGet request = new HttpGet(("http://www.apache.org”);         

        setHeaders(request); 

        HttpResponse response = client.executeMethod(method); 

        processResults(response);   

    }    

         

     

    private void setHeaders(HttpGet  request) { 

        request.setHeader("If‐None‐Match", entityTag); 

        request.setRequestHeader("If‐Modified‐Since", lastModified )); 

    } 

     

    private void processResults(HttpResponse response) throws HttpException { 

        if(response.getStatusLine().getStatusCode() == 

            HttpStatus.SC_NOT_MODIFIED) { 

            Log.d(“Http cache”,  

            "Content not modified since last request"); 

            return; 

        }  

        else { 

            entityTag = retrieveHeader(method, "ETag"); 

            lastModified = retrieveHeader(method, "Last‐Modified"); 

            // process fresh content here! 

        } 

    } 

 

    private String retrieveHeader(HttpResponse response, String name) 

        throws HttpException { 

        Header[] headers = response.getHeaders(name); 

        String value = ""; 

        if(header.length > 0) { 

            value = header[0].getName(); 

        } 

        return value; 

    } 

} 

 

If you are using HttpUrlConnection from the java.net package, then Java’s response cache 
mechanism might be another approach. There are three abstract classes: ResponseCache, 
CacheRequest, CacheResponse. You would need to extend these classes for your own 
cache implementation. The flow of events is something like the following:  

 A concrete class of ResponseCache registers with the system by using the static 
method ResponseCache. setDefault(ResponseCache)  



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 48 of 67 

 There are two methods in the ResponseCache that are invoked by the protocol 
handlers. get() returns a CacheResponse and put() returns a CacheRequest  

 The creation of a URLConnection and attempt to read content creates the appropriate 
stream handler, which checks for the content in the cache by invoking 
ResponseCache.get()  

 If the content is found in the cache, it is returned. Otherwise a request is sent to the 
origin server, the response is sent to ResponseCache.put() to see if the content is 
cacheable (based on the response headers)  

A reference implementation is in the article below. The work of cacheability determination, 
placing the resource content in the cache, evicting the content based on the “Expires” or 
“Date” headers, and retrieving the resource will be done by your own cache implementation.  

References  

Using ResponseCache in an Android App  

http://codebycoffee.com/2010/06/29/using-responsecache-in-an-android-app/  

4.2.4 Security 

Android exposes a number of standard Java APIs to support security:  
 java.security package provides classes and interfaces supporting the security 

framework:  
 Generation and storage of public cryptographic keys  
 Message digest and signature generation  
 Secure random number generation  
 javax.crypto package provides additional classes and interfaces for common 

cryptographic operations:  
 Symmetric, asymmetric, block and stream ciphers  
 Secure streams and sealed objects  
 javax.security.* packages  
 Authentication and authorisation  
 Public key certificates  

The whole framework is “pluggable” in the sense that the underlying cryptography 
implementation is abstracted away from the public APIs so that 3rd party providers can be 
supported. Android makes use of two security providers: Bouncy Castle and the Apache 
Harmony APIs. These are explicitly instantiated in the java.security package, extensive 
use of which is made throughout other parts of the Android framework to support e.g. 
HTTPS, SSL Webkit browser etc. 

Use of these APIs within the context of Android is not well documented. However as the 
APIs are standardized there are plenty of generic examples of their use.  

4.2.5 Push notifications 

Google Cloud Messaging (GCM) is the preferred method of pushing data to a device as it 
significantly impacts optimisation. Alternative methods such as SMS are also possible but 
not covered in this document.  

 Existing applications using C2DM (Cloud To Device Messaging)are encouraged to 
migrate to GCM and any new application development should exclusively use GCM. 

 GCM is only available for devices running Android version 2.2 and requires Google 
Play Store.  

 As opposed to C2DM (Android’s old cloud messaging system), GCM does not 
impose any quota on the number of messages delivered to Android devices. GCM is 
not meant for pushing the entire payload to a device, but to notify the application that 
it can go fetch new information available in its server. 



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 49 of 67 

4.2.6 Data formats  

Android includes support for both JSON and XML interchange formats. JSON support is 
provided by four classes in the org.json package:  

 JSONArray – Indexed sequence of values  
 JSONObject – Set of name/value mappings  
 JSONStringer – String conversion  
 JSONTokener – Parse JSON encoded strings into corresponding objects  
 android.util – Provides two further classes for reading/writing JSON encoded stream 

of tokens (includes examples)  

JSON is standardised through RFC 4627 and so not unsurprisingly plenty of examples of its 
use can be found on the web. The Android framework itself makes fairly extensive use of 
JSON – for example Android In-App Billing transaction information is contained in a JSON 
string.  

Android support for XML is provided by the following packages:  
 org.xml.sax – Core SAX APIs ¦ org.xmlpull – Support for XML pull parsing  
 javax.xml.datatype – XML/Java type mappings  
 javax.xml.namespace – XML namespace processing  
 javax.xml.parsers – Processing for XML documents supporting pluggable parses for 

SAX and DOM  
 javax.xml.transform – Transformations from Source to Result with support for DOM, 

SAX2 and stream- and URI-specific transformations  
 javax.xml.validation – API for the validation of XML documents   
 javax.xml.xpath – API for the evaluation of XPath expressions (a simple concise 

language for selecting nodes from an XML document)  
 android.xml – XML utility methods  

Again the Android framework makes extensive use of XML – e.g. the Android application 
manifest, UI layout files and internationalisation all use XML.  

References  

http://developer.android.com/reference/org/json/package-summary.html 

4.2.7 Compression 

Android supports gzip and deflate compression for HTTP content. However compression is 
not enabled by default and so developers need to explicitly add the “Accept-Encoding” 
header to the request and handle the received content according to its “Content-Encoding” 
header.  

The following sample code shows how to add compression using interceptors with the 
Apache HTTPClient:  

DefaultHttpClient httpclient = new DefaultHttpClient(); 

// Add gzip header to requests using an interceptor 

httpclient.addRequestInterceptor(new GzipHttpRequestInterceptor()); 

         

// Add gzip compression to responses using an interceptor 

httpclient.addResponseInterceptor(new GzipHttpResponseInterceptor()); 

 

... 

 



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 50 of 67 

//Request interceptor for adding gzip accept header 

private final class GzipHttpRequestInterceptor implements HttpRequestInterceptor { 

  public  void  process(final  HttpRequest  request,  final  HttpContext  context)  throws 
HttpException, IOException { 

      if (!request.containsHeader("Accept‐Encoding")) { 

          request.addHeader("Accept‐Encoding", "gzip"); 

      } 

  } 

} 

 

//Response interceptor for handling compressed responses 

private final class GzipHttpResponseInterceptor implements HttpResponseInterceptor { 

  public void process(final HttpResponse response, final HttpContext context) throws 
HttpException, IOException { 

      HttpEntity entity = response.getEntity(); 

      Header header = entity.getContentEncoding(); 

      if (header != null) { 

          HeaderElement[] codecs = header.getElements(); 

          for (int i = 0; i < codecs.length; i++) { 

              if (codecs[i].getName().equalsIgnoreCase("gzip")) { 

                  response.setEntity(new 
GzipDecompressingEntity(response.getEntity()));  

                  return; 

              } 

          } 

      } 

  } 

} 

 

//Compression entity used in response interceptor 

static class GzipDecompressingEntity extends HttpEntityWrapper { 

       public GzipDecompressingEntity(final HttpEntity entity) { 

            super(entity); 

        } 

     

        @Override 

        public InputStream getContent() throws IOException, IllegalStateException { 

            InputStream wrappedin = wrappedEntity.getContent(); 

            return new GZIPInputStream(wrappedin); 

        } 

 

        @Override 

        public long getContentLength() { 



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 51 of 67 

            return ‐1; 

        } 

}  

4.2.8  Background / Foreground modes 

Android recognises five different process states:  
 Foreground process: This is the part of the app that is currently visible and with which 

the user is interacting. More precisely an Activity is considered to be in the foreground 
between calls to the onResume() and onPause() methods, so typically the onPause() 
method is where application data ought to be persisted and CPU intensive tasks 
terminated (e.g. application threads, animation + other content rendering)  

 Visible process: Although this part of the app is no longer in the foreground some of 
its UI components are visible.  An example of this would be when a dialog box is in 
the foreground partially obscuring the other activity’s UI  

 Service process: These are started by startService() and do not fall into either of the 
previous process states as  services do not present a UI. Service processes keep 
running until they are explicitly stopped or the system runs  out of memory  

 Background process: Activities whose onStop() method has been called. As no part 
of the activity’s UI is visible it is assumed that these processes can be killed at any 
time (by implication this means that the application must have saved its state 
correctly as a side effect of earlier life-cycle methods)  

 Empty process: These are retained to improve start-up performance of other 
components  

For Activities Android also provides the onSaveInstanceState() to help with persistence. This 
is called (immediately prior to onPause()) when the app is to be destroyed by the system . 
This allows discrimination between this condition (when the user might expect the app’s last 
state to be restored the next time it is run) and when the user has shut down the app (and 
might therefore expect it to run from the start next time).  

For activity lifecycle methods from onPause() onwards the application process can be killed 
at any time after the  method returns.  

Services should not in general run in the foreground, nor should they run continuously in the 
background. They should instead be triggered by some event or woken up periodically to 
perform a task, and then call stopService(), in order to minimise memory and CPU 
consumption and to avoid the risk of being killed by the OS. 

As mentioned in Section 3.6, if developers want their apps to obtain/update the latest 
information at the time when users start interacting with a device already in sleep mode, it is 
recommended to trigger the related network activity when the device screen is unlocked 
(rather than when the screen display just turns on). In terms of Android, this means using the 
ACTION_USER_PRESENT intent to trigger such network activity, rather than using the 
ACTION_USER_SCREEN intent. The ACTION_USER_PRESENT intent is notified when 
the device screen is unlocked, whereas the ACTION_USER_SCREEN intent is also notified 
when the screen display is just turned on. 

4.2.9 Scheduling  

Scheduling an app’s network activities in synch with network activity requests from other 
apps will reduce the signalling load as they are batched together. This is achieved by using 
AlarmManager with setInexactRepeat and an interval constant provided in AlarmManager, 
e.g. INTERVAL_HALF_HOUR. These constants are special in that AlarmManager. 
setInexactRepeat will fire the intents at a regular intervals simultaneously, but not at exactly 
specified times  



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 52 of 67 

AlarmManager am = (AlarmManager)context.getSystemService(Context.ALARM_SERVICE); 

Intent intent = new Intent(context, Poller.class); 

PendingIntent pIntent = PendingIntent.getService(context,0,intent, 0); 

long interval = AlarmManager.INTERVAL_FIFTEEN_MINUTES; 

long firstPoll = System.currentTimeMillis(); 

am.setInexactRepeating(AlarmManager.RTC, firstPoll, interval, pIntent); 

The alarm type can be either AlarmManager.RTC, which uses absolute time (wall clock 
time), or AlarmManager.ELAPSED_REALTIME, which uses relative time (time since boot).  

Unless there really is a need to wake up the application at the scheduled alarm time, ensure 
that AlarmManager.RTC / AlarmManager.ELAPSED_REALTIME is used and not 
AlarmManager.RTC_WAKEUP/AlarmManager.ELAPSED_REALTIME_WAKEUP, i.e. don’t 
wake up the application unless some other app is also being woken up. On devices with 
Google services, schedulers run regularly and will make sure the specified app wakes up 
now and then.  

4.2.10 Spreading network activity timing among different devices 

As mentioned in Section 3.7, it is recommended to design apps to spread network activity 
timing across different devices as much as possible. Some tips in designing Android apps to 
fulfil this goal are explained below.  

Apps requiring periodic network activity but not necessarily at exact times 

For applications requiring periodic network activities but not necessarily at exact times (e.g. 
the RSS newsfeed example mentioned in Section 3.7), it is ideal to evenly spread the 
network activity timings across devices. 

One way to realise such behaviour would be to: 

 Use setRepeating / setInexactRepeating of AlarmManager to schedule alarms for an 
app with: 

 Alarm type set to AlarmManager.ELAPSED_REALTIME; and 
 The base timing of the first alarm set to a timing which would be spread across 

devices (e.g. the timing when the app’s activity is displayed). 

Apps requiring network activity at exact times 

For applications requiring network activities at exact times of a day (e.g. the weather widget 
example mentioned in Section 3.7), it is better to spread the network activity timings across 
devices within an acceptable time window. 

One way to realise such behaviour would be to: 

 Use set / setRepeating / setInexactRepeating of AlarmManager to schedule alarms 
for an app with: 

 Alarm type set to AlarmManager.RTC; and 
 Timing of the (first) alarm set to a summed value of: 
 The desired exact timing (e.g. 17hr:00min); and 
 A random offset within the acceptable time window (e.g. a random offset 

obtained using a uniform distribution function between 0min and 5min). 

Synched NW activity timing of an app due to WAKEUP of another app 

By using the mechanisms mentioned above, it is possible to spread network activity timings 
of an app across devices. However, even for apps designed with such mechanisms, the 
network activity timings may be synched across devices due another app with alarms 
scheduled at exact timings using the WAKEUP functionality (i.e. alarm type set to 
AlarmManager.RTC_WAKEUP). This behaviour is illustrated in Figure 16a below. 



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 53 of 67 

Device Y

Device X

“App B”

“App A”

5PM 6PM 7PM

Device state

“App B”

“App A”

Device state

Awake Sleep mode Awake

Alarm & NW activity
of “App A” spread
(originally)

Awake

Alarm & NW activity
of “App A” pended
(due to sleep mode)

Sleep mode

Alarm & NW activity
of “App A” synched
(due to synched WAKEUP of “App B”)

Awake

 

 
Figure 16a: Synched NW activity timing due to WAKEUP of another app  

In Figure CC, “App A” and “App B” are both installed on Device X and Device Y, where: 
 “App A”: 
 Uses repeated alarms with a 1 hour interval for periodic network activities; 
 Does not use the WAKEUP functionality; 
  “App B”: 
 Has an alarm set at 7PM on both Device X and Device Y; 
 Uses the WAKEUP functionality. 

Originally, the alarm / network activity timing of “App A” is designed to be spread across 
Device X and Device Y (i.e. up to the 5PM hour). By the alarm timing of “App A” in the 6PM 
hour, Device X and Device Y have gone to sleep mode, and hence the intents / network 
activity for “App A” are pended in both devices. At 7PM, Device X and Device Y wake up due 
to the scheduled alarm of “App B” using the WAKEUP functionality. The pended intent of 
“App A” is fired at this timing, and results in synched network activity of Device X and Device 
Y. Note that “App B” may be an alarm clock, which does not incur network activity by itself. 

One way to avoid such unintended synching of an app’s network activity timing across 
devices would be to: 

 Utilize the sleep method of Thread class (i.e. Thread.sleep) to suspend an app’s task 
(even for a short period of time), where: 

 When receiving intents from the AlarmManager for an app, Thread.sleep (with even a 
short period of sleep time) is called before actually running the tasks for that app; and 

 A random sleep time (e.g. a random time obtained using a uniform distribution 
function between 0min and 1min) is used. 

With such careful implementation, for the example illustrated in Figure 16a, the network 
activity timing of “App A” at 7PM (due to the wake up caused by “App B”) can be spread to a 
certain extent across Device X and Device Y. 



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 54 of 67 

It is noted that periodic network activity of an app can also be realised by using 
AlarmManager with set (instead of setRepeating / setInexactRepeating), i.e. by entering set 
after every time tasks for that app are invoked. However, such design will increase the 
probability of synched network activity timing of the app across devices. For example, in the 
case illustrated in Figure 16a, the network activity timing for “App A” is synched across 
Device X and Device Y at the 7PM due to the WAKEUP event caused by “App B”. If “App A” 
has used set to schedule the hourly alarms, the periodic alarm / network activity timing for 
“App A” from thereon will be continuously synched across Device X and Device Y. By using 
setRepeating or setInexactRepeating instead, such unintended periodic synching can be 
avoided, since the base time for the periodically repeated alarms are kept unchanged. 
Therefore, it is recommended to use setRepeating / setInexactRepeating when scheduling 
alarms periodically.   

Alarm type for setInexactRepeating 

As mentioned above, using AlarmManager with setInexactRepeating is useful in bundling 
network activities of multiple apps within a device and spreading network activity timings 
across different devices. However, for earlier Android OS versions (e.g. Gingerbread and 
earlier), it has been noticed that when AlarmManager.RTC is used for the alarm type, the 
alarms are scheduled at specific wall clock times (e.g. XXhr:00min, XXhr:15min, 
XXhr:30min, XXhr:45min). This may result in unintended concentration of network activities 
across different devices, and hence the use of AlarmManager.ELAPSED_REALTIME rather 
than AlarmManager.RTC is recommended. 

4.3 Windows Phone  

For a general overview of Windows Phone networking, please refer to the following article:  

Windows® Networking in Silverlight for Windows Phone   

http://msdn.microsoft.com/en-us/library/ff637320(VS.95).aspx 

4.3.1 Asynchrony   

Windows Phone 7 is the newest smartphone platform. It is designed to operate in 
multithreaded mode and support asynchronous communication out of the box. All network 
access in WP7 is asynchronous and the main networks APIs do not expose synchronous 
methods to minimise the impact on the performance of the UI. As network resources can be 
accessed in a number of ways, it is important to understand the multithreaded architecture.  

Every Silverlight application will have the following threads by default:   

 UI thread – responsible for handling user input, drawing new visuals, and calling 
back to user code   

 Main thread – responsible for handling user code, such as loading and processing of 
data, implementing business  logic, etc.   

It is essential to keep the UI thread as free as possible, as maintaining a lightweight UI 
thread is the key factor of a  responsive app. Access to the network resources can be 
performed from both the user code and XAML mark-up. All  objects referenced from XAML 
are downloaded and processed asynchronously by the Silverlight engine. Network  
resources accessed from the user code are handled by the APIs of the System.Net 
namespace which includes:   

 WebClient class – provides common methods for sending data to and receiving data 
from a resource identified by a URI.   

 WebClient is a wrapper class around the HttpWebRequest class and can be easier to 
use because it returns result data to the app on the UI thread. WebClient supports 



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 55 of 67 

events. WebClient is a higher level API than HttpWebRequest with callbacks made 
on UI thread and support of events   

 HttpWebRequest class – is a lower level API compared with WebClient and provides 
richer functionality and  better control over HTTP communication. Callbacks are 
implemented through a delegate function and made  on the Main thread   

Although both of these classes support asynchronous communication only, it is important to 
understand the differences between them.   

WebClient class  

This class is designed for use from Silverlight controls that are hosted in a XAML page. It 
provides the simplest way of accessing network resources but must be used carefully as it 
operates in the UI thread and canimpact UI responsiveness. Developers should ensure that 
all code referenced by event handlers only performs tasks that are related to updating the 
UI, otherwise this will delay the return of control to the UI thread and make UI operation 
sluggish.  

Here is an example:  

 

try 

{ 

    System.Uri uri = new Uri("http://www.bing.com"); 

    WebClient webClient = new WebClient(); 

 

    // Assign callback event handler 

    webClient.OpenReadCompleted +=  

        new OpenReadCompletedEventHandler(webClient_OpenReadCompleted); 

    // Create a HttpWebrequest object to the desired URL 

    webClient.OpenReadAsync(uri); 

} 

catch (Exception ex) 

{ 

    // TODO: your exception handling code 

    webClientTextBlock.Text = 

        "Exception raised! Message: " + ex.Message; 

} 

 

 

void webClient_OpenReadCompleted(object sender, OpenReadCompletedEventArgs e) 

{ 

    try 

    { 

        using (StreamReader reader = new StreamReader(e.Result)) 

        { 

            webClientTextBlock.Text = reader.ReadToEnd(); 

        } 

    } 



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 56 of 67 

    catch (WebException ex) 

    { 

        // TODO: your exception handling code 

        webClientTextBlock.Text = 

            "WebException raised! Message: " + ex.Message +  

            "\nStatus: " + ex.Status; 

    } 

    catch (Exception ex) 

    { 

        // TODO: your exception handling code 

        webClientTextBlock.Text = 

            "Exception raised! Message: " + ex.Message; 

    } 

} 

 

HttpWebRequest class  

This class is designed for use from the user code and should normally be considered for 
accessing data feeds, submitting data to the cloud and manual handling of static network 
resources. Callbacks are processed via AsyncCallback delegate function and are made on 
the Main thread. This means that all code updating the UI must be synchronised with the UI 
thread, otherwise access to any UI controls or UI related classes (such as BitmapImage) will 
result in a System. InvalidOperationException. In order to synchronise output with the UI 
thread it is necessary to invoke the code through a dispatcher.  

 

Dispatcher.BeginInvoke(() => { /* UI update code */ }); 

 

Before invoking the dispatcher, you should ensure the processing of all non-UI related data 
is complete. Keep this block of code as compact as possible, only perform UI updates and 
don’t perform any unnecessary calculations as anything executed here may further delay the 
rendering of the UI.  

Here is an example of how to use the HttpWebRequest class:  

 

try 

{ 

    System.Uri uri = new Uri("http://www.bing.com"); 

    // Create a HttpWebRequest object to the desired URL 

    HttpWebRequest httpWebRequest = (HttpWebRequest)WebRequest.Create(uri); 

 

    // Start the asynchronous request 

    IAsyncResult result = (IAsyncResult)httpWebRequest.BeginGetResponse( 

        new AsyncCallback(ResponseCallback), httpWebRequest); 

} 

catch (WebException ex) 



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 57 of 67 

{ 

    // TODO: your exception handling code 

    Dispatcher.BeginInvoke(() => 

    { 

        httpWebRequestTextBlock.Text = 

            "WebException raised! Message: " + ex.Message + 

            "\nStatus: " + ex.Status; 

    }); 

} 

 

catch (Exception ex) 

{ 

    // TODO: your exception handling code 

    Dispatcher.BeginInvoke(() => 

    { 

        httpWebRequestTextBlock.Text = 

            "Exception raised! Message: " + ex.Message; 

    }); 

} 

 

 

private void ResponseCallback(IAsyncResult result) 

{ 

    try 

    { 

        HttpWebRequest httpWebRequest = (HttpWebRequest)result.AsyncState; 

        // Obtain WebResponse from the callback result parameter 

        WebResponse webResponse = httpWebRequest.EndGetResponse(result); 

 

        using (Stream responseStream = webResponse.GetResponseStream()) 

        using (StreamReader responseStreamReader = 

            new StreamReader(responseStream)) 

        { 

            // Read response body 

            string contents = responseStreamReader.ReadToEnd(); 

            // Invoke dispatcher to access UI thread 

            Dispatcher.BeginInvoke(() => 

            { 

                // Update UI control 

                httpWebRequestTextBlock.Text = contents; 

            }); 

        } 



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 58 of 67 

    } 

    catch (WebException ex) 

    { 

        // TODO: your exception handling code 

        Dispatcher.BeginInvoke(() => 

        { 

            httpWebRequestTextBlock.Text = 

                "WebException raised! Message: " + ex.Message + 

                "\nStatus: " + ex.Status; 

        }); 

    } 

    catch (Exception ex) 

    { 

        // TODO: your exception handling code 

        Dispatcher.BeginInvoke(() => 

        { 

            httpWebRequestTextBlock.Text = 

            "Exception raised! Message: " + ex.Message; 

        }); 

    } 

} 

 

 

Managing asynchronous requests  

In most cases the monitoring of asynchronous requests is not necessary as responses will 
automatically fail in the case of network errors resulting in WebException being raised. 
Network error exceptions must be always handled appropriately by code, but in some 
scenarios it will be necessary to implement the following:  

 Timeout handling – in asynchronous programming, it is the responsibility of the 
client application to implement its own time-out mechanism  

 Cancellation of requests – for example when the user wants to manually terminate 
network requests  

If an app requires management of asynchronous requests for any reason, references to all 
issued requests need to be stored and their states passed across asynchronous calls within 
the thread. This technique is based on storing parameters related to individual requests in 
the RequestState class. To implement timeout handling and cancellation of asynchronous 
requests, follow this article:  

http://msdn.microsoft.com/en-us/library/system.net.httpwebrequest.abort(v=vs.80).aspx  

Note: Always remember that WebClient callbacks are made on the UI thread  

Note: Keep non-UI related code out of the dispatched code when using HttpWebRequest  

 

References  

HttpWebRequest class  



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 59 of 67 

http://msdn.microsoft.com/en-us/library/system.net.httpwebrequest(v=VS.95).aspx 

WebClient class  

http://msdn.microsoft.com/en-us/library/system.net.webclient(v=VS.95).aspx 

Understanding Threads  

http://msdn.microsoft.com/en-us/library/ff967560(v=vs.92).aspx#BKMK_Threads 

Making Asynchronous Requests  

http://msdn.microsoft.com/en-us/library/86wf6409.aspx 

4.3.2 Connection loss and error handling  

Regardless of the network error recovery strategy chosen for an app, it is absolutely 
necessary to ensure that:  

 Your app never crashes due to a network error  
 Your app informs the user about network issues in an unobtrusive way  

The application error recovery strategy may be as simple as instructing the user to restart 
the app in order to refresh,  or may be more sophisticated implementing offline mode with 
manual or automatic retry or network status monitoring features. Depending on the chosen 
strategy, this list of facts and options is worth considering: 

 XAML referenced network resources are loaded automatically by Silverlight and are difficult 
to monitor. You will have to load these resources into the UI yourself in order to have a 
better control 

 Always catch exceptions from WebCllient or HttpWebRequest when initiating 
requests and reading responses, otherwise your application will crash. The 
WebException.Status property contains a WebExceptionStatus value that 
indicates the source of the error. Code samples for your convenience are given in the 
previous section Error! Reference source not found. Error! Reference source not 
found.. 

 Monitor errors globally and integrate network health flags into ViewModel so that you 
can consistently report connectivity errors and perhaps offer a recovery action 

If all network resources are managed through user code, then consider the following:   

 Design the data transfer routine so it can be restarted at any time. Different parts of 
an app will likely have different routines   

 Manage asynchronous network requests to allow safe cancellation of them. Example 
technique is covered in the previous section 4.3.1 Asynchrony -> Managing 
asynchronous requests   

 Store successfully loaded resources in persistent storage, so they are not reloaded 
every time – this will be a part of an offline mode implementation. Don’t forget to 
clean up the cache. See sections 4.3.3 Caching for extra information   

 Monitor connection status events in order to automatically restart failed data transfer 
routines   

Implementation of good recovery strategy is simpler if the app follows the Model-View-
ViewModel (MVVM) design pattern. Errors are dealt with at the data layer and status 
reported to the UI through ViewModel.   

MVVM design pattern is well covered in this article: http://msdn.microsoft.com/en-
us/magazine/dd419663.aspx 

   

Automatic retry   



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 60 of 67 

Consider implementing automatic retry only when performing lengthy or scheduled data 
transfers. Don’t perform the retry immediately after the failure, as the failed network interface 
requires time to recover. Also, limit the number of retries, otherwise the app can drain the 
device battery. Here is an example of a good algorithm:   

 First retry after one minute   
 Second retry after five minutes   
 Third (and last) retry after 15 minutes   

Tip: Consider Automatic retry for network applications which work under Lock Screen   

Checking network connection status  

Checking connection status on Windows Phone 7 is impractical as this information is not 
immediately available to the app. It may take a couple of seconds to determine the type of 
connection.  

This information is obtained via the NetworkInterfaceType property of the NetworkInterface 
class of the Microsoft.Phone. Net.NetworkInformation namespace. The 
NetworkInterfaceType property returns one of the following values:  

 Wireless80211  
 Ethernet  
 MobileBroadbandGSM  
 MobileBroadbandCDMA  
 None 

Below is an example of how to obtain status and monitor changes of network connection 
type:  

 

using System; 

using System.Net.NetworkInformation; 

using System.Threading; 

using System.Windows; 

using Microsoft.Phone.Controls; 

using Microsoft.Phone.Net.NetworkInformation; 

 

namespace ConnectionStatus 

{ 

    public partial class MainPage : PhoneApplicationPage 

    { 

        // Indicates type of the current connection to the internet 

        private NetworkInterfaceType internetConnectionType; 

 

        // Main Page Constructor 

        public MainPage() 

        { 

            InitializeComponent(); 

 

            // Subscribes to the Network Address Change notifications 

            NetworkChange.NetworkAddressChanged += new 



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 61 of 67 

        NetworkAddressChangedEventHandler(NetworkChange_NetworkAddressChanged); 

        } 

 

        // Standard Page_Loaded event handler 

        private void PhoneApplicationPage_Loaded(object sender, 

            RoutedEventArgs e) 

        { 

            CheckCurrentNetworkType(); 

        } 

 

        // Network Address Changed notifications event handler 

        private void NetworkChange_NetworkAddressChanged(object sender, 

            EventArgs e) 

        { 

            CheckCurrentNetworkType(); 

        } 

 

        private void CheckCurrentNetworkType() 

        { 

            // Checking the network type is not instantaneous 

            // so it is advised to always do it on a background thread 

            ThreadPool.QueueUserWorkItem((o) => 

            { 

                // Determining type of current network interface 

                internetConnectionType = 

                    Microsoft.Phone.Net.NetworkInformation. 

                    NetworkInterface.NetworkInterfaceType; 

 

                // Synchronizing with the UI thread in order to update control 

                Dispatcher.BeginInvoke(() => 

                { 

                    textBlockConnectionType.Text = 

                        internetConnectionType.ToString(); 

                }); 

            }); 

        } 

    } 

} 

 

 

Bandwidth awareness  



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 62 of 67 

In general, app developers do not care how the app’s interaction with the Internet is routed; 
i.e. whether it goes over a mobile or Wi-Fi connection. However for some apps the type of 
connection matters, such as those that offer an enhanced experience over a high-bandwidth 
Wi-Fi connection or those that aim for efficient use of a broadband mobile network.  

References  

NetworkInterface class  

http://msdn.microsoft.com/en- 
us/library/microsoft.phone.net.networkinformation.networkinterface.networkinterfacetype%28
v=VS.92%29.aspx 

4.3.3 Caching  

Caching of network resources is only partially supported by the Silverlight engine. The 
Silverlight UI has in-memory resource cache designed for improving rendering performance 
and optimisation of memory. In most cases this cache is filled with local resources, but 
network resources can be referenced as well. In general this only provides an advantage for 
network resources referenced multiple times from within the XAML mark-up. As this cache is 
stored in memory it isn’t persistent and all data is lost with every process restart. When it is 
most important to improve the performance of apps during the tombstoning cycle, this 
feature becomes absolutely impractical as all data loaded from the network is lost as soon 
as the app is closed or suspended.  

The bad news with respect to HTTP caching is that neither WebClient nor HttpWebRequest 
implement any caching features. Additional effort is required by the developer, but 
depending on requirements it might be possible to put in place some simple workarounds: 

 Cached data feed – before parsing a recently downloaded XML or JSON data feed, 
first save it locally and then parse. Next time check whether the data has to 
bereloaded based on a fixed time interval. If not, load it from the local storage and 
process. This provides a good solution to Windows Phone Tombstoning  

 Image Cache – the approach here is to save downloaded images to the isolated 
storage first and then update the UI.  If the namespace of image URL references is 
consistent it may be possible to implement simple naming for images files stored in 
one folder; otherwise a more sophisticated naming algorithm is needed. For any 
subsequent requests, first check whether the app already has a copy of the 
requested image, and then load it from the folder. This can be good for images that 
never change, otherwise a content expiration policy needs to be implemented and 
integrated with the server  

A few other tips:  

 Bear in mind that not all data should be cached - it depends on the sensitivity of the 
information, its dynamic nature, etc.  

 Some data may never change or expire, such as logos  
 Design independent data loader classes which can be reused throughout the app  
 Don’t integrate the data loader with the ui, always feed data through view model  
 Use httpwebrequest class with data loader, as it enables access to storage apis and 

viewmodel on the main thread from the callback delegate; synchronisation with the ui 
thread will happen in viewmodel  

 The server component may already implement an expiration policy and communicate 
it via cache-control, last-modified or etag http headers (see rfc 2616 for full 
specification). It is relatively easy to read these attributes from webresponse class  

Below are a few examples from the Windows Phone 7 community:  

Offline Data Cache in Windows Phone 7  



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 63 of 67 

http://blogs.msdn.com/b/ukadc/archive/2010/10/21/offline-data-cache-in-windows-phone-
7.aspx 

Image Caching on Tombstoning  

http://briankassay.com/blog/?p=95  

4.3.4 Security  

Secure HTTPS communication is transparently supported by Windows Phone at all levels 
including Silverlight UI framework (XAML referenced resources) WebClient and 
HttpWebRequest APIs:  

 

// Uri to secure resource 

System.Uri uri = new Uri("https://service.live.com"); 

WebClient webClient = new WebClient(); 

 

Or 

 

// Uri to secure resource 

System.Uri uri = new Uri("https://service.live.com"); 

// Create a HttpWebRequest object to the desired URL 

HttpWebRequest httpWebRequest = (HttpWebRequest)WebRequest.Create(uri); 

 

Authentication  

Windows Phone only supports Basic Authentication protocol which does not encrypt user 
name or password. However, in order to implement secure authentication using Basic 
Authentication protocol, it is only necessary to ensure that: 

 Communication at the time of authentication is performed over encrypted HTTPS 
connection   

 Data exchange after authentication is always performed over HTTPS connection   

It is not enough to exchange encrypted user credentials over unencrypted HTTP protocol or 
authenticate the user over HTTPS and then communicate over HTTP. The user’s 
Authentication token can be stolen and credentials compromised.   

Tip: Always communicate over HTTPS when using unencrypted authentication otherwise 
user credentials will be compromised   

Mutual authentication 

Although trusted certificates can be installed on the Windows Phone, in the current release, 
the platform does provide access to the installed certificates from apps. As a result mutual 
authentication scenarios – when the client sends its own certificates to the web service in 
addition to receiving one – cannot be implemented. 

Storing user credentials 

Isolated storage on Windows Phone is considered secure. However, you should make 
additional efforts to encrypt user credentials before saving. This will protect the information if 
access to the application storage is obtained through physical device theft, following a 
jailbreak, or via accessing devices’ backup files. Windows Phone supports a number of 
encryption protocols including AES, SHA1 and SHA256. 



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 64 of 67 

Use an example from the following source in order to encrypt your data:  

http://robtiffany.com/windows-phone-7/dont-forget-to-encrypt-your-windows-phone-7-data 

References 

Web Service Security for Windows Phone  

http://msdn.microsoft.com/en-us/library/gg521147(v=vs.92).aspx 

Security for Windows Phone  

http://msdn.microsoft.com/en-us/library/ff402533(v=VS.92).aspx 

System.Security.Cryptography Namespace  

http://msdn.microsoft.com/en-us/library/system.security.cryptography(v=VS.95).aspx  

4.3.5 Push notifications  

Microsoft Push Notification Service (MPNS) provides a resilient, dedicated, and persistent 
channel to send data to a Windows Phone application from a web service in a power-
efficient way. Each device maintains one connection with MPNS to receive notifications from 
the cloud. MPNS prioritises delivery of notifications and differentiates between Immediate, 
Medium and Low priorities. Medium and Low priority notifications are normally delayed and 
aggregated with other messages to reduce impact on device battery life, network traffic and 
therefore network signalling. MPNS also differentiates between Toast, Tile and RAW 
Notifications.  

More information on APNs is available at:  

http://msdn.microsoft.com/en-us/library/ff402537(v=vs.92).aspx 

4.3.6 Data formats  

Windows Phone 7 provides extensive support for XML-based services out-of-the-box 
including WCF, XML serialisation, DOM parser, Language Integrated Query (LINQ), XSD 
validation, etc.  

JSON is only partially supported, with a limited serialiser. For richer support of JSON, 
consider Open Source product Json. NET (see reference below) which has a more flexible 
serialiser, LINQ, conversion of JSON to and from XML.  

References  

Json.Net  

http://json.codeplex.com/ 

DataContractJsonSerializer class  

http://msdn.microsoft.com/en-
us/library/system.runtime.serialization.json.datacontractjsonserializer(v=VS.95).aspx  

4.3.7 Compression  

The current Windows Phone 7 APIs do not support HTTP compression and fixing this issue 
is extremely difficult due to a number of limitations. Although decompressing content 
encoded with GZip and Deflate algorithms is not difficult, and open source libraries such as 
Silverlight SharpZipLib are available, integration with WebClient and HttpWebRequest APIs 
is currently not possible due to protection put on HTTP Header “Accept-Encoding”.  

Example:  



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 65 of 67 

 

// The following code will throw ArgumentException with the following message: 

// The 'Accept‐Encoding' header cannot be modified directly. 

// Parameter name: name 

httpWebRequest.Headers[HttpRequestHeader.AcceptEncoding] = "gzip"; 

4.3.8  Background / Foreground modes  

Third party apps on the Windows Phone platform can only work in the foreground and under 
the Lock Screen if permitted to do so. Every time a normal app loses focus or calls Launcher 
or Chooser, it is immediately instructed to shut down and is given 10 seconds to save data. 
This process, called Tombstoning, supports the navigation interface and app with some tools 
allowing the app to restore, save and then restore its state when reactivated. Tombstoning, if 
not properly addressed, can have a significant impact on network traffic, and user 
experience in general as apps often reload data from the network when reactivated. This is 
considered bad practice and should always be addressed by developers. Where 
appropriate, delay frequent updates – for instance don’t refresh a weather feed if the data 
was loaded minutes ago.  

References 

Silverlight SharpZipLib  

http://slsharpziplib.codeplex.com/ 

Execution Model for Windows Phone (Tombstoning)  

http://msdn.microsoft.com/en-us/library/ff769557(v=vs.92).aspx  

4.3.9 Scheduling  

Although this document references features and SDK of Windows Phone’s first release 7.0, 
the major release of Windows Phone 7.5 ‘Mango’ addresses the need for scheduling of 
some background activities via Background Agents. These allow an app to execute code in 
the background, even when the app is not running in the foreground. Different types of 
Scheduled Tasks are designed for different types of background processing scenarios, with 
different behaviours and constraints.  

 PeriodicTask – Implements periodic agent which runs for a small amount of time on a 
regular recurring interval  

 ResourceIntensiveTask – Implements periodic agent which runs for a relatively long 
period of time when the phone meets a set of requirements  

Each app may have only one background agent, implemented as an app component but 
with its lifecycle managed independently by the OS. In a simplistic example, the OS would 
periodically execute all registered agents in turn,  so that only one agent is active at a time 
and has a limited time to run. As soon as one agent finishes its procedure  or gets 
terminated because of reaching duration limit, the next agent is executed, and so on until the 
cycle is complete. PeriodicTask and ResourceIntensiveTask agents have different schedule, 
duration and constraints, in order to optimise power consumption, network signalling and 
traffic, and minimise the impact on the user experience.  

For an overview, best practices and implementation details, refer to: 
http://msdn.microsoft.com/en-us/library/hh202961(v=vs.92).aspx 

Windows Phone SDK 7.1 includes a project template called Windows Phone Scheduled 
Task Agent for use when implementing a background agent.  



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 66 of 67 

5 References  
 AQUA (App Quality Alliance) 'Best Practice Guidelines, AQuA Test criteria for 

Android’ 
 Certificate, Key, and Trust Services Programming Guide, Apple, 2010  
 Cocoa Fundamentals Guide, Apple  
 Error Handling Programming Guide, Apple  
 Keychain Services Programming Guide, Apple, 2010 
 Network Efficiency Task Force Fast Dormancy Best Practices; GSM Association  
 RFC2616 – Hypertext Transfer Protocol HTTP/1.1  
 RFC2617 – HTTP Authentication: Basic and Digest Access Authentication  
 Security Overview, Apple, 2010  
 Secure Coding Guide, Apple, 2010  
 URL Loading System Programming Guide, Apple  
 WWDC 2010 Sessions 105, 109 - Adopting Multitasking on iPhone OS  
 WWDC 2010 Session 200 - Core OS Networking  
 WWDC 2010 Sessions 207, 208 - Network Apps for iPhone OS  

Other Information 

It is our intention to provide a quality document. If you find any errors or omissions, please 
contact us with your comments. You may notify us at devguide@gsm.org 

Your comments, suggestions and questions are always welcome. 

Acknowledgements  

All trademarks are acknowledged.  

 iOS is a trademark or registered trademark of Cisco in the U.S. and other countries 
and is used under licence by  Apple Inc. www.apple.com  

 Mac® and Mac OS® are trademarks of Apple Inc., registered in the U.S. and other 
countries.  

 Android™ is a trademark of Google Inc. in the U.S. and other countries. 
www.android.com  

 Windows® is a registered trademark of Microsoft Corporation in the United States 
and other countries. www.microsoft.com  

 AQUA is a trademark of the App Quality Alliance, a programme of IEEE-ISTO 

 

GSMA is a registered trademark of GSMA Ltd. in the United Kingdom and other countries.  

Copyright Notice GSMA © 2013. GSM Association. 

 



GSM Association Non-confidential 
TS.20 Smarter Apps for Smarter Phones, v2.0 
 

 Page 67 of 67 

Document Management 

Document History 

 

Version Date Brief Description of Change Approval 
Authority 

Editor / 
Company 

1.0 
February 
2012 

Initial published version providing a 
guide to improve apps connectivity, 
power consumption, user experience, 
security, and device battery life. 
http://www.gsma.com/technicalprojects/smarter-
applications  

TSG, PSMC 
Kamran Kordi 
(Deutsche 
Telekom AG) 

2.0 
February 
2013 

Editorial corrections and updates to 
the following sections:  
I1.1, 1.2, 1.3, 2.1, 3.2 Error Handling, 
3.4.2, 3.4.3, 3.4.4, 3.6, 3.7, 4.2.1. – 
Android, 4.2.2 - Bandwidth 
Awareness, 4.2.5, 4.2.8, 4.2.9, 4.2.10 

PSMC & TSG 

Paul Gosden, 
Kamran Kordi 
(Deutsche 
Telekom AG) 

 
 

Other Information 

Type Description 
Document Owner Terminal Steering Group (TSG) 

Editor / Company Paul Gosden, GSMA, Kamran Kordi (Deutsche Telekom AG) 

 
It is our intention to provide a quality product for your use. If you find any errors or omissions, 
please contact us with your comments. You may notify us at prd@gsma.com 
  
Your comments or suggestions & questions are always welcome. 
 


