GSM Assaociation Non-confidential
TS.20 Smarter Apps for Smarter Phones, v2.0

GSITIA.

Smarter Apps for Smarter Phones!

A guide to improve apps connectivity, power consumption,
user experience, security, and device battery life.

Version 2.0
12 February 2013

This is a Non-binding Permanent Reference Document of the GSMA

Security Classification: Confidential - Full, Rapporteur, and Associate Members

Access to and distribution of this document is restricted to the persons permitted by the security classification. This document is confidential to the
Association and is subject to copyright protection. This document is to be used only for the purposes for which it has been supplied and
information contained in it must not be disclosed or in any other way made available, in whole or in part, to persons other than those permitted
under the security classification without the prior written approval of the Association.

Copyright Notice

Copyright © 2013GSM Association

Disclaimer

The GSM Association (“Association”) makes no representation, warranty or undertaking (express or implied) with respect to and does not accept
any responsibility for, and hereby disclaims liability for the accuracy or completeness or timeliness of the information contained in this document.
The information contained in this document may be subject to change without prior notice.

Antitrust Notice

The information contain herein is in full compliance with the GSM Association’s antitrust compliance policy.

V2.0 Page 1 of 67

GSM Association Non-confidential

TS.20 Smarter Apps for Smarter Phones, v2.0

To the developers:

Smartphones have changed the way information is accessed. They have catapulted the
development and distribution of mobile apps to a new level.

However, unlike fixed networks, the mobile environment places constraints on the resources
available to apps on the mobile device. For example, the power consumption of each
application can have an extreme impact on battery life. The frequency of device-server
communication needs to strike a balance between delivering a good user experience while
not draining the battery or impacting the user’s phone bill (e.g. when roaming). High traffic
levels can cause signalling overload in the network, triggering delays that impact the app
performance and user experience.

Understanding and applying key principles of the mobile environment will help you improve
your app’s connectivity, data and power consumption and security. This will improve the user
experience, and help to create and maintain the popularity of your app.

This document explains key differences between fixed and mobile environments, and
highlights key principles to bear in mind when developing applications for mobile devices. It
also provides detailed tips for Android, Windows Phone and iOS.

The following table outlines key recommendations with detailed explanations in later
chapters. Considering these will help to make your app even smarter.

High level recommendations:

Term Description:

Relevance

Guideline

For more details

Usability/ Asynchrony

Techniques such as pipelining

Sections 2.2.1,4.1.1,

and asynchrony should be used | 4.2.1,4.3.1
to ensure that the client
operates smoothly

Efficient network connection Use strategies that minimise Section 2.3

usage

and optimise data traffic and
avoid unnecessary data
transfers, especially when
roaming.

Background/ foreground modes
Deactivate background
processes when not required.
Section 2.3, 3.6, 4.2.8

Background/ foreground modes

Deactivate background
processes when not required.

Section 2.3, 3.6, 4.2.8

Background/ foreground modes,
Scheduling

Design polling applications to
aggregate their network

Section 2.3, 3.6, 4.2.9

activities.
Connection loss and error Applications should be resilient | Section 3.2
handling to changing network conditions

and errors.
Compression Applications using HTTP should | Section 3.5

support compression.

Data push

Applications should use push

services in preference to polling.

Section 3.6, 4.2.5, 4.3.3

These guidelines have been compiled with inputs from developers, operators and terminal
vendors. Updated versions will be provided, enhancing the contents and extending the
scope to other relevant technologies and platforms. Although the underlying focus of the
guidelines are predicated on addressing relevant issues in the context of wireless
connectivity, similar issues may require attention in a wider context. AQUA (App Quality

Page 2 of 67

GSM Assaociation Non-confidential
TS.20 Smarter Apps for Smarter Phones, v2.0

Alliance) has published its ‘Best Practice Guidelines, AQUA Test criteria for Android’ that
complement the current document.

We want to continuously improve the content of this document. Should you wish to
contribute, please contact us at devguide@gsma.com

Alternatively you can join the dedicated W3C community discussion at:
http://www.w3.org/community/networkfriendly/

Page 3 of 67

GSM Assaociation
TS.20 Smarter Apps for Smarter Phones, v2.0

Table of Contents

1 Introduction

11
1.2
1.2.1
1.2.2
13

Overview
Scope

Who should read this document
Organisation of the document

Definition of Terms

2 Network friendliness

2.1
2.2
2.2.1
222
2.2.3
224
2.3

Requirements and constraints in mobile broadband
Smooth user experience

Asynchrony

Non-blocking user interface
Offline mode

Bandwidth awareness

Efficient network connection usage

3 Ideal mobile application
3.1 Asynchrony

3.2 Connection loss and error handling
3.3 Security

3.4 Efficient traffic usage

3.4.1 Cloud-based transformations
3.4.2 Media Transcoding

3.4.3 Presence

3.44 Emall

3.5 Compression

3.6

Background / Foreground modes

3.7 Application Scaling
4 Detailed Recommendations

4.1 iOS

4.1.1 Asynchrony

4.1.2 Connection loss and error handling
41.3 Caching

41.4 Security

4.1.5 Push notifications

41.6 Data formats

4.1.7 Compression

4.1.8 Background / Foreground modes
4.1.9 Scheduling

4.2 Android™

4.2.1 Asynchrony

4.2.2 Offline mode

4.2.3 Caching

4.2.4 Security

4.2.5 Push notifications

4.2.6 Dataformats

4.2.7 Compression

4.2.8 Background / Foreground modes
4.2.9 Scheduling

4.2.10 Spreading network activity timing among different devices

Non-confidential

el el
WNRP OOWOWWOWNNNOO O

QOO DD DMDMDIMDAEDIMDIEDOWWWWWWWWWWWNDNDNDNDNNNNERIPRELPR
NNPFPOOOOWOOUIRPRRFRPPFPOOONOPRRWNDNDNREPOOOLOONOOOIOINO O 01 W

Page 4 of 67

GSM Assaociation Non-confidential
TS.20 Smarter Apps for Smarter Phones, v2.0

4.3 Windows Phone 54
4.3.1 Asynchrony 54
4.3.2 Connection loss and error handling 59
4.3.3 Caching 62
4.3.4 Security 63
4.3.5 Push notifications 64
4.3.6 Data formats 64
4.3.7 Compression 65
4.3.8 Background / Foreground modes 65
4.3.9 Scheduling 65
5 References 66
Document Management 67
Document History 67

Note: The content of this developer guide will (soon) be made available online under:
http://www.gsma.com/smarterappsquidelines for easy use and ability to feedback or enhance.

Page 5 of 67

GSM Assaociation Non-confidential
TS.20 Smarter Apps for Smarter Phones, v2.0

1 Introduction

1.1 Overview

The rapid rise in demand for mobile data has taken key industry stakeholders by surprise,
particularly the network operators at the forefront of delivering services to customers. A
direct consequence of the huge success in the uptake of data services is a greatly increased
signalling load at the network level independent of the volume of data traffic. End-users and
application developers are unaware of increased signalling load as this is only visible to
network operators/service providers. However, increased signalling load impacts
smartphone users, who can experience rapid battery drainage, unresponsive user interface,
slow network access and non-functional applications.

As use of smartphone applications increases, so does the signalling load on a
disproportionate scale. This is caused by a number of factors, but aspiring enthusiasts are
one of the main culprits, (perhaps with a background in developing desktop applications)
who are translating their ideas into network-unfriendly apps that can be easily installed on
smartphones.

As a result, network operators are facing the challenge of unprecedented signalling load that
is out of proportion to the level of data usage.

The industry has responded by introducing the ‘fast dormancy’ feature. This means the
mobile device notifies the network that its data session is complete, and requests the device
be moved to a more battery efficient state controlled by the network. This has been
implemented in what is known as 3GPP release 8.

A number of other aspects relating to the development of network-friendly smartphone apps
need to be considered. These include:

a) Optimal use of wireless connectivity on target platforms by third party developers
0 This leads to better data bandwidth usage

b) Competent development of third party apps that are user and network friendly
o0 This provides a much improved user experience and can improve battery
efficiency

c) ldentifying and addressing underlying peculiarities in smartphone software
platforms
o This improves network performance, user friendliness and battery
consumption

d) Robust handling of failures
0 This can reduce battery consumption and reduce unnecessary data
bandwidth usage

1.2 Scope

This document is designed to provide as much information as possible to all developers
(private application designers, operators or OEMs) to encourage a better approach in
developing mobile apps.

By following the guidelines and recommendations, developers will be better equipped to
create fit-for-purpose apps; mobile operators will see a reduced strain on mobile networks
leading to more responsive and reliable apps and improved battery life.

Page 6 of 67

GSM Assaociation Non-confidential
TS.20 Smarter Apps for Smarter Phones, v2.0

Network efficient apps will benefit developers by:

e Improving the overall user experience of apps, making them more responsive,
providing more control to users, and providing better user experience due to less
loaded/congested networks

e Improving reliability in the mobile network environment

¢ Providing higher levels of user satisfaction by reducing traffic levels, potentially
resulting in lower customer bills and improved device battery life

The scope of these developer guidelines is limited to:

e General guidelines for native apps that require mobile network connectivity
e Specific guidelines for iOS, Android and Windows Phone. These specific guidelines
should be updated periodically as target platforms evolve over time
The theoretical parts of Sections 3 and 4 are generic; they can be applied to any other
platforms.

This document does not provide guidelines on:

Generic user interface

Complete device security, it only highlights what is available per platform

Back end implementation

The higher levels of security required in rare cases for specific apps serving banking

or enterprise systems

e Web applications (HTML 5): Relevant developer guidelines have already been
published on 14 December 2010 by W3C (Mobile Web Application Best Practices)
http://iwww.w3.0rg/TR/2010/REC-mwabp-20101214/

e M2M (Machine to Machine)

1.2.1 Who should read this document

The document is not meant to explain the basics of developing a mobile app. It is aimed at
developers (private application designers, operators or OEMs) who are able to develop or
intend to develop mobile network-dependent apps. The “Detailed Recommendations” in
Chapter 4 are aimed at improving the quality of apps relying on mobile network connectivity,
and explain how to overcome the challenges that mobile networks introduce.

1.2.2 Organisation of the document

Chapter 2 provides the relevant background and lays down the fundamental constraints that
are generic to all mobile platforms.

Chapter 3 considers the characteristics of an ‘ideal’ app/platform, to demonstrate optimal
use of network connectivity.

Chapter 4 maps the outcome of preceding chapters to target platforms, highlighting specific
functionality or limitations to further assist developers.

1.3 Definition of Terms

Term Description

3G is short for 3rd Generation, and usually to refer to mobile networks offering data rates
3G over 200kbit/s

The 3rd Generation Partnership Project (3GPP) is a global telecomm organization that
defines and maintains standards and recommendations for the deployment of the GSM
3GPP family of network.

Page 7 of 67

GSM Assaociation Non-confidential
TS.20 Smarter Apps for Smarter Phones, v2.0

Application Programming Interface (API) is a source code based specification intended to
be used as an interface by software components to

communicate with each other. An API may include specifications for routines, data

APIs structures, object classes, and variables

Enhanced Data rates for GSM Evolution (EDGE) is a mobile network technology offering
EDGE download speeds up to 236.8kbit/s

Forward Access Channel (FACH) is a radio channel used in UMTS networks that provides
FACH limited connectivity with battery drain than a dedicated radio connection

FIN is a finish message; it is a TCP segment with the FIN bit set, indicating that a device
FIN wants to terminate the connection

General Packet Radio Service (GPRS) is a mobile network technology offering download
GPRS speeds up to 60kbit/s

JavaScript Object Notation, is a lightweight text-based open standard, designed for
human-readable data interchange. It is derived from the

JavaScript scripting language for representing simple data structures and associative
JSON arrays, called objects

2 Network friendliness

Today’s mobile broadband downlink speeds can range from 1.8 Mb/s upwards.

In contrast, fixed line broadband based on cable-modem or ADSL/DSL technologies
provides a connection speed of up to 50Mb/s downlink. Fixed line broadband deploys less
complex technologies than mobile broadband, and Wi-Fi offers very limited terminal mobility.
Mobile networks differ from fixed broadband networks in that they have limited variable
bandwidth, higher latency and a non-permanent communication channel. Loss of Internet is
not considered abnormal.

Mobile networks have their own specific requirements and constraints, and even a Wi-Fi
connection may not deliver the steady connectivity of the fixed network. As a developer, you
should take these into account as you design and build your apps. These requirements and
constraints are described in the following section.

2.1 Requirements and constraints in mobile broadband

e Limited bandwidth: The available bandwidth for mobile networks may vary depending
on the geographic coverage and the underlying technologies used. On average it is
lower than a Wi-Fi connection. In addition, when the mobile consumer is on the move,
the bandwidth can dynamically step up or down

e Data is not always free: Outside monthly allocations and bundled price plans, mobile
data usage can be expensive particularly when roaming. This can mean high bills for
users

o Battery life: Mobile terminals are a miniaturised feast of technologies powered by a
battery. When in full operation, the battery runs a processor with an active screen and
data communication over the mobile network. Transferring large amounts of data puts
the radio access into high drive mode. Add an active colour screen and the battery
can drain in just a few hours. Considered use of the network, screen and processor
resources when designing an app can dramatically improve battery life. For example,
serving ads is popular with free apps but it can dramatically impact battery life and
bandwidth usage. This could be improved by reducing the number/frequency of
different ads being downloaded, or by introducing an ad-free (often paid) version that
doesn’t contain ads. Network connectivity: Mobile networks cannot by nature
guarantee reliable connectivity at all times. Blind coverage spots, the limitations of
deployed technologies, switching between cells, or moving in heavily built-up areas,

Page 8 of 67

GSM Assaociation Non-confidential
TS.20 Smarter Apps for Smarter Phones, v2.0

can all result in lost data packets, increased latency, reduced network speed, and
connectivity interruption

e Security: Users do not always have direct control over their choice of wireless access
networks. They can be connected to public Wi-Fi hotspots or in extreme cases even
to spoofed networks, so privacy can be compromised or identity stolen.
Authentication, secure protocols and a cautious approach to content transmission
should be adopted by all developers

When network communication is optimised, the overall user experience is greatly improved.
Developers should adopt all possible methods of optimal data transmission (efficient
protocols, caching, compression, data aggregation, pipelining, etc.).

Although many mobile users have access to Wi-Fi networks at home, work or public places,
their primary access to the Internet is via the mobile network. Developers often do not take
this into account and do not perform rigorous field testing in the mobile environment — hoping
instead that users will find a reliable connection. Development in simulated environments
running on fast and well-connected laboratory machines may never uncover real-life user
experiences. Therefore day-to-day testing of your app on a device connected to a
commercial mobile network is essential.

2.2 Smooth user experience

Although network efficiency may be understood as the most effective use of bandwidth, it is
also important to pay attention to the reality of mobile devices and mobile networks. All users
today know that a mobile connection can be lost or data transfer delayed. The user
experience of network friendly apps should be adjusted accordingly to smooth the impact of
such issues.

2.2.1 Asynchrony

The first assumption to be made is that any response in a mobile network environment might
be delayed or not delivered at all. To ensure a smooth user experience, an app’s
architecture should not solely rely on a sequence of responses, but be ready to deliver some
results to the user even if not all the data has arrived.

A basic item list explains the problem in general terms. Figure 1 shows the sequence of
requests required to download if all requests had been made synchronously:

D) | e [wer | [mees

Figure 1: Synchronous requests

In this example the list contains three items.

If the same requests were sent in parallel, then the timeline will be as shown in Figure 2:

Page 9 of 67

GSM Assaociation Non-confidential
TS.20 Smarter Apps for Smarter Phones, v2.0

g = |
(1 ez
g

Figure 2: Asynchronous requests

Should the network connection be reliable with constant speed, the user will not notice the
requests had been sent in parallel. The overall loading time will not show a tangible
difference. However, such an arrangement can only exist in ‘ideal’ networks, with no
latencies and connection interruptions.

In reality, the same sequence could potentially result in the arrangement in Figure 3, where a
requested image may be received much later and some requests might not receive any
response at all.

[Image 3 (no response) a

Figure 3: Asynchronous request in in reality

If an app waits to receive every single response and does not progressively show results to
the user before completion of the entire cycle (as described above), the user might simply
face a blank screen.

Network connections should be arranged in an asynchronous manner. This separation will
ensure that delayed responses will not block the user interaction entirely.

Where possible, the user should be able to see the progress of data loading. This could be
achieved by using progress bars, placeholders or a simple network indicator. In Figure 4,
text information can be displayed already when the list is loaded without waiting for images
to arrive. As soon as an image is loaded it can be displayed immediately.

Page 10 of 67

GSM Assaociation Non-confidential
TS.20 Smarter Apps for Smarter Phones, v2.0

Network Display Display Display
indicator Put image placeholders image image error image

>

Parsed first

fem [Image 1

item Image 2

Parsed second [

Parsed third

tom Image 3 (no response) 0

Figure 4: Timeline of asynchronous request

Apps should assume that any of the requested responses may fail to arrive. An appropriate
user interface should keep the user informed of the progress without giving the impression
that the software has crashed or hung.

2.2.2 Non-blocking user interface

A blocking User Interface (Ul) is where the user is faced with a single Ul element that
prevents use of the mobile device. These can pop up from an app if there is a delay in
receiving data, or when the app logic’s decision tree is unable to proceed because it has
encountered a missing data item.

In reality it is not necessary for an app to block the user from other operations. Even during a
login process, when a user cannot progress any further within that app until access is
granted, it should be possible to use other device applications.

In most cases, network operation should be completed in the background, allowing the user
to cancel or switch to other views. It is inconvenient to the user to allow a web browser to
block the screen with the message “Loading” until the page completes.

Page 11 of 67

GSM Assaociation Non-confidential
TS.20 Smarter Apps for Smarter Phones, v2.0

4 I 4 N
(G (G
Friends list Friends list
- Loading. i
Please wait...
Updating...
Bad example Good example
L J L %

Figure 5: Non-blocking user interface examples

When designing an app’s Ul and its decision tree it is important to distinguish between a
user-initiated network connection and an application-driven activity. This can define how the
user is notified of progress and errors.

For example, if the user requests a web page to be loaded and the browser fails to connect
to the server, then a modal error message (dialogue/information box) should be displayed.
However, if an image has not been delivered, it would be more sensible to show
placeholders with broken images instead.

Another example of an unhelpful error message occurs in some offline games. Whenever
these games are launched on an unconnected device, an error message is often shown that
reads “Could not connect to server”, probably as a result of failure to send game statistics
back to the server. The user is not expecting any result from a server, and these irrelevant
messages can create an unnecessary and annoying break in the user experience.

2.2.3 Offline mode

There are occasions when a mobile device cannot connect or remain connected to the
network, so it is important that developers take the following into consideration when building
an app:

¢ If the network connection drops, the user should be alerted as to why an operation
could not be completed

e To prevent data loss, users should be able to save current or active data with the
option to retry/resume the activity when reconnected to the network

Examples of user disappointment include losing a long text string typed on a mobile device
keyboard when it should be clear that the application cannot send the text to the server; or
after downloading a huge chunk of data, finding it impossible to resume downloading and
having to start the whole process all over again

e The user should be notified of any functionality that is not available in offline mode

e Itis best practice to enable continued use of an app with data stored in offline mode
for later synchronisation when the network connection is re-established

e The app should be capable of scanning for data connectivity in background mode
without affecting operation in offline mode

Page 12 of 67

GSM Assaociation Non-confidential
TS.20 Smarter Apps for Smarter Phones, v2.0

2.2.4 Bandwidth awareness

Apps with excessive network dependency, such as audio or video streaming, require an
assured level of data transmission speed. Considering the variety of wireless technologies
such as GPRS, EDGE, 3G or Wi-Fi, it would be sensible for the app to first ascertain the
access network and connection quality in order to request the appropriate quality of content
from the server; and notify the user about the possible additional cost of using mobile data. If
the app needs a more precise estimation of speed, then it would be reasonable to measure
or dynamically adjust the quality of streamed data according to latencies.

The app should be capable of adapting to changes in access network and data speed at any
given time, and make allowances for users leaving a Wi-Fi Hotspot, for example, or a mobile
network handover from 3G to GPRS.

2.3 Efficient network connection usage

The constraints and limitations of wireless technologies have already been highlighted.
Operating within these limitations means the frugal use of any data upload/download that
impacts a user’'s mobile data plan charges when roaming, user experience responsiveness,
and device battery life. Any optimisation of traffic will be appreciated by users, so double
check if all network transfers are really necessary, protocols are chosen optimally, and
caching is used appropriately.

Apart from data traffic, there are a few behaviours in a 3G network that need additional
consideration. These are caused by the implementation of Fast dormancy, a feature that
aims to minimise network signalling and battery consumption, both key issues given the
increasing number of smartphones and online applications.

When a device requests data to be sent or received over a mobile network, the device
switches from an idle to a dedicated channel state that consumes about 60-100 times more
power compared to the idle mode. However, the very process of switching requires sending
network signalling messages that also take a certain amount of time. Keeping the device in a
high power state is not an ideal option as the battery will drain rapidly.

Between the idle and dedicated channel states there are few more 3GPP radio resource
control (RRC) states that come into use. Fast dormancy technology defines an algorithm that
dictates when a device can be switched to lower state after the last data transmission.
Figure 6 below shows how the power drops after a certain period of inactivity in data
transfer. Times T1 and T2 are network dependent.

T1 T2

Power

Data transfer

Time

Page 13 of 67

GSM Assaociation Non-confidential
TS.20 Smarter Apps for Smarter Phones, v2.0
Figure 6. Power Consumption — Example 1

Once the state has switched to idle, establishing a new data connection may require the
exchange of between 24-28 signals with the network, which could take one to two seconds.

This is an example of when the app has many short connections over a specific period of
time:

Power

Data transfer

Time
Figure 7: Power Consumption — Example 2

The red-hatched areas in Figure 7 show the overhead in battery usage compared to Figure 8
when all data connections are synchronised and completed in the same time.

Power
Data transfer

Time
Figure 8: Power Consumption — Example 3
Although most the timers and conditions of switching between the channel states are

network dependent, it is good to at least have an example of the approximate
characteristics.

According to tests that have been done by XMPP Foundation:

Dedicated channel (the highest level) consumes about 380mA which can drain an average
smartphone battery in less than four hours. The time before dropping to the lower state is
approximately eight seconds

FACH (shared channel — intermediate level) consumes about 140mA. In order to keep this
state and prevent switching into the higher power mode, the packet sizes must be around
128 bytes and after deducting TCP and TLS overheads this leaves only about 70 bytes of
actual data. Timeout before switching to the lower state is around eight seconds. Battery life
can reach a maximum of around seven hours in this mode.

Page 14 of 67

GSM Assaociation Non-confidential
TS.20 Smarter Apps for Smarter Phones, v2.0

The general recommendation is to transfer data in one go and not spread network activities.
This should be done across multiple apps where possible and within apps (see 2.2.1).

In the ‘across apps’ scenario, the available scheduling mechanisms of the OS or the target
application framework should be used. These are meant to ensure that the app’s network
activities, such as HTTP requests, are synchronised with other applications to achieve the
behaviour explained in Figure 8 (for an example, see 4.2.9 for details on scheduling in the
case of Android).

The same principle applies to push notifications too. Unless your app has real-time
requirements you should not push notifications more often than you would have polled (sent
a request to see if new data is available), if push was not available.

References XMPP on Mobile Devices: http://xmpp.org/extensions/xep-0286.html#sect-
id115219

3 Ideal mobile application

We have already established the type of constraints that mobile apps need to address,
where critical resources (such as battery, memory and processor) have certain limits.

Key generic characteristics of functionality or user case scenarios are addressed in
subsequent sections.

3.1 Asynchrony

The concept of asynchrony has already been introduced briefly in chapter 2. There are two
main aspects to asynchronous network connections:

¢ Network connections should not block the main thread responsible for handling user
interface and system events

o If network requests do not depend on each other, they should be handled in parallel

e Asynchronous networking would always imply separate threads; although it makes
the tracking of results and the state of an app non-trivial. This drawback, however, is
well understood and competent solutions provided.

App architecture is driven by the APIs that platform vendors provide. To a great extent, the
quality of most app implementations is dependent on the platform vendor’s level of generic
API support and optimisation at a platform level. For example, creating separate threads and
managing them effectively should already be part of the underlying features of a target
platform. This can save you time and money as you don’t need to re-invent the wheel.

In this context the ideal APIs should have the following features:

¢ Creation and management of the network connections can be done from the main
thread; however, the calls can lead to separate threads that are managed by
framework transparent to the user

e All changes of states, received data, errors and timeouts are event driven

e The connection can be cancelled at any time

The design of APIs allows the simple management of several connections at the same time
Developers are recommended to establish connections within a single connectivity session
whenever it is possible to avoid losing dedicated channel state, which is described in Section
2.3. This reduces network signalling and, depending on the communication pattern, can
make a significant impact on device battery life.

Page 15 of 67

GSM Assaociation Non-confidential
TS.20 Smarter Apps for Smarter Phones, v2.0

3.2 Connection loss and error handling

Monitoring connectivity status and error handling are extremely important as mobile
networks are by definition not in a constant state.

Most platforms provide information on current connections. It is essential to check if the
device is actually connected. Sometimes it is necessary to identify the type of connection:
mobile network or, for example, Wi-Fi.

Although the actual bandwidth cannot be predicted precisely (as it depends on many factors,
like signal strength, current network load, etc.), developers may assume that:

o Wi-Fi networks are generally faster than mobile networks
o Traffic over Wi-Fi is relatively cheaper in comparison, or free

If checks show the device is not connected, the app can switch to offline mode and let the
user work with cached data only. This avoids handling inevitable network exceptions and
notifications for each network error; the overall user experience is much smoother if constant
error messages can be avoided. However, if the app switches into offline mode, it is best
practice to monitor the device connectivity status so the app can switch back into online
mode once a connection is established. At this point, data synchronisation between the
server and client can be initiated or resumed.

Request types

When establishing the connection, different approaches can be used to display the status to
the user and determine how to handle any network issues. A network request can be
identified as user initiated if it is going to deliver the main information requested by the user.
User initiated network requests can also be considered as primary.

Non-user initiated requests are those created by scheduled activities or triggered by a
change in a system state, such as geo-location tracking or sending usage statistics to a
server.

Secondary requests usually occur as a result of the primary request and do not bring any
critical information to the user. Examples of secondary requests could be an image in a
friends list (the list of names is critical), style sheets or images in web page.

Cancellation

Ideally, the user should see the progress of a primary request. It is also sensible to make the
primary request cancellable, but this depends on the nature of the content and how it
displays in the Ul.

As a general rule if it is possible to perform any other operations on the same Ul screen, it is
a good practice to ensure ‘cancel’ is available as an option.

A good example when cancellation improves usability is the web browser, which is just
another network-enabled application. A user can load different web pages on the same
screen, so if the loading of one page takes too long, or there is a mistake in entering the
address, the user can cancel the request and open a different web site.

When the primary request is cancelled, all secondary requests should be cancelled
automatically.

Error handling

Mobile apps should always be prepared to handle situations when network requests fail.
Most secondary requests can fail without a major impact on the user experience. Sometimes
it is appropriate to indicate subtly in the Ul that information for a secondary request cannot
be delivered, such as broken image placeholders in web browsers or silhouette images in a
contacts list.

Page 16 of 67

GSM Assaociation Non-confidential
TS.20 Smarter Apps for Smarter Phones, v2.0

When a primary request fails, it means that the main functionality cannot be completed and
this is where error handling becomes important for the user experience.

As proposed earlier, it makes sense to distinguish between a user initiated request and non-
user initiated (scheduled). If the request was user initiated and the information is expected to
be delivered rapidly, then a modal error notification such as ‘Retry’ or ‘Retry later’ is
appropriate. If a request is supposed to take longer time, and the user expects delivery to be
guaranteed, for example, downloading music, an electronic book or a digital issue of a
magazine, then in case of network failure, the app can automatically try to re-establish the
connection. If up to five attempts have failed, then the request can be suspended (but not
cancelled) with an option for manual resume later. It is also important to not lose any
downloaded data and to be able to resume the download from the place where it has
stopped rather than starting from scratch.

Retry mechanisms can vary and depend on the importance and volume of downloaded data.
Possible solutions can be:

e Simple counting of failed attempts since the connection was first established (often
the easiest solution).
e The number of failed attempts within a certain period of time.

For example, if the connection is lost more than five times within an hour, then the request
can be suspended. This can be a more reliable technique to avoid short but regular network
problems, such as when a device is moving away from one network cell to another. The
connection can be lost when the device switches between cells, but when the cell is
providing good coverage; the request can be processed successfully.

Regardless of the mechanism chosen, it is important to ensure that a failed operation will
only be retried a limited number of timers. Without such a limit, an application may retry a
failed operation for days or weeks while running in the background incurring data bandwidth
usage and battery drain.

If the request is not user initiated then error notification can be either non-modal with a retry
option or not shown at all. However, if the request is scheduled and repetitive, then it would
make sense to change the interval dynamically to avoid re-establishing connections too
frequently during network loss over a long period of time. Recommended retry intervals are
one minute, then five minutes, and then 15 minutes. More frequent retries will drain the
battery rapidly.

Resuming large downloads

The HTTP protocol supports requesting parts of files that can be used for resuming
downloads. If the server supports it and the content can be returned split (i.e. content is not

dynamic), then the server may include HTTP Header as described in sections 14.5 and 3.12
of RFC2616:

Accept-Ranges: bytes

The client can send subsequent requests for part of the file, specifying the download, for
example, download first 500 bytes

Range: bytes=0-499

Or for segment starting from 9500 byte:

Page 17 of 67

GSM Assaociation Non-confidential
TS.20 Smarter Apps for Smarter Phones, v2.0

Range: bytes=9500-

The response HTTP Status 206 (Partial Content) will show if the requested range is correct,
otherwise, there will be status 416 (Requested range not satisfiable). See Section 14.35 of
RFC2616 for more details.

Section 3.f below describes how the verification of cached version can be done in HTTP
using an ETag (entity tag). It is also possible to retrieve partial content with preceding
verification of the content version by the HTTP request header If-Range, as specified in
Section 14.27 of RFC2616. The idea is that the value of the If-Range header should contain
the ETag value and the same request should also have a Range header specifying what part
of content is to be received if the ETag is valid. If the server verifies the ETag, then the
partial content should be returned, otherwise, the full version of the updated content will be
sent.

Though the client can also use a Range header with conditional headers such as If-
Unmodified-Since or If-Match, if the condition fails then client should handle the HTTP status
code and a new request for retrieving the updated content. The If-Range header can help to
do this in a single request using either ETag or last modified date.

Support for resuming downloads is extremely important for large content transfers on mobile
devices, especially with the growing number of tablet devices, where quality of content is
relatively high for a big display size. For instance, a single issue of a digital magazine can be
200-400 Mb. It is not acceptable for the user to have to download the whole file again if the
network fails after already downloading several hundred megabytes.

In summary:

1. Check connection availability.
2. In offline mode use cached data.

a) For any outgoing request that includes user-entered data, the data should be
saved locally and an attempt made to deliver to the server.

b) If delivery of the request fails, then the user should be asked if the request
should be retried or retried later (with permanent saving in case the application
is terminated).

If the primary request is done in online mode, then a progress indicator should be used to
keep the user notified.

a) If the primary request is supposed to take more than one minute and the user
expects to get the result however long it takes (download application, song,
new magazine issue, e-book, etc.), then automatic retry should be
implemented.

b) If several consecutive retries have failed, then manual retry can be
implemented

¢) Itis good to indicate the progress of secondary requests, however, failure of
them is not important and can be displayed only as a special placeholder
(broken image placeholder for instance).

d) If the request is user initiated then error notification can be modal.

e) For repetitive scheduled requests, the retry interval should increase
dynamically during long periods with no network connectivity.

f) Applications often fail to determine whether or not the user has any credit
remaining if on a PAYG tariff. Lack of credit is quite common, and a status that
may last for some time, so the application should specifically avoid making

Page 18 of 67

GSM Assaociation Non-confidential
TS.20 Smarter Apps for Smarter Phones, v2.0

repeated requests as the returned error messages will clog up the network
and may not reflect the reality of the issue.

Caching

Caching is using the most effective means of data storage or transfer. For network
applications, especially in mobile networks, the cache becomes essential. However, there
are a few common challenges to address in terms of overall reliability, and ensuring the
delivery of up-to-date information to the user.

Client Network Server
) v a= S o= \\\
Local cache Server cache Server

Figure 9: Caching

Although the entire client/server solution may contain many different levels of cache,
generally two categories are supported: local cache and server cache. Local cache is used
to minimise the number of network requests and enable faster delivery of results. The server
cache works with the local cache to decrease the amount of data transferred via the
network, whilst ensuring that the user gets the latest version of the information.

Figure 9 above shows the journey of a regular request from a mobile client to a web server:

e During the first stage the client checks if the requested content is stored in local
cache and if it is still valid. If so, the data is sent to the user immediately without
sending any requests to the network

¢ If the local cache contains data but needs validation, the client includes a version or
checksum or the last modified date of the content that client already has. If the server
cannot find a newer version of the content, it notifies the client that the local version
can be used without sending the whole file over the network

o If there is no local version of the file, or the data is not up-to-date, then the server
sends the latest version over the network. With proprietary implementations (depends
on the nature of the requested data), it might be possible to send only changes to the
local version

When designing an app, it is best practice to define the types of content that will be used and
specify the caching strategy accordingly:

¢ Content can be cached without further validation. For example, if content has a
unique identifier and cannot be modified on the server side, such as static photos in
user albums (usually new photos can be added or old photos deleted, but not
modified)

¢ Content can be cached locally, but needs validation with the server. A good example
is the user’s profile or profile picture which usually does not change very often but
occasionally may be updated.

e Content cannot be cached at all. Examples: audio streaming, chat, etc.

Depending on the privacy of the content and security of local storage, some cacheable
content should not be kept on device.

Page 19 of 67

GSM Assaociation Non-confidential
TS.20 Smarter Apps for Smarter Phones, v2.0

Local caches face the following problems:

e Size limitations — Device storage is always limited and depending on the app or the
data, the cache should be limited to the corresponding size. Sometimes, it may be
worth giving the user an option to define cache size as it will improve the perceived
speed of the app for the user

¢ Invalidation of content — Usually web content has expiration date that can be
defined by the server; however, it also can be defined manually depending on the
nature of the data

e Prioritisation of content — As storage is limited, eventually the cache will be full.
New entries in the cache should replace old ones with lower priority. The cache
storage may have different strategies for this — removing the least frequent used, the
oldest or the biggest entries

With HTTP version 1.1 the cache control became part of the standard and is well described
in section 14.9 of RFC2616: which sets out the options for defining if content can be cached,
the expiry date and the versioning of the content.

The HTTP protocol defines a mechanism for checking if the client's cache has the same
version as the server. If the server recognises that the client has the up-to-date version of
the requested data, then the response will consist only of HTTP headers and the whole
content is not sent which can considerably reduce the network traffic.

The general idea is that on the first request the server sends a response with an additional
header that can indicate the version of the content. The second request already comes from
the client with information about the version to the server and if the server does not have any
updates to it, it replies with HTTP Status Code 304 (Not Modified), or, otherwise, it sends the
full content with the new version indication.

The version can be indicated simply by the last modified date in the Last-Modified HTTP
response header (See Section 14.29 of RFC2616 for more details). The consequent request
should come with HTTP request header “If-Modified-Since”, as defined in Section 14.25 of
RFC2616 or “If-Unmodified-Since”, as defined in Section 14.28 of RFC2616.

Example

First request:

GET /image.png HTTP/1.1
Host: www.example.com

Connection: keep-alive

First response:

HTTP/1.1 200 OK

Cache-Control: max-age=31536000
Content-Type: image/png

Date: Mon, 21 Feb 2011 12:41:47 GMT

Expires: Tue, 21 Feb 2012 12:41:47 GMT

ETag: "11f-49bc3eabc9c80"

Last-Modified: Tue, 08 Feb 2011 11:47:46 GMT
Content-Length: 28702

Connection: Keep-Alive

Page 20 of 67

GSM Assaociation Non-confidential
TS.20 Smarter Apps for Smarter Phones, v2.0

Consequent request:

GET /image.png HTTP/1.1
Host: www.example.com
If-Modified-Since: Tue, 08 Feb 2011 11:47:46 GMT

Connection: keep-alive

Response:

HTTP/1.1 304 Not Modified
Date: Mon, 21 Feb 2011 12:44:07 GMT

This example shows that consequent requests can produce huge savings. In this case the
response is short headers that are less than 1KB rather than 28KB of actual content, and
reliability in delivering up-to-date content. If the server had a more recent copy of the picture,
it would reply with 200 status and the full content instead of 304 HTTP status.

Content can also be marked with an ETag (see Section 3.11 of RFC2616) and these must
be unique across all versions of all entities associated with a particular resource.

When the ETag is received from the server, then the client can use HTTP request headers:
e “If-Match” [RFC2616 section 14.24] — to deliver only the version that is requested,
otherwise HTTP Status Code 412 (Precondition Failed) is returned
o “If-None-Match” [RFC2616 section 14.26] — to deliver only if the server has any other
versions other than the client has, otherwise HTTP Status Code 304 (Not Modified)
e And “If-Range” [RFC2616 section 14.27] — to deliver part of file (using Range header)
only if ETag matches, otherwise the whole file is delivered.

Taking the same example, the first response also includes the ETag, so the consequent
requests either contain either only one condition or both conditions for the ETag and last
modified date, for example:

Example :

Consequent request:

GET /image.png HTTP/1.1
Host: www.example.com
If-None-Match: "11f-49bc3eabc9c80"

Connection: keep-alive

Response:

HTTP/1.1 304 Not Modified
Date: Mon, 21 Feb 2011 12:44:07 GMT

When selecting a caching strategy, it is important for developers to evaluate the pros and
cons of each mechanism, as differences in server implementations may have a significant
impact on reliability and efficiency of the caching solution. Both Last-Modified-Since and
ETag mechanisms have their own pros and cons, so bear in mind the following points:

e When the same content is distributed between multiple servers, unsynchronised time
or an unsynchronised ETag generation algorithm can lead to inconsistent marking of

Page 21 of 67

GSM Assaociation Non-confidential
TS.20 Smarter Apps for Smarter Phones, v2.0

the content and therefore inconsistent responses from the servers. Server clusters or
cloud based services are usually prone to such issues.

¢ For frequently changing or time sensitive contents (such as strongly related elements
of the same data) preference should be given to the ETag mechanism, as it handles
sub-second update issues.

<div id="copySpaceBg></div>

=div id="copySpaceGrid">
=div class="csNW"==</div=
<div class="csN"></div>
<div class="csNE"></div>

<div class="csW"></div>
<div class="csCenter"></djv>
=div class="csE™></div>

=div class="csSW></div>
<div class="cs5"></div>

<div class="csSE™></div>

aav - -

<p=Click where your text will appear,</p>

<p>Apply
<br class="clear" />
<ldiv=>

-

Selector” class="subFilterL istNoBorder"> . .

ritySelector” class="subFilterNoBorder™

3.3 Security

Although many aspects of security apply to both mobile apps and mobile platforms, this
section addresses network security, covering secure data exchange between the mobile
device and cloud web services. The key aspects are:

e Classification of information
e Authentication of users on web services
e Secure data exchange

The following aspects of security must always be taken into consideration by developers, but
they are out of the scope of this document.

Device Security

Aspects of device access security, such as device unlock and remote wipe of storage in
case of device loss

Content protection

Access control to user’s personal data including personal contact information, address book,
call history, SMS messages, mobile wallets, current location, passwords, VPN keys, etc.

e Encryption of locally stored data
e Protection against attacks
¢ Internal and external factors, damage caused by malicious software and viruses

Classification of information
When designing mobile apps, it is important to understand user concerns about data privacy.

In a simplistic way the data is classified as:

Page 22 of 67

GSM Assaociation Non-confidential
TS.20 Smarter Apps for Smarter Phones, v2.0

e Public: Information which is freely available on the Internet, can be found by other
users, and cannot be associated with a particular user

¢ Private: The data which can be associated with an identifiable user, leading to
compromised security

Below is an example list:

o Use case #1: The app provides read-only access to the information which can be
easily found on the Internet by other users

Classification: Public

e Use case #2: The app presents the same information as in Use Case #1, but some
feedback is collected and stored in the cloud. This can be customer preferences,
history of articles viewed, user comments or rating of the content.

Classification: Private — as data associated with the user can be potentially used
against him. The same data can be classified as Public if it is anonymised — this
however, must be made clear to the user. User consent is required in both cases

e Use case #3: A productivity application, such as “TODO list”, which synchronises
data to the cloud.

Classification: Private — the user could store sensitive information within the app,
such as holiday dates, which can potentially indicate the location of the user. User
consent is required

e Use case #4: A messaging or social networking app

Classification: Private — the user can exchange sensitive information which could
potentially compromise his security. User consent is required

When the data flow and sensitivity of transferred information is understood, it is a good time
to estimate the impact on the user of monitoring (“Sniffing”) of such traffic by an
unauthorised party. Sniffing of user traffic may occur over Internet connections provided by
public Wi-Fi access points, those provided by small businesses, or any other unregulated
access point. It may take seconds for an intruder to intercept an authentication token and
impersonate the user. A number of examples of such intrusions can be found on YouTube,
including impersonation of users on social networks.

Authentication

Access to any Private data must be controlled and this is normally achieved by
authenticating the client. The most basic authentication is achieved by validation of a pre-
registered client ID with a password. Although client ID is most frequently just a personal
email address of the user, device ID can also represent a client.

It is important to differentiate device authentication from device identification, where the latter
does not require password validation and is often used by mobile network operators just to
trace customers. Solutions relying on device identification pose a security threat if the mobile
device contains or accesses Private data. Transfer of the mobile device to a different person
if lost, stolen or sold, will automatically provide access to the data of the previous user.

Static device IDs such as serial number, telephone number or IMEI in clear form should
never be used. Obscured device IDs (can be hash code based on the listed IDs) or
automatically provisioned Unique ldentifiers (UID) are acceptable and considered to be a
good practice.

Page 23 of 67

GSM Assaociation Non-confidential
TS.20 Smarter Apps for Smarter Phones, v2.0

User authentication can also be implemented by integration into third-party authentication
providers, such as Google ID, FaceBook ID or Microsoft Passport. For this reason, refer to
APIs provided by these vendors or adopt open protocol OAuth (http://oauth.net).

Authentication must be performed every time the app establishes a new session.

Whichever approach is used for this purpose, it is important to ensure that:

Authentication is performed using secure authentication protocols — Basic
authentication over HTTPS is sufficient but over HTTP it is not enough. HTTP digest
would be more appropriate, but again only becomes sufficiently secure over HTTPS.
In some cases, a combination of stronger authentication over encrypted channel
(SSL/TLS) is required. Proprietary implemented authentication must be performed
over secure SSL/TLS based communication channel

When a session is established, user or device credentials are not exchanged over an
unsecured connection, so that session IDs, application PINs, service passwords, etc.
are never exposed as these will provide an open door for intruders

Apps should have an intelligent built-in logic to ensure all parameters related to user
credentials (e.g. passwords, etc.) are populated prior to sending an authorisation
request to the server

Strong Authentication

Multi-factor authentication involves a combination of two or more stages. A variety of
approaches exists — one example is a combination of user and server authentication,
where verification of the server is performed by the client using additional security
certificates. This type of authentication is used by businesses for implementation of
Virtual Private Networks (VPNS).

Secure data exchange

Implementation of secure communication using HTTP over SSL/TLS protocols
(HTTPS) within the applications is not always favoured due to the effort involved.
However, extra effort is needed for the implementation of secure solutions, and the
investment you make in the security of your app will be recognised and appreciated
by users. In many cases, the additional effort may be only the requirement to
purchase and install a trusted certificate on the server and update the client to use
HTTPS instead of HTTP.

Encryption/decryption of traffic may have an impact on user experience, as additional
processing time at both ends contributes to higher latency. This also has an impact
on battery life. On high-end devices these drawbacks are addressed by hardware
accelerated encryption, which maximises app performance.

Input Validation

The consequences of invalidated user input can be crashing apps, loss of data or theft of
sensitive information as malware exploits breaches such as buffer overflow, format string
vulnerabilities, stack overflow or race conditions.

Although many programming languages check input in standard APIs to prevent buffer
overflows, native languages such as C, C++ and Objective C put this responsibility on the
developer. Even though managed languages do aim for prevention, they still may be linked
to native C libraries, and sometimes, open-source libraries that are not protected from
defects and potential security problems.

Ideal platform

An ideal platform would:

Support seamless secure user and server authentication
Provide secure transport by default

Page 24 of 67

GSM Assaociation Non-confidential
TS.20 Smarter Apps for Smarter Phones, v2.0

e Provide secure storage for credentials

3.4 Efficient traffic usage

3.4.1 Cloud-based transformations

There is a category of mobile apps that use data from public resources such as news web
sites. However, using public resources which are not under your control poses several risks
as they fail to exploit standardised APIs, and are often inefficient:

e The format of data (HTML code) can be changed at any time which may cause app
failure on the user’s device.

The amount of data that is required for the app might be significantly more than actually
necessary, thus increasing network traffic and latency.

In this case, it is highly recommended to check if there are any APIs (web services) provided
from the public resource that are standardised, less likely to be changed and contain less
unnecessary mark-up information.

Note that the API should not be used to deliver excessive amount of data to the app;
otherwise its performance will decrease dramatically.

If no APIs are available, then you can also consider creating your own web service in order
to have full control over the protocol and data being transferred between mobile device and
server. In this case, even if the website changes its HTML code, then only the web service
should be updated with the client remaining unchanged.

Many third party tools exist that can be used to transform content. A good example is Yahoo
Pipes (http://pipes.yahoo.com). This provides a graphical user interface to aggregate,
manipulate and mash up content from different sources around the web. Results can be
delivered as RSS or JSON.

A few examples of types of operations that can be done with Yahoo Pipes:

¢ Fetch data from different sources like feeds, web pages, Google or Yahoo search,
Flickr photos

Custom input data can be used as an external parameter — i.e. a search query
String manipulations such as regular expressions, text analyser, translation, etc.
Location builder from a string

Mathematical operations

Filtering and sorting of the result

The picture below shows an example Yahoo Pipe that aggregates the results of search from
four different sources, sorts the items by date and filters out non-unique titles, and compiles
a result of maximum 40 news stories. It is also possible to combine the feeds of different
languages and automatically translate them before aggregation

Page 25 of 67

GSM Assaociation Non-confidential
TS.20 Smarter Apps for Smarter Phones, v2.0

[Anat newvs are you logk 12
Name: textinputt

T

Prompt: [you lnoking to track?

[URL Builder == | [URL Builder == [URL Buider |
Base: |rss findory comiss Base: |api technorati.comie | Base: |hittp. inews searc h

Path elements | © Path elements | © Path elements
text texit text

Query parameters | © cuery parameters | | © query parameters
q Guery ¥ Search the Web q
language en [yahoo format
key b1224915a04136521 eo uTF-&
format rss | e uTF-8

[Feteh Feed HE% |
| ©uRL

(Sart R |
| © sortby
| @ [tem pubdate ¥ in|escending + |order

o

[Uriops EIEI)|
Filter non-unique items based on temtitle » |
. B
(Truncate HE %]
| Truncate feed after 40
L =

(Pipe Oulpt

Figure 10: Yahoo Pipes solution

3.4.2 Media Transcoding

If the inefficiency in text based data formats can be improved by compression, the case for
media formats — pictures, audio and video — is somewhat more complex as the quality of the
media has a huge impact on its size. Therefore special care should be taken when
transferring media.

Most mobile phones have fairly low (i.e. few-megapixel) cameras; however if an app uploads
a picture taken by this camera for a social network website, which will reduce the size of any
picture, there is no point in sending the image in its original quality. The difference in size
can be around 30-50 times, which can also be the time difference taken in uploading the
picture.

The same applies for downloading pictures. If the picture is supposed to be displayed only
on the mobile device, then there is no point in downloading the original file size. This is
always applicable, for example, for thumbnails; however, for full-screen photos some
additional overhead might be allowed to allow users scaling up the image.

The size of video files can be enormous if a smartphone has an HD camera; in this case it
might not be possible to upload a video over the mobile network without transcoding to a
smaller, lower quality file.

If an app has video playback functionality, then a few points should be taken into account:
e Itis better to not to exceed the resolution of the display where the video is going to be
played (mobile device display or external display)

If the video is played in real time, then the bandwidth of the current network should be
checked to identify the appropriate bit rate of video that can be played without constant
delays. Progressive download and download resuming (section 3.2) may be used

Apple lays down strict requirements for online video in apps. If the video exceeds either 10
minutes duration or 5 Mb of data in a five minute period, you are required to use HTTP Live
streaming; otherwise Progressive Download can be used.

Page 26 of 67

GSM Assaociation Non-confidential
TS.20 Smarter Apps for Smarter Phones, v2.0

As an alternative mechanism, MPEG DASH (Dynamic Adaptive Streaming over HTTP)
provides a standardized, adaptive streaming protocol solution to use network resource
efficiently.

Previously there were several commercial products for adaptive streaming such as Apple’s
HTTP Live streaming, MS’s Smooth Streaming or Adobe’s HTTP Dynamic Streaming. But In
practice however, media service providers have adopted the streaming solution associated
to the platform through which they delivered their media content, there was no
interoperability between them. Acting on the demand from the industry, a standard for
adaptive streaming, DASH was issued by MPEG.

More information about MPEG DASH can be found in <ISO/IEC 23009-1:2012>.

The ideal APIs on the platform to ensure that developers can leverage media transcoding
would be:

Basic image resizing

Codecs that allow quality reduction (and size) of the audio file

Reducing quality and resolution in order to reduce the size of the video file

Support of media streaming protocols such as DASH, HTTP Live Streaming or RTSP

3.4.3 Presence

With the growth of presence-based services, it is important to manage high traffic and
balance load generated by the services. Presence event distribution systems may generate
numerous and unnecessary traffic such as separate presence subscription requests for
multiple target users thus increasing the load on the mobile network. As such many common
methods have been developed to reduce the network traffic generated by Presence event
distribution systems.

Developers should consider applying such methods to their application to reduce the
network traffic.

However, some optimization techniques may lengthen the delivery time of presence update,
preventing users from receiving presence in a timely manner. For this reason, developers
should also consider prioritizing presence information to be delivered when adopting some of
these techniques

3431 Bundling of individual presence subscription requests

Based on traditional mechanism, a presence subscription request is sent for each target
user individually. When the number of target users to subscribe is large, Application
developers should consider reducing the number of subscription requests by bundling them
in a single request to reduce the network traffic generated.

For example, in SIP-based mechanism, RLS (Resource List Server) is a mechanism for
subscribing to a list of target users. Instead of sending individual subscription requests, the
watcher (requesting user) sends a single subscription request that contains a list of
presentities (target users) to the RLS. Based on the list of presentities, the RLS sends
multiple individual subscription requests to the presence server on behalf of the watcher.
More detailed information about RLS can be found in <IETF RFC4662 A Session Initiation
Protocol (SIP) Event Notification Extension for Resource Lists>.

3.4.3.2 Partial publication

Partial publication is a mechanism in which the target user sends only the parts of presence
information that have changed since the previous update. Initially, complete presence
information is sent to the watcher (requesting user) and then only parts of presence
information are sent, reducing the amount of necessary data transferred over the network.

Page 27 of 67

GSM Assaociation Non-confidential
TS.20 Smarter Apps for Smarter Phones, v2.0

An example of mechanism for partial publication can be found in IETF draft-simple-partial-
pidf format <IETF RFC 5262 Presence Information Data Format (PIDF) Extension for Partial
Presence>. This technique does not reduce the number of presence notifications but
reduces the size of the notifications. A watcher device can construct then the complete
presence information from the partial publication received.

3.44 Emalil

Applications that send or receive email should carefully consider how to address a number
of special cases specific to email:

a) Large message size

Many servers limit the maximum size of a message that can be sent. When sending large
messages that may include pictures or video content, it is recommended that the application
check the maximum message size supported by the server before sending the message to
avoid wasting a large amount of data bandwidth and battery power transmitting a message
that the server will not accept. This mechanism is described in RFC1870.

Similarly, when downloading messages it is recommended to check the message size
before downloading it to avoid unnecessarily downloading email messages which may be
arbitrarily large and may not be able to stored or displayed correctly on the device.

b) Frequent polling for messages

If possible, it is recommended to use a Push Server to notify the application when new
messages are available on the server. If this is not supported, the client must periodically
poll the server to check for new messages. Polling is very resource intensive on the device
and frequent polling can have a significant impact on battery life. Developers are advised to
carefully select the default and supported polling intervals in their application.

As a best practice, a default polling interval of 60-minutes is suggested with a minimum
polling interval of no less than 15-minutes.

c) Error handling / retries

Special care needs to be taken when re-sending email messages that failed. In many cases,
it is possible for the client to determine that the failure is permanent and the message can
never be successfully sent — for example 5xx series errors in SMTP — these cases should
never lead to a retry.

In cases where a network error or temporary server error occurred, the number of retries
should be limited and staggered over time to limit the potential impact on data bandwidth
and battery life. This is especially important if the client does not limit the maximum size of
email messages since each attempt could lead to multiple MB of network traffic.

3.5 Compression

The HTTP protocol defines the mechanism of transferring data in compressed ways, if the
server can support it, and most do. Enabling compression is a very simple task for the most
popular web servers.

Compression can be very effective for XML or JSON formatted text data, by reducing the
overall size by 80% on average. For binary contents, like photos or videos, however,
compression does not make much difference.

The main idea of the HTTP compression is that if the client supports any of the standard
compression methods such as GZip, Deflate (zlib) or LZW, then it mentions it in the request
to the server. If the server supports the listed methods it can send a compressed response.

Page 28 of 67

GSM Assaociation Non-confidential
TS.20 Smarter Apps for Smarter Phones, v2.0

The indication that the client supports compressions is sent via HTTP Header Accept-
Encoding.

Example request indicating that client supports GZip and Deflate compression methods:

GET / HTTP/1.1
Accept-Encoding: gzip, deflate
Host: www.example.com

Example response indicating that content is compressed:

HTTP/1.1 200 OK
Content-Length: 438
Content-Type: text/html; charset=UTF-8

Content-Encoding: gzip

RFC2616 section 14.3 and section 3.9 explain the Accept-Encoding header in more detail,
and patrticularly, tips on defining the priorities (importance) of using different methods. The
HTTP compression technique includes negotiation, to make sure that both the client and
server support the same compression methods, so even more efficient methods can be
implemented for certain types of content.

In order to simplify compression, the ideal API for HTTP client would support the main
compression methods GZip, Deflate (zlib) and compress (LZW) with the corresponding
Accept-Encoding header added by default and the content decompressed by default.
However, you would also be able to disable or redefine handling of compression in order to
support custom methods.

References Request compression
http://httpd.apache.org/docs/2.0/mod/mod_deflate.html#input

Speed Web delivery with HTTP compression
http://www.ibm.com/developerworks/web/library/wa-httpcomp/
RFC2616

http://www.ietf.org/rfc/rfc2616.txt

3.6 Background / Foreground modes

Most mobile platforms support some distinction between background and foreground modes
for apps. The precise distinction varies from platform to platform but typically an app is said
to be in the background if no part of its Ul is visible and the user is unable to interact with it.

Given that a user interaction is not possible, careful consideration should be given to this
aspect of app design to ensure that unnecessary network resources are not being used
while in background mode. This will generally help to improve the user experience of the
foreground application.

More specifically the app will receive some indication from the platform when a transition
between modes occurs and should take advantage of this to gracefully release (or otherwise
disable) the following application components:

Page 29 of 67

GSM Assaociation Non-confidential
TS.20 Smarter Apps for Smarter Phones, v2.0

Handlers

Timers

Network transactions
Memory/Obijects
Media codecs

File & databases

Special attention should be given to apps that interact with the network on a regular basis as
this drains the device battery and generates signalling traffic. In most cases the app should
be prevented from interacting with the network whilst in background mode, as there is no
way to present results, unless a notifications system is used. Idle screen widgets (e.qg.
weather / news) are common culprits here; however, this does not apply for apps such as
instant messengers, as they need a constant connection.

There can be no hard and fast rules in this area — for instance a music player is likely to want
to continue to decode audio even when in background mode. At the very least you should
review the detailed operation of your app in each state to ensure its resource footprint is
appropriate.

Similarly, apps that do need to interact with the network whilst in background mode should
consider alternative approaches. For example it may be possible to batch the transactions of
several apps so the background app can “piggy-back” its transactions. This batching
capability may be provided by the platform itself; it is particularly important for background
events when there is no user interaction with the phone (e.g. the phone is on a desk). A
common reason for background apps to access the network is to poll a server, however a
better approach is to use push notification (if supported).

The HTTP “Keep-Alive” mechanism is frequently used as the basis for push notification
systems, but this only works well if there is a centralised client side component for
receiving/routing notifications (i.e. as part of the platform e.g. Android GCM).

If push notifications are not available or not suitable, keep-alive connections can be used to
replicate a push notification mechanism and avoid frequent polling of data. The main
advantage of keep-alive over polling is that the connection can be kept open without
frequent transfer of data, enabling the mobile state to switch to lower power. However, if
anything needs to be delivered from the server, this can happen immediately. It is also
necessary to make sure that the connection is still alive by sending non-frequent data
packets (minimum 10 minutes, but slightly less than30 minutes seem to be the optimal
setting as many firewall/NAT's timeout TCP connection after 30-minutes).

Some platforms provide a richer (more fine grained) application lifecycle than others. You
should exploit the lifecycle to its fullest to achieve the best user experience.

It may be desirable, for example, to retain a group of thumbnails across several application
states that represent the *“active” cycle of the app (where “active” might encompass
background as well as foreground modes) but release them across states that represent a
less active cycle. Failing to consider the target lifecycle can result in apps that perform well
on one platform having poor performance on another.

You should also consider altering your app’s resource footprint in response to changes in the
mobile device state. In some cases these may fall within the scope of the application
lifecycle (e.g. an incoming phone call is likely to result in the app making a transition to
background mode). Other changes may lead to a different form of notification (apps may
need to register to receive screen lock event notifications for instance). A useful approach is
to treat each state transition as a separate use-case and identify those cases that impact on
the app. This would, for example, show that in the case of the music player mentioned
earlier it might be worth shutting down the audio decoder task when the speaker is muted.

Page 30 of 67

GSM Assaociation Non-confidential
TS.20 Smarter Apps for Smarter Phones, v2.0

Another aspect to highlight is that many apps seem to trigger network activity (e.g. polling,
status update) when the screen display turns on and the device wakes up from sleep mode.
The intention may be to obtain/update the latest information when the user starts interacting
with the device. However, the screen display may turn on regardless of the user’s intention
to interact with the device, and the device screen may remain locked. For example, the
screen display may just turn on due alarm clocks or the user tapping the screen display to
check time. Thus, to avoid unnecessary network signalling / draining of device battery, it is
recommended to trigger such network activity when requested explicitly rather than being
triggered by the event of screen display turning on.

3.7 Application Scaling

Your app should be designed to ensure that network activity is not concentrated at specific
times and is tolerant of geographical loading problems

¢ Handsets are frequently synchronised to a standard clock source, so frequent
updates using exact times (especially for apps that are used by many users) may
cause short overloads to the application servers and the radio network. A better
example of how to do this is Antivirus tools which launch update requests back to
servers independently of one another. Perhaps the most popular example is RSS
feed used in browser application. They may result in delayed responses and
impacting user experience. Designing an app to spread network activity timing across
different devices would reduce such overloads, and improve app performance and
device battery life.

e To illustrate the point let us take a closer look at the RSS feed example (where it can
also be implemented as a native application)

o RSS newsfeed may require the RSS reader on handsets to check for updates on
servers periodically (e.g. every 30min), but not necessarily at exact times (e.qg.
XXhr:00min, XXhr:30min). In such cases, it would be ideal to evenly spread the
network activity timings (i.e. the timings which the RSS readers checks for updates)
across devices as in Figure 10a below.

Undesirable application behavior Ideal application behavior

(App’s NW activity timing aligned across devices) (App’s NW activity timing spread across devices)
Device0 -+ T T Device 0 : :
i i i i i
| 1 1 :
Devicel - T T Device 1 E E
1 1 1 1

| ' ' ' '

ir s T3 == b

: : : ; ‘

'
: . '
Devicen Devicen H

'

12;00 12;30 13:00 12:IOO 12:30 13:'00
Figure 10a: Spreading an App’s NW activity timing

e One way to realise such behaviour would be to schedule network activity timings
using relative times (e.g. “30min from the current time”), and using a timing which
would not be aligned across devices as the base timing. For example, the base timing
can be the time when the device bootup.

o Weather widgets may require data retrieval from servers at exact times of a day (e.g.
05hr:00min, 11hr:00min, 17hr:00min) when the latest information is made available.
In such cases, it would be better to spread the network activity timings (i.e. the

Page 31 of 67

GSM Assaociation Non-confidential
TS.20 Smarter Apps for Smarter Phones, v2.0

timings which the weather widgets retrieves data) across devices within an
acceptable time window (e.g. 5min) as in Figure 10b below.

Undesirable application behavior Better application behavior
(App’s NW activity timing aligned across devices) (App’s NW activity timing spread across devices)
| 1 1
1 1
Device 0 T —> Device 0 " : >
i i i i
1 1 1 1
A : A :
Device 1 T T Device 1 T T
i i i i
' ! ! !
A i i i
1 1 _/I F 1
Device n H : Devicen : :
: i i i
11:00 11:05 11:00 11:05
e I :
Timing when NW activity is needed Acceptable time window of NW activity

(e.g. timing when server updates info)

Figure 10b: Spreading an App’s NW activity timing within an acceptable window

e Such behaviour can be realised by including a random offset (within a desired time
window) when scheduling network activities. E.g. “Activity at 17hr:00min + offset”,
where the offset is defined with a random function having an uniform distribution
within the desired window.

o Developers are recommended to avoid, as much as possible, using exact times for
an app’s network activities, and to use randomisation design techniques to spread
network activity timings across different devices. The network capacity of a local area
will be significantly lower than the product of the number of handsets and their
assigned bandwidth. On occasions there may be large numbers of users in a specific
location. In general, apps should use some randomisation design techniques to
spread network synching and connectivity load.

4 Detailed Recommendations
4.1 i0OS

4.1.1 Asynchrony

An app’s main thread is responsible for all activities including handling of the system
messages, input events, etc. iOS makes sure that the main thread is always alive by a
mechanism called WatchDog. This can terminate the process if it does not respond within
approximately 20 seconds. Therefore, if any synchronous operations are called, you need to
be sure that these operations can be completed as fast as possible. This becomes critical in
the mobile network environment, as network timeouts are much longer than the WatchDog's.
For example, domain name resolution will be timed out after 30 seconds if there is no
response from the network.

iOS APIs are designed to simplify development as much as possible, and in most cases you
don't even need to think about creating separate threads, as everything is done
transparently and asynchronously. However, some of the methods hide synchronous
networking which should be used very carefully and only in separate threads. Apple provided
a list of such methods in WWDC'10 which is:

Page 32 of 67

GSM Assaociation Non-confidential
TS.20 Smarter Apps for Smarter Phones, v2.0

o Utility methods:
-initWithContentsOfUrl:

+stringWithConten-tsOfURL:
e DNS:

gethostbyname

gethostbyaddr

NSHost (Mac OS X)
+sendSynchronousRequest:returningResponse:error:

As explained earlier, network asynchrony is not just calling network functions from the main
threa