Table of Contents

1 **Introduction**
1.1 Overview 4
1.2 Relationship to existing standards 4
1.2.1 3GPP Specifications 4
1.3 Scope 5
1.4 Definitions 5
1.5 References 6

2 **IMS feature set** 7
2.1 General 7
2.2 Support of generic IMS functions 7
2.2.1 SIP Registration Procedures 7
2.2.2 Authentication 7
2.2.3 Addressing 7
2.2.4 Call Establishment and Termination 8
2.2.5 Forking 8
2.2.6 The use of Signalling Compression 8
2.2.7 Early Media and announcements 8
2.2.8 SIP Session Timer 8
2.3 Supplementary Services 8
2.4 Call Set-up Considerations 8
2.4.1 SIP Precondition Considerations 8
2.4.2 Integration of resource management and SIP 8
2.4.3 Voice Media Considerations 8
2.4.4 Video Media Considerations 9
2.5 SMS over IP 9

3 **IMS media** 9

4 **Radio and packet core feature set** 9
4.1 Radio capabilities 9
4.1.1 Alignment with Wi-Fi Alliance Certification programmes 9
4.1.2 WLAN Policy provisioning 9
4.1.3 Connection management 9
4.2 Wi-Fi IP Access Network Detection 9
4.3 Wi-Fi Access Network Selection 9
4.4 Non-3GPP Access Authentication and Security 9
4.5 Multiple PDN connections 10
4.6 APN Considerations for SIP Signalling and XCAP 11
4.7 PDN Connectivity Service 11
4.7.1 General 11
4.7.2 ePDG Selection for non-Emergency Voice services 12
4.7.3 Connectivity Services 12
4.7.4 UE initiated disconnect 12
4.7.5 Network initiated disconnect 12
4.7.6 Liveness check 12
4.8 Mobility Management 13
4.9 P-CSCF Discovery 13

5 Common Functionalities 13
 5.1 IP Version 13
 5.2 IP Address Allocation 14
 5.3 Emergency Service 14
 5.4 Roaming Considerations 14

Annex A Complementing IMS over Wi-Fi with CS 15
 A.1 General 15
 A.2 Dual Voice Call Continuity 15
 A.3 SMS Support 15

Annex B MNO Provisioning and Late Customization 15
 B.1 General 15
 B.2 Configuration Methods 15
 B.3 Configuration Parameters 15

Annex C Document Management 17
 C.1 Document History 17
 Other Information 17
1 Introduction

1.1 Overview

The IP Multimedia Subsystem (IMS) Profile for Voice and Video, documented in this Permanent Reference Document (PRD), defines a profile that identifies a minimum mandatory set of features which are defined in 3GPP specifications that a wireless device (the User Equipment (UE)) and network are required to implement in order to guarantee interoperable, high quality IMS-based telephony and conversational video services over Wi-Fi access.

"Wi-Fi" is a trademark of the Wi-Fi Alliance and the brand name for products using WFA programs based on the IEEE 802.11 family of standards.

In this document, Wi-Fi access refers to a WLAN access to EPC, via untrusted access interface (S2b interface), as defined in 3GPP TS 23.402 [6]. The trusted access (S2a interface) is not covered in this document.

The content includes the following aspects:

- IMS basic capabilities and supplementary services for telephony [Chapter 2]
- Real-time media negotiation, transport, and codecs [Chapter 3]
- Wi-Fi radio and (evolved) packet core capabilities [Chapter 4]
- Functionality that is relevant across the protocol stack and subsystems [Chapter 5]
- Additional features that need to be implemented for the UEs and networks that wish to support Circuit Switched (CS) coverage [Annex A]
- UE configuration to provide all necessary information to connect to, and receive voice service and SMS from, a specific IMS telephony operator [Annex B].

The conversational video services comprise calls with full duplex voice and simplex/full-duplex video media with tight synchronization between the constituent streams. The call can be a point to point call or a multiparty conference call. The conversational video service can also be used to interact with for example dial in video conference systems.

A UE and a network compliant to this profile must support IMS-based telephony. A UE and a network compliant to this profile may support conversational video services.

1.2 Relationship to existing standards

1.2.1 3GPP Specifications

This profile is based on the open and published 3GPP specifications as listed in Section 1.5. 3GPP Release 11 is taken as a basis. It should be noted, however that not all the features specified in 3GPP Release 11 are required for compliance with this profile.

Conversely, some features required for compliance with this profile are based on functionality defined in 3GPP releases higher than the release taken as basis.

All such exceptions are explicitly mentioned in the following sections along with the relevant 3GPP Release.
1.3 Scope
This document defines a voice and video over Wi-Fi IMS profile by profiling a number of Wi-Fi, (Evolved) Packet Core, IMS core, and UE features which are considered essential to launch interoperable IMS based voice and video on Wi-Fi. This document is based on the IMS Voice and SMS profile described in GSMA PRD IR.92 [1] and on the IMS Profile for Conversational Video Service profile described in GSMA PRD IR.94 [2]. The defined profile is compliant with 3GPP specifications. The scope of this version of the profile is the interface between UE and network.

The profile does not limit anyone, by any means, to deploy other standardized features or optional features, in addition to the defined profile.

1.4 Definitions

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3GPP</td>
<td>3rd Generation Partnership Project</td>
</tr>
<tr>
<td>ANDSF</td>
<td>Access Network Discovery and Selection Function</td>
</tr>
<tr>
<td>APN</td>
<td>Access Point Name</td>
</tr>
<tr>
<td>DNS</td>
<td>Domain Name System</td>
</tr>
<tr>
<td>EAP-AKA</td>
<td>Extensible Authentication Protocol – Authentication and Key Agreement</td>
</tr>
<tr>
<td>ePDG</td>
<td>Evolved Packet Data Gateway</td>
</tr>
<tr>
<td>FQDN</td>
<td>Fully Qualified Domain Name</td>
</tr>
<tr>
<td>IKE</td>
<td>Internet Key Exchange</td>
</tr>
<tr>
<td>IKEv2</td>
<td>Internet Key Exchange version 2</td>
</tr>
<tr>
<td>IM</td>
<td>IP Multimedia</td>
</tr>
<tr>
<td>IMS</td>
<td>IP Multimedia Subsystem</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
</tr>
<tr>
<td>IPsec</td>
<td>IP Security</td>
</tr>
<tr>
<td>IPv4</td>
<td>Internet Protocol Version 4</td>
</tr>
<tr>
<td>IPv6</td>
<td>Internet Protocol Version 6</td>
</tr>
<tr>
<td>MAPCON</td>
<td>Multi-Access PDN Connectivity</td>
</tr>
<tr>
<td>NAT</td>
<td>Network Access Translation</td>
</tr>
<tr>
<td>P-CSCF</td>
<td>Proxy - Call Session Control Function</td>
</tr>
<tr>
<td>RTCP</td>
<td>RTP Control Protocol</td>
</tr>
<tr>
<td>RTP</td>
<td>Real Time Protocol</td>
</tr>
<tr>
<td>SDP</td>
<td>Session Description Protocol</td>
</tr>
<tr>
<td>SIP</td>
<td>Session Initiation Protocol</td>
</tr>
<tr>
<td>UE</td>
<td>User Equipment</td>
</tr>
<tr>
<td>VoIP</td>
<td>Voice Over IP</td>
</tr>
<tr>
<td>XCAP</td>
<td>XML Configuration Access Protocol</td>
</tr>
</tbody>
</table>
Terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XML</td>
<td>eXtensible Markup Language</td>
</tr>
</tbody>
</table>

1.5 References

<table>
<thead>
<tr>
<th>Ref</th>
<th>Doc Number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]</td>
<td>GSMA PRD IR.92</td>
<td>IMS Profile for Voice and SMS.</td>
</tr>
<tr>
<td>[2]</td>
<td>GSMA PRD IR.94</td>
<td>IMS Profile for Conversational Video Service</td>
</tr>
<tr>
<td>[4]</td>
<td>GSMA PRD TS.22</td>
<td>Recommendations for Minimal Wi-Fi Capabilities of Terminals</td>
</tr>
<tr>
<td>[5]</td>
<td>3GPP TS 24.229</td>
<td>IP multimedia call control protocol based on Session Initiation Protocol (SIP) and Session Description Protocol (SDP); Stage 3</td>
</tr>
<tr>
<td>[6]</td>
<td>3GPP TS 23.402</td>
<td>Architecture enhancements for non-3GPP accesses</td>
</tr>
<tr>
<td>[8]</td>
<td>3GPP TS 23.003</td>
<td>Numbering, addressing and identification</td>
</tr>
<tr>
<td>[9]</td>
<td>3GPP TS 33.402</td>
<td>Security aspects for non-3GPP accesses</td>
</tr>
<tr>
<td>[11]</td>
<td>3GPP TS 24.302</td>
<td>Access to the 3GPP Evolved Packet Core (EPC) via non-3GPP access networks; Stage 3</td>
</tr>
<tr>
<td>[12]</td>
<td>IETF RFC 5996</td>
<td>Internet Key Exchange Protocol Version 2 (IKEv2)</td>
</tr>
<tr>
<td>[13]</td>
<td>3GPP TS 23.228</td>
<td>IP Multimedia Subsystem (IMS); Stage 2</td>
</tr>
<tr>
<td>[14]</td>
<td>3GPP TS 24.237</td>
<td>IP Multimedia (IM) Core Network (CN) subsystem IP Multimedia Subsystem (IMS) service continuity; Stage 3</td>
</tr>
<tr>
<td>[15]</td>
<td>3GPP TS 23.237</td>
<td>IP Multimedia Subsystem (IMS) Service Continuity; Stage 2</td>
</tr>
<tr>
<td>[16]</td>
<td>GSMA PRD IR.65</td>
<td>IMS Roaming and Interworking Guidelines</td>
</tr>
<tr>
<td>[17]</td>
<td>3GPP TS 23.167</td>
<td>IP Multimedia Subsystem (IMS) emergency sessions</td>
</tr>
<tr>
<td>[18]</td>
<td>3GPP TS 24.216</td>
<td>Communication Continuity Management Object (MO)</td>
</tr>
<tr>
<td>[19]</td>
<td>3GPP TS 24.312</td>
<td>Access Network Discovery and Selection Function (ANDSF) Management Object (MO)</td>
</tr>
<tr>
<td>[20]</td>
<td>3GPP TS 24.167</td>
<td>3GPP IMS Management Object (MO)</td>
</tr>
<tr>
<td>[21]</td>
<td>3GPP TS 24.424</td>
<td>Management Object (MO) for Extensible Markup Language (XML) Configuration Access Protocol (XCAP) over the Ut interface for Manipulating Supplementary Services</td>
</tr>
<tr>
<td>[22]</td>
<td>3GPP TS 24.623</td>
<td>Extensible Markup Language (XML) Configuration Access Protocol (XCAP) over the Ut interface for Manipulating Supplementary Services</td>
</tr>
<tr>
<td>[23]</td>
<td>GSMA PRD TS.32</td>
<td>Technical Adaptation of Devices through Late Customisation</td>
</tr>
</tbody>
</table>
2 IMS feature set

2.1 General
The IMS profile part lists the mandatory capabilities, which are required over the Gm and Ut reference points.

2.2 Support of generic IMS functions

2.2.1 SIP Registration Procedures
The UE and the network must conform to section 2.2.1 of GSMA PRD IR.92 [1], with the exception that section L.3.1.2 of 3GPP TS 24.229 [5] is not applicable.

Note: PRD IR.92 [1] contains explicit statements when the UE must register with the IMS. Currently 3GPP specifications do not have similar statements regarding VoWi-Fi. It is for further study if explicit statements can be created for VoWi-Fi (in addition to what is specified in section 2.4.2.1).

The home operator can configure the UE with the Media_type_restriction_policy and the PreferredAccessNetworks parameters as specified in Annex B.3.

A UE and a network supporting Conversational Video Service over Wi-Fi must conform to section 2.2.1 of GSMA PRD IR.94 [2].

The UE must support and use access-type in P-Access-Network-Info as specified in 3GPP TS 24.229 [5] section 7.2A.4.2. The P-Access-Network-Info header must contain one or more access-infos, one of them being the i-wlan-node-id parameter as specified in 3GPP TS 24.229 [5] section 7.2A.4.2. The i-wlan-node-id shall be set to the value of the MAC address of the WLAN Access Point. Furthermore, the UE must include the Cellular-Network-Info header field, as specified in section R.3.1.1A of 3GPP Release 13 TS 24.229.

If it is a Session Continuity UE (SC-UE), the UE must support and use the g.3gpp.accesstype media feature tag as specified in section 6.2.2 of 3GPP TS 24.237 [14].

If moving the PDN connection to the IMS well-known APN between Wi-Fi and cellular access as described in section 4.5 of this document, the UE must

- initiate re-registration procedure as specified in 3GPP TS 24.229 [5], section 5.1.1.4 and 3GPP TS 23.228 [13] in section 5.2.2.4,
- update P-Access-Network-Info header field, and
- if it is a SC-UE, update the g.3gpp.accesstype media feature tag as specified in section 6.2.2 of 3GPP TS 24.237 [14].

2.2.2 Authentication
The UE and the network must conform to section 2.2.2 of GSMA PRD IR.92 [1].

2.2.3 Addressing
The UE and the network must conform to section 2.2.3 of GSMA PRD IR.92 [1].
2.2.4 Call Establishment and Termination
The UE and the network must conform to section 2.2.4 of GSMA PRD IR.92 [1].

A UE and a network supporting Conversational Video Service over Wi-Fi must conform to section 2.2.2 of GSMA PRD IR.94 [2].

The UE must include the Cellular-Network-Info header field, as specified in section R.3.1.1A of 3GPP Release 13 TS 24.229.

2.2.5 Forking
The UE and the network must conform to section 2.2.5 of GSMA PRD IR.92 [1].

A UE and a network supporting Conversational Video Service over Wi-Fi must conform to section 2.2.3 of GSMA PRD IR.94 [2].

2.2.6 The use of Signalling Compression
The UE must not use SIGCOMP when the initial IMS registration is performed over Wi-Fi.

2.2.7 Early Media and announcements
The UE must conform to section 2.2.7 of GSMA PRD IR.92 [1].

2.2.8 SIP Session Timer
The UE must conform to section 2.2.8 of GSMA PRD IR.92 [1].

2.3 Supplementary Services
The UE and the network must conform to section 2.3 of GSMA PRD IR.92 [1].

A UE and a network supporting Conversational Video Service over Wi-Fi must conform to section 2.3 of GSMA PRD IR.94 [2].

2.4 Call Set-up Considerations

2.4.1 SIP Precondition Considerations
The UE and the network must conform to section 2.4.1 of GSMA PRD IR.92 [1].

 Note: Even though resources are available, the UE uses preconditions and sets the local preconditions accordingly in SDP offer and answer.

2.4.2 Integration of resource management and SIP

2.4.2.1 Loss of Radio Connection
If the UE loses radio connectivity and the IMS registration has expired prior to regaining radio connectivity, then upon regaining radio connectivity the UE must perform a new initial registration to IMS.

2.4.3 Voice Media Considerations
The UE and the network must conform to section 2.4.3 of GSMA PRD IR.92 [1].
2.4.4 Video Media Considerations
A UE and a network supporting Conversational Video Service over Wi-Fi must conform to section 2.4.2 of GSMA PRD IR.94 [2].

2.5 SMS over IP
The UE and network must conform to section 2.5 of GSMA PRD IR.92 [1].

3 IMS media
The UE and the network must conform to section 3 of GSMA PRD IR.92 [1].

A UE and a network supporting Conversational Video Service over Wi-Fi must conform to the additional requirements on IMS media as specified in section 2.3 of GSMA PRD IR.94 [2].

4 Radio and packet core feature set

4.1 Radio capabilities

4.1.1 Alignment with Wi-Fi Alliance Certification programmes
The UE must conform to section 2 of GSMA PRD TS.22 [4].

4.1.2 WLAN Policy provisioning
The UE must conform to section 3 of GSMA PRD TS.22 [4].

4.1.3 Connection management
The UE must conform to section 4 of GSMA PRD TS.22 [4].

4.2 Wi-Fi IP Access Network Detection
During initial attach or handover attach the UE must discover the trust relationship per 3GPP TS 24.302 [11] (For Wi-Fi Access Network type, see GSMA PRD. IR.61 [3]) of the Wi-Fi Access Network in order to know which Wi-Fi Access procedure to initiate The trust relationship of a Wi-Fi Access Network is made known to the UE if

1. The Wi-Fi Access supports 3GPP-based access authentication, the UE discovers the trust relationship during the 3GPP-based access authentication.
or
2. The UE operates on the basis of pre-configured policy in the UE.

4.3 Wi-Fi Access Network Selection

4.4 Non-3GPP Access Authentication and Security
The UE and the network must conform to the requirements for supporting untrusted access as specified in section 5.3 of GSMA PRD IR.61 [3].
The UE and the network must fulfil the following:

- Profile of Internet Key Exchange version 2 (IKEv2) as specified in 3GPP TS 33.402 [9] shall be used;
- Profile of IP Security (IPsec) as specified in 3GPP TS 33.402 [9] shall be used;
- Fast re-authentication procedure as described in 3GPP TS 33.402 [9] shall be supported;
- UE shall support to receive from Evolved Packet Data Gateway (ePDG) rekeying of both IKE_SA and IPSEC_SA; and
- Network Access Translation (NAT) traversal of IKEv2 and IPsec packets must be supported. The home operator can configure the UE with the “NAT Keep Alive timer” parameter as specified in Annex B.3.

The UE shall support rekeying of both IKE_SA and IPsec_SA, which shall be controlled by the mean-rekeying-time configuration parameter as specified in Annex B.3. The UE shall rekey both the IKE_SA and IPsec_SA after expiration of a timer with the initial value set to a random number of uniform distribution in the interval between the 75% of the mean-rekeying-time configuration parameter and 125% of the mean-rekeying-time configuration parameter. After each rekeying, the UE shall re-start the timer with a new random number. The mean-rekeying-time configuration parameter shall be configurable by the home operator. In the absence of a value being configured, the UE shall assume a (default) value of 18 hours.

Depending on operator policy, fast re-authentication shall be possible to be used in these scenarios:

- The UE has a SWu tunnel (see GSMA PRD IR.61 [3]) for one Access Point Name (APN). The UE moves to 3GPP for a period and then moves back to Wi-Fi and re-establishes SWu tunnel.
- The UE has at least one existing PDN connection and wants to setup a new one.

4.5 Multiple PDN connections

The UE must support multiple concurrently-active PDN connections. The UE must also support MAPCON (Multi-Access PDN Connectivity) and in this context it must support at least one PDN connection over WLAN and at least one PDN connection over 3GPP access.

Note: For MAPCON support by the network, see section 6.5 in GSMA PRD IR.61 [3].

A UE supporting simultaneous radio transmission capability can use MAPCON to offload one or more PDN connections to Wi-Fi while keeping other PDN connections on cellular access.

MAPCON policies must be either pre-defined by the home operator and reside on the UE or be provided via ANDSF according to Release 12 3GPP TS 23.402 [6]. These MAPCON policies can state if and when a certain APN can be moved to Wi-Fi taking into account
3GPP locations (e.g. PLMN, tracking area and cell id), Wi-Fi location (i.e. SSID) location and if the UE is roaming or not.

Note: It is recommended to have MAPCON policies which keep at least one APN/PDN connection on LTE. This avoids frequent attach procedures, reducing the signaling load in the network (for a typical traffic model) and enables a quicker handover from Wi-Fi to LTE. Also, the UE must stay attached to LTE if CS Fallback or SMS-SGs is used.

4.6 APN Considerations for SIP Signalling and XCAP

For SIP signalling, the IMS application in the UE must use the IMS well-known APN as defined in PRD IR.88 [7]; the UE must prevent non-IMS applications from using this APN.

For XCAP requests, the UE must be preconfigured or provisioned by the home operator with the configuration parameter “Access for XCAP requests” as specified in Annex B.3 with one of the following options:

i) to use cellular access (value "1", "3GPP accesses only");

ii) to use EPC-integrated WLAN (value "2", "EPC via WLAN IP-CAN only");

iii) to use Wi-Fi access without PDN connection (value "3", "Non-seamless WLAN offload only");

iv) to prefer cellular access, and to use Wi-Fi access without PDN connection as secondary (value "4", "3GPP accesses preferred, non-seamless WLAN offload as secondary"); or

v) to prefer cellular access, and to use EPC-integrated WLAN as secondary (value "5", "3GPP accesses preferred, EPC via WLAN IP-CAN as secondary").

If the UE is configured to use cellular access for XCAP requests, the UE must use the APN as defined in GSMA PRD IR.92 [1].

If the UE is configured to use EPC-integrated WLAN for XCAP requests, the UE must be preconfigured or provisioned by the home operator with the ToConRef parameter as specified in Annex B.3 with the APN to be used for XCAP requests in EPC-integrated WLAN access. The APN for the PDN Connection used for XCAP requests in Wi-Fi Access may be either the same APN as defined in GSMA PRD IR.92 [1] or a different APN.

Note: If a different APN is used then the IP session continuity between 3GPP and non-3GPP IP access for the PDN Connection used for XCAP requests is not provided.

4.7 PDN Connectivity Service

4.7.1 General

The UE and the network must conform to the requirements for PDN Connectivity Service as specified in section 5.6.1 of GSMA PRD IR.61 [3].
4.7.2 ePDG Selection for non-Emergency Voice services
The UE shall select an ePDG for non-emergency voice services as specified in section 7.2.1 of the Release 13 of 3GPP TS 24.302 [11].

Note: Domain Name System (DNS) queries for ePDG selection are sent to the DNS server provided on the Wi-Fi Internet connection.

4.7.3 Connectivity Services
The UE must establish a separate SWu instance (i.e. a separate IPsec tunnel) for the PDN connection to the IMS well-known APN and to the APN to be used for XCAP requests, see also section 4.6. The UE must provide the APN during the initial attach procedure and during the attach to additional PDN procedure as specified in 3GPP TS 23.402 [6]. The APN shall be encoded as ID FQDN defined in IETF RFC 5996 [12]. The UE must use the same ePDG for all SWu instances, see also section 4.7.1.2.

Note: When the UE provides the IMS well-known APN, the APN Operator Identifier is not included as defined in section 6.3.7 of GSMA PRD IR.88 [7].

4.7.4 UE initiated disconnect
The UE initiated disconnect procedure shall be used by UE in the following scenarios:

- The UE is turned off and has one or more active SWu connections to ePDG;
- Wi-Fi connection is turned off and the UE has one or more active connections to ePDG that according to the UE/operator policy should not be handed over to cellular (i.e. depending on policies, see section 4.5);
- Wi-Fi connection is turned off and UE has one or more active connections to ePDG and no cellular coverage.

For each PDN connection the UE should disconnect, it shall send a IKE Informational request with Delete Payload, which contains the SPI of the IKEv2 SA corresponding to the WLAN UE session to be disconnected.

4.7.5 Network initiated disconnect
The UE shall be able to receive an IKEv2 Informational request with Delete Payload, which contains the SPI of the IKEv2 SA corresponding to the WLAN UE session to be disconnected. The UE shall reply with an IKEv2 Information response.

Note: The network that initiates the disconnect can be triggered by many reasons like subscription changes, maintenance in network etc.

4.7.6 Liveness check
The UE shall support the procedures for the tunnel liveness check as specified in subclause 7.2.2 and subclause 7.2.2A of Release 13 of 3GPP TS 24.302 [11]. The home operator can configure the UE with the “Liveness check timer” in the absence of a network specified value parameter as specified in Annex B.3. The support for the network-configured liveness check timers is optional.
The network can support the procedures for the tunnel liveness check as specified in subclause 7.4.1 and subclause 7.4.1A of Release 13 of 3GPP TS 24.302 [11].

4.8 Mobility Management

A UE supporting untrusted access must

- support seamless handover from LTE to Wi-Fi as described in 3GPP TS 23.402 [6];
- support seamless handover from Wi-Fi to LTE as described in 3GPP TS 23.402 [6].

The network can fulfill the requirements for mobility management as specified in section 6.2 of GSMA PRD IR.61 [3].

4.9 P-CSCF Discovery

The UE and the network must support the procedures for P-CSCF discovery via EPC via WLAN, as described in method IV of Annex R.2.2.1 of Release 13 3GPP TS 24.229 [5].

When establishing a PDN connection to the IMS well-known APN via WLAN, the UE must discover the P-CSCF address(es) as described in method IV of Annex R.2.2.1 of Release 13 3GPP TS 24.229 [5]. When an untrusted non-3GPP IP access is used:

- The UE must support and use the P_CSCF_IP6_ADDRESS attribute and the P_CSCF_IP4_ADDRESS attribute as described in Release 13 3GPP TS 24.302 [11]; and
- The network must support and use the P_CSCF_IP6_ADDRESS attribute, the P_CSCF_IP4_ADDRESS attribute or both as described in Release 13 3GPP TS 24.302 [11].

If P-CSCF address(es) were discovered using the method IV, the UE must use the P-CSCF address(es) discovered using the method IV as defined in section 5.1 and 3GPP TS 24.229 [5].

After the UE has discovered the P-CSCF and registered to IMS, the UE must use this P-CSCF as long as the IMS registration is valid, as described in sections B.2.2.1, L.2.2.1 and R.2.2.1 of Release 13 3GPP TS 24.229 [5].

Note: The UE continues to use the selected P-CSCF also if the PDN connection to the IMS well-known APN is subject of handover from Wi-Fi to LTE, UTRAN and GERAN and vice versa, see also section 4.8.

5 Common Functionalities

5.1 IP Version

The UE and the network shall support both IPv4 and IPv6 for all protocols that are used for the service: SIP, SDP, RTP, RTCP and XCAP/HTTP.

Upon PDN connection procedure over untrusted non-3GPP IP access, the UE shall include proper attribute types in the CFG_REQUEST within the IKE_AUTH request message to request both IPv4 and IPv6 addresses as specified in section 7.2.2 of Release 11 of 3GPP TS 24.302 [11].
For PDN connection over untrusted non-3GPP IP access, if both IPv4 and IPv6 addresses are assigned for the UE, the UE must prefer the IPv6 address type.

After the UE has discovered the P-CSCF and registered to IMS with a particular IPv4 or IPv6 address, the UE must use this IP address for all SIP communication, as long as the IMS registration is valid. For all SDP and RTP/RTCP communication, the UE must use the IPv4 address used for SIP communication or an IPv6 address with the IPv6 prefix same as the IPv6 prefix of the IPv6 address used for SIP communication.

Note: There are certain situations where interworking between IP versions is required. These include, for instance, roaming and interconnect between networks using different IP versions. In those cases, the network needs to provide the interworking in a transparent manner to the UE.

5.2 IP Address Allocation
The UE and the network must support the IP address allocation as specified in section 4.7.3 of 3GPP TS 23.402 [6].

5.3 Emergency Service
The UE must support Annex J of 3GPP Release 13 TS 23.167 [17], Annex R of 3GPP Release 13 TS 24.229 [5] (for SIP procedures), and sections 7.2.2.1, 7.2.5 and 7.2.1a of 3GPP Release 13 TS 24.302 [11] (for selection of ePDG for emergency services and for establishment of emergency PDN connection via untrusted EPC-integrated WLAN). The UE must also include the Cellular-Network-Info header field, as specified in section R.3.1.1A of 3GPP Release 13 TS 24.229 [5].

For the purpose of selection of ePDG for emergency services as specified above, the home operator can configure the UE with the ePDG parameter as specified in Annex B.3.

The UE must fulfil the requirements to convey its location, as defined in section 5.2.3 of GSMA PRD IR.92 [1].

The UE must support the current location discovery during an emergency call as specified in subclause 5.1.6.8.2, subclause 5.1.6.8.3, subclause 5.1.6.8.4, and subclause 5.1.6.12 of 3GPP Release 14 TS 24.229 [5].

The network can support the current location discovery during an emergency call as specified in subclause 5.11.5 of 3GPP Release 14 TS 24.229 [5].

5.4 Roaming Considerations
This profile supports IMS roaming as described in GSMS PRD IR.65 [16] and GSMA PRD IR.88 [7].
Annex A Complementing IMS over Wi-Fi with CS

A.1 General
In order to offer its customer a seamless service, the operator may wish to complement the Wi-Fi access by utilising the CS radio access for voice and/or SMS. One possible deployment scenario is that Wi-Fi access is in areas without ubiquitous LTE coverage but with GERAN/UTRAN coverage. This annex describes the additional features that need to be implemented for the UEs and networks that wish to support such a deployment scenario.

A.2 Dual Voice Call Continuity
The network must support the Dual Radio Voice Call Continuity (DR-VCC) procedures for handover from Wi-Fi to CS as described as “PS – CS Access Transfer: PS to CS - Dual Radio” and the dynamic Session Transfer Number (STN) in Release 12 of 3GPP TS 23.237 [15] and 3GPP TS 24.237 [14].

The UE must support the DR-VCC procedures for single active calls only and dynamic STN as described in Release 12 of 3GPP TS 24.237 [14].

Note 1: The mechanisms to perform transfer of additional session / held state / conference call state / (pre-)alerting calls are out of scope of the present version of this profile.

Note 2: If the UE receives the feature-capability indicator g.3gpp.dynamic-stn, then the UE knows that the network supports DR-VCC from Wi-Fi to CS.

A.3 SMS Support
This section modifies the requirements defined in section 2.5 in the following ways:

If the UE is configured not to use SMS-over-IP as described in section A.7 of GSMA PRD IR.92 [1], then the UE must either attempt to stay attached to LTE to use SMS over NAS signalling as described in section 4.5 or the UE must attempt to stay attached to legacy 3GPP access (GERAN or UTRAN).

Annex B MNO Provisioning and Late Customization

B.1 General
This annex describes the capabilities to support MNO provisioning and late customization as defined in Annex C in GSMA PRD IR.92 [1].

B.2 Configuration Methods
See Annex C.2 in GSMA PRD IR.92 [1].

B.3 Configuration Parameters
Table B.3.1 contains the configuration parameters with their default values that must be supported by the UE, in addition to those defined in GSMA PRD IR.92 [1] and IR.94 [2]. The UE must use the default value for each parameter in Table B.3.1 unless configured differently by any of the methods as described in section B.2.
Note: The parameters in Table B.3.1 are a subset of parameters in section 3.8 of GSMA PRD TS.32 [23].

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default value</th>
<th>Defined in</th>
<th>See also clause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media_type_restriction_policy (Voice and/or video over WiFi enabled)</td>
<td>Voice and video allowed</td>
<td>Section 5.43 of 3GPP Release 14 TS 24.167 [20] (interior node /<X>/Media_type_restriction_policy) and 3GPP Release 14 TS 24.229 [5]</td>
<td>2.2.1</td>
</tr>
<tr>
<td>PreferredAccessNetworks (Voice over PS/WiFi Preference Indicator)</td>
<td>No default</td>
<td>Section 5.23 of 3GPP TS 24.216 [18] (/<X>/OperatorPolicy/<X>/MediaPref/PreferredAccessNetworks)</td>
<td>2.2.1</td>
</tr>
<tr>
<td>mean-rekeying-time (RekeyingTime)</td>
<td>18h</td>
<td>Section 5.12A.3 of 3GPP Release 14 TS 24.312 [19] (ANDSF/Untrusted_WLAN/RekeyingTime)</td>
<td>4.4</td>
</tr>
<tr>
<td>ToConRef (Network Identifier part of the XCAP APN on EPC-integrated WLAN)</td>
<td>No default</td>
<td>Section 5.9 of 3GPP Release 14 TS 24.424 [21] (/<X>/XCAP_conn_params_policy/<X>/XDM_MO_ref) and 3GPP Release 14 TS 24.623 [22]</td>
<td>4.6</td>
</tr>
<tr>
<td>AccessForXCAP (Access for XCAP requests)</td>
<td>1 – 3GPP accesses only</td>
<td>3GPP TS 24.424 [21] and section 5.2.1.3 of 3GPP Release 14 TS 24.623 [22] (/<X>/AccessForXCAP)</td>
<td>4.6</td>
</tr>
<tr>
<td>Liveness check timer in the absence of a network specified value (LivenessCheckPeriod)</td>
<td>TBD</td>
<td>Section 5.12A.2 of 3GPP Release 14 TS 24.312 [19] (ANDSF/Untrusted_WLAN/LivenessCheckPeriod)</td>
<td>4.7.6</td>
</tr>
<tr>
<td>ePDG</td>
<td>Empty</td>
<td>Section 5.11.11 of 3GPP Release 13 TS 24.312 [19] (ANDSF/HomeNetworkPreference/ePDG)</td>
<td>5.3</td>
</tr>
</tbody>
</table>

Table B.3.1 Configuration parameters and their default values
Annex C Document Management

C.1 Document History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Brief Description of Change</th>
<th>Approval Authority</th>
<th>Editor / Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>17/10/2014</td>
<td>New PRD IR.51</td>
<td>IREG/PSMC</td>
<td>Vincent Danno / Orange</td>
</tr>
<tr>
<td>2.1</td>
<td>13/08/2015</td>
<td>Headers numbering correction</td>
<td>NG (email approval)</td>
<td>Merieme El Orch / Orange</td>
</tr>
<tr>
<td>4.0</td>
<td>24/05/2016</td>
<td>Implementation of CR1027, CR1028, CR1029, CR1030, CR1031 and CR1032</td>
<td>NG #3</td>
<td>Merieme El Orch / Orange</td>
</tr>
</tbody>
</table>

Other Information

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document Owner</td>
<td>NG RILTE</td>
</tr>
<tr>
<td>Editor / Company</td>
<td>Merieme El Orch / Orange</td>
</tr>
</tbody>
</table>

It is our intention to provide a quality product for your use. If you find any errors or omissions, please contact us with your comments. You may notify us at prd@gsma.com

Your comments or suggestions & questions are always welcome.