Planning for Analogue Switchover – utilising the Digital Dividend

Monday 27th February 2012
Importance of Digital Dividend band for delivering Mobile Broadband services
- Suvi Linden, ITU Special Envoy for the Broadband Commission for Digital Development

Planning for the Switchover
- Amit Nagpal, Consultant, Aetha Consulting

Case Study: Germany – from start to finish
- Dr Rüdiger Hahn, Head of Department, Bundesnetzagentur (Federal Network Agency)

Panel session:
Overcoming challenges for analogue switchover around the world

Moderator: Peter Lyons, MEA Spectrum Manager, GSMA
Panelists:
- Bitange Ndemo, Permanent Secretary, Ministry of Communications, Kenya
- Luis Lucatero, Head of Regulatory, Cofetel, Mexico
- Dr JS Sarma, Chairman, Telecom Regulatory Authority of India, India
Overview of Digital Dividend to date

Herman Schepers, Head of Spectrum Interventions, Government & Regulatory Affairs, GSMA
2003-2006: ITU working party 8F identifies 470-806/862MHz – ideal for low population density areas

Nov 2007: WRC 07 identifies 698-862 (Regions 1 and 3)

June 2006: Geneva 06 Agreement replaces analogue bands for digital TV

Jan 2009: WRC 07 decisions come into force

WRC 03: Agenda Item 7.2 proposes new bands to be recognised for IMT

WRC 12: Extra agenda item to extend Region 1 band down to 698MHz
Band plans:
2 x 30MHz – CEPT / ATU
2 x 45MHz – APT / CITEL
2 x 22MHz – US band plan

Licences issued:
• US (Mar 08)
• Germany (May 10)
• Sweden (Mar 11)
• Spain (Jul 11)
• Italy (Sept 11)
• Portugal (Nov 11)
• France (Dec 11)
Importance of Digital Dividend band for delivering Mobile Broadband services

Suvi Linden, ITU Special Envoy for the Broadband Commission for Digital Development
Importance of Digital Dividend band for delivering Mobile Broadband

Suvi Lindén 27.2.2012
Broadband:
Key economic driver for the next decades
Average Traffic Per Mobile Device Type

<table>
<thead>
<tr>
<th>Device Type</th>
<th>2011 (MBs per Month)</th>
<th>2016 (MBs per Month)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Smartphone</td>
<td>4.3</td>
<td>108</td>
</tr>
<tr>
<td>M2M</td>
<td>71</td>
<td>266</td>
</tr>
<tr>
<td>Smartphone</td>
<td>150</td>
<td>2,576</td>
</tr>
<tr>
<td>E-Book Reader</td>
<td>750</td>
<td>2,880</td>
</tr>
<tr>
<td>Tablet</td>
<td>517</td>
<td>4,223</td>
</tr>
<tr>
<td>Laptop</td>
<td>2,131</td>
<td>6,942</td>
</tr>
</tbody>
</table>
What is the digital dividend?
Accessing the benefits of the digital dividend
How can this dividend be used?
WRC -12

1. The sharing issues in the 800 MHz band were successfully resolved
WRC -12

2. the 700 MHz band to the mobile services in Europe, Africa and Middle East, effective by the end of 2015

-> opens the way for worldwide harmonization of both 700MHz and 800 MHz bands for mobile
WRC -12

3. WRC-15 will consider additional spectrum allocations for mobile communication services

-> mobile services more affordable for end users and will help ITU towards its mandate of “connecting the world”.
Key Messages from Broadband Leadership Summit

• **MDGs**: Broadband accelerates progress
• **Access**: Ensuring universal access to information and the “right to communicate”
• **Economy**: Broadband is critical infrastructure
• **Development**: Broadband benefits all society
• **Partnership**: Public-private sector cooperation
• **Policy**: National broadband plans
• **Innovation**: Private sector has vital role to play
Target 1: Making broadband policy universal

• By 2015, all countries should have a national broadband plan or strategy or include broadband in their Universal Access / Service Definitions

Action to enhance broadband access is more likely when there is a national broadband plan or strategy, or when broadband is included in countries’ Universal Access / Service (UAS) definitions
Challenge and targets

Target 2: Making broadband affordable

- By 2015, entry-level broadband services should be made affordable in developing countries through adequate regulation and market forces (amounting to less than 5% of average monthly income)

- In 49 economies in the world – mostly rich-world economies – broadband access in 2010 cost less than 2% of average income

- This compares to 32 economies in the world in 2010 where broadband access cost more than half of average national income
Target 3: Connecting homes to broadband

- By 2015, 40% of households in developing countries should have Internet access.

- In developed countries, more than 2/3 of households already had Internet access at the end of 2010, compared to around 16% of households in the developing world. This is likely to increase significantly by 2015, especially with the rise of mobile Internet.

- This target includes access via both fixed and mobile networks.
Target 4: Getting people online

• By 2015, Internet user penetration should reach 60% worldwide, 50% in developing countries and 15% in LDCs

• At the end of 2010, 30% of the global population was online. Internet penetration in 2010 stood at 21% in the developing world and at just under 5% in the LDCs
Planning for the Switchover

Amit Nagpal, Consultant, Aetha Consulting
Planning for the switchover

Presentation for GSMA Government Ministerial Programme
Mobile World Congress 2012

27 February 2012
Introduction

• This presentation primarily draws upon research undertaken by Aetha Consulting for the GSM Association on case studies of the digital switchover process

• The objectives of the case studies are to highlight:
 − the major obstacles that each country has faced during the process
 − the steps that have been taken to find solutions

• Studied countries comprised Australia, Finland, Germany, Mexico and the UK

• We hope that stakeholders within countries that are currently in the process of developing and implementing plans for the 700MHz/800MHz band can learn from these experiences
Barriers to enabling future shared use of the band

The challenges faced by regulators and governments in enabling future shared use of the 470-862MHz band between digital TV and mobile broadband are varied.

Justification of switchover/band clearance to facilitate mobile broadband use

<table>
<thead>
<tr>
<th>Economic justification for switchover</th>
<th>Structural challenges to band clearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Solid economic evidence is often required before the digital dividend can be allocated to mobile broadband</td>
<td>• Complexities can arise from different bodies being responsible for broadcasting and mobile spectrum</td>
</tr>
</tbody>
</table>

Obstacles faced in migrating the band to new uses and users

<table>
<thead>
<tr>
<th>Completion of analogue switch-off (ASO)</th>
<th>Clearing DTT from the band</th>
</tr>
</thead>
<tbody>
<tr>
<td>• The timing of the ASO can be an obstacle to the 700/800MHz band being used for mobile</td>
<td>• DTT multiplexes may require relocation from the 700/800MHz band</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clearing PMSE(^{(1)}) use from the band</th>
<th>Clearing military users from the band</th>
</tr>
</thead>
<tbody>
<tr>
<td>• PMSE is often an existing user of the band and may require relocation</td>
<td>• In many countries the 700/800MHz band is used by the military</td>
</tr>
</tbody>
</table>

Ensuring mobile broadband in the 700MHz/800MHz band does not negatively impact other spectrum uses

<table>
<thead>
<tr>
<th>DTT use beneath the 700MHz/800MHz band</th>
<th>Cable TV use within the 700MHz/800MHz band</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Measures may need to be taken to prevent interference to continued DTT use</td>
<td>• Measures may need to be taken to prevent interference with cable TV equipment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Uses in neighbouring countries</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Ongoing DTT use in neighbouring countries may interfere with mobile use in the band</td>
<td>• Restrictions to prevent interference to military uses in neighbouring countries may also prevent mobile use in the band</td>
</tr>
</tbody>
</table>

\(^{(1)}\) Programme-making and special events. The primary use in the 700MHz/800MHz band is for radio microphones, and in-ear monitors.
Obstacles faced by our case study countries

<table>
<thead>
<tr>
<th>Obstacles faced in migrating to new uses/users</th>
<th>Australia</th>
<th>Finland</th>
<th>Germany</th>
<th>Mexico</th>
<th>UK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Justifying the switchover and clearance of the band</td>
<td>Qualitative evidence sufficient to justify 700MHz band</td>
<td>Justification of the 800MHz band straightforward as was not used for TV</td>
<td>Split spectrum responsibility between national government and Länder meant 800MHz band adoption was complicated</td>
<td>Qualitative evidence sufficient to justify 700MHz band</td>
<td>Detailed quantitative assessment of benefits was undertaken</td>
</tr>
<tr>
<td>Obstacles faced in migrating to new uses/users</td>
<td>Large number of DTT channels in the 700MHz band, which could only be relocated after ASO Large number of PMSE users</td>
<td>No DTT use in the 800MHz band PMSE use in the 800MHz requires relocation</td>
<td>DTT/mobile TV use in the 800MHz band, which could only be relocated after ASO Large number of PMSE users</td>
<td>Legacy analogue TV use prevents mobile use before ASO No planned DTT use in the band</td>
<td>Planned DTT use in Ch61& 62 requires relocation Large number of PMSE users in Ch69 require relocation</td>
</tr>
<tr>
<td>Ensuring that other spectrum uses are not negatively impacted</td>
<td>DTT use beneath the 700MHz band required protection No neighbouring countries</td>
<td>Agreement that protected Russian military use (ARNS) prevented mobile use in the 800MHz band nationally, in effect</td>
<td>DTT use beneath the 800MHz may require protection Concerns that mobile could interfere with cable TV</td>
<td>DTT use beneath the 700MHz band for mobile</td>
<td>DTT use beneath the 800MHz requires protection</td>
</tr>
</tbody>
</table>
Justifying digital switchover and band clearance

The UK and Germany needed to overcome obstacles to justify the digital switchover and clearance of the 800MHz band

UK

- Together with branches of the UK government, the regulator Ofcom carried out numerous, extensive and detailed studies into the costs and benefits of awarding the digital dividend for telecoms use, including:
 - A case for digital switchover, primarily made on the cost savings from the switch-off of the analogue infrastructure compared to maintaining dual transmission systems
 - A “Digital Dividend Review” estimated that the value of the digital dividend to be within GBP5–10 billion, based on a wide range of potential alternative uses of the released spectrum, including use for mobile broadband and additional television channels
 - A further analysis was undertaken, specifically on the additional benefits/costs of adopting the 800MHz band in the UK, which resulted in an NPV in the range GBP2 to 3 billion, after accounting for the costs of migrating existing users

Germany

- The process to designate the 800MHz band for mobile use was complicated by the fact that the national government is responsible for mobile services spectrum licensing whereas each of the 16 federal states (Bundesländer) is responsible for the licensing of broadcast spectrum
- The government based the case for reallocating the 800MHz band to mobile use on the ability to provide wireless broadband in rural areas
- Parliament put forward proposals to remove the power of the Bundesländer to restrict the use of the UHF band to broadcasting
- Ultimately, the Bundesrat finally adopted the national government’s proposals

(1) Net present value over 20 years
Clearing DTT from the 700MHz/800MHz band

Our case study: countries have employed a range of solutions to clear DTT from the band

Actions to accelerate analogue switch-off

- **Australia**: A comprehensive switchover programme was put in place to accelerate ASO. Its initiatives included: a programme of training of retail advisors in electronics stores, labelling of goods into categories of “digital readiness”, a programme of training of TV and antenna installers, and a programme of “endorsed” installers. It also organised a series of targeted subsidies, such as a free decoder for vulnerable collectives, and subsidies for households located outside of coverage areas to receive TV via satellite.

- **Mexico**: The regulator COFETEL recently called for financial resources to accelerate ASO, estimating the subsidies required to provide decoders, antennas and related costs to be of the order of USD200 million. COFETEL recommended that this be financed by the public.

- **UK**: A fund of GBP600 million was secured to provide free/subsidised set-top boxes to older people and people with disabilities.

The availability of low cost DTT set-top boxes will be key for accelerating digital switchover in emerging markets; this may arise through local/regional manufacturing.

Actions to relocate historic uses from the 700MHz/800MHz band

- **Germany**: A compensation scheme was put in place for PMSE users affected by interference from mobile and needed to be relocated to channels 51 to 60 (which required the purchasing of new equipment).

- **UK**: DTT assignments in channels 61 and 62 were relocated primarily to channels 39 and 40. The cost of this was estimated at between GBP85 million and GBP185 million, which was to be funded by the government.
Protecting users in adjacent bands from interference

Our case study countries have employed a range of solutions to protect users in neighbouring bands and in neighbouring countries from harmful levels of interference from mobile broadband services.

Actions to protect DTT use below the 700MHz/800MHz band

- **Australia**: The regulator ACMA has implemented an additional 4MHz of guard band (9MHz in total) between the 700MHz band and DTT in order reduce any risk of interference.
- **Germany**: The 800MHz licence conditions specified that licensees are responsible for ensuring there is no interference with users in neighbouring bands.
- **UK**: The regulator Ofcom undertook research into the potential for mobile use in the 800MHz band to interfere with DTT. These stated that mitigation measures could include the deployment of filters for DTT receivers, filters at mobile base stations, reorientation of aerials, reduction in the power levels and migrating users to other TV platforms. Ofcom estimated that these measures could total around GBP100 million, and proposed that they should be borne by the licensees of the 800MHz band. Ofcom’s most recent research has indicated approximately 900,000 DTT-only households could be affected by interference in the absence of the above mitigation measures.

Actions to resolve interference issues with neighbouring countries

- **Finland**: Russia currently uses the 800MHz band for ARNS. Existing coordination interference agreements with Russia effectively prevented neighbouring countries (including Finland) from using these frequencies for any other use. Finland, along with several of Russia’s other neighbours, entered into negotiations with Russia regarding the 800MHz band, as well as other issues. In the second half of 2011, FICORA reached an agreement with Russia which allowed a full coverage mobile 800MHz network to be placed 55km from the Russian border.

(1) Aeronautical radio navigation services
All five case studies can be found in the GSM Association’s Digital Dividend toolkit

Annex

A.1 Introduction to Aetha Consulting
Aetha Consulting helps players in the telecommunications industry to develop creative and sustainable solutions to the challenges facing them in a constantly changing environment.

We specialise in undertaking rigorous, data-driven and quantitative assessments to support major strategic and regulatory decisions. We work with our clients to develop the tools and methodologies appropriate to solve each new business problem as it arises.

Our staff have been contracted to advise on key industry issues, including: market strategy development, radio spectrum policy, spectrum valuation and auction support.

We are committed to quality and exceeding our client's expectations. We have a strong track record of successful assignments with operators, regulators, and manufacturers, as well as financial and legal institutions.
Spectrum management experience

We help operators and regulators to analyse the opportunities and threats arising out of changes in their radio spectrum holdings.

Recent spectrum assignments and reference projects *

Netherlands: Valuation and auction strategy for an operator ahead of 2.6GHz auction.
UK: Study for Ofcom regarding the liberalisation of 2G spectrum.
USA: Valuation of 220MHz spectrum for two railroad companies.
France: Study for ARCEP to quantify the economic benefits of uses of the digital dividend.
Germany: Spectrum valuation support for an operator ahead of the ‘big bang’ auction.
UAE: Advised the regulator regarding digital TV switchover.

Denmark: Support to NITA to award spectrum in the 2.1GHz, 2.6GHz and 800MHz bands.
Poland: Valuation support to a mobile operator ahead of the 2008 900MHz auction.
Hong Kong: Advised OFTA to implement a spectrum trading regime.
Singapore: Supported IDA to develop a strategy for the digital dividend.

* A significant amount of the experience shown was gained by our team members prior to joining Aetha.

Our staff have supported operators in over 25 spectrum auctions worldwide in the last 10 years including:

- 800MHz and 2.6GHz (4G) auctions in Europe including Austria, Germany, Italy, the Netherlands and Switzerland
- 2.1GHz (3G) auctions in Asia including India, Hong Kong, Singapore and Taiwan
- New entrant licence acquisition opportunities in countries such as the AWS auction in Canada and 2G/3G auctions in Egypt, Iran, Kuwait, Libya and Qatar.

Our consultants have assisted regulators to award spectrum including supporting the UK and Danish Governments with awards of 420MHz, 800MHz, 1.5GHz, 2.1GHz and 2.6GHz spectrum...
Contact details

Amit Nagpal
Partner
amit.nagpal@aethaconsulting.com
Tel: +44 7546 912355

Aetha Consulting Limited
Coton Hall
10 Brookfield Road
Coton
Cambridge
CB23 7PT
United Kingdom
www.aethaconsulting.com
Contact details

Amit Nagpal
Partner
amit.nagpal@aethaconsulting.com
Tel: +44 7546 912355
Case Study: Germany – from start to finish

Dr Rüdiger Hahn, Head of Department, Bundesnetzagentur (Federal Network Agency)
Thematic Workshop
Case Study: Germany – from start to finish

Dr. Rüdiger Hahn
Barcelona, 27th February 2012
Overview

Starting position
Spectrum before Auction

- Frequency bands 800 MHz and 900 MHz
- Frequency band 1.8 GHz
- Frequency band 2.0 GHz
- Frequency band 2.6 GHz

Legend:
- Telekom Deutschland
- E-Plus-Gruppe
- Telefónica O2 Germany
- Vodafone
- 0.8GHz A concrete blocks
- 0.8GHz B - 1.8GHz F abstract blocks
Frequency holdings before Auction

<table>
<thead>
<tr>
<th>Frequency Range</th>
<th>900 MHz</th>
<th>1.8 GHz</th>
<th>2.1 GHz</th>
<th>Σ paired spectrum</th>
<th>2.1 GHz (unpaired)</th>
<th>Σ spectrum (in total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>900 MHz</td>
<td>2 × 12,4</td>
<td>2 × 12,4</td>
<td>2 × 5</td>
<td>2 × 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8 GHz</td>
<td>2 × 5</td>
<td>2 × 5,4</td>
<td>2 × 17,4</td>
<td>2 × 17,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1 GHz</td>
<td>2 × 9,9</td>
<td>2 × 9,9</td>
<td>2 × 9,9</td>
<td>2 × 9,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σ paired spectrum</td>
<td>2 × 27,3</td>
<td>2 × 27,7</td>
<td>2 × 32,3</td>
<td>2 × 32,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1 GHz (unpaired)</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σ spectrum (in total)</td>
<td>59,6</td>
<td>60,4</td>
<td>69,6</td>
<td>64,6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
German approach

Flexibilisation of licenses

Award of new spectrum

Federal Network Agency

The Federal Government’s Broadband Strategy

Innovation policy, information society, telecommunications

www.bmwi.de
Overview

Decisions
Coverage obligation

Principle obligation:
- at least 25% of the population as from 1 January 2014
- at least 50% as from 1 January 2016

Special obligation for “digital dividend”:
- Federal Government’s Broadband Strategy
- Federal states compiled “white spaces” on municipality level
- Four priority stages:
 1. inhabitants < 5,000
 2. 5,000 < inhabitants < 20,000
 3. 20,000 < inhabitants < 50,000
 4. 50,000 < inhabitants
- at least 90% of the population of the relevant municipalities per Federal state by end of 2016
Minimum bid

- **Acceleration of bidding process**
- **Low barriers for SME**
- **Prove seriousness of application**
- **As-if no auction**
- **Fees as reference figure**

<table>
<thead>
<tr>
<th>Block</th>
<th>Minimum bid</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 x 5 MHz (paired)</td>
<td>€ 2,500,000</td>
</tr>
<tr>
<td>1 x 5 MHz (unpaired)</td>
<td>€ 1,250,000</td>
</tr>
<tr>
<td>1 x 14.2 MHz (unpaired)</td>
<td>€ 3,550,000</td>
</tr>
</tbody>
</table>
12 April 2010: Starting the clock
Results of the final bidding round

End of Auction

<table>
<thead>
<tr>
<th>Frequenzbereich</th>
<th>Block</th>
<th>Ausstattung</th>
<th>Höchst-bieter</th>
<th>Höchstgebot (€ in Tsd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,8 GHz (gepaart)</td>
<td>0,8 GHz A</td>
<td>2x5 MHz konkret</td>
<td>To2 GER</td>
<td>616.595</td>
</tr>
<tr>
<td></td>
<td>0,8 GHz B</td>
<td>2x5 MHz abstrakt</td>
<td>To2 GER</td>
<td>565.760</td>
</tr>
<tr>
<td></td>
<td>0,8 GHz C</td>
<td>2x5 MHz abstrakt</td>
<td>Telekom D</td>
<td>570.849</td>
</tr>
<tr>
<td></td>
<td>0,8 GHz D</td>
<td>2x5 MHz abstrakt</td>
<td>Telekom D</td>
<td>582.949</td>
</tr>
<tr>
<td></td>
<td>0,8 GHz E</td>
<td>2x5 MHz abstrakt</td>
<td>Vodafone</td>
<td>583.005</td>
</tr>
<tr>
<td></td>
<td>0,8 GHz F</td>
<td>2x5 MHz abstrakt</td>
<td>Vodafone</td>
<td>627.317</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frequenzbereich</th>
<th>Block</th>
<th>Ausstattung</th>
<th>Höchst-bieter</th>
<th>Höchstgebot (€ in Tsd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,8 GHz (gepaart)</td>
<td>1,8 GHz A</td>
<td>2x5 MHz abstrakt</td>
<td>Telekom D</td>
<td>20.700</td>
</tr>
<tr>
<td></td>
<td>1,8 GHz B</td>
<td>2x5 MHz abstrakt</td>
<td>Telekom D</td>
<td>20.700</td>
</tr>
<tr>
<td></td>
<td>1,8 GHz C</td>
<td>2x5 MHz abstrakt</td>
<td>Telekom D</td>
<td>19.869</td>
</tr>
<tr>
<td></td>
<td>1,8 GHz D</td>
<td>2x5 MHz konkret</td>
<td>E-Plus Grp</td>
<td>21.550</td>
</tr>
<tr>
<td></td>
<td>1,8 GHz E</td>
<td>2x5 MHz konkret</td>
<td>E-Plus Grp</td>
<td>21.536</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frequenzbereich</th>
<th>Block</th>
<th>Ausstattung</th>
<th>Höchst-bieter</th>
<th>Höchstgebot (€ in Tsd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,0 GHz (gepaart)</td>
<td>2,0 GHz A</td>
<td>2x4,95 MHz konkret</td>
<td>Vodafone</td>
<td>93.757</td>
</tr>
<tr>
<td></td>
<td>2,0 GHz B</td>
<td>2x4,95 MHz konkret</td>
<td>E-Plus Grp</td>
<td>103.323</td>
</tr>
<tr>
<td></td>
<td>2,0 GHz C</td>
<td>2x4,95 MHz konkret</td>
<td>E-Plus Grp</td>
<td>84.064</td>
</tr>
<tr>
<td></td>
<td>2,0 GHz D</td>
<td>2x4,95 MHz konkret</td>
<td>To2 GER</td>
<td>66.931</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frequenzbereich</th>
<th>Block</th>
<th>Ausstattung</th>
<th>Höchst-bieter</th>
<th>Höchstgebot (€ in Tsd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,6 GHz (ungepaart)</td>
<td>2,6 GHz O</td>
<td>1x5 MHz abstrakt</td>
<td>Vodafone</td>
<td>9.130</td>
</tr>
<tr>
<td></td>
<td>2,6 GHz P</td>
<td>1x5 MHz abstrakt</td>
<td>Vodafone</td>
<td>9.130</td>
</tr>
<tr>
<td></td>
<td>2,6 GHz Q</td>
<td>1x5 MHz abstrakt</td>
<td>Telekom D</td>
<td>8.598</td>
</tr>
<tr>
<td></td>
<td>2,6 GHz R</td>
<td>1x5 MHz abstrakt</td>
<td>Vodafone</td>
<td>8.598</td>
</tr>
<tr>
<td></td>
<td>2,6 GHz S</td>
<td>1x5 MHz abstrakt</td>
<td>Vodafone</td>
<td>9.051</td>
</tr>
<tr>
<td></td>
<td>2,6 GHz T</td>
<td>1x5 MHz abstrakt</td>
<td>Vodafone</td>
<td>9.051</td>
</tr>
<tr>
<td></td>
<td>2,6 GHz U</td>
<td>1x5 MHz abstrakt</td>
<td>E-Plus Grp</td>
<td>8.273</td>
</tr>
<tr>
<td></td>
<td>2,6 GHz V</td>
<td>1x5 MHz abstrakt</td>
<td>To2 GER</td>
<td>8.229</td>
</tr>
<tr>
<td></td>
<td>2,6 GHz W</td>
<td>1x5 MHz abstrakt</td>
<td>To2 GER</td>
<td>8.229</td>
</tr>
</tbody>
</table>

Ausgeschiedene Bieter:

4.384.646.000 €
- **360 MHz**
- **41** frequency blocks
- **4** frequency bands (800 MHz, 1.8 GHz, 2.1 GHz, 2.6 GHz)
- **1** auction
- **6** applicants
- **4** bidders
- **6** weeks
- **224** rounds
Outcome of the auction

Approx total 359 MHz

- **Telekom**: 99 MHz
- **Vodafone**: 70 MHz
- **E-Plus**: 70 MHz
- **Telefonica**: 95 MHz
Highest bids per operator

- €1,378,605,000
 Telefonica O2
- €1,299,893,000
 Telekom
- €283,645,000
 E-Plus
- €1,422,503,000
 Vodafone
Spectrum of the mobile network operators after the auction

- **Telefónica**
 - 64.6 MHz (already awarded spectrum)
 - 99.1 MHz (spectrum awarded in the auction 2010)
 - Total: 163.7 MHz

- **E-Plus**
 - 69.6 MHz (already awarded spectrum)
 - 69.8 MHz (spectrum awarded in the auction 2010)
 - Total: 139.4 MHz

- **Vodafone**
 - 60.4 MHz (already awarded spectrum)
 - 94.9 MHz (spectrum awarded in the auction 2010)
 - Total: 155.3 MHz

- **Telekom**
 - 59.6 MHz (already awarded spectrum)
 - 95.0 MHz (spectrum awarded in the auction 2010)
 - Total: 154.6 MHz
Current spectrum distribution

- Frequency bands 800 MHz and 900 MHz
- Frequency band 1.8 GHz
- Frequency band 2.1 GHz
- Frequency band 2.6 GHz

Telekom Deutschland E-Plus-Gruppe Telefónica O2 Germany Vodafone

0.0% concrete awarded
0.0% - 0.9% abstract awarded

52
Co-existence of DVB-T and LTE

Site-specific parameters

Transparent procedure

No interference yet
10 of 16 Federal states covered

7448* LTE-800 sites approved

2332* sites in commercial operation

* as of January 2012
Site-specific parameters

- **LTE at 800 MHz**: 7,448 sites
- **LTE at 1.8 GHz**: 1,254 sites
- **LTE at 2.6 GHz**: 203 sites
2. Member States shall, when implementing this Directive, examine whether the existing assignment of the 900 MHz band to the competing mobile operators in their territory is likely to distort competition in the mobile markets concerned and, where justified and proportionate, they shall address such distortions in accordance with Article 14 of Directive 2002/20/EC of the European Parliament and of the Council of 7 March 2002 on the authorisation of electronic communications networks and services (Authorisation Directive) (**).

From our point of view a combination of spectrum costs and networks costs is the most suitable indicator to objectively determine competitive distortions. […] We do not see indicators for distortions of competition stemming from spectrum distribution and the flexibilization of the 900 MHz band.
Expiry of GSM licences by the end of 2016

Statements of interest in usage by January 2012
Dr. Rüdiger Hahn
Head of Department 2
Legal Aspects of Telecommunications Regulation, Frequency Regulation

www.bundesnetzagentur.de
Panel session:

Overcoming challenges for analogue switchover around the world

Moderator:

Peter Lyons, MEA Spectrum Manager, GSMA

Panelists:

Bitange Ndemo, Permanent Secretary, Ministry of Communications, Kenya

Luis Lucatero, Head of Regulatory, Cofetel, Mexico

Dr JS Sarma, Chairman, Telecom Regulatory Authority of India, India
Mobile Internet for the poorest: Making the most of the 700MHz band

Luis Lucatero
Chief of Regulatory Policy
COFETEL, Mexico

THIS DOCUMENT DOES NOT REPRESENT THE OFFICIAL VIEWS OF COFETEL
Regulatory Policy: What guides us?

Reduce transactional costs (including tools)
Defragmentation of supply and demand
Induction of social cohesion
Neutralize undesirable market effects
Entry barrier developing country $300 USD
Entry barrier developed country $30 USD

Smart phone cost

2009 2014

price
time
All segments converge
The 700MHz band

Large channels: low latency high throughput

Low frequency: Affordable coverage

High spectrum efficiency: LTE

No spectrum for official use: capacity models
My city
Ground Zero
Reduced transactional costs
Defragmented supply and demand
Enhanced social cohesion
Neutralized undesirable market effects
Thank You

Please visit www.gsma.com/DDtoolkit for detailed information