Table of Contents

1 Introduction 4
 1.1 Scope 4
 1.2 Document Maintenance 4

2 Definitions 4
 2.1 Common Abbreviations 4
 2.2 Glossary 5
 2.3 References 6
 2.4 Conventions 6

3 Definition of Vendor Development and Product Lifecycle 7
 3.1 Introduction 7
 3.2 Network Product Development Process 7
 3.3 Network Product Lifecycle Processes 8

4 Assets 8
 4.1 Introduction 8
 4.2 Source Code (SRC) 9
 4.3 Software Packages (SPK) 9
 4.4 Finished Products (FIN) 9
 4.5 Security Documentation (DOC) 10
 4.6 Operated Products (OPP) 10
 4.7 Product Development Support System (SUP) 10

5 Threats and their Risks 10
 5.1 Introduction 10
 5.2 Threat Descriptions 10

6 Security Objectives 12
 6.1 Introduction 12
 6.2 Security Objectives 12

7 Security Requirements 15
 7.1 Introduction 15
 7.2 Design 15
 7.2.1 [REQ-01] Security by Design 15
 7.3 Implementation 16
 7.3.1 [REQ-02] Version Control System 16
 7.3.2 [REQ-03] Change Tracking 16
 7.3.3 [REQ-04] Source Code Review 16
 7.3.4 [REQ-05] Security Testing 16
 7.3.5 [REQ-06] Staff Education 17
 7.4 Maintenance 17
 7.4.1 [REQ-07] Vulnerability Remedy Process 17
 7.4.2 [REQ-08] Vulnerability Remedy Independence 17
 7.4.3 [REQ-09] Information Security Management 17
 7.4.4 [REQ-10] Automated Build Process 18
7.4.5 [REQ-11] Build Environment Control 18
7.4.6 [REQ-12] Vulnerability Information Management 18
7.4.7 [REQ-13] Software Integrity Protection 18
7.4.8 [REQ-14] Unique Software Release Identifier 18
7.4.9 [REQ-15] Security Fix Communication 18
7.4.10 [REQ-16] Documentation Accuracy 19
7.4.11 [REQ-17] Security Point of Contact 19
7.4.12 [REQ-18]: Source Code Governance 19
7.4.13 [REQ-19] Continual Improvement 19
7.4.14 [REQ-20] Security Documentation 19

Annex A Document Management 20

A.1 Document History 20
A.2 Other Information 20
1 Introduction
This document is part of the GSMA Network Equipment Security Assurance Scheme (NESAS), of which there is an overview available in FS.13 – Network Equipment Security Assurance Scheme - Overview [1].

This document defines security requirements for an Equipment Vendor's Development and Product Lifecycle Processes.

NESAS is governed by the provisions set out in FS.14, FS.15 and FS.16. In case of any conflict between those documents and any other provisions in other NESAS documentation, save for Section 3.6 in FS.13, FS.14, FS.15 and FS.16 shall prevail.

1.1 Scope
The scope of the document has been restricted only to matters pertaining to the Vendor Development and Product Lifecycle Security Requirements.

The number of requirements is kept relatively small to keep evaluation costs reasonable and to focus on critical controls.¹ It is taken into account that the CPA build standard integrates elements which will be explicitly covered by requirements in SCAS's.

The procedure to run an audit is described in FS.15 [2].

1.2 Document Maintenance
This standard has been created and developed under the supervision of GSMA's Security Assurance Group comprised of representatives from mobile network operators and Equipment Vendors.

The GSM Association is responsible for maintaining this security standard and for facilitating a review, involving all relevant stakeholders, which will take place every 12 months during the life of the scheme.

2 Definitions

2.1 Common Abbreviations

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3GPP</td>
<td>The 3rd Generation Partnership Project</td>
</tr>
<tr>
<td>CPA</td>
<td>Commercial Product Assurance</td>
</tr>
<tr>
<td>FASG</td>
<td>Fraud and Security Group</td>
</tr>
<tr>
<td>NCSC</td>
<td>National Cyber Security Centre</td>
</tr>
<tr>
<td>NESAS</td>
<td>Network Equipment Security Assurance Scheme</td>
</tr>
<tr>
<td>NIST</td>
<td>National Institute of Standards and Technology</td>
</tr>
<tr>
<td>PDF</td>
<td>Portable Document Format</td>
</tr>
</tbody>
</table>

¹ Compare to NCSC’s CPA build standard [5] is seen as inspiration for the abstraction level, amount, and content of the requirements.
2.2 Glossary

Unless defined below all capitalised terms shall have the same meaning as in FS13:

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audit Guidelines</td>
<td>Document giving guidance to the Auditor and Equipment Vendor on how to interpret the requirements.</td>
</tr>
<tr>
<td>Audit Report</td>
<td>Document presenting the results of the audit conducted at the Equipment Vendor by the Auditor.</td>
</tr>
<tr>
<td>Audit Summary Report</td>
<td>A subset of the Audit Report created by the Auditor that summarises the key results.</td>
</tr>
<tr>
<td>Auditor</td>
<td>Organization appointed and contracted by GSMA and selected by Equipment Vendor to conduct audits of Vendor Development and Product Lifecycle processes.</td>
</tr>
<tr>
<td>Conformance Claim</td>
<td>A written statement by the Equipment Vendor that confirms it meets the NESAS security requirements for the Development and Product Lifecycle Processes that are to be assessed.</td>
</tr>
<tr>
<td>Firmware</td>
<td>Binaries and associated data supporting low-level hardware functionality installed on non-volatile memory like ROM and EPROM usually not mountable to a running operating system's file system. Firmware is a specific type of Software, therefore in this document the term “Software” includes Firmware.</td>
</tr>
<tr>
<td>NESAS Oversight Board</td>
<td>The body overseeing NESAS, run by the GSMA. It is responsible for the governance of the Vendor Development and Product Lifecycle Process assessments and quality assurance of NESAS.</td>
</tr>
<tr>
<td>NESAS Security Test Laboratory</td>
<td>A test laboratory that is ISO 17025 accredited in the context of NESAS and that conducts Network Product evaluations. It can be owned by any entity.</td>
</tr>
<tr>
<td>Network Product</td>
<td>Network equipment produced and sold to network operators by an Equipment Vendor.</td>
</tr>
<tr>
<td>Network Product Class</td>
<td>In the context of NESAS, the class of Network Products that all implement a common set of 3GPP defined functionalities.</td>
</tr>
<tr>
<td>Network Product Development Process</td>
<td>The stages through which Network Products journey throughout their development including planning, design, implementation, testing, release, production and delivery.</td>
</tr>
<tr>
<td>Network Product Lifecycle Processes</td>
<td>The stages through which developed Network Products journey to end of life including maintenance and update releases during their lifetime.</td>
</tr>
</tbody>
</table>
Term | Description
--- | ---
Release | Version of a Network Product being made available for deployment. The first Release of a Network Product is assumed to be a new Network Product.
Software | Binaries and associated data forming the basis of a Network Product’s operating system and functionality. Software is commonly stored on hard disks or flash memory mass storage devices. In this document, the term “Software” includes “Firmware”.
Vulnerability | In SP 800-30 [6], NIST defines a vulnerability as “A flaw or weakness in system security procedures, design, implementation, or internal controls that could be exercised (accidentally triggered or intentionally exploited) and result in a security breach or a violation of the system’s security policy.”

2.3 References

<table>
<thead>
<tr>
<th>Ref</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]</td>
<td>FS.13 — Network Equipment Security Assurance Scheme – Overview</td>
</tr>
</tbody>
</table>

2.4 Conventions

The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”, recommended”, “may”, and “optional” in this document are to be interpreted as described in RFC2119 [3]."
3 Definition of Vendor Development and Product Lifecycle

3.1 Introduction

Protection of relevant assets, as defined in section 4, needs to be in place during the entire lifetime of a Network Product.

Within NESAS, the Vendor Development and Product Lifecycle covers all aspects potentially impacting a Network Product’s lifetime, including it being planned, designed, implemented, delivered, updated, and eventually ramped down. The security requirements defined in section 7 are designed to mitigate the relevant threats defined in section 5 and are to be implemented within the Vendor Development and Product Lifecycle defined within this section.

3.2 Network Product Development Process

The Network Product development phases are as follows:

<table>
<thead>
<tr>
<th>#</th>
<th>Phase</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Planning</td>
<td>In case of a completely new Network Product, the requirements for the first Release are planned.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In the case of a new version of an existing Network Product, the requirements for the changes to be introduced by the next release are planned based on updated functional requirements as well as bug and vulnerability reports received against prior versions, if applicable.</td>
</tr>
<tr>
<td>2</td>
<td>Design</td>
<td>The implementation of the planned requirements for the Release is planned in detail.</td>
</tr>
<tr>
<td>3</td>
<td>Implementation</td>
<td>The planned requirements are implemented as per the design.</td>
</tr>
<tr>
<td>4</td>
<td>Testing and Verification</td>
<td>The fulfilment of the requirements by the implementation is verified. If the verification fails, the relevant requirement usually goes back to the “Implementation” phase. This phase also contains the security related testing and verification activities.</td>
</tr>
<tr>
<td>5</td>
<td>Release</td>
<td>The decision to release a given revision of a tested and verified implementation.</td>
</tr>
<tr>
<td>6</td>
<td>Manufacturing</td>
<td>In this phase, the development Release is converted into a deliverable Network Product.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In the case of pure software delivery, this is the delivery of the Release to the provisioning process.</td>
</tr>
<tr>
<td>7</td>
<td>Delivery</td>
<td>The delivery of the manufactured Network Product.</td>
</tr>
</tbody>
</table>

Table 1: Product Development Process

For new Network Products and any modifications of Network Products, the Product Development phases are executed in a cyclical fashion, starting again from the beginning once finished for the previous Network Product release.
3.3 Network Product Lifecycle Processes

The Product Lifecycle in the NESAS context covers all activities from the initial Network Product idea to end of life. It consists of a number of processes, as follows:

<table>
<thead>
<tr>
<th>Process</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product development process</td>
<td>As outlined in Section 3.2 above.</td>
</tr>
<tr>
<td>First Commercial Introduction</td>
<td>The Network Product starts its commercial lifetime by means of a first Release to be accepted for use in live commercial networks. Before that, earlier Releases may have been tested in test environments.</td>
</tr>
<tr>
<td>Update</td>
<td>The Network Product is updated by means of either a minor or a major Release. This phase is usually a cycle of such Releases.</td>
</tr>
<tr>
<td>Minor Release</td>
<td>A minor Release fixes vulnerabilities and other bugs found in earlier versions. It commonly introduces not more than minor feature enhancements and architectural changes.</td>
</tr>
<tr>
<td>Major Release</td>
<td>A major Release fixes vulnerabilities and other bugs found in earlier versions. It may introduce major feature enhancements and architectural changes.</td>
</tr>
<tr>
<td>End Of Life</td>
<td>No updates for the Network Product are supplied anymore. As this process occurs after contractual and regulatory requirements to maintain the Network Product have ceased, this commonly marks the end of a Network Product’s lifetime.</td>
</tr>
</tbody>
</table>

Table 2: Product Lifecycle Processes

4 Assets

4.1 Introduction

The ultimate goal of security related elements in the Vendor Development and Product Lifecycle Process is to ensure that the interests of the mobile network operator and its customers are protected. Usually, the main interest of the network operator is the flawless operation of its network. This section defines, discusses and prioritizes those security related assets which could have a negative impact on an operator’s network if they are harmed.

Assets in the scope of this document are the Network Product and its constituent parts that exist during the Vendor Development and Product Lifecycle Process. The assets need to be protected from threats that could lead to vulnerabilities in the Network Product during its lifecycle. Protection of relevant assets needs to be in place during the whole lifetime of a Network Product.

Security objectives in section 6 are derived from the assets and from identified relevant threats are defined in section 5.
The identified relevant assets are described in the following subsections.

4.2 Source Code (SRC)

Source code is used to create a Network Product's binary software. Here, the term "source code" also includes scripts which are not necessarily compiled to binary but are included as-is in the Network Product's software. Source code includes application software as well as software and hardware platforms and integrated APIs if any. Software platforms include operating systems and virtualization management software.

Common types of source code include those:

- Created by the Equipment Vendor dedicated for use in one or more particular Network Products [SRC_VND]
- Created by a subcontracting 3rd party on behalf of the Equipment Vendor dedicated for use in one or more particular Network Products [SRC_SUB]
- Created as general software elements (e.g. libraries) by a 3rd party supplier and provided to the Equipment Vendor as binary [SRC_TRB]
- Created as general software elements (e.g. libraries) by a 3rd party supplier and provided to the Equipment Vendor as source [SRC_TRS]
- Created by a 3rd party as free and open source without support [SRC_FOS]

4.3 Software Packages (SPK)

Software packages are commonly created out of source code (SRC) during the active development and maintenance phase through a build process. They are then subjected to testing and verification as well as Release decisions – and potentially used for manufacturing.

Each Network Product contains a combination of multiple software packages after manufacturing.

Common types of Software Packages include those:

- Created by the Equipment Vendor [SPK_VND]
- Created by a subcontracting 3rd party on behalf of the Equipment Vendor [SPK_SUB]
- Created by a 3rd party supplier [SPK_TRD]

4.4 Finished Products (FIN)

Finished Products typically are:

- Software images for installation on Network Products [FIN_SWR], typically compiled out of one or more Software Packages (SPK)
- Hardware elements integrating the whole Network Product [FIN_HWR], typically including a certain release of FIN_SWR after the production process.
4.5 Security Documentation (DOC)
Security documentation is used to guide Network Product design and development of source code and is a deliverable during the Network Product design and development process.

A common type of security document includes that created by the Equipment Vendor during the Network Product design and development process, e.g. schematics or architecture design documents. [DOC_DES]

4.6 Operated Products (OPP)
Operated Network Products are those that are in active use by a mobile network operator. These are FIN_HWR that can be, and already might have been, updated with new FIN_SWR after they have been first delivered by the Equipment Vendor.

- Network Products operated in live networks [OPP_LVE]

4.7 Product Development Support System (SUP)
Support Systems are used to manage activities, documentation, and source code in the Network Product development process, throughout the entire lifecycle.

Common types of support system:

- Product build environment, including compilation environment and tools used in the Network Product compilation process. E.g. operating system, compile scripts, build tools. [SUP_BUI]

5 Threats and their Risks

5.1 Introduction
This section defines threats and analyses the associated risks.

A risk analysis is done to identify the main threats against the assets. The list is not intended to be exhaustive but is focussed on identifying those threats that introduce the highest level of risk.

5.2 Threat Descriptions
Risks must be mitigated through derived objectives when meaningfully possible, leading to requirements with a high return on investment.

<table>
<thead>
<tr>
<th>Threat</th>
<th>Assets</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_ROGUE_DEV</td>
<td>SRC_VND, SRC_SUB</td>
<td>A rogue developer secretly introduces a vulnerability into source code dedicated for use in the Network Product.</td>
</tr>
<tr>
<td>T_VULN_SRC.Owner</td>
<td>SRC_VND, SRC_SUB</td>
<td>Source code dedicated for use in the Network Product leads to a vulnerability.</td>
</tr>
<tr>
<td>T_VULN_SRC.Other</td>
<td>SRC_TRB, SRC_TRS, SRC_FOS</td>
<td>General source code by a third party leads to a vulnerability.</td>
</tr>
<tr>
<td>Threat</td>
<td>Assets</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>T_Poor_DES</td>
<td>FIN_SWR, FIN_HWR, OPP_LVE</td>
<td>A design flaw of the Network Product leads to a vulnerability. Lacking/insufficient security considerations in architecture or design of the Network Product are the cause. Attackers can bypass or destroy the defence system due to inappropriate security design or design omission to launch attacks.</td>
</tr>
<tr>
<td>T_UNTRUSTED_SWR</td>
<td>OPP_LVE</td>
<td>A recipient of a software image for installation on a Network Product receives a non-genuine Release, potentially including a vulnerability.</td>
</tr>
<tr>
<td>T_VULN_SWR</td>
<td>OPP_LVE</td>
<td>A recipient of a software image for installation on a Network Product receives an old version re-introducing old vulnerabilities.</td>
</tr>
<tr>
<td>T_FIX_UNAWARE</td>
<td>OPP_LVE</td>
<td>An operator is not aware of available software updates for an operated Network Product. This extends the window of vulnerability in which defensive measures against a hostile environment are reduced.</td>
</tr>
<tr>
<td>T_VULN_UNAWARE</td>
<td>SPK_TRD, FIN_SWR</td>
<td>An Equipment Vendor does not become aware of vulnerabilities caused by used 3rd party components.</td>
</tr>
<tr>
<td>T_VULN_NOHANDLE</td>
<td>SPK_VND, SPK_SUB, FIN_SWR</td>
<td>Vulnerability found by Equipment Vendors, operators, or other 3rd party, and made known to the Equipment Vendor is not appropriately handled.</td>
</tr>
<tr>
<td>T_SENSITIVE_DOC_LEAK</td>
<td>DOC_DES</td>
<td>Security documents containing sensitive information about the Network Product are leaked. This could be utilized by malicious attackers to find out vulnerabilities and launch related attacks.</td>
</tr>
<tr>
<td>T_BLD_TOOL_TAMPER</td>
<td>SUP_BUI</td>
<td>A malicious attacker may damage the system by replacing relevant tools, revising the related parameters or implanting malicious programs through compilation environment.</td>
</tr>
<tr>
<td>T_WRONG_DOC</td>
<td>FIN_SWR, FIN_HWR, OPP_LFE</td>
<td>The customer documentation for the Network Product does not cover the actual functionality and properties of the Network Product.</td>
</tr>
<tr>
<td>T_NO_CONTACT</td>
<td>OPP_LFE</td>
<td>The customer Equipment Vendor has no, or not the right, contact at the vendor organisation to address any security inquiries or incidents.</td>
</tr>
</tbody>
</table>
6 Security Objectives

6.1 Introduction

The Equipment Vendor that wishes to subject its processes to assessment and audit is responsible for ensuring that assets are protected from the risks to which they are exposed; as defined by the security objectives. It is this protection that provides assurance to network operators. All the objectives must be addressed but higher levels of assurance are needed depending on the asset classification and the return on investment for the actual security level of the Network Product.

The security objectives have been defined based on their effectiveness to mitigate the threats and to provide a return on investment.

Section 6.2 lists the security objectives for the Vendor Development and Product Lifecycle Processes.

6.2 Security Objectives

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Objective</th>
<th>Threats</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_CONTROL</td>
<td>All source code changes are controlled. It is possible to reconstruct the reason for code changes.</td>
<td>T_ROGUE_DEV</td>
<td>To lower the risk that vulnerabilities are introduced on purpose.</td>
</tr>
<tr>
<td>O_VUL_INT</td>
<td>Software dedicated for a Network Product is free of vulnerabilities.</td>
<td>T_VULN_SRC_OWN</td>
<td>To lower the risk of accidental occurrence of vulnerabilities.</td>
</tr>
<tr>
<td>O_VUL_PAT</td>
<td>Discovered Vulnerabilities are addressed appropriately and timely.</td>
<td>T_VULN_SRC_OWN T_VULN_SRC_OTHER T_VULN_NOHANDL T_VULN_SWR2 T_TPC_EOL</td>
<td>To reduce the window of opportunity originating from a known vulnerability.</td>
</tr>
</tbody>
</table>

Table 3: Threat Descriptions
<table>
<thead>
<tr>
<th>Identifier</th>
<th>Objective</th>
<th>Threats</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_PROT_DOC</td>
<td>Sensitive documents do not leak.</td>
<td>T_SENSITIVE_DOC_LEAK</td>
<td>To protect sensitive information from becoming known to potential attackers.</td>
</tr>
<tr>
<td>O_PROT_BLDTOOL</td>
<td>Compilation and build environment</td>
<td>T_BLDTOOL_TAMPER, T_TPC_EOL</td>
<td>To lower the risk that replaced build tools or manipulated parameters introduce vulnerabilities to the Network Product through the compilation environment.</td>
</tr>
<tr>
<td></td>
<td>is protected from tampering.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O_VULN_AWARE</td>
<td>Newly found Vulnerabilities</td>
<td>T_VULN_UNAWARE</td>
<td>To ensure that known vulnerabilities can be mitigated for operated Network Products within an appropriate time and don’t go undetected although they may be publicly known.</td>
</tr>
<tr>
<td></td>
<td>originating from used 3rd party</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>components are identified as early</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>as possible.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O_GENUINE_SWR</td>
<td>Software integrity is verifiable</td>
<td>T_UNTRUSTED_SWR</td>
<td>To prevent maliciously tampered software loads being accidentally installed.</td>
</tr>
<tr>
<td></td>
<td>by appropriate means before it is</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>installed in a Network Product.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O_IDENT_SWR</td>
<td>Individual Software load versions</td>
<td>T_VULN_SWR</td>
<td>To prevent old versions of software from being accidentally installed in operated Network Products and old vulnerabilities being re-introduced in networks.</td>
</tr>
<tr>
<td></td>
<td>are identifiable by appropriate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>means.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O_INFORM_FIX</td>
<td>Operators are informed of</td>
<td>T_FIX_UNAWARE</td>
<td>To ensure that operators are made aware of available fixes and are able to apply them in order not to unnecessarily extend the window of vulnerability within their networks.</td>
</tr>
<tr>
<td></td>
<td>available security related fixes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>for the Network Product in a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>timely manner.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O_TRA_ANALYSE</td>
<td>Security is built into the design</td>
<td>T_POOR_DES</td>
<td>Security-by-design ensures vulnerabilities can be mitigated by a</td>
</tr>
<tr>
<td></td>
<td>from the very beginning.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identifier</td>
<td>Objective</td>
<td>Threats</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>O_SEC_TEST</td>
<td>Testing demonstrates secure and robust implementation of the Network Product.</td>
<td>T_ROGUE_DEV, T_POOR_DES</td>
<td>During testing of the Network Product, security is tested in order to determine vulnerabilities, unexpected behaviour, unspecified behaviour and robustness against undefined input.</td>
</tr>
<tr>
<td>O_STAFF_EDU</td>
<td>Staff involved in design, engineering, development, implementation, and maintenance is sufficiently aware of IT/network security matters.</td>
<td>T_VULN_SRC_OWN</td>
<td>Staff that is involved in creating the Network Product and its upgrades is educated and experienced in relevant network and IT security matters so that they can create a secure Network Product.</td>
</tr>
<tr>
<td>O_ACCURATE_DOC</td>
<td>An accurate and up-to-date customer documentation of the Network Product exists, which describes all details that affect the Network Product’s security. The documentation matches the development state of the Network Product (HW, SW, functionality, configuration).</td>
<td>T_WRONG_DOC</td>
<td>The customer documentation related to security matters is accurate and describes the actual functionality and properties of the Network Product as it is delivered to operator customers.</td>
</tr>
<tr>
<td>O_SEC_POC</td>
<td>For all security inquiries the operator customer knows who to approach in the Equipment Vendor organisation.</td>
<td>T_NO_CONTACT</td>
<td>There is a clear communication from the Equipment Vendor to its operator customers to let operators know who to contact for any security inquiries or incidents.</td>
</tr>
</tbody>
</table>
7 Security Requirements

7.1 Introduction

In order to have sufficient confidence in the Vendor Development and Product Lifecycle Processes, certain security requirements must be met. These requirements, which are outlined below, are considered as minimum requirements.

The requirements have been selected based on their effectiveness to fulfil the security objectives and provide a return on investment. Each requirement fulfils one or more security objective, while one or more requirement may exist to fulfil the same security objective.

The requirements of this standard should be met by established processes/controls for which evidence of correct operation exists.

It is recognised that it is possible to use mechanisms or tools other than those described in this section to achieve the same security objective.

7.2 Design

7.2.1 [REQ-01] Security by Design

[Requirement Text: The Network Product shall implement security by design throughout the whole development and product lifecycles. Therefore, architecture and design decisions shall be made based on a set of security principles that are tracked throughout the development and product lifecycles.] [O_TRA_ANALYSE]

The goal of security by design is to limit the impact of security risks through robust and consistently applied principles such as (but not limited to):

- Security architectural principles:
 - Domain separation
 - Layering
 - Encapsulation

- Security design principles:
 - Least privilege
7.3 Implementation

7.3.1 [REQ-02] Version Control System

[Requirement Text: During the entire lifetime of a Network Product, the Equipment Vendor shall utilize a version control system on hardware, source code, build tools and environment, binary software, 3rd party components, and customer documentation ensuring accountability, authorisation and integrity of all changes.] [O_CONTROL]

The goal is to be able to trace all the above elements together in a finished Network Product.

7.3.2 [REQ-03] Change Tracking

[Requirement Text: The Equipment Vendor shall establish a comprehensive, documented and cross Network Product line procedure to ensure that all requirements and design changes, which may arise at any time during the development and product lifecycles and which impact the Network Product(s) (this includes all aspects of requirement 7.3.1.), are managed and tracked in a systematic and timely manner appropriate to the life cycle stage of all affected product components in all Network Products.] [O_CONTROL]

The goal is to ensure that all changes are made in a consistent way through the development of all affected Network Product components in all Network Products.

7.3.3 [REQ-04] Source Code Review

[Requirement Text: The Equipment Vendor shall ensure that new and changed source code dedicated for a Network Product is appropriately reviewed in accordance with an appropriate coding standard. If feasible, the review should also be implemented by means of utilizing a Source Code Analysis Tool and automation where appropriate.] [O_VUL_INT]

The goal is to help reduce the risk of software issues that could introduce vulnerabilities in the Network Product. An example of a best practice coding standard is Carnegie-Mellon, SEI CERT [8].

7.3.4 [REQ-05] Security Testing

[Requirement Text: Security testing should include the validation of security functionality, both positive and negative testing, as well as vulnerability testing of the Network Product.

- Attack surface minimization
- Centralized parameter validation & centralized security functionality
- Preparing for error & exception handling
- Privacy by design

Security principles such as the above should be considered and applied when appropriate.

In the design phases, a threat analysis process for the Network Product shall be undertaken to identify the potential threats and related mitigation measures.
Network Products are to be tested from a security perspective within a fair representation of the operational environment.

Vulnerability testing shall test for the robustness of the Network Product against undefined/unexpected input. [O_VUL_INT], [O_SEC_TEST]

The goal is to ensure that security functionality has been validated and that potential vulnerabilities are detected and mitigated before the Network Product is delivered.

7.3.5 [REQ-06] Staff Education
[Requirement Text: Continuous education of all staff involved in Network Product design, engineering, development, implementation, testing and maintenance shall be provided to ensure knowledge and awareness on security matters, relevant to their roles are up-to-date.] [O_STAFF_EDU]

The goal is to ensure that all staff have knowledge and awareness on security matters relevant to their role, maintained to a consistently high level.

7.4 Maintenance

7.4.1 [REQ-07] Vulnerability Remedy Process
[Requirement Text: The Equipment Vendor shall establish a process to deal with vulnerabilities found in, or in relation to, released Network Products (including 3rd party components). Vulnerabilities shall be dealt with appropriately and, if applicable, patches/software upgrades shall be distributed to all affected mobile network operators, in order to honour existing maintenance contracts within an agreed schedule.] [O_VUL_PAT]

The goal is to reduce the impact on the Network Product becoming vulnerable or 3rd party components becoming unsupported, unavailable or vulnerable.

Note: Mitigating 3rd party software that has become unsupported will be dealt with in a future release.

7.4.2 [REQ-08] Vulnerability Remedy Independence
[Requirement Text: For ease of deployment, the Equipment Vendor shall have the facility to provide patches/software upgrades that close security vulnerabilities independently from unrelated patches/software upgrades that modify functionality of the Network Product.] [O_VUL_PAT]

The goal is to ensure that security remedies can be delivered swiftly and independently from the functional delivery schedule.

7.4.3 [REQ-09] Information Security Management
[Requirement Text: In the entire lifecycle, the Equipment Vendor shall employ an information classification and handling scheme to avoid sensitive information, such as security flaws, signing keys, etc., being leaked.] [O_PROT_DOC]
The goal is to ensure that sensitive information is identified, classified and managed appropriately.

7.4.4 [REQ-10] Automated Build Process
[Requirement Text: The Equipment vendor shall utilize an automated build tool with a minimum of manual intervention to compile the source code and store the build logs.] [O_PROT_BLDTOOL]

The goal is to ensure that the build is reproducible, deterministic and that it covers the security procedures defined by the Equipment Vendor.

7.4.5 [REQ-11] Build Environment Control
[Requirement Text: All the data (including source code, building scripts, compilation tools, and compilation environment) of the compilation build environment shall come directly from a version control system.] [O_PROT_BLDTOOL]

The goal is to ensure that the same binaries can be reproduced and that there is a clear audit trail for any modifications.

7.4.6 [REQ-12] Vulnerability Information Management
[Requirement Text: The Equipment Vendor shall have reliable processes in place to ensure it can become aware of newly revealed potential vulnerabilities in used 3rd party components and to evaluate whether they result in vulnerabilities in the Network Product.] [O_VULN_AWARE]

The goal is to reduce the impact on the Network Product of 3rd party components becoming unsupported, unavailable or vulnerable.

7.4.7 [REQ-13] Software Integrity Protection
[Requirement Text: The Equipment Vendor shall establish and maintain methods to ensure that the delivery of Network Products is carried out under controlled conditions. The mobile network operator shall be provided with appropriate means to identify whether a received software package is genuine.] [O_GENUINE_SWR]

The goal is for mobile network operators to be able to check the integrity of the software package and associated documentation.

7.4.8 [REQ-14] Unique Software Release Identifier
[Requirement Text: All released software package versions shall bear a unique identifier that maps to a specific build version.] [O_IDENT_SWR]

The goal is to ensure that all software is identifiable and that the exact same software uses the same unique identifier.

7.4.9 [REQ-15] Security Fix Communication
[Requirement Text: A process shall ensure that information regarding available security related fixes is communicated to mobile network operators that have maintenance agreements in place at the time the fix is released.] [O_INFORM_FIX]
The goal is to ensure that mobile network operators are informed in a timely way to apply any security fixes.

7.4.10 [REQ-16] Documentation Accuracy
[Requirement Text: Customer documentation shall be up to date in all security related aspects and reflect the current functionality of the Network Product at the time when both the Network Product, or software upgrades of it, and the customer documentation are shipped to the customer.] [O_ACCURATE_DOC]

The goal is to ensure that the Network Product documentation reflects the version of the Network Product delivered.

7.4.11 [REQ-17] Security Point of Contact
[Requirement Text: The Equipment Vendor shall provide a point of contact for security questions/issues and communicate this point of contact to its customers and 3rd party vulnerability disclosers. This point of contact shall be able to find the right person/department inside the Equipment Vendor organisation to deal with security concerns raised by a customer/3rd party vulnerability discloser.] [O_SEC_POC]

The goal is to ensure that the Equipment Vendor forwards incoming requests to the relevant department in a timely and secure manner and that the requesting or informing party receives a timely and appropriate response.

7.4.12 [REQ-18]: Source Code Governance
[Requirement Text: The Equipment Vendor shall ensure that no changes are introduced into the Network Product without appropriate governance.] [O_CONTROL]

The goal is to prevent unauthorised changes and reduce the likelihood of unintended or unauthorised changes. It is also to ensure that there are independent lines of control for any changes.

7.4.13 [REQ-19] Continual Improvement
[Requirement Text: The Equipment vendor must have a continual improvement process for its development and product lifecycle and this process must include a root cause analysis of the security flaws. The resulting improvements shall be incorporated into the relevant design or processes.] [O_CONT_IMP]

The goal is to improve processes and to reduce the likelihood of vulnerabilities re-occurring by continual improvement.

7.4.14 [REQ-20] Security Documentation
[Requirement Text: The documentation delivered with the Network Products contains all up-to-date information necessary to securely configure and run the Network Product.] [O_ACCURATE_DOC]

The goal is to ensure that operators can configure the Network Products in a secure way, including clarifying if the default configuration is secure.
Annex A Document Management

A.1 Document History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Brief Description of Change</th>
<th>Editor / Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Sep 2019</td>
<td>Release 1 approved by SECAG</td>
<td>James Moran / GSMA</td>
</tr>
</tbody>
</table>

A.2 Other Information

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document Owner</td>
<td>GSMA, SECAG</td>
</tr>
<tr>
<td>Editor / Company</td>
<td>James Moran, GSMA</td>
</tr>
</tbody>
</table>

It is our intention to provide a quality product for your use. If you find any errors or omissions, please contact us with your comments. You may notify us at nesas@gsma.com. Your comments or suggestions & questions are always welcome.