
SDK
Adoption
Guidelines

Copyright@2024 GSMA

Inclusive
Tech
Lab
March 2024

This is a Whitepaper of the GSMA

Security Classification: Non-confidential

Access to and distribution of this document is restricted to the persons permitted by the security
classification. This document is confidential to the Association and is subject to copyright protection.
This document is to be used only for the purposes for which it has been supplied and information
contained in it must not be disclosed or in any other way made available, in whole or in part, to persons
other than those permitted under the security classification without the prior written approval of the
Association.

Copyright Notice

Copyright © 2023 GSM Association

Disclaimer

The GSM Association (“Association”) makes no representation, warranty or undertaking (express or
implied) with respect to and does not accept any responsibility for, and hereby disclaims liability for
the accuracy or completeness or timeliness of the information contained in this document. The
information contained in this document may be subject to change without prior notice.

Antitrust Notice

The information contain herein is in full compliance with the GSM Association’s antitrust
compliance policy.

Contents

1. INTRODUCTION 4

2. ENVIRONMENT SETUP 4

2.1. Which programming language use? 4

2.2. Selecting the right platform 4

2.3. Version control 5

2.4. File name conventions 5

3. COMPARING YOUR API TO THE GSMA MM API SPEC 6

3.1. Selecting use cases and use scenarios 6

3.2. Mapping the API and flows 7
3.2.1 Use Case 1: Individual disbursement 8
3.2.2 Use Case 2: Obtain a disbursement organisation balance 10

4. ADAPTING GSMA MOBILE MONEY API SDKS 12

4.1. Code and folder structure 12
4.1.1 General structure of the repository 12
4.1.2 SDK source code organisation and description 12
4.1.3 SDK samples organisation 15
4.1.4 SDK documentation 15

4.2. API authentication SDK 16

4.3. Adapting an API scenario into an API SDK 18
4.3.1. Explanation of the method/function structure 18
4.3.2. How you could adapt and SDK 19

5. TESTING YOUR SDK 22

5.1. Unit testing 22

5.2. Integration testing 23

6. DOCUMENTATION AND DISTRIBUTION 24

7. CONCLUSION 25

1. Introduction

An SDK is created to facilitate and streamline the development process for integrating software
applications with a specific platform, service, or API. It equips developers with ready-to-use tools,
libraries, documentation, and sample codes, allowing them to efficiently utilise the features and
functionality of the platform or service without having to build everything from scratch. By providing a
standardized and simplified development framework, an SDK accelerates the implementation,
reduces development time, and enhances the overall developer experience.

This guide delves into various stages of developing an SDK for mobile money APIs. The content
presented here draws upon our extensive experience creating SDKs using various technologies such
as PHP, Java, JavaScript, Node.js, and Android Java for Mobile Money APIs. We have explained
how to adapt the MMAPI SDK to create a new SDK for a different Mobile Money API.

2. Environment Setup

2.1. Which programming language use?

Any programming language can be used to create an SDK, and the choice is dependent on the target
users. In this document, we are using Java as a model language to explain the steps to create an
SDK for Mobile Money APIs. We recommend you start with the most useful programming language
for your technology developers and increase the number of languages when needed.

2.2. Selecting the right platform

Any GIT repository and versioning system can be used to manage your SDKs. We used GitHub, a
widely adopted platform for managing private and public source code, to prepare this guide. To begin,
you must initiate the process by creating a private repository. After completing the development and
testing phases, you can make your repository public to publish your code for other developers to
access and utilise.

After creating your repository, your repository URL looks something like this.

https://github.com/{githubaccount_name}/{repository_name}

Within a repository, you can manage the code across multiple branches, allowing you to organize and
maintain separate versions such as in-development code, code for testing purposes, and code ready
for publication.

During the creation of the GSMA MMAPI SDKs, we chose the approach shared below, we
recommend you use a similar approach.

• Staging Branch: The Staging branch serves as the primary development
environment where code is placed during the development process. Here, unit
tests and integration tests are conducted. Once all the tests pass successfully,
the code is then transitioned to the development branch.

• Develop Branch: The Develop branch is where the code is held for verification
and code review. It serves as a dedicated branch for collaborative review and
code refinement before further progression.

• Main Branch: The Main branch consists of the ultimate deliverable code for
the customer, following thorough testing and verification. This branch contains
the stable and finalized version of the code, ready to be published.

2.3. Version control

When a bug or feature is reported in the existing code, modifications need to be made and verified by
running tests. A feature branch is created from the staging branch, named as feature/{name-of-the-
bug} to facilitate this process. The necessary code changes are implemented on this feature branch,
and once the tests run successfully, the branch is merged back into the staging branch.

2.4. File name conventions

The common Java file naming conventions are followed here. Packages contain lowercase with dot
separation. Classes use upper camel case, while variables and methods use lower camel case.

The names of all the request classes were decided based on the use case name, for example,
AccountLinkingRequest is related to the use MMAPI use case Account Linking. Each API request
was decided based on the API endpoints itself and rephrased to be meaningful method names. For
example, the viewRequestState method was named after the endpoint
/requeststates/{serverCorrelationId}. We prefix the method name with view because the request
is a GET. Below is the full construction of the method viewRequestState. Similarly, we use the prefix
create when the request is a POST.

1 public AsyncResponse viewRequestState(final String serverCorrelationId) throws MobileMoneyException {
2 String resourcePath = API.CREATE_REQUEST_STATES.replace(Constants.SERVER_CORRELATION_ID, serverCorrelationId);
3 return createRequest(HttpMethod.GET, resourcePath, null, null, null, AsyncResponse.class);
4 }

3. Comparing your API to the GSMA MM API Spec

3.1. Selecting use cases and use scenarios

The GSMA Mobile Money API provides API Specifications for common mobile money use cases. The
MMAPIs you choose when developing an SDK can be compared to the use cases described below,
and based on how similar they are, functions can be reused.

The developer documentation for the GSMA MMAPI can be found at
https://developer.mobilemoneyapi.io/api-versions-1.2/, where you can get a comprehensive
understanding of each use case. The complete list of MMAPI use cases is provided below.

1. Merchant payments
2. Disbursements
3. International transfers
4. P2P transfers
5. Recurring payments
6. Account linking
7. Bill payments
8. Agent Services

Based on the following criteria, you can compare the use cases and highlight any similarities. Then
you may compare the current use case code snippets and indicate the necessary adjustments.

1. API URL
○ The API URL can sometimes carry the parameters, hence when

declaring the URL these parameters must be appended.
○ In MMAPI, a function getResourcePath is declared where the

parameters must be passed and the function returns the final URL.

1 protected static String getResourcePath(final String requestEndPoint, Identifiers identifiers)
2 throws MobileMoneyException {
3
4 if (identifiers == null || identifiers.getIdentifiers() == null || identifiers.getIdentifiers().isEmpty()) {
5 throw new MobileMoneyException(
6 new HttpErrorResponse.HttpErrorResponseBuilder(Constants.INTERNAL_ERROR_CATEGORY,
7 Constants.GENERIC_ERROR_CODE).errorDescription(Constants.NULL_VALUE_ERROR).build());
8 }
9
10 String resourcePath;
11 if (identifiers.getIdentifiers().size() == 1) {
12 resourcePath = requestEndPoint
13 .replace(Constants.IDENTIFIER_TYPE, identifiers.getIdentifiers().get(0).getKey())
14 .replace(Constants.IDENTIFIER, identifiers.getIdentifiers().get(0).getValue());
15 } else {
16 resourcePath = requestEndPoint.replace(Constants.MULTI_IDENTIFIER,
17 identifiers.getIdentifiers().stream()
18 .map(identifier -> identifier.getKey().concat("@").concat(identifier.getValue()))
19 .collect(Collectors.joining("$")));
20 }
21
22 if (StringUtils.isNullOrEmpty(resourcePath)) {
23 throw new MobileMoneyException(
24 new HttpErrorResponse.HttpErrorResponseBuilder(Constants.INTERNAL_ERROR_CATEGORY,
25 Constants.GENERIC_ERROR_CODE).errorDescription(Constants.NULL_VALUE_ERROR).build());
26 }
27
28 return resourcePath;
29 }

2. Headers of the API
○ A set of headers would be common for all the requests. These headers

can be declared as global values. These would be declared in the
authentication class (MobileMoneyAuthentication) as they would not
be modified frequently.

○ Some headers would be request-specific. In that case, it's recommended
to append the header values inside that specific API method to the
existing set of headers. Once the request is completed and if the header
values are no longer required, they can be reset to default values. This
helps to prevent future API requests from passing the same header.

1 protected void setAuthHeaders() throws Exception {
2 switch (SecurityLevel.valueOf(this.configurationMap.get(Constants.SECURITY_LEVEL))) {
3 case NONE: break;
4 case DEVELOPMENT: {
5 this.headers.put(Constants.API_KEY, this.apiKey);
6 this.headers.put(Constants.AUTHORIZATION_HEADER, Constants.BASIC + generateBase64String());
7 break;
8 }
9 case STANDARD: {
10 this.headers.put(Constants.API_KEY, this.apiKey);
11 this.headers.put(Constants.AUTHORIZATION_HEADER, Constants.BEARER + getAccessToken());
12 break;
13 }
14 case ENHANCED: break;
15 default: throw new Exception("Undefined security level: " + SecurityLevel.values());
16 }
17 }

3. Request and Response body format
○ The request body is passed as JSON string in MMAPI call. This would

be declared as a class and an object would be created with the required
fields. For Example, in Java we create them as Model classes and create
an object with the required fields. This object will be passed along when
we make the final API call.

○ Based on the type of data returned from an API request, we need to
make the appropriate Model class for each type of return object. In the
case of MMAPI, the return object is JSON string and is transformed into
the respective Model class object.

3.2. Mapping the API and flows

Below, we evaluate two use cases that make use of several Mobile Money APIs to demonstrate how
to adjust the code accordingly.

1. Individual Disbursement
2. Obtain a Disbursement Organisation Balance

3.2.1 Use Case 1: Individual disbursement

The Disbursement use case of the Mobile Money APIs allows an organization to disburse funds to
mobile money recipients. In the individual disbursement scenario, a POST request is made to the
API endpoint /transactions/type/disbursement with a JSON as the request body. The response
notification is sent to the provided callback URL.

 MMAPI Another API Similar
API URL /transactions/type/disbursement /disbursement/v1_0/deposit No

Headers Authorization, X-Callback-URL, Content-
Type, X-CorrelationID and X-API-Key

Authorization, X-Callback-Url,
Content-Type, X-Reference-Id, Ocp-
Apim-Subscription-Key and X-Target-
Environment

No

Request type POST POST Yes

Request body

{
 "amount": "200.00",
 "debitParty": [
 {
 "key": "accountid",
 "value": "2999"
 }
],
 "creditParty": [
 {
 "key": "accountid",
 "value": "2999"
 }
],
 "currency": "RWF"
}

{
 "amount": "string",
 "currency": "string",
 "externalId": "string",
 "payee": {
 "partyIdType": "MSISDN",
 "partyId": "string"
 },
 "payerMessage": "string",
 "payeeNote": "string"
}

No

Response body

{
 "payLoad": {
 "serverCorrelationId":"c60db955-
1e21-4d42-b7b1-385e65858383",
 "status": "pending",
 "notificationMethod": "callback",
 "objectReference": "33501",
 "pollLimit": "100"
 },
 "success": true,
 "responseCode": "ACCEPTED",
 "responseHeader": {
 ...
 ...
 }
}

NIL No

Response status 202 202 Yes

When we evaluate this closely below are points based on which we can decide the approach:

1. We have a different set of Headers, API endpoints, Request Body, and
Response body. So, we cannot use the exact same method, but we can make
some modifications to make it reusable.

2. Request type and Response status are the same.

How to compare and adapt

Below is a sample of the Individual Disbursement API call using Java programming language. The
createDisbursementTransaction function is created from the API request. The structure of a typical
SDK function created from a comparable API call is seen in the following code sample.

1 public AsyncResponse createDisbursementTransaction() throws MobileMoneyException {
2 this.clientCorrelationId = UUID.randomUUID().toString();
3
4 if (this.transaction == null) {
5 throw new MobileMoneyException(
6 new HttpErrorResponse.HttpErrorResponseBuilder(Constants.VALIDATION_ERROR_CATEGORY,
7 Constants.VALUE_NOT_SUPPLIED_ERROR_CODE)
8 .errorDescription(Constants.TRANSACTION_OBJECT_INIT_ERROR).build());
9 }
10
11 String resourcePath = API.TRANSACTION_TYPE.replace(Constants.TRANSACTION_TYPE, TransactionType.DISBURSEMENT);
12 MobileMoneyContext.getContext().getHTTPHeaders().put(Constants.CORRELATION_ID, this.clientCorrelationId);
13
14 return createRequest(HttpMethod.POST, resourcePath, this.transaction.toJSON(), notificationType, callBackURL,
15 AsyncResponse.class);
16 }

The values to be passed in as the request body are stored in the variable transaction in the snippet
of code above (line 4) and is checked before the request is sent to make sure it is instantiated. The
API endpoint is defined in a constant class and is obtained and added to the resourcePath variable
(line 11). In the end, we call the createRequest method after all the necessary arguments have been
verified and return it as a AsyncResponse.class type. With the code snippet above, let’s see what
we can modify to use it with the new API.

● Function name: The function name can be kept the same if needed or a new
name can be given.

● Headers: Apart from Authorization, X-Callback-Url, and Content-Type all the
other headers are different for the new API.
○ Authorization contains the Bearer Token required for authentication.
○ X-Callback-Url contains the callback URL, used for receiving the final

response of the API call.
○ Content-Type is for specifying the type of data passed in.
○ X-Reference-Id is the same as the clientCorrelationId, a variable responsible

for holding the UUID which is carried by the header X-CorrelationID. In this
case, we can use the same for X-Reference-Id which is similar in usage in
both scenarios. We only need to add the new X-Reference-Id header to the
constant class and use it in the function.

○ Ocp-Apim-Subscription-Key is for providing access to this API. It is used in
conjunction with the Authorization header. Ocp-Apim-Subscription-Key is
different for each user and each use case.

○ X-Target-Environment specifies whether the Mobile Money API is a sandbox,
production, staging or any other kind of environment.

● Request Body: The transaction object holds the request body of the API call.
We can replace the transaction object with a new model class that contains our
new request body and then make the necessary validations.

● API URL: The resourcePath variable will contain the API URL which is fetched
from a predefined constant class. We can update this constant class with our new
API URL.

● Response Body: In MMAPI, we get a detailed response body from where a
payload is extracted and mapped to AsyncResponse class object as a
response. In the comparing API, there is no response body. So we can give a
standard response based on the response code received (202).

Once all the required parameters are validated, the createRequest method can be called. This
method passes in all the parameters to the next phase where we execute the API call.

3.2.2 Use Case 2: Obtain a disbursement organisation balance

In the Disbursement Balance scenario, a GET request is made to the API URL
/accounts/{identifierType}/{identifier}/balance without any request body. The response will be an
object of the model class Balance.

 MMAPI Different API Similar

API URL /accounts/{identifierType}/{identifier}/balance /disbursement/v1_0/account/balance No

Headers Authorization and X-API-Key
Authorization, Ocp-Apim-
Subscription-Key and X-Target-
Environment

No

Request
type GET GET Yes

Request
body NIL NIL

Response
body

{
"accountStatus": "available",
"currentBalance": "1000000000.00",
"availableBalance": "0.00",
"reservedBalance": "0.00",
"unclearedBalance": "0.00",
"currency": "GBP"
}

{
"availableBalance": "string",
"currency": "string"
} No

Response
status 200 200 Yes

When we evaluate this closely below are points based on which we can decide the approach:

1. We have a different set of Headers, API URL, Request Body, and Response
body. So, we cannot use the exact same method, but we can make some
modifications to make it reusable.

2. Request type and Response status are the same.

How to compare and adapt

Following is the java code snippet of Disbursement Balance API call. The API call is converted into
the method named viewAccountBalance. The following code snippet contains a typical structure of
how a similar API call is converted into a method in SDK.

1 public Balance viewAccountBalance(Identifiers identifiers) throws MobileMoneyException {
2 if (identifiers == null) {
3 throw new MobileMoneyException(
4 new HttpErrorResponse.HttpErrorResponseBuilder(Constants.VALIDATION_ERROR_CATEGORY,
5 Constants.VALUE_NOT_SUPPLIED_ERROR_CODE)
6 .errorDescription(Constants.IDENTIFIER_OBJECT_INIT_ERROR)
7 .build());
8 }
9
10 return createRequest(HttpMethod.GET, getResourcePath(API.ACCOUNT_BALANCE_REQUEST, identifiers), Balance.class);
11 }

In the above code snippet, variable identifiers which are passed in as function parameters (line 1)
act as the path parameter of the API URL. The identifiers parameter is validated before executing
the request (line 2). The getResourcePath function (line 10) concatenates the existing API URL with
the passed in identifiers parameter to generate the correct URL. Once all the required parameters are
validated, we call the createRequest method (line 10). This createRequest method passes in all the
parameters to the next phase where we execute the API call. The last parameter, Balance.class (line
10) is the response body. It acts as the return type of the createRequest method.

With the code snippet above, let’s see what we can modify to use it with the new API.

● Function name: The function name can be kept the same if needed or a new
name can be given.

● Headers: Apart from Authorization all the other headers are different for the new
API.
○ Authorization contains the Bearer Token required for authentication.
○ Ocp-Apim-Subscription-Key is for providing access to this API. It is used in

conjunction with the Authorization header. Ocp-Apim-Subscription-Key is
different for each user and each use case.

○ X-Target-Environment is based on the environment. It specifies whether it is
a sandbox or any of the production environments.

● Request Body: No request body is passed in for both API calls.
● API URL: Since there are no parameters passed in for the new API, we don't need

to generate the URL with any parameters. We can directly update the constant
class that contains all the API URLs and use the new API URL here.

● Response Body: In MMAPI and the new API, we are getting different response
bodies. We can create a new model class based on the response of the new API
and replace the Balance.class with our new model class.

Once all the required parameters are validated, we can call the createRequest method. This method
passes in all the parameters to the next phase where we execute the API call.

4. Adapting GSMA Mobile Money API SDKs

4.1. Code and folder structure

The structure presented below is a general description of how the MMAPI SDKs source codes are
organised in the GitHub repositories.

4.1.1 General structure of the repository

The root filesystem organisation (files and folders) of an MMAPI SDK repository is presented below.
It illustrates the type of files and folders that are mandatory and present in an SDK repository and
what that file or folder holds in terms of code or documentation. Bear in mind that names can be
different depending on the programming language you are using.

Root (/)
├── README.md
├── code-snippets
├── docs
├── samples
├── src
└── tests

• README.md: detailed description of your repository, with instructions on how to
build and run the SDK, links to documentation, samples and/or code snippets,
instructions on how to test the SDK and any other information that may be used
by the developers to have an initial understanding on how to use the SDK.

• code-snippets: stores code snippets of the SDK demonstrating how to use
it. These code snippets can be added to the developer’s portal of the SDKs.

• docs: detailed documentation of the SDK, including all scenarios,
authentication, error handling, and any other information needed by the
developers.

• samples: fully functional example where the developer can run and see the
SDK working. It is divided by use cases and scenarios.

• src: source code of the SDK, organised by one folder for each use case
(accountlinking, billpayment, disbursement, internationaltransfer,
merchantpayment, p2ptransfer, recurringpayment).

• tests: set of unit and integration tests for the SDK, with full coverage.

4.1.2 SDK source code organisation and description

Each module inside the source code folder contains the respective request class (e.g.
accountlinking, agentservices, etc.) which holds all the API calls. You can also find the Model
classes (Account, Commission, Identity, etc.) that are required for that API request.

accountlinking
├── model
│ └── Link.java
└── request
 └── AccountLinkingRequest.java
agentservices
├── model
│ ├── Account.java
│ ├── Commission.java
│ └── Identity.java
└── request
 └── AgentServiceRequest.java

If some API requests are common among all the modules, then they are added to the common
package, which contains all the common API requests, models, and constants.

common
├── constants
│ ├── Environment.java
│ └── NotificationType.java
├── model
│ ├── AccountHolderName.java
│ ├── AccountIdentifier.java
│ ├── AsyncResponse.java
│ ├── AuthorisationCode.java
│ ├── Balance.java
│ ├── CustomData.java
│ ├── Fees.java
│ ├── Filter.java
│ ├── Identifiers.java
│ ├── MetaData.java
│ ├── Name.java
│ ├── PatchData.java
...
│ ├── Reversal.java
│ ├── ServiceAvailability.java
│ ├── Transaction.java
│ ├── TransactionFilter.java
│ └── Transactions.java
└── request
 ├── AuthorizationCodeRequest.java
 ├── CommonRequest.java
 ├── CreateTransactionRequest.java
 ├── TransferRequest.java
 └── ViewTransactionRequest.java

The base folder contains the core structure of the SDK, handling initialization, default values, HTTP
connection handlers, task execution and miscellaneous activities related to the instantiation of the
SDK.

base
├── APIManager.java
├── ConfigManager.java
├── ConnectionManager.java
├── DefaultHttpConnection.java
├── ExecuteTask.java
├── HttpConfiguration.java
├── HttpConnection.java
├── HttpResponse.java
├── SDKUtil.java
├── SSLUtil.java
├── constants
├── context
├── exception
├── model
└── util

Inside this base package, the context is the main package where we can find the
MobileMoneyAuthentication, MobileMoneyContext and the MMClient classes which handle
all the API requests and manage the singleton instance.

base/context
├── MMClient.java
├── MobileMoneyAuthentication.java
└── MobileMoneyContext.java

Furthermore, the exception package contains all the custom exceptions written to handle any
incoming exceptions from MMAPI in case of any error or any other anticipated exceptions that can
occur during the working of the SDK.

base/exception
├── BaseException.java
├── MobileMoneyException.java
├── SSLConfigurationException.java
└── UnauthorizedException.java

The model package contains all the models for the exception classes.

base/model
├── HttpErrorMetaData.java
├── HttpErrorResponse.java
└── SDKResponse.java

The util package contains all the utility classes that help reduce redundancy. For example,
converting JSON strings to Objects or null value checking are defined here.

base/util
├── EnumUtils.java
├── JSONFormatter.java
├── ResourceLoader.java
├── ResourceUtils.java
└── StringUtils.java

4.1.3 SDK samples organisation

The samples folder has sample codes of various use cases and scenarios of the MMAPI. It is
provided to demonstrate how to use the SDK in an application. It is organised the same way as the
SDK source code: each scenario has a folder where it is stored the source code of the sample codes.
Below is the organisation of the folders and files for the SDK samples.

samples
└── src
 ├── accountlinking
 │ ├── CreateAccountLink.java
 │ ├── CreateReversal.java
 │ ├── CreateTransferTransaction.java
 │ ├── ViewAccountBalance.java
 │ ├── ViewAccountLink.java
 │ ├── ViewAccountTransactions.java
 │ ├── ViewRequestState.java
 │ ├── ViewResponse.java
 │ ├── ViewServiceAvailability.java
 │ └── ViewTransaction.java
 ├── base
 │ └── SDKClient.java
 ├── agentservice
 ├── billpayment
 ├── disbursement
 ├── internationaltransfer
 ├── merchantpayment
 ├── p2ptransfer
 └── recurringpayment

For each use case folder, you have the source code files containing a fully functional application that
represents a specific scenario inside the use case. Each scenario is implemented using the SDK
guidelines and code for the purpose of demonstrate how to use the SDK in an application. For
example, in accountlinking folder, the file CreateAccountLink.java represents the sample
code that uses the SDK to create a account link, according to the MMAPI Specification.

4.1.4 SDK documentation

The docs folder contains the documentation on how to use the SDK. It is written based on the
Markdown Language (e.g. .md extension) to be processed and formatted by GitHub and available for
read directly when browsing the repository. The documentation is based on demonstrating how the
SDK should be instantiated and integrated in applications using code snippets and samples as
examples. The docs folder contains any documentation you may have for the SDK you are
developing and can contain other types of documents, like design strategies, flow diagrams, security
patterns, to name a few, and in any format like PDF, word documents, photos, pictures, etc. Below
you can see the file organisation of the documentation in Markdown Language, organised as one
Markdown file per scenario inside a use case.

docs
├── accountLinking
│ ├── createAccountLink.Readme.md
│ ├── createReversal.Readme.md
│ ├── createTransferTransaction.Readme.md
│ ├── viewAccountBalance.Readme.md
│ ├── viewAccountLink.Readme.md
│ ├── viewAccountTransactions.Readme.md
│ ├── viewRequestState.Readme.md
│ ├── viewResponse.Readme.md
│ ├── viewServiceAvailability.Readme.md
│ └── viewTransaction.Readme.md
├── agentService
├── billPayment
├── disbursement
├── internationalTransfer
├── merchantPayment
├── p2pTransfer
└── recurringPayment

4.2. API authentication SDK

Authentication is an essential step on the initialisation and usage of the SDK. In most Mobile Money
environments, customers are required to register and obtain a set of keys, often called as
ConsumerKey, SubscriptionKey, CustomerKey, etc. In some instances, additional keys or
parameters such as a ReferenceID or API Key may also be necessary.

The SDKs developed for MMAPI uses the ConsumerSecret and ConsumerKey values as the
credentials of the customer to authenticate via OAuth2 and receive an Access Token. Additionally,
a third value called API Key is also needed for every request made to the MMAPI using the Access
Token generated after authentication. Below is depicted the authentication flow used by the SDK.

For the SDK be able to make request in MMAPI, an Access Token is required. It is created through
an object of the MMClient class using the MobileMoneyAuthentication clas, following the
authentication flow of the MMAPI. The MMClient class in turn connects with the
MobileMoneyContext class, which is a singleton class that handles all the requests in the
background and stores the Access Token for future usages. If the Access Token expires, then the
MobileMoneyContext class communicates with MobileMoneyAuthentication class for creating a
new Access Token as a background operation without interrupting the flow of the application.

Let’s consider the sample CreateReversal.java under accountlinking package from mmapi-java-
sdk-samples project to understand how authentication is done in MMAPI.

1 public class CreateReversal extends SDKClient {
2 public static void main(String... args) {
3 try {
4 MMClient mmClient = new MMClient(get("CONSUMER_KEY"), get("CONSUMER_SECRET"), get("API_KEY"));
5 AccountLinkingRequest accountLinkingRequest = new AccountLinkingRequest();
6
7 Reversal reversal = new Reversal();
8 reversal.setType("reversal");
9 accountLinkingRequest.setReversal(reversal);
10
11 String transactionReference = "REF-1635251574104";
12
13 System.out.println("Please wait...");
14 AsyncResponse sdkResponse = mmClient.addRequest(accountLinkingRequest).addCallBack(get("CALLBACK_URL"))
15 .createReversal(transactionReference);
16
17 System.out.println(String.format("Transaction Reversal Status: %s", sdkResponse.getStatus()));
18 } catch (MobileMoneyException ex) {
19 System.out.println(String.format("Mobile Money Exception: %s", ex.getError().getErrorDescription()));
20 }
21 }
22 }

The MMClient object is initialized with a set of predefined values required for authentication (line 4).
But this only creates an object of MMClient and doesn't make any API calls to initiate authentication.

Later the addRequest method on the MMClient object (line 14) is called and then the authentication
flow happens, resulting in the generation of the Access Token.

Inside the addRequest method of MMClient class, the method createContext checks if the variable
instance is already instantiated (line 10 and line 12). If not, then a new instance object is created
(line 13). In this case, the instance variable is an object of MobileMoneyContext and acts as a
singleton design pattern. Below is the createContext method definition.

1 public static void createContext(
2 String consumerKey,
3 String consumerSecret,
4 String apiKey,
5 Environment mode,
6 String callBackUrl,
7 SecurityLevel securityLevel,
8 Map<String, String> configurations
9) {
10 if (instance == null) {
11 synchronized (MobileMoneyContext.class) {
12 if (instance == null) {
13 instance = new MobileMoneyContext(consumerKey, consumerSecret, apiKey, mode,
14 callBackUrl, securityLevel, configurations);
15 }
16 }
17 }
18 instance.callBackUrl = callBackUrl;
19 }

Ultimately, the createContext method relies on the constructor of the class MobileMoneyContext to
handle the authentication. The Access Token is generated there, by calling the method
getAccessToken (line 18) of the MobileMoneyAuthentication class, passing in the required
parameters, in this case, the Consumer Key, Consumer Secret and API Key (line 10). Below is the
code for the constructor MobileMoneyContext.

1 private MobileMoneyContext(
2 String consumerKey,
3 String consumerSecret,
4 String apiKey,
5 Environment mode,
6 String callBackUrl,
7 SecurityLevel securityLevel,
8 Map<String, String> configurations
9) {
10 this.credential = new MobileMoneyAuthentication(consumerKey, consumerSecret, apiKey);
11 if (configurations != null && configurations.size() > 0) {
12 this.credential.addConfigurations(configurations);
13 }
14 this.setMode(mode);
15 this.setSecurityLevel(securityLevel);
16 this.callBackUrl = callBackUrl;
17 try {
18 this.credential.getAccessToken();
19 instance = this;
20 } catch (Exception e) {
21 }
22 }

The most important part of the code is the object credential. As the authentication is handled as a
singleton design pattern, after all the steps taken to authenticate and generate the Access Token,
whenever we make a call using the method mmClient.addRequest(…), we’ll be getting the same
instance of the object credential. This means that no new authentication flow is triggered inside by
the SDK and the credential object returned will always contain the most up-to-date and valid Access
Token.

If the Access Token expires, the credential instance will not hold a valid Access Token anymore.
In this case, the getRefreshToken method in MobileMoneyContext class starts the process of get
an updated Access Token value by calling getRefreshToken method of
MobileMoneyAuthentication class.

4.3. Adapting an API scenario into an API SDK

4.3.1. Explanation of the method/function structure

For converting an API request into a method, we must understand the nature/requirements of that
API call, i.e., Headers, HTTP Method, Request Body, Response Body. MMAPI has different modules
such as accountlinking, billpayment, disbursement, internationaltransfer, merchantpayment,
p2ptransfer and recurringpayment and each module contains the methods for their respective API
calls. Common API calls are written as methods in common classes that are shared among all the
modules.

A typical MMAPI call when converted into an SDK function will have the following structure:

● UUID generator: If the request contains X-CorrelationID as a header, then we
will generate a UUID inside that function and pass it as the X-CorrelationID
header for that API call.

● Path parameters: If the request contains path parameters in the API URL, then
we structure the function, so that these path parameters can be passed into the
function as the function parameters. The parameters need to be validated
inside the function before making the API call.

● Request Body: If the request contains a request body, then we create a model
class with all the fields of the request body. The model class needs to be
validated inside the function before making the API call.

● API URL: The API URL of the API will be fetched from a constant class
API.class. This class should contain all the API URLs. If there are path
parameters in the API URL, then we will have to generate the URL with the
parameters passed in, e.g. the getResourcePath function found in
ResourceUtils class generates the URL with the help of parameter.

● Return type: The return type of the function will be decided based on the
response body of the API call. A model class need to be created based on the
response body fields.

● Forwarding the request: At the end the request will be made by calling the
createRequest function by passing in all the required parameters. The
authentication processes will be handled by the MobileMoneyAuthentication
class.

4.3.2. How you could adapt and SDK

Let’s start by explaining how an SDK function would be triggered by the end user and how this function
has been structured. Following is an example on how the createAccountLink method of
AccountLinkingRequest class can be called in an application.

In the example below, at line number 2, we are initializing an MMClient object, which will be used for
making API calls. Starting at line 3, we created an AccountLinkingRequest object to make the
createAccountLink method call. Then from lines 5 to 28, we are initializing and feeding all the
necessary values required to make the API call.

In this specific example of createAccountLink method, two separate Model classes are passed in.
They are Link and Identifiers. Here Link is the request body, which is set using the setLink method,
while Identifiers Model is a list of AccountIdentifier classes fed in as List<AccountIdentifier>. This
Identifiers class is the path parameter for the createAccountLink API URL, and is passed in as the
method parameters.

1 try {
2 MMClient mmClient = new MMClient(get("CONSUMER_KEY"), get("CONSUMER_SECRET"), get("API_KEY"));
3 AccountLinkingRequest accountLinkingRequest = new AccountLinkingRequest();
4
5 List<AccountIdentifier> sourceAccountIdentifiers = new ArrayList<>();
6 RequestingOrganisation requestingOrganisation = new RequestingOrganisation();
7 List<CustomData> customDataList = new ArrayList<>();

8
9 sourceAccountIdentifiers.add(new AccountIdentifier("accountid", "2999"));
10 customDataList.add(new CustomData("keytest", "keyvalue"));
11 requestingOrganisation.setRequestingOrganisationIdentifierType("organisationid");
12 requestingOrganisation.setRequestingOrganisationIdentifier("testorganisation");
13
14 Link link = new Link();
15 link.setSourceAccountIdentifiers(sourceAccountIdentifiers);
16 link.setMode(Mode.BOTH.getMode());
17 link.setStatus(Status.ACTIVE.getStatus());
18 link.setRequestingOrganisation(requestingOrganisation);
19 link.setRequestDate("2018-07-03T11:43:27.405Z");
20 link.setCustomData(customDataList);
21
22 accountLinkingRequest.setLink(link);
23
24 List<AccountIdentifier> identifierList = new ArrayList<>();
25 identifierList.add(new AccountIdentifier("accountid", "15523"));
26
27 AsyncResponse sdkResponse = mmClient.addRequest(accountLinkingRequest)
28 .createAccountLink(new Identifiers(identifierList));
29
30 System.out.println(String.format("Account Link Creation Status: %s", sdkResponse.getStatus()));
31 } catch (MobileMoneyException ex) {
32 System.out.println(String.format("Mobile Money Exception: %s", ex.getError().getErrorDescription()));
33 }

The API request is made at line number 27. The first method call of the API request –
mmClient.addRequest(accountLinkingRequest) – creates an access token if it is not yet
generated. After that, the second method call – createAccountLink(new Identifiers(identifierList))
– is made on the accountLinkingRequest object. This accountLinkingRequest object can further
be used to make any requests that belong to the accountLinking module, for example,
viewAccountLink, createTransferTransaction, etc.

One important point to note is that AccountLinkingRequest extends the ViewTransactionRequest
class. This ViewTransactionRequest class holds several common Transaction type requests
methods such as viewAccountTransactions, viewTransaction, createReversal, etc. These
request methods are available to AccountLinkingRequest or any other Request classes like
DisbursementRequest, RecurringPaymentRequest, etc., since these classes inherit the
ViewTransactionRequest.

Following is the code for the API call createAccountLink method. From here onwards, the SDK
handles everything.

1 public AsyncResponse createAccountLink(Identifiers identifiers) throws MobileMoneyException {
2 this.clientCorrelationId = UUID.randomUUID().toString();
3 if (identifiers == null) {
4 throw new MobileMoneyException(
5 new HttpErrorResponse.HttpErrorResponseBuilder(Constants.VALIDATION_ERROR_CATEGORY,
6 Constants.VALUE_NOT_SUPPLIED_ERROR_CODE)
7 .errorDescription(Constants.IDENTIFIER_OBJECT_INIT_ERROR).build());
8 }
9 if (link == null) {
10 throw new MobileMoneyException(
11 new HttpErrorResponse.HttpErrorResponseBuilder(Constants.VALIDATION_ERROR_CATEGORY,
12 Constants.VALUE_NOT_SUPPLIED_ERROR_CODE)
13 .errorDescription(Constants.ACCOUNT_LINK_OBJECT_INIT_ERROR).build());
14 }
15 String resourcePath = getResourcePath(API.CREATE_ACCOUNT_LINKS, identifiers);
16 MobileMoneyContext.getContext().getHTTPHeaders().put(Constants.CORRELATION_ID, this.clientCorrelationId);
17 return createRequest(HttpMethod.POST, resourcePath, link.toJSON(), notificationType, callBackURL,
18 AsyncResponse.class);
19 }

At line 2, we have created a new UUID which will be passed in as the clientCorrelationId. Then a
series of validation checks are made at lines 3 through 14 on the objects required by the Model –
identifiers and link. An MobileMoneyException throws the corresponding exception to the user if
any validation of these objects fails.

At line 15, we are fetching the API URL from the list of constants (API.CREATE_ACCOUNT_LINKS)
and formatting it based on the identifierList to generate the final URL for the API Request, then we
store it to the variable resourcePath. On the line 16, we are updating the headers in the
MobileMoneyContext by adding clientCorrelationId to the headers.

And finally, we are making a call to createRequest method by passing in all the necessary
parameters:

• HttpMethod.POST – define what is the HTTP Method of the request
• resourcePath – final API URL for the request
• link.toJSON() – link object is being converted to JSON for passing in as the

request body
• notificationType – notificationType decides if the request is of type

POLLING or CALLBACK
• callBackURL – callBackURL is where we receive the response if the

notificationType is set as CALLBACK
• AsyncResponse.class – AsyncResponse is the return type of this particular

API call
API requests are made by calling createRequest method of the ResourceUtils class. Since it is an
important method, below we are showing its source code and explaining it.

1 protected <T> T createRequest(HttpMethod httpMethod, String resourcePath, String payLoad,
2 NotificationType notificationType, String callBackURL, Class<T> responseObject)
3 throws MobileMoneyException {
4 T sdkResponse = null;
5
6 HttpResponse requestResponse = requestExecute(httpMethod, resourcePath, payLoad, notificationType,
callBackURL);
7 if (requestResponse.getPayLoad() instanceof String) {
8 sdkResponse = JSONFormatter.fromJSON((String) requestResponse.getPayLoad(), responseObject);
9 }
10
11 return sdkResponse;
12 }

At line 6, the requestExecute method is the one who executes a HTTP Request with the parameters
and returns a response to the HttpResponse object. This HttpResponse will contain a payload that
is returned (line 7) and formatted as a JSON (line 8).

The requestExecute method contains many lines of code to manage the incoming API request, so
we are showing only a small part of the method source code that is necessary to explain its logic.

1 protected static HttpResponse requestExecute(HttpMethod httpMethod, String resourcePath, String payLoad,
2 NotificationType notificationType, String callBackURL) throws MobileMoneyException {
3 HttpResponse responseData = null;
4 MobileMoneyContext apiContext = MobileMoneyContext.getContext();
5 Map<String, String> cMap;
6 Map<String, String> headersMap;
7

8 if (apiContext != null) {
9 String accessToken = apiContext.fetchAccessToken();
10 if (accessToken == null) {
11 throw new IllegalArgumentException(Constants.EMPTY_ACCESS_TOKEN_MESSAGE);
12 }
13
14 if (apiContext.getHTTPHeader(Constants.HTTP_CONTENT_TYPE_HEADER) == null) {
15 apiContext.addHTTPHeader(Constants.HTTP_CONTENT_TYPE_HEADER, Constants.HTTP_CONTENT_TYPE_JSON);
16 }
17
18 ...
19
20 headersMap = apiContext.getHTTPHeaders();
21 headersMap.put(Constants.AUTHORIZATION_HEADER, Constants.BEARER + accessToken);
22 APIManager apiManager = new APIManager(cMap, headersMap);
23 apiManager.setResourcePoint(resourcePath);
24 HttpConfiguration httpConfiguration = getHttpConfiguration(httpMethod, apiManager);
25 responseData = executeWithRetries(apiContext, () -> execute(apiManager, httpConfiguration));
26
27 if (responseData == null || responseData.getPayLoad() == null) {
28 throw new MobileMoneyException(
29 new HttpErrorResponse.HttpErrorResponseBuilder(Constants.INTERNAL_ERROR_CATEGORY,
30 Constants.GENERIC_ERROR_CODE).errorDescription(Constants.GENRAL_ERROR).build());
31 } else if (!responseData.isSuccess() && responseData.getPayLoad() instanceof String) {
32 HttpErrorResponse errorResponse = JSONFormatter.fromJSON((String) responseData.getPayLoad(),
33 HttpErrorResponse.class);
34 throw new MobileMoneyException(errorResponse);
35 }
36 }
37
38 return responseData;
39 }

In the requestExecute method, we first check if the apiContext is null (line 8). If the context is valid,
we check if the access token and headers are valid (lines 10 through 16). Once everything is verified,
we set the AUTHORIZATION_HEADER and resourcePath (lines 20 through 24).

At line number 25, we execute the API request through the executeWithRetries method and store
the result in the variable responseData, which is checked for errors of failures (lines 27 through 34),
raising the appropriated MobileMoneyException to the user if any. In the end, the actual
responseData variable is returned as the result of the method requestExecute.

It is possible to convert other API requests to methods following the above guidelines and examples.

5. Testing your SDK

5.1. Unit testing

The purpose of SDK unit tests is to isolate each SDK scenario and perform tests on it, ensuring that
the functionality implemented by that scenario is working as expected. Let's consider an example
where we are writing a unit test for createAccountLink scenario. Following is a sample unit test
written in Java with Junit.

1 @Test
2 @DisplayName("Create Account Link Success")
3 void createAccountLinkTestSuccess() throws MobileMoneyException {
4 AsyncResponse expectedSdkResponse = getAsyncResponse();
5
6 AccountLinkingRequest accountLinkingRequest = new AccountLinkingRequest();

7
8 List<AccountIdentifier> identifierList = new ArrayList<>();
9 identifierList.add(new AccountIdentifier("accountid", "15523"));
10 Identifiers identifiers = new Identifiers(identifierList);
11
12 AccountLinkingRequest accountLinkingRequestSpy = Mockito.spy(accountLinkingRequest);
13
14 Mockito.doReturn(expectedSdkResponse).when(accountLinkingRequestSpy).createAccountLink(identifiers);
15
16 AsyncResponse actualSdkResponse = accountLinkingRequestSpy.createAccountLink(identifiers);
17
18 assertNotNull(expectedSdkResponse);
19 assertNotNull(actualSdkResponse);
20 assertEquals(expectedSdkResponse.getServerCorrelationId(), actualSdkResponse.getServerCorrelationId());
21 assertEquals(expectedSdkResponse.getStatus(), actualSdkResponse.getStatus());
22 }

The idea of a unit test is comparing the SDK response with an expected response. This is done in the
code above by creating the expectedSdkResponse object (line 4) and feed it with specific known
data that we will compare with the actual data stored by the actualSdkResponse object (line 16).
Later, we will test if the expectedSdkResponse and actualSdkResponse data match (lines 18-21).
The values that we are using in the unit test are defined on lines 8-10.

We used the Mockito framework to implement the unit tests. We create a mock call of
accountLinkingRequest to the createAccountLink method using the spy concept of the Mockito
framework (lines 12-14). We also create a request to get the actual values returned by the method
in test on line 16. After receiving the actualSdkResponse value, we use different types of assert
methods to check if the response is valid (lines 18-21).

Similarly, it is possible to create unit tests for all the use cases and scenarios implemented to reach
a full coverage of the SDK.

5.2. Integration testing

The purpose of SDK integration tests is to validate the SDK by performing tests on a scenario where
multiple different methods and components are used, ensuring that the workflow of that scenario is
working as expected. Integration tests often uses external system, as this is the case for this
createAccountLink integration test, which uses the MMAPI simulator as a server to validate the API
calls, scenarios and uses cases.

Let's consider an example where we are writing an integration test for createAccountLink scenario.
Following is a sample integration test written in Java with Junit.

1 @Test
2 @DisplayName("Create Account Link Success")
3 void createAccountLinkTestSuccess() throws MobileMoneyException {
4 MMClient mmClient = new MMClient(loader.get("CONSUMER_KEY"),
5 loader.get("CONSUMER_SECRET"),
6 loader.get("API_KEY"))
7 .addCallBackUrl(loader.get("CALLBACK_URL"));
8
9 AccountLinkingRequest accountLinkingRequest = new AccountLinkingRequest();
10 accountLinkingRequest.setLink(getLinkSuccessObject());
11 List<AccountIdentifier> identifierList = new ArrayList<>();
12 identifierList.add(new AccountIdentifier("accountid", "15523"));
13 AsyncResponse sdkResponse = mmClient.addRequest(accountLinkingRequest)
14 .createAccountLink(new Identifiers(identifierList));
15

16 assertNotNull(sdkResponse);
17 assertNotNull(sdkResponse.getServerCorrelationId());
18 assertTrue(Arrays.asList("pending", "completed", "failed").contains(sdkResponse.getStatus()));
19 assertEquals(sdkResponse.getNotificationMethod(), "callback");
20
21 }

The integration test for createAccountLink is very similar to the unit test for the same scenario, but
the main difference is that it uses an external MMAPI server to validate the requests. This is done
when the integration test creates a mmClient object, which handles the authentication to a MMAPI
server using valid and real data (lines 4-7). Note that those real values for authentication, like
ConsumerKey, ConsumerSecret and API Key, and parameters to handle responses, like Callback
URL are passed to the initialization of the mmClient object.

You can notice also that the Mockito framework used in the unit tests to mock requests and
responses are not used in the integration tests, because the integration test code needs to be fully
functional as if it was in a real application, thus using real data. The code representing the full scenario
for the createAccountLink is on lines 9-14.

It can be difficult to know beforehand the values returned by a real MMAPI server, so the assertions
focus on check if a pattern or known values of the MMAPI specification are present in the response.
For example, the MMAPI specification has the following status response values – pending, completed,
and failed – so in this case the integration test can assert for those values. Other types of assertions
are just to check if everything is present in the request without checking for specific values, as this is
the case for check if the ServerCorrelationId. The assertions for the createAccountLink integration
test can be found on lines 16-19.

6. Documentation and distribution

When creating documentation for the SDK, it is essential for providing the developers with a clear
understanding of the SDK's purpose, features, and usage. Refer the documentation of the MMAPI
sdk for more details https://github.com/gsmainclusivetechlab/mmapi-java-sdk.

Here are some best practices to consider when writing a documentation for an SDK:

● Table of Contents: Include a table of contents at the beginning of the
documentation to help users quickly navigate through the document and find
the information they need.

● Requirements: An SDK may have dependencies during its implementations.
Point out each of the dependencies for the usage of the SDK. This helps
developers from spending time on unnecessary debugging.

● Installation: Provide detailed instructions on how to install the SDK. Include
information about any prerequisites, dependencies, or system requirements.
Offer various installation methods, such as how to build the SDK, where to
download it from, how to run it etc.

● Usage and Code Samples: Provide comprehensive documentation on how to
use the SDK's main features and functionalities. Include code samples and
examples for various API calls and use cases. Ensure that the code samples
are clear, well-commented, and cover every scenario.

● Error Handling: Devote a section to explain how the SDK handles errors and
how developers can handle errors effectively in their applications.

● Use cases: Consider providing links to each use case and user scenarios. This
will allow developers to dive deeper into the API's details.

● Explain test cases: Explain how tests are written and how the developer can
utilize the tests.

● Samples: Provide a sample project which includes each of the use cases and
user scenarios.

7. Conclusion

In conclusion, creating a successful and effective SDK requires a careful balance of technical
expertise, user-centric design, and meticulous attention to detail. As developers, you hold the power
to shape the experiences of countless others who will use your SDK, integrating it into their projects
and applications. By following the steps outlined in this guide, you're well-equipped to use the GSMA
SDKs to support you to navigate the complex landscape of SDK development.

Studying this guide and examining the corresponding sample SDK code on GitHub, you will obtain a
thorough understanding of the process involved in creating an SDK for any Mobile Money API. The
documentation also provides guidance on evaluating your mobile money API and comparing it with
MMAPI, allowing you to utilize the GSMA SDK repository and establish your own SDK.

Remember that a well-designed SDK not only provides a powerful toolset but also fosters a sense of
trust and reliability with your users. Continuously seek feedback from developers who integrate your
SDK, as this iterative process will lead to improvements and enhancements that can make a
substantial difference. Prioritize clear documentation, maintain a consistent update cycle, and
consider the broader context in which your SDK will be used.

SDK development is not just about code; it's about building connections and enabling innovation. The
mobile money team is committed to providing the support the mobile money ecosystem needs to
ensure the quality of the assets developed. This enables not only a better innovation and development
environment, but also better services for end users.

As you embark on this journey, keep in mind that your efforts contribute to a larger ecosystem,
empowering fellow developers to create remarkable products and solutions. So, go forth with
confidence, armed with the knowledge from this guide, and craft SDKs for your APIs that will inspire,
simplify, and reshape the way technology is used across Mobile Money services. The creation of
excellent tools will undoubtedly leave a lasting impact on the world of software development.

