GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

GSMA

Rich Communication Suite — End-to-End Encryption
Specification

Version 2.0
18 July 2025

Security Classification: Non-Confidential

Access to and distribution of this document is restricted to the persons permitted by the security classification. This document is subject to
copyright protection. This document is to be used only for the purposes for which it has been supplied and information contained in it must not be
disclosed or in any other way made available, in whole or in part, to persons other than those permitted under the security classification without
the prior written approval of the Association.

Copyright Notice

Copyright © 2025 GSM Association

Disclaimer

The GSMA makes no representation, warranty or undertaking (express or implied) with respect to and does not accept any responsibility for, and
hereby disclaims liability for the accuracy or completeness or timeliness of the information contained in this document. The information contained
in this document may be subject to change without prior notice.

Compliance Notice
The information contain herein is in full compliance with the GSMA Antitrust Compliance Policy.

This Permanent Reference Document is classified by GSMA as an Industry Specification, as such it has been developed and is maintained by
GSMA in accordance with the provisions set out GSMA AA.35 - Procedures for Industry Specifications.

V2.0 Page 1 of 91

GSMA
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

Table of Contents

1

Introduction

1.1 Overview

1.2 Scope

1.3 Definition of Terms

1.4 Abbreviations

1.5 Document Cross-References

1.6 Conventions

Architecture

Identity Model

3.1 Client and Participants

3.2 Client Certificates

3.3 Certificate Signing Model
Provisioning

4.1 ACS Signed Encryption Identity Proof
4.2 Enrolment with KDS

Key Delivery Service (KDS)

5.1 Uploading KeyPackages

5.2 MLS Capabilities

5.3 Fetching Key Packages

5.4 KDS Federation

5.4.1 Error Handling

5.5 Identity Verification

MLS Conversation Representation
6.1 Conversation Management

6.1.1 MLS Group Life Cycle

6.1.2 Conversation Focus

6.1.3 MLS-Opaque-Token Definition
6.1.4 Resolving RCS and MLS Identifiers

6.2 MLS Group Commit and Proposal Management

6.2.1 Commit and Proposal Arbitration

6.2.2 Conversation Focus Commit Validation
6.2.3 Conversation Focus Proposal Validation

6.2.4 Commit/Proposal Message Delivery

6.2.5 Signal for Rejected Commits/Proposals/Messages

6.2.6 Client Commit and Proposal Validation
6.3 MLS Grouplnfo Management

6.3.1 Retrieving MLS Grouplnfo
Wireformat

7.1 MLS Content Types

7.2 MLS CPIM Namespace

7.21 Epoch-Authenticator CPIM header

7.2.2 MLS- Derived-Content-Signature CPIM Header

V2.0

Non-confidential

(o)) NN o) N -}

9
10
11
12
13
13
14
14
15
16
16
17
17
17
17
18
19
19
20
20
20
22
23
23
23
23
24
25
25
25
26
27
28
29
29
29
30
30

Page 2 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

7.2.3 Original-Message-ld CPIM Header 31
7.24 MLS-Opaque-Token SIP Header 31
7.2.5 Era-ld CPIM Header 31
7.3 Binary Encoding Format 31
7.4 KeyPackage Definition 32
7.5 Encrypted Message Format 32
7.5.1 SecretPayload Definition 33
7.5.2 Application Message Definition 34
7.5.3 AuthenticatedData Definition 34
7.5.4 Re-Sent Message Binary Format 35
7.5.5 Epoch-Authenticator CPIM Header 35
7.5.6 MSRP Message Format 36
7.5.7 Unencrypted CPIM headers 36
7.6 Signed Message 37
7.6.1 Signature Generation 37
7.6.2 Signature Validation 37
7.6.3 VerifiableDerivedContent Format 37
7.7 IMDN Definition 39
7.71 Positive-Delivery IMDN Definition 39
7.7.2 Negative-Delivery IMDN Definition 39
7.7.3 Display IMDN Definition 41
7.8 File Transfer Message Definition 41
7.8.1 FilelInfo Message 41
7.8.2 File Transfer Message Body 42
7.9 Commit and Proposal Messages 43
7.9.1 message/mis-rcs-client and message/mis-rcs-server ContentTypes 43
7.9.2 Client-Generated Commits 46
7.9.3 Server-Processed Commits 46
7.9.4 Proposal Lists 47
7.10 MLS Grouplnfo Retrieval Format 47
7.10.1 SIP Info Response Body 47
7.11 MLS Extensions 47
7.11.1 Era 47
7.11.2 end_mis 48
7.11.3 icon_key 48
7.11.4 icon_commitment 48
7.11.5 subject_key 49
7.11.6 subject_commitment 49
7.11.7 rcs_signature 49
7.11.8 self_remove 49
7.11.9 server_remove 50
7.12 ACS Signed Encryption Identity Proof 50
7.12.1 ACS Signed Encryption Identity Proof Format 50
8 Conversation Creation 50

V2.0 Page 3 of 91

GSMA
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

10

11

8.1 Client Procedures

8.1.1 1-to-1 INVITE

8.1.2 Group INVITE

8.2 Messaging Server Procedures
8.2.1 Conversation Focus

8.2.2 Participant Function

8.3 Creating a New Era

8.3.1 Client Procedures

8.3.2 New Conversation Focus

8.3.3 Old Conversation Focus

8.3.4 Participating Functions
Conversation Operations

9.1 Messaging

9.1.1 Encrypted Messages

9.1.2 File Transfer

9.1.3 Delivery Report

9.1.4 Display Report

9.1.5 User Alias

9.2 Adding Participants to a Group Chat
9.3 Removing Participants from a Group Chat
9.4 Self Leave

9.5 Commits

9.5.1 Commit Procedure

9.5.2 Key Updates

9.5.3 Certificate Update

9.5.4 KeyPackage Update

9.6 Server-Initiated User Removal

9.7 Group Metadata Management
9.7.1 Group Icon and Subject

MLS Group Recovery

10.1 Self-Healing Mechanism

10.1.1 Self-Heal Procedure

10.2 Sending Fail to Decrypt (FTD)
10.3 Receiving an FTD message

10.4 Receiving a Re-Sent Message
10.5 Recovering Group Subject and Icon
Encryption Status Change

11.1 Unencrypted to Encrypted

11.1.1 Periodic Capability Refresh for Unencrypted Groups
11.1.2 Resurrecting former MLS Group
11.2 Encrypted to Unencrypted

Annex A Certificate profiles

A.1 Root Certificate Profile
A.1.1 Version

V2.0

Non-confidential

50
51
51
51
51
52
52
52
52
53
53
53
53
53
54
55
55
55
56
57
58
59
59
60
60
61
61
62
62
64
64
65
66
66
67
68
68
68
69
69
69
70
70
70

Page 4 of 91

GSMA

Non-confidential

Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

A.1.2
A.1.3
A1.4
A.1.5
A.1.6
A7
A.1.8
A2
A.21
A.2.2
A.2.3
A.2.4
A.2.5
A.2.6
A.2.7
A.2.8
A.3
A.3.1
A.3.2
A.3.3
A.3.4
A.3.5
A.3.6
A.3.7
A.3.8
A4
A4
A4.2
A.4.3
Annex B
Annex C
CA1
C.2
C3
C4
C.41
C44.2
C.5
Annex D
D.1
D.2

V2.0

Serial Number
Signature Algorithm
Issuer

Validity

Subject

Subject Public Key
Extensions

Intermediate CA Certificate Profile

Version
Serial Number
Signature Algorithm
Issuer
Validity
Subject
Subject Public Key
Extensions

Client Certificate Profile
Version
Serial Number
Signature Algorithm
Issuer
Validity
Subject
Subject Public Key
Extensions

Certificate Validation Procedures

Client Validation

KDS Validation

RCS SPN Validation
Inter-KDS Interface
Cryptographic Operations

Creating a Commitment for a Value

Encrypting a File
Decrypting a File

One to one HPKE Encryption for Re-Sent Messages

Encryption
Decryption
Identity Verification Code
Document Mangement
Document History
Other Information

70
70
70
70
70
71
72
73
73
73
73
73
73
73
74
75
76
76
76
76
77
77
77
77
78
81
81
82
83
84
86
87
87
88
89
89
90
90
90
90
91

Page 5 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

1 Introduction

1.1 Overview

End-to-end encryption (E2EE) refers to a generic private communication system in which
only the communicating users can participate. As such, no one else, including the
communication systems provider, telecom providers, internet providers, or malicious actors
can access the cryptographic keys needed to communicate. Functionally, this assures that
messages exchanged using E2EE cannot be read or secretly modified by anyone other than
the intended senders and recipients. The precise definition of E2ZEE can be found in [IACR
2085]. Any implementation that deviates from the definition is not considered an E2EE
system.

RCS will rely on Messaging Layer Security (MLS) Protocol, which is an IETF specification
[RFC9420], for supporting end-to-end encryption. MLS is a formally verified standard that
guarantees both forward secrecy and post-compromise security for messaging in 1-to-1 and
group conversations. It is designed to scale efficiently with large group chats, and it supports
post-quantum encryption.

E2EE is meant to run on top of RCS networks and clients. While cryptographic material will
be exchanged independent of the RCS system, the encrypted messages and group chats
are transmitted and stored via existing mechanisms as specified in [GSMA PRD-RCC.07].

1.2 Scope

This document defines how to incorporate MLS into RCS (Rich Communication Suite) and
ensure that RCS users can securely exchange messages with one another in both 1-to-1
and group contexts. Note that E2EE only applies to P2P conversations and not Chatbot
conversations.

1.3 Definition of Terms

Term ‘ Description ‘

Active . A Conversation with at least one User Message in the last 30 days.
Conversation

Additional Information that is not encrypted but is bound to the ciphertext in a
Authenticated cryptographic way, so that a modification of the information renders the
Data ciphertext invalid.

':‘Azzlg;zueon Message defined by the [GSMA PRD-RCC.07] unrelated to encryption.

An ordered list of certificates, from the root certificate to the leaf certificate.
Each certificate is signed by its parent.
As defined in [RFC9420].

Cipher Suite A Cipher Suite is a combination of a protocol version and the set of
cryptographic algorithms that should be used.

Certificate Chain

A logical device owned by a Participant; an agent that uses this protocol to
Client establish a shared cryptographic state with other Clients. A Client is defined
by the cryptographic keys it holds.

V2.0 Page 6 of 91

GSMA

Non-confidential

Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

Term

Client Certificate

Description
An X.509 representation of the Client. The X.509 certificate is verified by the
KDS. Asserts the Client & Participant’s identity in a given time window.

Client Credential

As defined in [RFC9420].

Each member of a group presents a credential that provides one identity for
the member and associates them with the member's signing key. The
identities and signing key are verified by the KDS in use. In RCS, the Client
Credential contains a Client Certificate.

Commit

As defined in [RFC9420].

A message that implements the changes to the group proposed in a set of
Proposals.

Control Message

Message defined by the MLS specification (e.g. Commit, Welcome)

Cryptographic The set of keys and other MLS state required to encrypt, decrypt and sign
State messages as well as create and verify Commits.
End-to-End A private communication system in which only communicating users can

Encryption (E2EE)

participate.

Epoch

As defined in [RFC9420].

A state of a group in which a specific set of authenticated Clients hold shared
cryptographic state.

Epoch
Authenticator

A short cryptographic representation of the state of a given epoch.

Era

An identifier representing a version of the MLS Group within an RCS
conversation. Each new Era creates a new MLS Group with the same Group
Identifier.

External Commit

As defined in [RFC9420].
A commit that is issued by a non-member of the cryptographic group.

External Proposal

As defined in [RFC9420].

A Proposal that is sent by a non-member of the group, particularly by the
server hosting the group.

Foreign KDS

A KDS that a client is communicating with through their Home KDS.

Group Context

As defined in [RFC9420].

An object that summarises the shared, public state of the group. The
GroupContext is typically distributed in a signed Grouplnfo message, which is
provided to new members to help them join a group.

Group Context

As defined in [RFC9420].

Extensions Additional application-level entries in GroupContext object.

Home KDS A KDS that a client is directly communicating with.

Home KDS Interface between the client and their Home KDS.

Interface

Inter-KDS Interface between two KDSes that facilitates federation.

Interface

Key Delivery A server, provided by the application vendor, responsible for associating,

Service (KDS)

holding, and distributing a user’s KeyPackage.

V2.0

Page 7 of 91

GSMA

Non-confidential

Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

Term Description
As defined in [RFC9420].
A signed object describing a Client's identity and capabilities, including a
KeyPackage hybrid public key encryption (HPKE) [RFC9180] public key that can be used
to encrypt to that Client. Other clients can use a Client's KeyPackage to
introduce the Client to a new group.
Last Resort As defined in [RFC9420].
KeyPackage A reusable (by multiple members) KeyPackage.
As defined in [RFC9420].
Leaf Node Leaf Node of the MLS Ratchet Tree that describes all the details of an
individual Client's appearance in the MLS Group, signed by that Client.
MLS Control A CPIM message containing either a Commit or a list of Proposals.
Message
Represents a logical collection of Clients that share a common secret value
MLS Group at any given time. Its state is represented as a linear sequence of epochs in

which each epoch depends on its predecessor.

MLS Message

A public or private message carrying MLS primitives (PublicMessage or
PrivateMessage).

MLS (Ratchet)
Tree

Represents a current state of an encryption in a given conversation and is
used to distribute encryption keys to group members.

Participant

An entity identified by an RCS primary identifier that logically represents a
single end user.

Plaintext Message

A message that is transmitted unencrypted.

Private-IM

An RCS Message sent to a single Participant of the Group. In 1-to-1
messaging, every message is considered a Private-IM.

PrivateMessage

As defined in [RFC9420].

An MLS protocol message that is signed by its sender, authenticated as
coming from a member of the group in a particular epoch, and encrypted so
that it is confidential to the members of the group in that epoch.

Proposal

As defined in [RFC9420].

A message that proposes a change to the group, e.g., adding or removing a
member.

PublicMessage

As defined in [RFC9420].
An MLS protocol message that is signed by its sender and authenticated as
coming from a member of the group in a particular epoch but not encrypted.

RCS Conversation

The RCS representation of 1-to-1 or group conversation, which includes all
the Participants in that conversation.

Identity Proof

Signed Encryption

A signature returned by ACS that proves ownership of MSISDN as well as
the Participant Key and binds them together.

UpdatePath

As defined in [RFC9420].
An MLS procedure to update nodes of the ratchet tree with new secrets.

User Message

A Message containing user content, such as text, files, audio, as opposed to
Control Messages.

V2.0

Page 8 of 91

GSMA

Non-confidential

Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

1.4 Abbreviations

‘ Description

Term
AAD Additional Authenticated Data
ABNF Augmented Backus-Naur Form
ACS Auto-Configuration Server = Configuration Server as defined in [GSMA PRD-
RCC.14]
AES-CTR Advanced Encryption Standard using Counter Mode
CA Certificate Authority
CLR Certificate Revocation List
CPIM Common Presence and Instant Messaging
CSPRNG Cryptographically Secure Pseudorandom Number Generator
DBA Doing Business As
E2EE End-to-end encryption
ECDSA Elliptical Curve Digital Signature Algorithm
FTD Fail to decrypt
GUID Globally Unique Identifier
HKDF Hash Key Derivation Function
HKI Home KDS Interface
HMAC Hash-Based Message Authentication Code
HPKE Hybrid Public Key Encryption
IKI Inter-KDS Interface
IMDN Instant Message Disposition Notification
KDS Key Delivery Service
MIME Multipurpose Internet Mail Extension
MLS Messaging Layer Security
mTLS Mutual Transport Layer Security
MSRP Message Session Relay Protocol
NNI Network Interface
NS Name Space
NTP Network Time Protocol
oID Object Identifier
P2P Person to Person (communication)
PRD Permanent Reference Document
RPC Remote Procedure Call
RCS Rich Communication Suite
RCS SPN RCS Service Provider Network
SIP Session Initiation Protocol
UNI User Network Interface
URI Uniform Resource Identifier
V2.0 Page 9 of 91

GSMA

Non-confidential

Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

Term ‘

Description
URN Uniform Resource Names
XML Extensible Markup Language
1.5 Document Cross-References
Document
Ref Number Title
gRPC Remote Procedure Calling
1 [gRPC] _ .
https://grpc.io/
GSMA PRD RCC.07 Rich Communication Suite - Advanced
[GSMA PRD- Communications Services and Client Specification, Version 16.0, 18
2 RCC.07] July 2025
http://www.gsma.com/
[GSMA PRD- GSMA PRD RCC.07 Rich Communication Suite Endorsement of OMA
3 CPM 2.2 Conversation Functions, Version 13.0, 28 February 2025
RCC.11]
http://www.gsma.com/
GSMA PRD GSMA PRD RCC.14 HTTP-Based Service Provider Device
4 [} Configuration, Version 12.0, 18 July 2025
RCC.14]
http://www.gsma.com/
GSMA PRD RCC.71 RCS Universal Profile Service Description
[GSMA PRD- Document, Version 3.1, 18 July 2025
5 | RcC.71] ’ - y
http://www.gsma.com/
Definition of End-to-end Encryption
6 [IACR 2085] o
https://eprint.iacr.org/2024/2085
X.680 : Information technology — ASN.1 Specification of basic notations
7 [ITU-T X.680] o
https://www.itu.int/rec/T-REC-X.680
X.690 : Information technology - ASN.1 encoding rules: Specification of
ITU-T X.690 Basic Encoding Rules (BER), Canonical Encoding Rules (CER), and
g | [TU-TXB90] | higtinguished Encoding Rules (DER)
https://www.itu.int/rec/T-REC-X.690
Recommendation for Block Cipher Modes of Operation
[NIST SP800- _—
9 38A] https://nvipubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-
38a.pdf
Reducing Metadata Leakage from Encrypted Files and Communication
with PURBs
10 [PADME])]]
https://www.petsymposium.org/2019/files/papers/issue4/popets-2019-
0056.pdf
“Key words for use in RFCs to Indicate Requirement Levels”, S.
11 [RFC2119] Bradner, March 1997
http://www.ietf.org/rfc/rfc2119.txt
Common Presence and Instant Messaging (CPIM): Message Format
12 [RFC3862]))
https://www.rfc-editor.org/rfc/rfc3862.html
The tel URI for Telephone Numbers
13 [RFC3966])
https://www.rfc-editor.org/rfc/rfc3966
V2.0 Page 10 of 91

https://grpc.io/
http://www.gsma.com/
http://www.gsma.com/
http://www.gsma.com/
http://www.gsma.com/
https://eprint.iacr.org/2024/2085
https://www.itu.int/rec/T-REC-X.680
https://www.itu.int/rec/T-REC-X.690
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-38a.pdf
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-38a.pdf
https://www.petsymposium.org/2019/files/papers/issue4/popets-2019-0056.pdf
https://www.petsymposium.org/2019/files/papers/issue4/popets-2019-0056.pdf
http://www.ietf.org/rfc/rfc2119.txt
https://www.rfc-editor.org/rfc/rfc3862.html
https://www.rfc-editor.org/rfc/rfc3966

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

Title
The Base16, Base32, and Base64 Data Encodings
https://www.rfc-editor.org/rfc/rfc4648.html
Internet X.509 Public Key Infrastructure Certificate and Certificate
15 [RFC5280] Revocation List (CRL) Profile
https://datatracker.ietf.org/doc/html/rfc5280

Instant Message Disposition Notification (IMDN)
https://www.rfc-editor.org/rfc/rfc5438.html

HMAC-based Extract-and-Expand Key Derivation Function (HKDF)
https://www.rfc-editor.org/rfc/rfc5869.html

Mutual Authentication Protocol for HTTP
https://www.rfc-editor.org/rfc/rfc8120.html

Document
Ref Number

14 | [RFC4648]

16 | [RFC5438]

17 | [RFC5869]

18 | [RFC8120]

Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

19 [RFC8174] i ,
https://www.rfc-editor.org/info/rfc8174

The Transport Layer Security (TLS) Protocol Version 1.3
https://www.rfc-editor.org/rfc/rfc8446.html

Hybrid Public Key Encryption
https://www.rfc-editor.org/rfc/rfc9180.html

The Messaging Layer Security (MLS) Protocol
https://www.rfc-editor.org/rfc/rfc9420.html

Network Time Protocol Version 4: Protocol and Algorithms Specification
https://www.rfc-editor.org/rfc/rfc5905.html

20 | [RFC8446]

21 | [RFC9180]

29 | [RFC9420]

23 | [RFC9505]

Universally Unique IDentifiers (UUIDs)

24 [RFC9562]]
https://www.rfc-editor.org/rfc/rfc9562.html

1.6 Conventions

LT (LI [T] [T L] L]

The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”,
‘recommended”, “may”, and “optional” in this document are to be interpreted as described in
[RFC2119] and clarified by [RFC8174].

Throughout this document, Client (with a capital C) refers to the MLS term defined in section
1.3. Specifically, it is the logical representation of a device inside of the MLS Group. When
the term client (with a small c) is used, it refers to the software that is following the
procedures defined in this document, as it would be used in [GSMA PRD-RCC.07].

V2.0 Page 11 of 91

https://www.rfc-editor.org/rfc/rfc4648.html
https://www.rfc-editor.org/rfc/rfc5438.html
https://www.rfc-editor.org/rfc/rfc5869.html
https://www.rfc-editor.org/rfc/rfc8120.html
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/rfc/rfc8446.html
https://www.rfc-editor.org/rfc/rfc9180.html
https://www.rfc-editor.org/rfc/rfc9420.html
https://www.rfc-editor.org/rfc/rfc5905.html
https://www.rfc-editor.org/rfc/rfc9562.html

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

2 Architecture

Inter-KDS Interface (IKI)
KDS 1 e KDS 2

Home KD_S_,Intei’fééé
! (HKI)-~~ !

Home KDSiInterface Home KDS?Inten‘ace
(HKI) ; (HKI)

RCS Service
Provider
Network 1

RCS Service
Provider
Network 2

UNI

Figure 1: Overall Architecture

The E2EE system includes clients and Key Delivery Services (KDSes), which is the store for
all KeyPackages uploaded by clients. The E2EE system lives alongside the RCS Service
Provider Network (RCS SPN). KDSes do not directly communicate with the RCS SPN and
the RCS SPN does not directly communicate with the KDSes. However, primitives
generated from one entity shall be checked by the other.

E2EE is a client feature. Private or symmetric keys used for encryption/decryption are not
stored on any server. Instead, those keys live only on the client. All RCS SPN operations in
this document are meant to assist in improving the reliability of E2EE. Even without any
server assistance, clients will be able to perform all E2ZEE operations.

To facilitate multiple vendors implementing E2EE, KDSes must be able to federate. Clients
rely on the KDS assigned by their own client provider (called the Home KDS) to fetch all
KeyPackages regardless of where they are stored. The Home KDS shall fetch KeyPackages
from other KDSes (called Foreign KDSes).

The KDS is responsible for:

o Verifying the user identity and the Participant Keys of the client.
e Storing, certifying and delivering KeyPackages.
¢ Fetching KeyPackages from Foreign KDSes on request from served clients.

Within the context of E2EE, the client is responsible for:

e Generating KeyPackages.

Encrypting, decrypting, and authenticating operations.

Modifying the cryptographic state of the MLS Group (which includes changes in MLS
Group membership).

Verifying Commits sent by other clients and routed via the RCS SPN.

V2.0 Page 12 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

Within the context of E2EE, the RCS SPN is responsible for:

e User identity verification.

o Routing messages between clients.

e Arbitration and basic validation of Commits and messages.

e Storing and providing (to clients) the MLS Groupinfo and Epoch Authenticators
(present and past) for all conversations (1-to-1 and group conversations).

Encryption will continue to operate over NNI. The state for each RCS Conversation will be
stored in a single RCS SPN (called Conversation Focus) but can potentially be transferred to
another RCS SPN.

3 Identity Model

3.1 Client and Participants

Participants are individual users, like Alice or Bob. Participants have one or more devices
represented as Clients, like WebApp or phone. RCS Conversations (including both 1-to-1
messaging and group conversations) are associated with MLS Groups. An RCS
Conversation is composed of the Participants, while the MLS Group is composed of the
Clients corresponding to the Participants of the RCS Conversation. The Participants of an
MLS Group is the set of all Participants whose Clients are in the MLS Group. The clients and
the Conversation Focus shall ensure that all of the Participants of the MLS Group match the
Participants of the RCS Conversation at all times.

NOTE: for the initial release of this specification, a Participant has only one Client.

| Alice | | Bob |
Client 1 Client 2 Client 3 Client 1 Client 2 Client 3

Figure 2: Relationship between Participants and Clients

The Participant is represented by the user identity and the Participant public key. The Client
is represented by the Client Certificate (defined in Annex A.3)

An MLS Group is represented as a binary tree, in which Leaf Nodes contain Client
Certificates to represent Clients (and transitively the Participants of the MLS Group).

V2.0 Page 13 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

Client A Client B Client C Client D
(Alice) (Bob) (Alice) (Charlie)

Figure 3: An MLS Group Ratchet Tree with Three Participants (Alice, Bob, Charlie);
Alice Has Two Clients

3.2 Client Certificates

Client Certificates are issued by the KDS pursuant to section 4.2. Client Certificates are
verified by the Conversation Focus (section A.4.3) and other clients at the time of any
Commits, such as MLS Group membership changes. The Certificate Signing Model (section
3.3) describes how the certificates are authenticated. The Client Certificate shall follow
procedures in Annex A.3.

3.3 Certificate Signing Model

The Certificate Chain is used to establish trust, prevent man-in-the-middle attacks, and
prevent identity spoofing. The Root Certificates of application vendors must meet the
requirements described in Annex A.1. Those vendors are responsible for issuing Client
Certificates. For MLS in RCS to work, all interconnected Client vendors shall agree on the
same set of trusted Root Certificates.

Additional intermediate certificates can be added between the Root and Leaf certificates.
There has to be at least one, but could include multiple intermediates.

V2.0 Page 14 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

Offline Roots P—

Vendoff'l Root Vendoff2 Root
Certificate Certificate

9 — Online Intermediaries g P—

Vendor 1 Intermediate Vendor 2 Intermediate
Certificate Certificate

L L e

Clipnt Clipnt Pa[g y[;am Client Clignt Pa'z ypsam
Certificate Certificate Certificate Certificate

Signed by-

Signed by-

Figure 4: The Certificate Hierarchy

Each Client Certificate contains an assertion from the ACS. The ACS provides an extra
guarantee of MSISDN ownership on top of the guarantees provided by the KDS. Assertions
from both the ACS and KDS regarding phone number ownership must agree. Details are
described in section 6.2.2 and Annex A.3.

Client Certificates are non-revocable. Their lifetime is defined in Annex A.3. Intermediate
CAs are revocable using CRLs defined in the Offline Root.

4 Provisioning

The overall flow of provisioning and enrolling with Home KDS is outlined in the following
figure.

V2.0 Page 15 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

UE ACS KDS RCS SPN

UE creates
Participant Key

Provision (Participant Key, home_kds)

h 4

ACS verifies MSISDN and generates
SignedEncryptionldentity Proof

_Config Document (SignedEncryptionldentityProof)

Enrol (SignedEncryptionldentityProof...)

Y

I
Client Certificate

'y

UE creates KeyPackages including
the certificate received from the KDS

Upload KeyPackages

Y

2000K

F Y

REGISTER

A J

I
2000K

UE m KDS RCS SPN

Figure 5: Provisioning and Enrolment in Home KDS

Fy

4.1 ACS Signed Encryption Identity Proof

When provisioning or processing a configuration refresh of the client with ACS, as per
[GSMA PRD-RCC.07], the client shall include the following:

o The Public Participant Key as defined in section 3.1
e The home kds, an integer indicating the ID of the KDS vendor

Upon verifying the client, ACS shall sign the tuple of (MSISDN, Public Participant Key,
home kds), including an expiry as defined in section 7.12 and return it in the configuration
document as per [GSMA PRD-RCC.07]. If ACS does not return the Signed Encryption
Identity Proof, the client shall continue with enrolment with the Home KDS.

The ACS shall store the Public Participant Key and the home kds values. Those values shall
be used to construct the ACS Signed Encryption Identity Proof in future config refreshes.

4.2 Enrolment with KDS

After the provisioning with ACS, the client shall enrol with its Home KDS and upload
KeyPackages as per section 5.1. If ACS returned the Signed Encryption Identity Proof as
specified in section 4.1, the client shall include it in this enrolment request, to be included in
the Client Certificate.

V2.0 Page 16 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

After completing the enrolment with Home KDS and uploading of KeyPackages, the client
shall register to the RCS SPN as per section 2.4 in [GSMA PRD-RCC.07]. The client shall
also re-add themselves via an External Commit to all MLS Groups they are aware of.

5 Key Delivery Service (KDS)

5.1 Uploading KeyPackages

After receiving the ACS Signed Encryption Identity Proof of (MSISDN, Public Participant
Key, home_kds) during ACS provisioning as per section 4.1, the client shall generate HPKE
key pairs (private and public keys) as per [RFC9420]. The client shall then upload the
required fields to issue certificates as per section A.3 (including Cipher Suite and the ACS
Signed Encryption Identity Proof) during enrolment with the Home KDS. The exact interface
between the client and the KDS is vendor specific.

NOTE: The interface between client and Home KDS may be specified in future releases.

Upon client enrolment, the Home KDS shall verify the end user identity. Upon successful
verification, the Home KDS shall use a globally unique Client ID and issue Client
Certificates, adhering to the certificate format outlined in Annex A.3, for each Client Key. The
Home KDS shall then return these Client Certificates to the client.

NOTE: The Home KDS can choose to do its own verification of the MSISDN or it can use
the ACS Signed Encryption Identity Proof as a verification mechanism.

With the Client Certificate, the client shall create KeyPackages as per [RFC9420] and upload
them to the Home KDS. The lifetime of the KeyPackage must match the lifetime of the Client
Certificate issued by the Home KDS. The Home KDS shall store the KeyPackages to be
fetched by other clients (directly via Home KDS or indirectly via Foreign KDS).

If the initial KeyPackage upload fails for any reason (including retries), the client shall not
advertise MLS capabilities as described in section 5.2.

The KDSes and RCS SPN must maintain accurate clock by utilising Network Time Protocol
(NTP). Clients should also maintain accurate clocks via NTP to validate certificate times.

5.2 MLS Capabilities

To check if MLS is enabled for a recipient client, the sender client shall request their RCS
capabilities through the sender’'s RCS SPN that will query the recipient’'s RCS SPN. Clients
that support MLS shall include Encryption version (indicating which version of this
specification the client supports) and Encryption Home KDS capability (indicating the
recipient’'s Home KDS ID) as specified in [GSMA PRD-RCC.07].

5.3 Fetching Key Packages

To fetch KeyPackages, the client shall request them from their Home KDS. The client shall
list, in order they prefer, the Cipher Suites for encryption, and a list of the recipients (with
their home kds capability value) to fetch KeyPackages for.

V2.0 Page 17 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

Upon receiving a KeyPackage request, the Home KDS shall first query the Cipher Suites for
all Participants, and if necessary, federate with other Foreign KDSes. Based on the order
listed in the request, the Home KDS chooses a common Cipher Suite. For example, if the
client listed Cipher Suites a then b then c, some of the Participants were capable of a, and
all were capable of b and c, then the Home KDS shall pick Cipher Suite b as the common
Cipher Suite. If there are no common Cipher Suites, the Home KDS shall return no common
Cipher Suite for all the Participants. The client shall create the group unencrypted.

If the KeyPackages are being fetched for adding users to a group, the client shall request
KeyPackages for the Cipher Suite of the MLS Group. If there are Participants who do not
support the Cipher Suite, the Home KDS shall return no common Cipher Suite. The client
may request KeyPackages for all Participants in the group (existing and added) to achieve a
common Cipher Suite. If a common Cipher Suite is found, the client shall advance the Era
(as per section 8.3) with the common Cipher Suite.

The Home KDS shall then fetch the corresponding KeyPackages for the selected Cipher
Suite from its local store or, if necessary, by federating to other Foreign KDSes as per
section 5.4. The Home KDS shall validate the Client Credentials in the KeyPackages
according to Annex A.4.2. The Home KDS shall then return the KeyPackages for all
recipients.

The Home KDS shall return KeyPackages for all the Clients of the Participant. Clients that
add a Participant to an RCS Conversation must include all Clients in the MLS Group for that
Participant. For example, if a Participant has 3 Clients, the Home KDS shall return
KeyPackages for all 3 Clients. The client shall then include all 3 KeyPackages in the MLS
Group.

If unexpected errors arise during the KeyPackage fetching that are not recoverable by
retrying, the client shall create the RCS Conversation unencrypted.

NOTE: The Home KDS should return results to indicate the specific response status for
each Participant.

The exact interface between clients and their Home KDS is vendor specific.

5.4 KDS Federation

When the Home KDS receives a request for a Participant’'s KeyPackages that has a
home kds parameter other than its own, it shall request the KeyPackages from the Foreign
KDS indicated by the home kds.

First, the Home KDS shall request the Cipher Suites of the foreign Participants. Then, after
calculating the Cipher Suite as per section 5.3, the Home KDS then shall request
KeyPackages for that Cipher Suite from the Foreign KDS.

When a new (i.e. previously unknown) Participant enrols on a Home KDS, the Home KDS
should inform all Foreign KDSes of the new enrolment using the
NotifyParticipantRegistration RPC. Upon receiving this notification, a Foreign KDS
should remove the Participant from its storage and should inform the previous device about
the transfer of the Participant to the new device.

V2.0 Page 18 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

If the notification’s enrolment timestamp for a Participant is before the Foreign KDS’s
enrolment time for the same Participant, the Foreign KDS may ignore the notification and
inform the Home KDS that it ignored the notification via a NEWER ENROLMENT EXISTS

error.

The Inter-KDS Interface (IKl) shall use gRPC [gRPC]. Besides the authentication supplied in
gRPC, the federated KDSes shall authenticate with mTLS. Federated KDSes shall use
native gRPC errors for indicating overall RPC error. In case there are partial errors, the
Home KDS shall return those partial errors as specified in the interface definition.

In case the Foreign KDS cannot be reached, the Home KDS shall not return any
KeyPackages for any Participant. The Home KDS shall return a “currently unavailable” error
for all Participants that belong to the unreachable Foreign KDS and a success return status
for other Participants. The client may retry the request or may create the RCS Conversation
unencrypted.

The IKl is defined in Annex B.

5.4.1 Error Handling

When receiving a response from a Foreign KDS, each Participant must contain a
ResponseStatus that indicates the success of each operation. They are:

e UNKNOWN STATUS: this error shall not be used.

e OK: The query has succeeded and the value is returned.

e NOT FOUND: The Participant queried was not found in the Foreign KDS. The Home
KDS and client should consider the Participant unable to encrypt. The client may retry
capabilities to update the home kds of the Participant and retry the query.

e MALFORMED ID: The E.164 of the phone number was not properly formatted. The
number must be properly formatted before retyring the query.

e UNSUPPORTED CIPHER SUITE: The Participant does not have a KeyPackage in the
requested Cipher Suite. The Home KDS must choose a different Cipher Suite or
consider the Participant not capable of E2EE.

e NEWER ENROLMENT EXISTS: The Participant enrolled on the Foreign KDS with a
newer timestamp than the one in the request.

5.5 Identity Verification

The clients shall allow users to verify the identity of the users they are communicating with.
The identity verification happens between a pair of users. The identity verification code
between the pair of users applies to all conversations they are part of.

To verify user identity for another user, the client shall:

e Calculate the identity verification code as per Annex C.5.
¢ Display the 80 digits to the user to allow the pair of users to compare them.

The clients may use a QR code to make the comparison easier. If done so, the client shall:

e Calculate the identity verification code as per Annex C.5.

V2.0 Page 19 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

e Convert the 80 digits to binary representation.
o Embed the binary representation in a QR code.
e Display the QR Code to the user to allow comparison.

6 MLS Conversation Representation
6.1 Conversation Management

6.1.1 MLS Group Life Cycle

Each MLS Group is identified by a unique identifier, the MLS Group Id. For 1-to-1 chats, the
MLS Group Id will be a random GUID. For group chats, the MLS Group Id shall be the
Conversation Id.

Under certain error conditions, the cryptographic state for an MLS Group may need to be
recreated from scratch. This process preserves the MLS Group Id but changes the
associated Era Identifier. This numeric identifier shall sequentially increase over the lifetime
of the group whenever the Era is advanced.

Within an individual Era, Participants in an MLS Group may modify the group’s state by
sending Commit messages. These special MLS protocol messages contain an intent to
update some aspect of the group. When clients receive a Commit message, they shall
update their local MLS Group state to reflect the change.

UE1 SPN UE2

Generate Commit to update
some aspect of MLS Group state.

Commit

[
™

Validate and arbitrate Commit.

Commit

-
-

Update local MLS Group state.

Commit

[
Ll

Update local MLS Group state.

UE1 SPN UE 2

Figure 6: Using Commit Messages to Update the Local MLS Group State

V2.0 Page 20 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

Clients may also send Proposal messages to update the MLS Group’s state. Like Commits,
Proposal messages also communicate an intended change to the MLS Group, but in order
for that change to be applied, the Proposal must be used to build a new Commit message
that contains it.

UE 1 SPN UE 2
I

Generate Proposal to ask another
participant to update
an aspect of the MLS Group state.

Proposal

L

Validate and arbitrate Proposal.

Proposal

-

Consume Signal that Proposal was accepted.

Proposal

-
L

Validate Proposal and generate a Commit
that contains it.

Commit

-

Validate and arbitrate Commit.

Commit

o
-

Update local MLS Group State.

Commit

.
L

Update local MLS Group State.
|
UE 1 SPN UEZ2

Figure 7: Using Proposal Messages to Update the Local MLS Group State

Commit messages contain an Epoch Identifier that indicates which state, or “Epoch”, the
MLS Group is transitioning from. Epochs shall advance sequentially, and must be applied
atomically. Thus, if an MLS Group is currently in Epoch n, the only Commit that can be
applied is one that advances the group to Epoch n+1, and such a Commit shall only be
applied once. The very first Epoch in Era for an MLS Group is 0, and the initial Commit to
create the RCS Conversation and add the members moves it to Epoch 1.

V2.0 Page 21 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

When receiving a new Commit, clients shall keep the secrets of the previous Epoch for
decrypting messages for at least 3 days to ensure any messages that arrive for previous
Epochs can be decrypted.

RCS Conversation

/I;ILS Group Era‘\‘ MLS Group Era /HLS Group Era\
Epoch 1 Epoch 1
Epoch 2
Epoch 3

A\ 4

Figure 8: Progression of Epochs Within MLS Group Eras

To ensure that all Clients in an MLS Group have the same view of the Group, Messaging
Servers shall arbitrate all incoming Proposal and Commit messages.

6.1.2 Conversation Focus

RCS Conversations using MLS shall be managed by one Messaging Server within the
lifetime of a single Era. Between Eras the ownership may change.

The Messaging Server that processes the MLS Group Creation request for an Era shall be
the Conversation Focus for the group in that Era.

The Conversation Focus must handle all state management for the Conversation. This
includes:

e Arbitrating and validating Commit and Proposal messages.

e Managing and delivering MLS Group state.

o Ensuring that MLS Group state and RCS Conversation state remain in sync only
when the end mls tag is not present in the MLS Group.

e Storing and forwarding MLS Control and Application Messages to their intended
destinations.

e Deleting the MLS Group after a configurable time, recommended to be 30 days of
inactivity.

Messaging Servers that receive requests destined to an MLS Group that is managed by a
different Messaging Server shall forward the requests to that server. Similarly, if a
Messaging Server receives requests that were sent from an MLS Group managed by a
different server, it shall forward the requests to its own users.

V2.0 Page 22 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

6.1.3 MLS-Opaque-Token Definition

The MLS-Opaque-Token SIP header allows Messaging Servers to embed MLS information
(especially to identify the Conversation Focus) in the requests that they send to clients or to
other Messaging Servers.

When an RCS Conversation is first created, Messaging Servers may communicate an MLS-
Opaque-Token to both the conversation creator and all participants. If the MLS-Opaque-
Token is present, clients must then include this MLS-Opaque-Token in any subsequent SIP
requests that they generate for that conversation.

If clients receive a new MLS-Opaque-Token in SIP requests sent within the same RCS
Conversation, then any new requests they send must include the updated MLS-Opaque-
Token.

When the participants of an RCS Conversation span multiple RCS SPNs, the Participating
Functions must use the MLS-Opaque-Token if supplied by the Conversation Focus in all
SIP requests directed to that Conversation Focus.

UE1 UE 2
MLS-Opaque-Token: / " MLS-Opaque-Token: MLS-Opaque-Token: [=2
b1.com b1.com;custom=123 b2.com;focus=b1.com
MLS-Opaque-Token: SPN 1 MLS-Opague-Token: SPN 2 MLS-Opaque-Token:
b1.com b1.com;custom=123 b2.com-focus=b1.com
DU

Figure 9: Use of MLS-Opaque-Token in RCS Conversations with Multiple RCS SPNs

6.1.4 Resolving RCS and MLS Identifiers

All RCS Conversations using MLS will continue to be addressed using their primary RCS
identifiers. Specifically, requests sent in RCS Conversations using MLS will continue to be
addressed to the same Request-URIs as specified in [GSMA PRD-RCC.07].

6.2 MLS Group Commit and Proposal Management

6.2.1 Commit and Proposal Arbitration

To ensure that all Participants have the same view of the MLS Group, MLS Conversation
Focuses for a given MLS Group must validate, arbitrate, and order Commit and Proposal
messages.

For a given MLS Group in a given Era, the Conversation Focus shall:

Verify that Commits adhere to the rules of Section 6.2.2.

Verify that Proposals adhere to the rules of Section 6.2.3.

Verify that newly created MLS Groups start at Epoch 0.

Accept exactly one Commit in each Epoch.

Accept only Proposals from a single user in each Epoch.

If any Proposals have been accepted in an Epoch, only accept Commit messages that
contains all of the Proposals for that Epoch.

ook wd -~

V2.0 Page 23 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

7. Only accept Commits and Proposals that advance the Epoch by exactly one.

8. Deliver accepted Commits and Proposals, as described in Section 6.2.4.

9. Explicitly inform the Client when Commits or Proposals are rejected to allow for optional
resubmission as described in Section 6.2.5.

10. Store the MLS Grouplnfo derived from all accepted Commits as described in Section
6.3.

6.2.2 Conversation Focus Commit Validation

To ensure that all Commits are valid, and to ensure that MLS Group state stays in sync with
RCS Conversation state, the Conversation Focus shall verify, upon receiving a Commit
message:

1. The Credential is Valid using the procedures defined in [RFC9420].

2. The Commit is Valid using the procedures defined in [RFC9420].

3. That if the MLS Context Extension in the stored MLS Grouplnfo includes an end mls

tag as defined in section 11.2, the Commit is an initial Commit or a Commit that contains

a removal of the end mls GroupContext Extension as defined in section 7.11.2.2.

The Commit message is parsable according to the rules of [RFC9420].

The Grouplnfo is parsable according to the rules of [RFC9420].

6. That if a new Credential is being introduced to the MLS Group, the certificates in the
Credential are not expired.

7. That if the Era is being advanced for a Group whose Conversation Focus matches that
of the previous Era, the membership of the MLS Group in the new Era matches the
membership of the existing RCS Conversation.

8. That if a Participant is being added to the RCS Conversation, and the end mls tag is
not present in the MLS Group, at least one Client of the Participant is added to the
corresponding MLS Group.

9. That if a Client is being added to the MLS Group, the identity of the Client’s
corresponding Participant must also be present in the associated RCS Conversation,
or they must be added in the request that contained the Commit.

10. That if the final Client of a Participant is being removed from the MLS Group, the
Participant must not be present in the associated RCS Conversation, or the Participant
must be removed in the request that contained the Commit.

11.That if a Participant is being removed from an RCS Conversation, and the end mls
tag is not present in the MLS Group, all of the Clients of that Participant are also
removed from the MLS Group in the Commit or Proposals contained within that
request.

12. The Signatures in the Commit and Grouplnfo are correct according to [RFC9420].

13. The Commit has the proper structure, given the group’s Ratchet Tree and the position
of the committer in the Tree.

14. The new LeafNode in the Commit is valid, and the contained Certificate is not expired.

15. The GroupContext includes all of the required GroupContext Extensions as described
in Section 7.11.1.1.

16. The Commit’s PublicMessage and the Grouplnfo have the same confirmation tag.

17. All Certificates in the MLS Group are valid for at least 30 days.

18. Each Participant in the MLS Group has exactly one Participant Key. That is, all Clients
for the same Participant must share the same Participant Key.

o &

V2.0 Page 24 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

19. That if the Commit is an External one, the new Client must belong to a Participant that
is already in the MLS Group.

20. All Client Certificates in the MLS Group are valid according to the validation rules in
Annex A.4.3.

6.2.3 Conversation Focus Proposal Validation

To ensure that all Proposals are valid, and that Clients will be able to generate a Commit
that contains them, the Conversation Focus shall verify that:

1. The Proposal is parsable and valid according to the rules of [RFC9420].
2. The Proposal is either a Remove or Update Proposal.

For Remove Proposals, the Conversation Focus shall verify that:

1. The Proposals in the Epoch include all of the Clients for the Participant being removed.
2. All (and only) the Clients of the Participant sending the Remove Proposal are being
removed. No Clients of any other Participant are to be removed.

For Update Proposals, the Conversation Focus shall verify:

1. The Leaf Node in the Proposal according to the rules of [RFC9420].

2. That the new Leaf Node’s Credential matches the old Leaf's Credential (Certificate,
Subject, Public Key).

3. Thatthe signature key matches the Credential Key contained within the Leaf Node.

6.2.4 Commit/Proposal Message Delivery

If a Conversation Focus accepts a Commit or Proposal message within an RCS
Conversation, then it shall deliver the contents of the message to each Participant within the
RCS Conversation, including the sender.

6.2.5 Signal for Rejected Commits/Proposals/Messages

If the Conversation Focus for an RCS Conversation rejects a Commit or Proposal, then it
must explicitly inform the sender that the Commit, Proposal, or Message was rejected. In
addition, if the Commit or Proposal was included as part of an operation that affected the
RCS Conversation state (e.g. adding a user to an RCS group or kicking a user from an RCS
group), then that operation must not be applied.

To achieve this, the Conversation Focus shall send a Negative-Delivery IMDN notification to
the sender of the rejected Commit/Proposal message. This notification must include the
<mls-server-failure-reason> extension within the <delivery-notification> to communicate the
reason for rejection.

The <mls-server-failure-reason> (as defined in section 7.7.2.1) shall contain:

e The latest Era and Epoch for the associated MLS Group.
e The strategy that the Client should apply in order to re-attempt sending the Commit.
This includes:

V2.0 Page 25 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

o <incorrect-era>: The Client attempted to send a Commit in an Era that did
not match the latest one on the Conversation Focus. The Client must wait to
receive the latest MLS Group state before re-attempting.

o <incorrect-epoch>: The Client attempted to send a Commit in the latest Era,
but the Epoch did not match the latest one on the Conversation Focus. The Client
must wait to receive the latest MLS Group state before re-attempting.

o <incorrect-epoch-authenticator>: The Commit or Message contained an
invalid epoch authenticator which did not match the
epoch _authenticator persisted by the Conversation Focus. The Client should
attempt self-healing as per section 10.1, and should otherwise advance the Era as
per section 8.3.

o <expired-credential>: The Client attempted to send a Commit that included
a new LeafNode with a Certificate that was expired, or the client attempted to
send a Commit/Proposal/Message when an Expired Credential existed in the MLS
Group. The Client must request a fresh KeyPackage of the Clients with expired
Credential and Commit the new leaf update before re-attempting, as per section
9.5.4.

o <mismatched-rcs-group-state>: The Client attempted to send a Commit for
which the change to the MLS Group state was not reflected in the associated
change to the RCS Conversation state. The Client may recreate and send the
Commit after correcting this discrepancy.

o <unparsable-commit>: The Client attempted to send a Commit that was
unparsable. The Client shall not resend this Commit but may recover by
recreating it and resending.

o <mismatched-confirmation-tag>: The Client attempted to send a Commit
whose confirmation tag did not match the confirmation tag of the
persisted MLS Grouplnfo. The Client should attempt self-healing as per Section
10.1 and should otherwise advance the Era as per section 8.3.

o <pending-proposal>: The Client attempted to send a Commit that did not
include the pending Proposal. The Client shall include the Proposal in the Commit
and retry the operation.

o <transient-error>: The Client attempted to send a Commit whose
processing failed transiently on the RCS SPN. They may retry the creation and
sending of the Commit.

o <encryption-not-available>: The recipientis not capable of encryption and
thus cannot receive encrypted messages. The sender can either move the
conversation to unencrypted, or remove the recipient.

o <invalid-commit>: The Commit failed to be validated. The client shall fix
validation errors and try again.

6.2.6 Client Commit and Proposal Validation
When Clients receive a message containing a Commit or Proposal, they shall:

1. Validate the Commit as per section 6.2.2 or the Proposal as per section 6.2.3.
2. Validate that any Commits (other than External Commits) were sent by a Client of the
MLS Group.

V2.0 Page 26 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

3. Validate that any Proposals were sent by a member of the MLS Group.
4. Follow the Credential Validation procedures defined in [RFC9420] and Annex A.4.1.
5. Follow the Commit Validation procedures defined in [RFC9420].

If the Client receives a Commit or Proposal message that fails validation, the Client shall
attempt to initiate a Self-Heal as per section 10.1. If the validation failure persists, they must
generate a Negative-Delivery IMDN notification and send it to the originator of the rejected
message. Then the Client should recreate the MLS Group and and advance the Era as per
section 8.3.

The negative delivery IMDN should encode a <mis-client-failure-reason> within the
<delivery-notification>.

This <mls-client-failure-reason> (as per section 7.7.2.2) shall contain:

e The latest Era and Epoch of the MLS Group from the perspective of the Client.

¢ A signature that asserts that the sender of the failed IMDN is actually a member of
the MLS Group.

¢ An indicator of why the message was rejected. This will include:

o <message-from-non-member>: The message was sent from a user that wasn’t
a member of the underlying MLS Group.

o <invalid-credential>: The Commit contained an invalid Credential. The
client shall fetch a new KeyPackage for the Participant(s) and replace their Leaf
Node(s) as per section 9.5.4.

o <invalid-commit>: The Commit failed to be validated. The client shall fix
validation errors and try again.

o <failed-to-decrypt>: The recipient failed to decrypt the message. The
sender shall advance to the latest epoch and resend the message.

o <commit-in-privatemessage>: The sender included a commit in a Private
Message instead of a Public Message. The sender must resend the Commit in a
Public Message and send it again.

6.3 MLS Groupinfo Management

On behalf of each RCS Conversation, the Conversation Focus shall store the latest MLS
Grouplnfo associated with the conversation.

For the latest Era for a given RCS Conversation, the Conversation Focus shall store the
epoch_authenticator for each Epoch that the MLS Group has advanced to.

Whenever a Conversation Focus accepts a Commit, it shall store the MLS GroupInfo and
epoch _authenticator included with the Commit.

The persisted Grouplnfo shall be exposed to members of the RCS Conversation for retrieval
as per 6.3.1.

The persisted epoch_authenticator shall be used by the Conversation Focus to ensure
that Clients sending PrivateMessages exchanged in the Conversation have persisted a valid
Grouplnfo locally.

V2.0 Page 27 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

6.3.1 Retrieving MLS Grouplinfo

Conversation Focus shall allow Clients to retrieve the MLS Grouplnfo associated with their
RCS Conversations on demand.

To request the MLS Grouplinfo associated with an RCS Conversation, Clients shall send a
SIP INFO for the “MLS-Group-Info-Pull” Info-Package in the INVITE dialog associated with
the RCS Conversation that they wish to request the state for. If they do not have an active
INVITE session for the RCS Conversation when they wish to retrieve this state, they shall
first create one.

Upon receiving this INFO request, the Conversation Focus shall:

o Generate a 469 (Bad Info Package) response if the RCS Conversation is not
associated with an MLS Group.

e Generate a 200 OK response if the RCS Conversation is associated with an MLS
Group.

The Conversation Focus shall embed the latest MLS Grouplnfo for the RCS Conversation in
the body of any 200 OK responses to MLS-Group-Info-Pull INFO requests.

6.3.1.1 Communicating Support for MLS Grouplnfo

Whenever Messaging Servers send an INVITE request or response for an RCS
Conversation using MLS, they must indicate that the associated INVITE dialog supports the
MLS Grouplinfo pull exchange.

To do so, they shall ensure that these requests and responses contain a Recv-Info header
containing the “ML.S-Group-Info-Pull” value.

V2.0 Page 28 of 91

GSMA

UE
I

Alice wants to request Groupinfo,
and creates an INVITE session
w/ the group if she doesn't already have one.

SIP INVITE

Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

SPN

-
L

If INVITE is destined to an MLS destination,
server indicates via Recv-Info
that it can accept MLS-Group-Info-Pulls

2000K Recv-Info: MLS-Group-Info-Pull

Fy

SIP ACK

Y

If MLS-Group-Info-Pull present,
Alice constructs SIP INFO.

SIP INFO Info-Package: MLS-Group-Info-Pull_

and encodes it within t

Using the dialog context, server looks up MLS Groupinfo,
he INFO response body.

2000K MLS-Group-Info{...}

F

UE

SPN

Figure 10: Recv-Info Header Signals MLS-Group-Info-Pull Support

7 Wireformat

7.1 MLS Content Types

Two new content types are defined for MLS in the following table:

Specification‘ Included Message ‘

Content-Type
message/mls [RFC9420] MisMessage
message/mls-rcs-client [RCC.16] Control Messages
defined in section 7.9.1
message/mls-rcs-server [RCC.16] Control Messages
defined in section 7.9.1

Table 1: MLS Content Types

7.2 MLS CPIM Namespace

A new CPIM namespace is defined for new MLS-related CPIM headers.

V2.0

Page 29 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

As per CPIM [RFC3862], this specification defines a new namespace for the CPIM extension
header fields defined in the following sections.

The namespace is:
<http://www.gsma.com/rcs/mis>

As per CPIM [RFC3862] requirements, the new header fields defined in the following
sections are prepended, in CPIM messages, by a prefix assigned to the URN through the
NS header field of the CPIM message.

The remainder of this specification always assumes an NS header field like this one:
NS: mis <http://www.gsma.com/rcs/mls/>

As specified in [RFC5438], clients are free to use any namespace prefix, while servers and
intermediaries must accept any legal namespace prefix specification.

7.21 Epoch-Authenticator CPIM header

The header is defined as an extension to the [RFC3862] field definitions. The limits for the
occurrence of the field are defined in the following table:

Field Min Number Max Number

Epoch-Authenticator 0 1

Table 2: Epoch-Authenticator CPIM Header

The field itself is defined in ABNF as follows:

Base-64-char = ALPHA / DIGIT / “+“ / %/7 / “=~"

epoch-authenticator = “Epoch-Authenticator:” epoch-authenticator-
value CRLF
epoch-authenticator-value = l*base-64-char

An example CPIM header is mls.Epoch-Authenticator: MTIzNDU=.

7.2.2 MLS- Derived-Content-Signature CPIM Header

The header is defined as an extension to the [RFC3862] field definitions. The limits for the
occurrence of the field are defined in the following table:

Field “Min Number Max Number
MLS-Derived-Content-Signature 0 1

Table 3: MLS- Derived-Content-Signature CPIM Header

The field itself is defined in ABNF as follows:

Base-64-char = ALPHA / DIGIT / “+“ / »/7 [“="
mls-derived-content-signature = “MLS-Derived-Content-Signature:” mls-
derived-content-signature-value CRLF

l*base-64-char

mls-derived-content-signature-value

V2.0 Page 30 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

An example CPIM header is mls.mls-derived-content-signature: MTIzNDU=.

7.2.3 Original-Message-ld CPIM Header

The header is defined as an extension to the [RFC3862] field definitions. The limits for the
occurrence of the field are defined in the following table:

Field ‘ Min Number Max Number
Original-Message-Id 0 1

Table 4: Original-Message-ld CPIM Header

The field itself is defined in ABNF as follows:

Base-64-char = ALPHA / DIGIT / “+“ / Y/7 / “=”"

Original-message-id = “Original-Message-Id” : original-message-id
CRLF
Original-message-id = Token

An example CPIM header is mls.Original-Message-Id: 3437k3247j

7.2.4 MLS-Opaque-Token SIP Header
The MLS-Opaque-Token SIP header is defined in ABNF as follows:

mls-opaque-token = “MLS-Opaque-Token:” mls-opaque-token-value CRLF
mls_opaque_token_value — l*(alphanum / "." / "!" / "%" / W n / "_" / "+" /
nen / LU 1] / nwon)

7.2.5 Era-ld CPIM Header

The header is defined as an extension to the [RFC3862] field definitions. The limits for the
occurrence of the field are defined in the following table:

Field ‘ Min Number Max Number
Era-Id 0 1

Table 5: Era-ld CPIM Header

The field itself is defined in ABNF as follows:

Era-id “Era-Id” : era-id CRLF
era-id = DIGIT

An example CPIM header is mls.Era-Id: 3
7.3 Binary Encoding Format

All binary formats defined by this specification use the TLS representation language format
introduced in [RFC8446].

V2.0 Page 31 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

They also use the variable length encoding scheme and optional fields introduced by
[RFC9420].

7.4 KeyPackage Definition
KeyPackages uploaded by clients shall:

o Be represented as message/mls Messages containing a KeyPackage prescribed by
[RFC9420].

o Include a Certificate in the format described by Annex A.3.
o Include a Certificate whose expiry is valid according to Annex A.3.

7.5 Encrypted Message Format
To construct an Encrypted Message, the client shall:

o Construct a SecretPayload Message (as per section 7.5.1).

o Encrypt the SecretPayload Message and embed that in a PrivateMessage (as per
section 7.5.2).

¢ Include the AuthenticatedData in the PrivateMessage (as per section 7.5.3).

o Create the Epoch-Authenticator CPIM header (as per section 7.5.5).

e Create the Era-Id CPIM header (as per section 0).

¢ Assemble the PrivateMessage in a CPIM container (with the Epoch-Authenticator
CPIM header) and embed that into an MSRP Message (as per section 7.5.6).

The end result shall look like Figure 11.

V2.0 Page 32 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

CPIM
from: tel:+1234 to: +4567
message-id: fikhad
Epoch-Authenticator: <epoch-authenticator>
Era-Id: 1

Content-type: messages/mls
MisMessage
/ PrivateMessage \

CPIM Message
NS: imdn <urn:ietf:params:imdn>
Content-type: text/plain;charset=UTF-8
Content-Length: ...

Hello World!

\ RFC 9420j
RFC 9420

RCC.07

Figure 11: Wireformat for EncryptedMessage

7.5.1 SecretPayload Definition

SecretPayload objects are constructed from the contents of a CPIM Message that a client
wishes to encrypt.

To Construct a SecretPayload (format defined in section 7.5.1.1), the client shall:
e Construct a CPIM message as per [GSMA PRD-RCC.07] with:

o All CPIM namespaces not equal to <urn:ietf:params:imdn>

o CPIM headers (which are not in the list of Unencrypted CPIM headers from
section 7.5.7)

o MIME Body

¢ Include the CPIM message in the payload field of the SecretPayload.
¢ Include the version in the SecretPayloadVersion.
¢ Include the SecretPayloadType:

o hpke 1 to 1 message for Re-Sent Messages as per section 10.3.
o application for any other message.

V2.0 Page 33 of 91

GSMA
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

7511 SecretPayload Binary Format

enum {

}

reserved(0),

vl(1l),

(65535)
SecretPayloadVersion;

enum {

}

reserved(0),

// normal application message
application (1),

// resent message after receiving FTD
hpke 1 to 1 message(2),

(65535)

SecretPayloadType;

struct {

SecretPayloadVersion version = vl;
SecretPayloadType type;

// Contents of a CPIM message.
opagque payload<V>;

SecretPayload;

7.5.2 Application Message Definition

Non-confidential

Once a SecretPayload is constructed, to create a PrivateMessage with a ContentType of
“application” as per [RFC9420], clients shall:

o Encrypt the SecretPayload as per [RFC9420] to generate a ciphertext.

e Create an authenticated data containing a binary encoded AuthenticatedData

whose format is defined in section 7.5.3.2.

e Create an MLS PrivateMessage with those fields according to the rules of [RFC9420].
e Embed the MLS PrivateMessage in an MisMessage as per [RFC9420].

7.5.3 AuthenticatedData Definition

The authenticated data field within PrivateMessages can be used to ensure that a
selected portion of the public content in the CpimMessage is not modifiable by anyone other
than the sender.

All public information that needs to be authenticated in this manner shall be encoded within
the AuthenticatedData struct.

To construct an AuthenticatedData (as defined in section 7.5.3.2), the client shall:

¢ Include the value of the CPIM IMDN Message-Id header of the message being sent in

the message 1id field.

¢ Include the version of the AuthenticatedData being encoded in the

AuthenticatedDataVersion field.

V2.0

Page 34 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

7.5.3.1 AuthenticatedData Validation

When Clients receive Encrypted Messages, they shall validate the authenticated data
field according to the rules of [RFC9420].

In addition, they shall also ensure that the Message-Id encoded within the
AuthenticatedData parsed from the verified authenticated data matches the Message-
Id of the CPIM message that the encrypted message was delivered in.

7.5.3.2 AuthenticatedData Binary Format

enum {
reserved(0),
vl(1l),
(65535)
} AuthenticatedDataVersion;

struct {
AuthenticatedDataVersion version = vl;
// Message-Id value. Encoded in UTF-8.
opague message id<V>;

// Original-Message-Id value. Encoded in UTF-8.
opaque original message id<V>;

// Era-Id value.
uint32 era id;
} AuthenticatedData;

7.5.4 Re-Sent Message Binary Format

Struct {
opaque original message<V>;
// Padding for message of length (Original Message)
opaque padding<v>;

} ResentMessage;

The type field in the SecretPayload struct is setto hpke 1 to 1 message.

7.5.5 Epoch-Authenticator CPIM Header
The Epoch-Authenticator CPIM header is defined in the mls.gsma.com namespace.

This header shall be in all CPIM messages that contain either of the following:

¢ An Encrypted Message payload (including partially encrypted messages like File
Transfers)
¢ An MLS Control Message payload

This header shall contain a Base64 encoded epoch authenticator that has been
derived from the epoch and MLS Group in whose context the message has been sent as per
[RFC9420].

V2.0 Page 35 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

7.5.6 MSRP Message Format

Once the MIsMessage that contains the PrivateMessage (as per section 7.5.2) and the
Epoch-Authenticator CPIM Header (as per section 7.5.5) are constructed, the client can
construct an MSRP Message. The client shall:

o Construct a CPIM Message as per [GSMA PRD-RCC.07] with a MIME Content-Type
of message/mls:

o The body of the CPIM Message will be a binary encoded MIsMessage.

o Include only the headers explicitly specified in section 7.5.7.

o Include only the <urn:ietf:params:imdn>, <http://www.gsma.com/rcs> and
<http://www.gsma.com/rcs/mls> namespaces.

o Include a Disposition-Notification header that contains at least the “negative-
delivery” enum, in addition to the ones defined in [GSMA PRD-RCC.07].

o Include the Epoch-Authenticator CPIM header (from section 7.5.5) and its value.

¢ Include the CPIM Message in an MSRP Body as per [GSMA PRD-RCC.07]

7.5.7 Unencrypted CPIM headers

All headers other than the following shall be encrypted. If a namespace is not specified, then
it should be assumed that the Header is in the default namespace.

o Default namespace:

o To

o From

o DateTime
o Require

e IMDN <urn:ietf:;params:imdn> namespace:

Message-ID
Disposition-Notification
Original-To
IMDN-Record-Route
IMDN-Route

O O O O O

e RCS <http://www.gsma.com/rcs> namespace:

o advised-action
o source

e MLS <http://www.gsma.com/rcs/mls> namespace:

o Epoch-Authenticator

V2.0 Page 36 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

7.6 Signed Message
Messages whose contents are not encrypted may be signed. This signature can be used by

recipients to assert the authenticity of the sender and to allow recipients to assert that the
contents of the message have not been modified since the message was sent.

Only specific message types may be signed. These include:

e Delivery and Display IMDNs
o Client-generated Negative-Delivery IMDNs
e File Transfer Messages

The derivation of exactly what content is to be signed is specific to the type of message
being signed.

7.6.1 Signature Generation
In order to generate a signature, clients shall:

e Generate a VerifiableDerivedContent (as defined in section 7.6.3) from the contents
of the CPIM message that they wish to send.

e Create a FramedContent as per [RFC9420] with the authenticated data setto
the VerifiableDerivedContents.

o Generate an MLS Public Message which was built using the created FramedContent
as per [RFC9420]. The Public Message shall have the proposal type
rcs_signature as per section 7.11.7.1.

o Encode in Base64 the generated binary MLS Public Message.

e Add this Base64 String to the CPIM MLS-Derived-Content-Signature header.

7.6.2 Signature Validation

In order to validate the signature of a message that included an MLS-Derived-Content-
Signature header, clients shall:

e Base64 Decode the MLS-Derived-Content-Signature CPIM header.

e Parse the sequence of bytes as an MLS Public Message.

o Verify that the MLS Public Message was sent by a valid member of the group as per
[RFC9420].

e Generate a VerifiableDerivedContent from the contents of the CPIM message.

e Ensure that this VerifiableDerivedContent matches the VerifiableDerivedContent
included in the FramedContent of the PublicMessage.

o Verify the signature in the FramedContentAuthData as per [RFC9420].

7.6.3 VerifiableDerivedContent Format

7.6.3.1 VerifiableDerivedContentVersion

The VerifiableDerivedContentVersion is an enum identifying the version of the struct. It is
used across all VerifiableDerivedContent.

enum {

V2.0 Page 37 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

reserved(0),
vl(l),
(65535)
} VerifiableDerivedContentVersion;

7.6.3.2 Delivery IMDN VerifiableDerivedContent Format

VerifiableDerivedContent is structured in the same way for Positive- and Negative-Delivery
IMDNSs.

The format of the VerifiableDerivedContent for Delivery IMDNs is the following:

enum {
reserved(0),
delivered (1),
failed(2),
forbidden (3),
error (4),
(65535)
} DeliveryNotificationStatus;

enum {
unset (0),
message from non member (1),
invalid credential(2),
invalid commit (3),
failure to_decrypt (4),
commit in privatemessage(5),
(65535)

} MlsClientFailureReason;

struct {
VerifiableDerivedContentVersion version = vl;

// Value of the <imdn><delivery-notification><status>.
DeliveryNotificationStatus delivery notification status;

// Message-Id derived from <imdn><message-id> element.
// Encoded in UTF-8.
opaque message 1d<V>;

// Value of the <imdn><delivery-notification>

// <mls-client-failure-reason><status> element.

// May be empty for a message that was delivered.

MlsClientFailureReason mls client failure reason;
} VerifiableDeliveryImdn;

7.6.3.3 Display IMDN VerifiableDerivedContent Format
The format of the VerifiableDerivedContent for Display IMDNs is the following:

enum {
reserved(0),
displayed(1l),

V2.0 Page 38 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

forbidden (2),
error (3),
(65535)
} DisplayNotificationStatus;

struct {
VerifiableDerivedContentVersion version = vl;

// Value of the <imdn><delivery-notification><status>.
DisplayNotificationStatus display notification status;

// Message-Id derived from <imdn><message-id> element.
// Encoded in UTF-8.
opaque message 1d<V>;

} VerifiableDisplayImdn;

7.7 IMDN Definition

7.7.1 Positive-Delivery IMDN Definition

Positive-Delivery IMDNs are to be sent as Signed Messages which contain a
message/imdn+xml Body with a <delivery-notification><status> element set to “delivered”.

When the Positive-Delivery is for a Re-Sent Message, the client shall include the Re-Sent
Message ID (instead of the original Message ID) in the <imdn><message-id> element. The
client shall include the original Message ID in the Original-Message-Id header as defined in
section 7.2.3.

7.7.2 Negative-Delivery IMDN Definition

7.7.21 Server-Generated Negative-Delivery IMDN

Server-generated Negative-Delivery IMDNSs shall be used to communicate errors as per
section 6. Server shall not send Negative-Delivery IMDNSs in any other contexts.

Server-generated Negative-Delivery IMDNSs shall be sent as regular CPIM messages which
contain a message/imdn+xml Body with a <delivery-notification><status>
element set to “failed”.

The <delivery-notification> element shall also contain a new <mls-server-
failure-reason> element.

The XML format of the server-generated Negative-Delivery IMDN shall follow the XML
schema defined in section 7.7.2.3.

7.7.2.2 Client-Generated Negative-Delivery IMDN
Client-generated Negative-Delivery IMDNSs shall be used to communicate that:

e The decryption of an Encrypted Message failed.

V2.0 Page 39 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

¢ The verification of a Signed Message failed.
e The validation of a Commit or Proposal failed.
e The client ignored an FTD as per section 10.3.

Clients shall not send Negative-Delivery IMDNs in any other contexts.

Client-generated Negative-Delivery IMDNSs shall be sent as Signed Messages which contain
a message/imdn+xml Body with a <delivery-notification><status> element set to
“failed”.

The <delivery-notification> element shall also contain a new <mls-client-
failure-reason> element.

The XML format of the client-generated Negative-Delivery IMDN shall follow the XML
schema defined in Section 7.7.2.3.

7.7.23 Delivery IMDN Schema

The deliveryNotification XML element as defined in [RFC5438] will be modified to conform to
the following schema:

<define name="deliveryNotification">
<element name="delivery-notification">
<element name="status">
<choice>
<element name="delivered">
<empty/>
</element>
<element name="failed">
<choice>
<element name="mls-server-failure-reason">
<choice>
<element name="incorrect-era">
<empty/>
</element>
<element name="incorrect-epoch">
<empty/>
</element>
<element name="incorrect-epoch-authenticator">
<empty/>
</element>
<element name="expired-credential”>
<empty/>
</element>
<element name="mismatched-rcs-group-state">
<empty/>
</element>
<element name="unparsable-commit">
<empty/>
</element>
<element name="mismatched-confirmation-tag">
<empty/>
</element>
<element name="pending-proposal">
<empty/>
</element>
<element name="transient-error">

V2.0 Page 40 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

<empty/>
</element>
<element name="encryption-not-available">
<empty/>
</element>
<element name="invalid-commit">
<empty/>
</element>
</choice>
</element>
<element name="mls-client-failure-reason">
<choice>
<element name="message-from-non-member">
<empty/>
</element>
<element name="invalid-credential">
<empty/>
</element>
<element name="invalid-commit">
<empty/>
</element>
<element name="failed-to-decrypt">
<empty/>
</element>
<element name="commit-in-privatemessage">
<empty/>
</element>
</choice>
</element>
</choice>
</element>
<ref name="commonDispositionStatus"/>
</choice>
<ref name="deliveryExtension"/>
</element>
</element>
</define>

7.7.3 Display IMDN Definition

Display IMDNs are to be sent as Signed Messages which contain a message/imdn+xml
Body with a <display-notification><status> element set to “displayed”.

When the Display IMDN is for a Re-Sent Message, the client shall include the Re-Sent
Message ID (instead of the original Message ID) in the <imdn><message-id> element.
The client shall include the original Message ID in the Original-Message-ld header as
defined in section 7.2.3.

7.8 File Transfer Message Definition

7.8.1 Filelnfo Message
The file encryption key and other information are defined in this FileInfo proto:

enum Algorithm {
ALGORITHM UNSPECIFIED = 0;

AES256 CTR HMAC SHA256 256TAG = 1;
}

V2.0 Page 41 of 91

GSMA

Non-confidential

Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

message FileEncryptionInfo {
bytes key material = 1;

bytes initialization vector

Il
N
~

bytes hmac tag = 3;
Algorithm algorithm = 4;
fixedint32 file length hint = 5;

message FileMetadata {

string file name = 1
string content type

” ~e

2;

FileEncryptionInfo encryption info = 3;

}

message FileInfo {
FileMetadata file = 1;

FileMetadata thumbnail =
FileMetadata subject = 3;

2;

FileMetadata icon = 4;

The Client shall:

1.
2.

Create a Filelnfo proto and binary encode it.
Construct an MIsMessage as per section 7.5.2 containing the binary encoded Filelnfo
as the MIME body with a ContentType of “message/mls-rcs-file-info”.

7.8.2 File Transfer Message Body

Once the client has generated an MisMessage as per section 7.8.1, they shall:

1.
2.

V2.0

Base64 encode the EncryptedMessage.

Embed the Base64 encoded message into the mis-file XML element defined in Table
6.

Set the content-type in the file_info section of the XML to “message/mis-ft” for both the
file and the thumbnail.

Include the Epoch-Authenticator (section 7.2.1) and Era-Id (section 0) in the
enclosing CPIM container.

Page 42 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

<?xml version="1.0" encoding="UTF-8"?>
<file xmIns="urn:gsma:params:xml:ns:rcs:rcs:fthttp"
xmins:x="urn:gsma:params:xml:ns:rcs:rcs:up:fthttpext">
<file-info type="thumbnail">
<file-size>[encrypted thumbnail size in bytes]</file-size>
<content-type>message/mls-ft</content-type>
<data url = "[HTTP URL for the thumbnail]" until = "[validity of the thumbnail]"/>
<[file-info>
<file-info type="file" file-disposition="[file-disposition]">
<file-size>[encrypted file size in bytes]</file-size>
<file-name>encrypted_file</file-name>
<content-type>message/mls-ft</content-type>
<data url = "[HTTP URL for the file]" until = "[validity of the file]"/>
<x:branded-url>[alternative branded HTTP URL of the file]</x:branded-url>
<[file-info>
<mls-file>
[base64 encoding of the MIsMessage]
</mis-file>
<ffile>

Table 6: File Transfer Message XML Schema

7.9 Commit and Proposal Messages

Commit and Proposal Messages shall be represented as CPIM messages when they are
exchanged to or from Clients.

These messages shall have a Content-Type of message/mls-rcs—-client for messages
originating from the client and message/mls-rcs-server for messages originating from
the Conversation Focus.

7.9.1 message/mlis-rcs-client and message/mls-rcs-server ContentTypes

The message/mls-rcs-client and message/mls-rcs-server content-types are
used to compactly encode the contents of multiple message/mis contents. The
message/mls-rcs—-client shall contain the ClientMlsRcsMessage proto defined
below. The message/mls-rcs-server shall contain the ServerMl sRcsMessage proto
defined below. The client and Conversation Focus shall include the binary encoding of the
proto in the CPIM body.

The following structres are represented in TLS format:

struct {
// List of MlsMessages containing a Proposal.
MlsMessage mls messages<V>;

} Proposallist;

struct {
// List of MlsMessaes containing a Commit.
MlsMessage mls messages<V>;

} CommitList;

The following structures are represented in Protocol Buffer format:

// MlsRcsMessage payload type that represents Commit messages and

V2.0 Page 43 of 91

GSMA

Non-confidential

Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

V2.0

// Welcome messages.
message WelcomeCommitBundle ({
// contains a CommitList TLS structure that is a List of commit

// messages.
bytes commit list = 1;

// Raw bytes that represent a welcome message. This is expected to
// be a serialized MlsMessage that contains a Welcome message.
bytes welcome = 2;

// Raw bytes that represent the MLS GroupInfo. This is expected to
// be wrapped by an MlsMessage.
bytes group info = 3;

// Raw bytes that represent the EpochAuthenticator.
bytes epoch authenticator = 4;

// Raw bytes that represent a RatchetTree.
// This should only be included for the first commit in an Era.
bytes ratchet tree = 5;

// MlsRcsMessage payload type that represents a Commit message.
message CommitBundle {
// contains a CommitList TLS structure that is a List of commit

// messages.
bytes commit list = 1;

// Optional MlsMessage containing a PrivateMessage that should
// be delivered transactionally with the group state changes in
// this bundle.

bytes private message = 2;

// Raw bytes that represent the MLS GroupInfo. This is expected to
// be wrapped by an MlsMessage.
bytes group info = 3;

// Raw bytes that represent the EpochAuthenticator.
bytes epoch authenticator = 4;

// ServerMlsRcsMessage payload that is generated by the server
// after processing a CommitBundle or WelcomeCommitBundle.
message ServerCommitBundle {
// contains a CommitList TLS structure that is a List of commit
// messages.
bytes commit list = 1;

// Raw bytes that represent a welcome message. This 1s expected to
// be a serialized MlsMessage that contains a welcome message.

bytes welcome = 2;

// Raw bytes that represent a private message bundled with the

Page 44 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

// commit. This is expected to be included for Group Subject/Icon
// changes.
bytes private message = 3;

// Information persisted by the server that can be used by clients to
// initiate self-healing.
message MlsGroupInfo {

// The latest GroupInfo for the MLS Group.

// This is expected to a serialized MlsMessage that contains a

// GroupInfo.

bytes group info = 1;

// The latest RatchetTree for the MLS Group.
bytes ratchet tree = 2;

// Proposals that have been accepted by the server, but not yet
// committed.

// This 1is a Proposallist TLS message.

bytes pending proposals = 3;

// MLS control messages sent by servers.
message ServerMlsRcsMessage {
oneof payload {
// Proposallist TLS payload that was sent by clients.
bytes proposal list = 1;

// Commit message payload that was sent by clients.
ServerCommitBundle server commit bundle = 2;

// Information stored about an MLS group that can be used by
// clients to initiate self-healing.
MlsGroupInfo mls group info = 3;

// MLS control messages sent by clients.
message ClientMlsRcsMessage {
oneof payload {
// Proposallist TLS payload for Proposals by the client.
bytes proposal list = 1;

// Welcome and Commit message payload.
WelcomeCommitBundle welcome commit bundle = 2;

// Commit message payload.
CommitBundle commit bundle = 3;

V2.0 Page 45 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

7.9.2 Client-Generated Commits

When creating a new RCS Conversation, or a new Era, the Initial Commit Messages
generated by clients shall include:

¢ A Commit representing a change to the MLS Group as per [RFC9420].

o A Grouplnfo object which represents the state of the MLS Group after the contents of
the associated Commit have been applied as per [RFC9420].

¢ An Epoch Authenticator as defined by [RFC9420] for the new Epoch.

o Welcome Message as defined by [RFC9420].

e A Ratchet Tree representing the current members of the MLS Group.

The above will be embedded in the welcome commit bundle field of the
ClientMlsRcsMessage as defined in section 7.9.1. The ClientMlsRcsMessage shall be
embedded in a CPIM message.

For a Commit that adds a new Client to the MLS Group, or performs a KeyPackage Update
as per section 9.5.4, the client shall include:

¢ A Commit representing a change to the MLS Group as per [RFC9420].

¢ A Grouplnfo object which represents the state of the MLS Group after the contents of
the associated Commit have been applied as per [RFC9420].

¢ An Epoch Authenticator as defined by [RFC9420] for the new Epoch.

¢ Welcome Message as defined by [RFC9420].

The above will be embedded in the welcome commit bundle field of the
ClientMlsRcsMessage as defined in section 7.9.1. The ractchet_tree field shall be empty.
The ClientMlsRcsMessage shall be embedded in a CPIM message.

For any other type of Commit, the client shall include:
o A Commit representing a change to the MLS Group as per [RFC9420].
¢ A Grouplnfo object which represents the state of the MLS Group after the contents of
the associated Commit have been applied as per [RFC9420].
¢ An Epoch Authenticator as defined by [RFC9420] for the new Epoch.
¢ An Optional PrivateMessage including icon and subject keys when there is a change
to either.

The above will be embedded in the commit bundle field of the ClientMlsRcsMessage
as defined in section 7.9.1. The ClientMIsRcsMessage shall be embedded in a CPIM
message.

7.9.3 Server-Processed Commits

After the Conversation Focus accepts the Commit, the Conversation Focus shall remove the
Grouplnfo body, Ratchet Tree and Epoch Authenticator before delivering the message.

V2.0 Page 46 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

The Conversation Focus shall create a ServerCommitBundle including the Commit and
optionally the Welcome Message and the private message for group subject and icon and
embed it in the server commit bundle field of the ServerMlsRcsMessage.

When receiving the very first welcome commit bundle in an RCS Conversation or new
Era, the Conversation Focus shall store the ratchet tree. For all Commits other than that
the first commit, the Conversation Focus shall update the ratchet tree stored with the
changes in the Commit.

7.9.4 Proposal Lists
When sending a list of proposals, the Client shall:

o Embed each Proposal in an MisMessage.

e Costruct a ProposalList Message containing all the MisMessages.

e Construct a ClientMlsRcsMessage containing the Proposallist in the
proposal list field.

7.10 MLS Grouplinfo Retrieval Format

7.10.1 SIP Info Response Body

When the Conversation Focus receives a SIP INFO request as per section 6.3.1, the
Conversation Focus shall:

¢ Retrieve the MLS Grouplnfo, Ratchet Tree and any pending Proposals stored for the
MLS Group.

o Construct an serverMlsRcsMessage with a ServerGrouplnfo as per section 7.9.1.

e Construct a MIME body with the binary-encoded ServerMlsRcsMessage and the
content-type being message/mls-rcs-server.

¢ Include the MIME body in the body of the SIP INFO 2000K.

7.11 MLS Extensions
7.11.1 Era

7.11.1.1 Era GroupContext Extension

The Era extension is a GroupContext Extension as defined in section 17.3 of [RFC9420]. Its
attributes are as follows:

o Extension Value: OxF001

o Extension Name: era

e extension_data: uint32 numeric value of the Era

e Applicable Messages: Grouplnfo and Welcome Message

V2.0 Page 47 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

7.11.2 end_mls

711.21 end_mis Proposal
The end mls extension is a Proposal extension as defined in section 17.4 of [RFC9420]. Its
attributes are as follows:

o Extension Value: 0xF001

e Extension Name: end mls
o External: No

e Path Required: No

711.2.2 end_mlis GroupContext Extension

The end mls extension is a Group Context Extension as defined in section 17.3 of
[RFC9420]. Its attributes are as follows:

o Extension Value: 0xF002

e Extension Name: end mls

e extension_data: “end mls”

o Applicable Messages: Grouplnfo and Welcome Message

7.11.3 icon_key

7.11.3.1 icon_key GroupContext Extension

The icon key extension is a Group Context Extension as defined in section 17.3 of
[RFC9420]. Its attributes are as follows:

e Extension Value: 0xF003

o Extension Name: icon_key

o extension_data: the symmetric key used to encrypt the icon.
o Applicable Messages: Welcome Message

7.11.4 icon_commitment

7.11.41 icon_commitment GroupContext Extension

The icon commitment extension is a Group Context Extension as defined in section 17.2
of [RFC9420]. Its attributes are as follows:

o Extension Value: 0xF004

o Extension Name: icon_commitment

e extension_data: the icon commitment as defined in Annex C.1
e Applicable Messages: Grouplnfo and Welcome Message

V2.0 Page 48 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

7.11.5 subject_key

7.11.5.1 subject_key GroupContext Extension

The subject key extension is a Group Context Extension as defined in section 17.2 of
[RFC9420]. Its attributes are as follows:

o Extension Value: 0xF005
e Extension Name: subject key
o extension_data: the symmetric key used to encrypt the subject.

Applicable Messages: Welcome Message
7.11.6 subject_commitment

7.11.6.1 subject_commitment GroupContext Extension

The subject commitment extension is a Group Context Extension as defined in section
17.2 of [RFC9420]. Its attributes are as follows:

o Extension Value: 0xF006

e Extension Name: subject commitment

o extension_data: the subject commitment as defined in Annex C.1
e Applicable Messages: Grouplnfo and Welcome Message

7.11.7 rcs_signature

711.71 rcs_signature Proposal

The rcs_signature extension is a Proposal extension as defined in section 17.4 of
[RFC9420]. Its attributes are as follows:

e Extension Value: 0xF002

e Extension Name: rcs signature
e External: No

e Path Required: No

7.11.8 self_remove

7.11.8.1 self_remove Proposal

The self_remove extension is a Proposal extension as defined in section 17.4 of [RFC9420].
Its attributes are as follows:

o Extension Value: 0xF003

e Extension Name: self remove
o External: Yes

e Path Required: Yes

V2.0 Page 49 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

7.11.9 server_remove

7.11.9.1 server_remove Proposal

The server_remove extension is a Proposal extension as defined in section 17.4 of
[RFC9420]. Its attributes are as follows:

o Extension Value: OxF004

e Extension Name: server remove
o External: Yes

o Path Required: Yes

7.12 ACS Signed Encryption Identity Proof

When ACS signs the Encryption Identity Proof as defined in section 4.1, ACS shall construct
and sign SignedEncryptionIdentityProofTBS as per section 7.12.1 and include all
the elements including the signature in SignedEncryptionIdentityProof as per
section 7.12.1.

7.12.1 ACS Signed Encryption Identity Proof Format

struct {
// MSISDN of the Participant verified by ACS
opaque msisdn<v>;
// Participant Key sent in the request, encoded in DER format
opaque participant key<V>;
// Home KDS sent in the request
uint32 home kds<v>;
// Expiry of this signed Tuple. Measured in seconds since the Unix
// epoch (1970-01-01T00:00:002)
uint64 expiry seconds<V>;
} SignedEncryptionIdentityProofTBS;

struct {
// Expiry of this signed Tuple. Measured in seconds since the Unix
// epoch (1970-01-01T00:00:00Z) as per []
uint64 expiry seconds<V>;
// Signature of the above request
opadque signature<vV>;
} SignedEncryptionIdentityProof;

8 Conversation Creation

8.1 Client Procedures

The Client shall use procedures defined in section 5.2 to check if the Participants are
capable of E2EE. If any of the Participants are not capable of E2EE, then the client shall
revert to creating an unencrypted conversation as specified in [GSMA PRD-RCC.07].

When all Participants are capable of E2EE, the client shall request and validate all
KeyPackages for all Participants in the Conversation as per section 5.3. The Home KDS

V2.0 Page 50 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

shall return KeyPackages for all Clients of each Participant. If the Home KDS does not return
KeyPackages for one or more of the Participants requested, the client shall create an
unencrypted conversation.

With all KeyPackages fetched, the client shall create an MLS Group as per [RFC9420]. The
MLS Group shall contain all KeyPackages for all Clients of the Participants. The MLS Group
must contain the Era as a GroupContext Extension. The Client shall generate an MLS
Grouplnfo, initial Commit, Ratchet Tree, Epoch Authenticator and Welcome Message.

Upon creating the MLS Group Info, initial Commit, Ratchet Tree, Epoch Authenticator and
Welcome Message, the client shall create a SIP INVITE as per section 8.1.1 or 8.1.2 and
send the INVITE to the Messaging Server.

After receiving the 200 OK from the Messaging Server that includes the ML.S-Opaque-
Token, the client shall store the MLLS-Opaque-Token and use it for all subsequent
requests.

When receiving an INVITE from the Messaging Server with an initial Commit and Welcome
Message, the client shall validate the Welcome Message and Commit as per section 6.2.6,
store the MLS Group locally, and use the MLS-Opagque—-Token specified in the INVITE for
all future requests to the Messaging Server for that RCS Conversation.

8.1.1 1-to-1INVITE

The SIP INVITE created by the client shall (in addition to the requirement set in [GSMA
PRD-RCC.07]):

e Include amultipart/mixed body.

¢ Include the SDP as the first part of the INVITE body as per [GSMA PRD-RCC.07].

¢ Include the binary-encoded MLS Grouplnfo, initial Commit, and Welcome Message
generated as per section 7.9.2 as the second part of the INVITE body.

8.1.2 Group INVITE

The SIP INVITE created by the client shall (in addition to the requirement set in [GSMA
PRD-RCC.07]):

o Include amultipart/mixed body.

¢ Include the SDP as the first part of the INVITE body as per [GSMA PRD-RCC.07].

¢ Include the resource-lists for the participants of the group as the second part of the
INVITE as per [GSMA PRD-RCC.07].

¢ Include the binary-encoded MLS Grouplnfo, initial Commit, and Welcome Messages
generated as per section 7.9.2 as the third part of the INVITE body.

8.2 Messaging Server Procedures

8.2.1 Conversation Focus

Upon receiving a SIP INVITE from the client, the originating Messaging Server for a 1-to-1
chat or the Conference Focus for group conversations shall:

V2.0 Page 51 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

e Become the Conversation Focus (as per section 6.1.2) for the RCS Conversation.

¢ Validate the initial Commit to create the group as per section 6.2.2.

e Store the Grouplnfo.

o Return the 200 OK with the ML.S-Opaque-Token, MLS-Epoch, and MLS-Era
headers.

The Conversation Focus shall then fan out the INVITE with the MLS Group, initial Commit,
and Welcome Message to the other recipient(s) in the 1-to-1 or group chat (in the resource-
list) as per [GSMA PRD-RCC.07]. The Conversation Focus shall also send the initial Commit
back to the sender as an MSRP message.

8.2.2 Participant Function

Upon receiving a SIP INVITE from a Conversation Focus, the terminating Messaging Server
for a 1-to-1 Chat or the Participation Function for group chat shall:

o Follow the procedures in section 6.1.3 for the MLS-Opaque-Token.
o Forward the INVITE as per [GSMA PRD-RCC.07].

8.3 Creating a New Era
Clients shall create a new Era in the following scenarios:

¢ When self-heal is not successful as per section 10.1.1.

o When resurrecting the MLS Group is not possible due to expired certificates as per
section 11.1.

When restarting an RCS Conversation after becoming inactive (over 30 days of no
messages sent).

When updating the RCS MLS version to a lower version than the current one.
When downgrading the Cipher Suite of the MLS Group.

8.3.1 Client Procedures
When a client needs to create a new Era, it shall:

e Advance the Era in the conversation by 1.
e Follow the procedures in section 8.1 with the new Era value.

If the client receives a 409 Conflict as a response to the INVITE and/or a negative IMDN with
error code <incorrect-era>, the client shall fetch the Grouplinfo as per section 7.10, create
the correct Era, and retry the operation.

8.3.2 New Conversation Focus

When the originating Messaging Server for a 1-to-1 Chat or the new Conversation Focus
receives the INVITE with the new Era, it shall assume the Conversation Focus role and
follow the procedures in section 8.2.1.

If the Conversation Focus is moving, the new Conversation Focus must wait for a response
from the old Conversation Focus before responding to the client.

V2.0 Page 52 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

8.3.3 Old Conversation Focus

If the new Conversation Focus is different from the Conversation Focus for the previous Era,
the old Conversation Focus shall:

o Validate that the Era is advanced exactly by 1.

o If the new Era is not modifying the state exactly by 1, the server shall return a 409
Conflict as a response to the INVITE and send a negative IMDN as per section
6.2.5.

o Delete the MLS Grouplnfo stored locally.

¢ Follow the procedures in section 8.2.2.

8.3.4 Participating Functions

Upon receiving a SIP INVITE from a Conversation Focus, the terminating Messaging Server
for a 1-to-1 Chat or the Participation Function for a group chat shall follow procedures as per
section 8.2.2.

9 Conversation Operations
9.1 Messaging

9.1.1 Encrypted Messages

The client shall not send encrypted messages if the end ml1s GroupContext Extension is
present in the Grouplnfo.

For all content types to be encrypted, such as regular messages, replies, edits, or any other
kind of content, the client shall:

o Create the Secret Message format as per section 7.5.1.
¢ Create a PrivateMessage containing the Secret Message as per [RFC9420].

o Using the PADME algorithm in [PADME], add padding in the
PrivateMessageContent as per [RFC9420].

o Wrap the PrivateMessage in the format indicated in section 7.5. Messages will then
be sent over MSRP.

When receiving a message, the Participating Function shall:
e Forward the message to the Conversation Focus.
When receiving an encrypted message, the Conversation Focus shall:

o Verify the message against the Epoch Authenticator stored for the Epoch the
message is intended for.

o If the Epoch Authenticator fails, the Conversation Focus shall reject the message
as per section 6.2.5.

V2.0 Page 53 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

o Verify that the sender of the message in the Private Message matches the RCS
sender identity (in the Invite from/to header and/or CPIM identity).

o If they do not match, the Conversation Focus shall reject the message as per
section 6.2.5.

o Verify that the end m1ls is not present in the Grouplnfo.

o Ifthe end mls is present, the server shall reject the message as per section
6.2.5.

¢ Fan out the message as per [GSMA PRD-RCC.07].
When receiving an encrypted message, the client shall:

o Retrieve the PrivateMessage from the CPIM container.

e Decrypt the Secret Message at the Epoch of the message as per [RFC9420] and
remove padding.

o Ensure the sender of the message in the Private Message matches the RCS sender
identity (in the Invite from/to header and/or CPIM identity).

o If the values do not match, the client shall use the MLS identity.
9.1.2 File Transfer

9.1.21 File Encryption
To encrypt the file the client shall:

¢ Follow the file encryption algorithm defined in Annex C.2.

o The client shall generate fresh key material and use AES-256-CTR for encryption
per [NIST SP800-38A], and HMAC-SHA256 to calculate the tag per [RFC5869].

e Follow the same algorithm to encrypt the thumbnail but with a freshly generated key.
e Upload the encrypted files to the HTTP Content Server as per [GSMA PRD-RCC.07].

o The filename uploaded to the HTTP Content Server shall be set to
“‘encrypted_file”-. The MIME type shall be message/mls-ft.

e Encapsulate the encryption keys, initialization vectors, tags, original file name and
types into the new Filelnfo proto as defined in section 7.8.1.

o Create a Secret Message containing the serialized Filelnfo protocol buffer and
encrypt it using MLS Message Encryption per section 9.1.

e The encrypted payload is added to the XML file as per section 7.8.2.

¢ Wrap the file transfer XML in a CPIM container and send as per [GSMA PRD-
RCC.07]

9.1.2.2 File Decryption
The recipient client downloads the encryped file from the HTTP Content Server and shall:

V2.0 Page 54 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

e Decrypt the MLS message part in the XML payload.

o Decode the Filelnfo defined in section 7.8.1 to get the encryption keys and tags.

o Compute the tag as defined in Annex C.3 and validate it against the tag in the
FileEncryptioninfo struct.

o If they match, the client shall decrypt the encrypted file using the algorithm
defined in Annex C.3.

¢ Replace the file name and type with the original filename and type from the Filelnfo
proto.

e Delete the encrypted file.

e Zero-out the file encryption key.

The client shall follow the same steps to decrypt the thumbnail.

9.1.3 Delivery Report
Delivery receipts are not encrypted. However, they must be signed. The client shall:

e Create the AAD as per section 7.6.3.2.
e Store the AAD as per section 7.6.1.
e Send the delivery report as per [GSMA PRD-RCC.07],

9.1.4 Display Report
Display receipts are not encrypted. However, they must be signed. The client shall:

e Create the AAD as per section 7.6.3.3.
e Store the AAD as per section 7.6.1.
e Send the display report as per [GSMA PRD-RCC.07].

9.1.5 User Alias
If present, the client shall encrypt the user alias. When the alias is encrypted, the client shall:

¢ Create a PrivateMessage containing the alias as per [RFC9420].

o Using the PADME algorithm in PADME, add padding in the
PrivateMessageContent as per [RFC9420].

e Base-64 URL encode the PrivateMessage containing the alias.
¢ Include the Base-64 encoded message as an extra SIP URI parameter “encrypted-
alias=<base-64 encoding>.

An example of the SIP URI with an encrypted alias would be:
From: sip:+1234578901@operator.com;user=phone;encrypted-alias=aGVsbG8gd29ybGQ
When receiving a SIP URI with an encrypted alias header, the client shall:

o Base-64 URL decode the encrypted-alias parameter to retrieve the PrivateMessage.
o Decrypt the raw alias from the PrivateMessage as per [RFC9420].

V2.0 Page 55 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification
9.2 Adding Participants to a Group Chat
When adding a new Participant(s), the client shall:
¢ Query capabilities to ensure the Participant(s) have MLS capabilities as per section

5.2.
Fetch KeyPackages for the Participant(s) as per section 5.3.

o The Home KDS shall return KeyPackages for all Clients of each Participant.

o If the Participant(s) do not support MLS in capabilities or do not have
KeyPackages, the client shall move the RCS Conversation to Unencrypted state
as per section 11.2.

Using the KeyPackages, create a Commit to the existing MLS Group that adds all the
Clients of the Participant(s) and an Epoch Authenticator for that Epoch as per
[RFC9420].

Create a Welcome Message for the new Client(s) as per section 7.9.2.

o Ifthe RCS Conversation includes a subject and/or icon, the client shall follow the
procedures in section 9.7.1.3.

Create the updated Grouplnfo to be uploaded to the server as per section 7.9.2.
Create a REFER as per [GSMA PRD-RCC.07] section 3.2.4.6.

o Ifitis a single user REFER, create a body with type that includes the
ClientMlsRcsMessage as per section 7.9.2.

o Ifitis a REFER for multiple recipients, include a multipart/mixed body that
includes:

= The resource-lists as the first part with the new Participant(s).
= The ClientMlsRcsMessage as per section 7.9.2.

o Send the REFER to the Messaging Server as per [GSMA PRD-RCC.07].
¢ Wait for the Commit to arrive back as an MSRP message to apply it locally.

When receiving a REFER, the Participating Function shall:

¢ Include the Conversation Focus’s ML.S-Opaque-Token.
e Forward the REFER to the Conversation Focus.

When receiving a REFER, the Conversation Focus shall:
o Verify the Commit as per 6.2.2.

o Ifthe Commit is for a previous Epoch, the server shall return a 409 Conflict as a
response to the REFER. The client shall then sync their state (either by retrieving
Store and Forward messages or self-healing) and trying again.

o Ifthe Commit fails verification for any other reason, the server shall return a 400
Bad Request.

o Inboth cases, the server shall send a negative IMDN to the sender indicating the
failure as per section 7.7.2.1.

V2.0 Page 56 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

o Verify that the Participants(s) added in the Commit is the same as in the REFER.
Store the new Grouplnfo and Epoch Authenticator and update the ratchet tree.
Send an INVITE (as per [GSMA PRD-RCC.07]) including the Welcome Message as
per section 7.9.3.

o If the recipient is offline when the INVITE arrives at the Terminating Function, the
Terminating Function shall store the Welcome Message for deferred delivery
when the recipient comes back online.

Forward NOTIFYs to all members of the RCS Group as per [GSMA PRD-RCC.07].
Forward the Commit as MSRP message to all members (including the sender).

When a Commit via MSRP, the client shall:

¢ Validate the Commit as per section 6.2.6.
e Apply the Commit locally.
e Apply the change to the RCS Conversation state.

9.3 Removing Participants from a Group Chat
When the client wishes to kick out Participant(s), the client shall:

o Create a Commit to remove all the Clients of the Participant(s) to be removed from
the RCS Conversation as per [RFC9420].

e Create the updated Grouplnfo to be uploaded to the server.

e Create a REFER as per [GSMA PRD-RCC.11] section 7.3.6

o Ifitis a single user REFER, create a body with type that includes the epoch
information and Grouplnfo as per section 7.9.2.

o Ifitis a REFER for multiple users, include a multipart/mixed body that
includes:

= The resource-lists as the first part with the kicked Participant(s) as per [GSMA
PRD-RCC.11] section 7.3.6.
= Commit, Epoch Authenticator, and Groupinfo as per section 7.9.2.

o Send the REFER to the Messaging Server as per [GSMA PRD-RCC.07].
¢ Wait for the Commit to arrive back as an MSRP message to apply it locally.

When receiving a REFER, the Participating Function shall:

¢ Include the Conversation Focus’s ML.S-Opaque-Token.
o Forward the REFER to the Conversation Focus.

When receiving a REFER, the Conversation Focus shall:
o Verify the Commit as per 6.2.2.

o If the Commit is for a previous Epoch, the server shall return a 409 Conflict as a
response to the REFER. The client shall then sync their state (either by retrieving
Store and Forward messages or self-healing) and trying again.

V2.0 Page 57 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

o If the Commit fails verification for any other reason, the server shall return a 400
Bad Request.

o In both cases, the server shall send a negative IMDN to the sender as per section
7.7.21.

o Verify that the Participants(s) removed in the Commit is the same as in the REFER.
e Store the new Grouplnfo and Epoch Authenticator and update the ratchet tree.
o Forward NOTIFYs to all members of the RCS Group as per [GSMA PRD-RCC.07].

o The server shall include SIP; cause=410; text="Kicked" in the
<disconnection-info> for the removed user.

o Forward the Commit as MSRP message to all members (including the sender).
When receiving a Commit via MSRP, the client shall:

¢ Validate the Commit as per section 6.2.6.
e Apply the Commit locally.
e Apply the change to the RCS Conversation state.

9.4 Self Leave
When a Participant wants to leave the RCS Conversation, the client shall:

e Create Proposal(s) to remove all the Clients of the Participant as per [RFC9420]
using the self_remove Proposal extension as per 7.11.8.1.

o Create a SIP BYE as per [GSMA PRD-RCC.07] with a body that includes the
Proposal(s) as per section 7.9.4.

o Send the SIP BYE to the Messaging Server as per [GSMA PRD-RCC.07].

o Wait for the 2000K to arrive before leaving the group.

When receiving a SIP BYE, the Participating Function shall:

¢ Include the Conversation Focus’s ML.S-Opaque-Token.
e Forward the SIP BYE to the Conversation Focus.

When receiving a SIP BYE, the Conversation Focus shall:
e If the leave is for the last Participant in the RCS Conversation:

o Delete the MLS Group
o Return a 200 OK to the Sender as per [GSMA PRD-RCC.07]

e Otherwise:
o Verify the Proposal as per 6.2.3.

= |f the Proposal is for a previous Epoch, the server shall return a 409 Conflict
as a response to the REFER. The client shall then sync their state (either by
retrieving Store and Forward messages or self-healing) and trying again.

V2.0 Page 58 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

= |If the Proposal fails verification for any other reason, the server shall return a
400 Bad Request.

= In both cases, the server shall send a negative IMDN to the sender as per
section 7.7.2.1.

o Verify that the Participant (and all their Clients) that is leaving is the same as the
Proposal.

o Forward NOTIFYs to all members of the RCS Group as per [GSMA PRD-
RCC.07].

= The server shall include SIP; cause=200;text="Call completed" inthe
<disconnection-info> for the departing user.

o Forward the Proposal as an MSRP message to all members (not including the
sender).

= The server may choose to send the Proposal to a single member of the RCS
Conversation (e.g. an online member) to avoid race condition on Commits.

o Not accept any Proposals or Commits as per 6.2.1 until a Commit for the
Proposal(s) is applied.

When a client receives a SIP NOTIFY to remove Participant(s) and a Proposal via MSRP,
the client shall:

o Validate the Proposal as per section 6.2.6.
e Create a Commit with the Proposal(s) sent in the MSRP to remove the Clients and
create the epoch information and send it to the Messaging Server

o If a Commit arrives that includes the Proposal(s) before the client creates/sends
the Commit, the client shall abandon Commit creation/sending.

¢ Wait for the Commit with the leave Proposal(s) to arrive as an MSRP message to
apply it locally.

9.5 Commits

9.5.1 Commit Procedure

When a Participant wants to send a Commit that doesn’t involve changes to the RCS
Conversation (e.g. update their Keys, add Clients to existing Participants, update
GroupContext/GroupContext Extension) the client shall:

o Create a Commit as per [RFC9420].

e Create the Grouplinfo to be uploaded to the server.

o Create an MSRP message with a body that includes the binary encoded Commit,
Epoch Authenticator and Grouplnfo per section 7.9.2.

e Send the MSRP to the Messaging Server as per [GSMA PRD-RCC.07].

o Wait for the Commit to arrive back as an MSRP message to apply it locally.

When receiving an MSRP message with a Commit, the Participating Function shall:

V2.0 Page 59 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

o Forward the MSRP to the Conversation Focus as per [GSMA PRD-RCC.07]
When receiving an MSRP message with a Commit, the Conversation Focus shall:
¢ Validate the Commit as per 6.2.2.

o Ifthe Commit fails validation, the server shall send a negative IMDN as per
section 7.7.2.1.

Store the new Grouplnfo and epoch authenticator.

Create the new ServerMlsRcsMessage proto as per section 7.9.3

Create a new MSRP message containing the ServerMlsRcsMessage.

Forward to all members of the RCS Group (including the sender) as per [GSMA PRD-
RCC.07].

When a client receives an MSRP with a Commit, it shall:

¢ Validate the Commit as per section 6.2.6.
o Apply the Commit locally.

9.5.2 Key Updates

Clients must update their keys in the MLS Group for Active Conversations. If the user has
joined with a last resort KeyPackage, the initial key update shall follow the intervals in the

first row of the following table. All other key updates shall follow the intervals in the second
row.

The key update must occur after either the maximum number of days or the maximum
number of outgoing messages, whichever comes first. It shall not happen earlier than the
minimum number of days.

Key update scenario Minimum # Maximum # Maximum #
EVES EVES outgoing messages
Initial join with a last resort 0 1 30
KeyPackage
Regular key update 7 30 50

Table 7: Key Update Intervals
Clients receiving Key Updates outside of the intervals above shall accept the Key Updates.

To create a key update, the client shall create an empty commit with UpdatePath or any
Commit with an UpdatePath as per [RFC9420] and send the commit as per 9.5.1.

9.5.3 Certificate Update

Client must update their certificate in the MLS Group at least every 30 days for Active
Conversations. In order to achieve that, the client shall:

e Update the ACS Signed Encryption Identity Proof via a config refresh as per [GSMA
PRD-RCC.07].

V2.0 Page 60 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

e Create new KeyPackages as per section 5.

¢ Create an empty Commit with UpdatePath containing the new leaf from the newly
created KeyPackage.

¢ Send the Commit as per section 9.5.1.

If the client has a certificate and/or ACS Signed Encryption Identity Proof that expires in more
than 60 days, it may use the certificate and/or the ACS-Signed Encryption ldentity Proof
instead of calling the server.

9.5.4 KeyPackage Update

If another Client in the MLS Group has an expired certificate, or has not updated their leaf
Keys in over 30 days, the client shall:

o Fetch KeyPackage(s) as per section 5.3 for all Clients with expired certificates or
have not updated keys.

e Create a Commit that removes the old Leaf Nodes of the Client(s) and adds new
leaves from the KeyPackage as per [RFC9420].

e Create a Welcome Message for all Clients replaced.

e Send the Commit as per section 9.5.1.

If there are no valid KeyPackages for any of the Clients, the client shall move the RCS

Conversation to unencrypted as per section 11.2.

9.6 Server-Initiated User Removal

The Messaging Server can only initiate a user removal from the RCS Conversation if the
user has lost RCS due to inactivity or deactivation. The Messaging Server shall:

o Create NOTIFYs to all members of the RCS Group as per [GSMA PRD-RCC.07] with
the Participant(s) leaving.

o The server shall include STP; cause=410; text="Removed by server" in the
<disconnection-info> for the removed user.

¢ Not accept any Proposals or Commits as per 6.2.1 until a Commit for the Participant
kicked arrives.

When a client receives a NOTIFY to remove Participant(s):

¢ Follow section 9.5.1 to create a Commit using the server_remove Proposal as per
section 7.11.9.1. This Commit should remove all Clients associated with the
Participant(s).Then create the new Grouplnfo and send it to the Messaging Server.

o If a Commit arrives that includes the removal of the Participant(s) before the client
creates/sends the Commit, the client shall abandon Commit creation/sending.

o Wait for the Commit with the leave Proposal to arrive as an MSRP message to apply
it locally.

V2.0 Page 61 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

9.7 Group Metadata Management
9.7.1 Group Icon and Subject

9.7.11 Encrypting Group Icon
To encrypt the group icon, the client shall:

e Encrypt the group chat Icon as per Annex C.2.

¢ Upload the encrypted content to the RCS File Transfer Server, following procedures
outlined in [GSMA PRD-RCC.07].

e Create the icon commitment extension as per 7.11.4.1.

9.71.2 Encrypting Group Subject
To encrypt the group subject, the client shall:

o Encrypt the group chat subject as per Annex C.2.
¢ Base-64 encode the encrypted subject and include it in the MSRP.
e Create the subject commitment extension as per 7.11.6.1.

9.71.3 Group Icon and Subject Extensions for New Joiners

When a new member joins the group or creates a new group, the client adding the new
member shall send the secrets for decrypting the group icon and subject in the Welcome
message. The client shall:

e Create the icon key extension containing the symmetric key as per 7.11.3.1.
e Create the subject key extension containing the symmetric key as per 7.11.5.1.
e Addthe icon key, icon commitments, subject key and

subject commitment extension to GroupContext.

9.7.1.4 Changing the Group Icon
When changing the group icon, and the new icon is encrypted, the client shall:

e Follow the procedures in section 9.7.1.1

e Create a GroupContext Extensions Proposal that contains the icon commitment
extension and a Commit as per Section 12.1.7 of [RFC9420].

e Create an MLS PrivateMessage to transport the symmetric key as per section 7.8.1
with file_name is “group_icon”.

¢ Replace the old symmetric key in the icon_key extension of the local Groupinfo
object with the new symmetric key.

o Create a separate Grouplnfo object without the icon key extension in it.

e Create a multi-part message consisting of the Commit, Grouplnfo, Epoch
Authenticator, and the PrivateMessage with the wireformat as defined in section
7.9.2.

¢ Send the multi-part message and the sanitized Grouplnfo object to the server.

V2.0 Page 62 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

When receiving an encrypted group icon change request, the Conversation Focus shall:
o Validate the Commit as per 6.2.2.

o Ifthe Commit fails validation, the server shall send a negative IMDN as per
section 7.7.2.1.

e Store the new icon, Grouplinfo, and epoch authenticator.

o Create the new ServerMlsRcsMessage proto as per section 7.9.3

o Create a new MSRP message containing the ServerMl sRcsMessage.

o Forward the MSRP to all members of the RCS Group (including the sender) as per
[GSMA PRD-RCC.07].

¢ Send a NOTIFY with the new icon as per [GSMA PRD-RCC.07].

When receiving an encrypted new icon, the client shall:

o Verify the correctness of the Commit message as per section 6.2.6.

¢ Use the Commit to derive the next-epoch application encryption key as per section
9.1 of [RFC9420].

o Decrypt the Application message using the next-epoch application encryption key to
obtain the symmetric key.

e Download the encrypted icon from the RCS File Transfer Server and use the
symmetric key to decrypt it as per Annex C.3.

o Verify the correctness of the symmetric key and the decrypted group icon using the
data in the icon commitments extension.

¢ Replace the symmetric key in the icon key extension of the Grouplnfo with the new
symmetric key.

9.71.5 Changing the Group Subject
When changing the group subject, and the new subject is encrypted, the client shall:

e Follow the procedures in section 9.7.1.2.

e Create a GroupContext Extensions Proposal that contains the
subject commitments extension and a Commit as per Section 12.1.7 of
[RFC9420].

o Create an MLS PrivateMessage to transport the symmetric key as per section
7.8.1with file_name is “group_subject”.

¢ Replace the old symmetric key in the subject key extension of the local Grouplnfo
object with the new symmetric key.

o Create a separate Grouplnfo object without the subject key extension in it.

e Create a multi-part message consisting of the Commit, Grouplnfo, Epoch
Authenticator, and the PrivateMessage with the wireformat as defined in section
7.9.2.

e Send the multi-part message and the sanitized Grouplnfo object to the server.

When receiving an encrypted group subject change request, the Conversation Focus shall:

¢ Validate the Commit as per 6.2.2.

V2.0 Page 63 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

o If the Commit fails validation, the server shall send a negative IMDN as per
section 7.7.2.1.

o Store the new subject, Grouplnfo, and epoch authenticator.

e Create the new ServerMlsRcsMessage proto as per section 7.9.3

e Create a new MSRP message containing the ServerMlsRcsMessage.

o Forward the MSRP to all members of the RCS Group (including the sender) as per
[GSMA PRD-RCC.07].

o Send a NOTIFY with the new subject as per [GSMA PRD-RCC.07].

When receiving the new encrypted subject, the client shall:

o Verify the correctness of the Commit message as per section 6.2.6.

o Use the Commit to derive the next-epoch application encryption key as per section
9.1 of [RFC9420].

o Decrypt the Application message using the next-epoch application encryption key to
obtain the symmetric key.

e Decrypt the subject as per Annex C.3.

o Verify the correctness of the symmetric key and the decrypted group subject using
the data in the icon commitments extension.

¢ Replace the symmetric key in the subject key extension of the Grouplnfo with the
new symmetric key.

10 MLS Group Recovery

Devices may encounter errors or disruptions that prevent them from encrypting or decrypting
MLS messages. Examples include messages getting malformed during transfer, on-device
storage issues, or a user switching from one device to another without the transfer of the
cryptographic state, and many more. When those errors occur, the client needs to heal its
MLS state to enable uninterrupted participation in encryption.

10.1 Self-Healing Mechanism

Self-Heal is a process of repairing the local state of the MLS group. It works by removing the
previous Client owned by the user and re-adding a new representation of the Client (owned
by the same user).

The Self-Heal procedure shall be initiated upon:

e Receiving an Application Message that can’t be decrypted.

e Receiving an MLS Control Message that can’t be processed (e.g. failure to apply or
rejection due to validation, as described in section 6.2.6).

o Failing to send an Application Message due to epoch authenticator mismatch.

The self-healing process involves fetching the latest Grouplnfo from the Messaging Server
(as defined in section 6.3.1) and creating an External Commit (as per [RFC9420]) based on
the latest Group Info from the backend to resync its own Leaf Node.

If the MLS Group contains expired certificates, the client shall Self-Heal first. The client shall
fetch new KeyPackage(s) for the Clients with expired certificates and replace them in the

V2.0 Page 64 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

MLS Group via an update mechanism in section KeyPackage Update. If there are no
available KeyPackages, the client shall move the Conversation to unencrypted as per
section 11.2.

The application shall have an upper limit on the number of retries for self-healing in a given
group. The application may use 5 as the maximum number of retries, and may not retry for
more than a day. After any of the limits is reached, the procedure is considered failed.
Fallback procedures defined in [GSMA PRD-RCC.71] shall apply.

Upon a failure of the Self-Heal procedure, the client shall create a new Era for the group, as
per procedures in section 8.3. The new Era can only include Participants whose Clients were
in the latest known MLS Group to the client self-healing. If there are Participants in the RCS
Conversation that are not in the latest known MLS Group, the client shall remove those
Participants from the RCS Conversation.

10.1.1 Self-Heal Procedure
The client shall:

¢ Request the Grouplnfo from the Messaging Server, following the procedure from
section 6.3.1.
e Create an External Commit (as per [RFC9420]):

o Ifthe client is replacing an old leaf with the same Participant Key: the client shall
use a resync External Commit.

o Ifthe client is replacing an old leaf with a different Participant Key: the client must
use resync External Commit to replace all the Clients of the Participant with
KeyPackages that are signed with the new Participant Key.

o If the client is adding itself to the MLS Group (because it is a new Client of the
Participant): the client shall use the add External Commit to add itself to the MLS
Group.

o Follow the procedures to upload the Commit to the Messaging Server, as per section
9.5.1, including any necessary retries of this procedure.

During the Self-Heal procedure, the client may attempt to decrypt incoming messages and
may attempt to process incoming Commits. The client shall not initiate another Self-Heal on
the same MLS Group while one is ongoing.

The client shall not send outgoing messages to the RCS Conversation while Self-Heal is
ongoing.

V2.0 Page 65 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

/

No.
Send
Start —> Fetcrngroup — » External —» No.
Commit

Yes Yes

!

Done
(process Initialize New
. . B E—
remaining Era
messages)

Figure 12: lllustration of the Self-Heal Procedure

10.2 Sending Fail to Decrypt (FTD)
After the Self-Heal Procedure is complete (as per section 0) the client shall:

o Send an FTD message for all Application Messages that it could not decrypt, one per
message to the sender of the Original Message.

e Construct the FTD as per section 0.

e Send an FTD as an MSRP message as per [GSMA PRD-RCC.07]. The FTD shall be
a Private-IM message. The FTD messages may be queued for automatic sending
while the Self-Heal for the same MLS Group is ongoing.

10.3 Receiving an FTD message

In this section:

¢ Original Message refers to the message that failed to decrypt on the recipient.
¢ Re-Sent Message refers to the message that was re-encrypted and re-sent with a
new Message-ID.

The FTD Message shall be ignored if:

e The Participant was not a member of the group at the time the Original Message was
sent, or

e The Original Message was sent earlier than 30 days ago.

¢ The Participant Key of the Participant has changed (without the new key being part of
the key roll as defined in section A.3.8.9) and the Original Message was sent over an
hour ago.

An IMDN Negative-Delivery report shall be sent if an FTD was ignored. A Negative-Delivery
shall follow [RFC5438] and shall include an mis:report extension as defined in section
7.7.2.2.

If the FTD was incorrectly signed, or the client cannot verify the signature of the FTD, the client
shall self-heal itself.

Upon receipt of a valid FTD message, the client shall:

V2.0 Page 66 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

¢ Find the Original Message, if present. The client shall ignore any edits to the Original
Message.

e Construct a ResentMessage struct containing the original as defined in section 7.5.4.

e Encrypt the struct using the one-to-one HPKE encryption algorithm defined in Annex
C.4.1 to the FTD sender client.

¢ The HPKE ciphertext is then reencrytped to all other clients using MLS message per
section 9.1.1.

e Set the original-message-id CPIM header.

o Perform a Key Update procedure as defined in section 9.5.2.

The sender shall stop a repeated chain of FTDs for the same Original Message after a
maximum of 5 attempts. Fallback procedures defined in [GSMA PRD-RCC.71] shall apply.

10.4 Receiving a Re-Sent Message

The resent message is double encrypted and sent to all group members. When receiving the
encrypted message, the client shall

e Decrypt the outer layer using the MLS message decryption per section 9.1.1.
e Process the decrypted payload:

o Check the type field of the SecretPayload struct. Ifitis hpke 1 to 1 _message
type, it deserialize the decrypted payload to
HPKEInnerEncapsulatedKeyAndCiphertext struct. Otherwise follow procedures in
section 9.1.1

o Check whether the receiver_leaf_index matches its leaf index in the MLS ratchet
tree or not.

= [f it matches, then it performs the second decryption using the HPKE algorithm
defined in Annex C.4.2.
= Otherwise the message is ignored.

o Use the original-message-id CPIM header as the message id.

The Re-Sent Message shall be ignored if the user never received the Original Message. A
Negative-Delivery shall be sent.

If the user received the Original Message but has not successfully decrypted it, the client
shall, upon decryption of the Re-Sent Message, display it to the user. The client may use the
received timestamp of the Original Message to determine the correct placement of the
message in the conversation.

The client shall send a delivery report for the new message as defined in section 7.7.1. The
delivery report shall be sent for the Re-Sent Message ID.

A read report for the re-sent message shall be sent for the Re-Sent Message ID.

Any other features (such as incoming edit, delete, incoming reactions, or outgoing reactions)
shall always refer to the RCS Message ID of the Original Message.

V2.0 Page 67 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

If an incoming reaction is received before the Re-Sent Message is received, the client shall
apply the reaction to the future (not yet received) Re-Sent Message.

If an incoming edit of the Original Message is received before the Re-Sent Message is
received, the client may ignore the Re-Sent Message.

If an incoming delete of the Original Message is received before the Re-Sent Message is
received, the client should ignore/delete the Re-Sent Message.

10.5 Recovering Group Subject and Icon

When a group member receives an External Commit from a member and successfully
applies it, they shall:

e Take the symmetric key from icon key and subject key in their local Grouplnfo
object.

o Create an MLS PrivateMessage that encrypts the symmetric keys using the
application encryption key of the current epoch as described in section 6.3 of
[RFC9420].

e Follow the procedures in section 9.1.1 to send the PrivateMessage.

When the member who sent the external commit receives an application message that
contains the symmetric key, they shall:
o Decrypt the Application Message to get the symmetric key.

e Download the encrypted Group Chat Icon from the RCS File Transfer server, and use
the symmetric key to decrypt it, as per Annex C.4.2C.3.

o Decrypt the group subject as per Annex C.3.

e Create an icon_key and subject key extension as per sections 7.11.3.1 and
7.11.5.1.

e Addthe icon key and subject key extensions to the locally maintained
Grouplnfo object.

11 Encryption Status Change

RCS Conversations can be in one of two states—encrypted or unencrypted—and those
states may change during the life of the RCS Conversation. While the state is encrypted, the
clients shall not send unencrypted messages in the RCS Conversation.

11.1 Unencrypted to Encrypted

The client shall, periodically request the capabilities of the Participants of an unencrypted
Active RCS Conversation. The frequency of these requests is defined in section 11.1.1.

Once the client detects that all Participants are capable of MLS, the client shall attempt to
resurrect the previous MLS Group (if present) for the RCS Conversation (section 11.1.2),
provided that all certificates in that MLS Group are valid and non-expired (as per Annex A). If
resurrection is not possible, the client shall create a new MLS Group Era (including first-time
creation) as described in section 8.3.

V2.0 Page 68 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

11.1.1 Periodic Capability Refresh for Unencrypted Groups

The capabilities of Participants in Unencrypted Groups shall be refreshed only for Active
Groups:

e The client shall refresh the Participants’ capabilities at least once per month.

¢ Itis recommended to refresh capabilities once per week.

o Capabilities may be refreshed when the conversation is opened.

o For scheduled refreshes, the client shall add a random backoff between attempts.

NOTE: Conversation moving from Inactive to Active is left for further specification.

11.1.2 Resurrecting former MLS Group
To resurrect the RCS Conversation as MLS, the client shall:

o Fetch the KeyPackages for the Participants that do not exist in the MLS Group or who
have expired Certificates, and create Proposals to add those Participants’ Clients to
the MLS Group.

e Create proposals to remove the Clients of any Participants who are not part of the
RCS Conversation from the MLS Group.

e Create and send a multi-part MSRP message with:

o Welcome message to all added or re-added MLS members (if any), as described
in section 9.2.

o Single Commit with the Proposals (Add/Remove) and removal of the end mls
extension.

11.2 Encrypted to Unencrypted

The RCS Conversation shall migrate from encrypted to unencrypted in the following
situations:

An unsigned delivery report is received for an encrypted message.

A Plaintext RCS Message is received.

A new Participant is being added who does not support encryption.

A capability check made for a Participant in the RCS Conversation did not return an
MLS capability.

Before changing the encryption state of an RCS Conversation to unencrypted, the client may
perform a capability check to determine if all users still support encryption and, if they do, the
client may choose not to change the encryption status to unencrypted.

In order to move the encryption state of an RCS Conversation to unencrypted, the client
sends a Commit to the current members of the MLS Group with an end mls extension, as
an MSRP message.

V2.0 Page 69 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

Annex A Certificate profiles
A.1 Root Certificate Profile

A.1.1 Version
Certificates shall be of type X.509 v3.

A.1.2 Serial Number

Certificate Authorities (CAs) shall generate non-sequential Certificate serial numbers greater
than zero (0) and less than 2*159 containing at least 64 bits of output from a CSPRNG.

A.1.3 Signature Algorithm

All objects signed by a CA Private Key shall conform to these requirements on the use of the
Algorithmldentifier or Algorithmldentifier-derived type in the context of signatures.

e The signatureAlgorithm field of a Certificate.
e The signature field of a TBSCertificate (for example, as used by a Certificate).

A.1.31 ECDSA

The CA shall use the appropriate signature algorithm and encoding based upon the signing
key used.

If the signing key is P-384, the signature shall use ECDSA with SHA-384. When encoded,
the Algorithmldentifier shall be byte-for-byte identical with the following hex-encoded bytes:
300a06082a8648ce3d040303.

If the signing key is P-521, the signature shall use ECDSA with SHA-512. When encoded,
the Algorithmldentifier shall be byte-for-byte identical with the following hex-encoded bytes:
300a06082a8648ce3d040304.

A.1.4 Issuer

The encoded content of the Issuer Distinguished Name field of a Certificate shall be byte-for-
byte identical with the encoded form of the Subject Distinguished Name field.

AA1.5 Validity

The maximum validity period (From RFC 5280, “the period of time from notBefore through
notAfter, inclusive”) is 3652 days (approximately 10 years). The minimum validity period is
365 days (approximately 1 years). The notBefore date is the time of signing or a time no
earlier than one day prior to the time of signing.

For the purpose of calculations, a day is measured as 86,400 seconds. Any amount of time
greater than this, including fractional seconds and/or leap seconds, shall represent an
additional day.

A.1.6 Subject

The Subiject field shall contain a countryName, organizationName, and commonName, as
specified with Objectldentifiers (OID [ITU-T X.680]), encoding requirements, and values as in
table below. The Subject field may contain a stateOrProvinceName and localityName, as

V2.0 Page 70 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

specified with OIDs, encoding requirements, and values as in table below. Other Attributes
should not be included.

The subject shall encode the fields in the relative order as they appear in the table. Each
Name must contain an RDNSequence. Each RelativeDistinguishedName must contain
exactly one AttributeTypeAndValue. Each Name must not contain more than one instance of
a given AttributeTypeAndValue across all RelativeDistinguishedNames.

Attribute oID Presence Encoding Max
Requirements Length
countryName 2546 | must must use 2 The two-letter
PrintableString ISO 3166-1
country code
for the country
in which the
CA'’s place of
business is
located.
stateOrProvinceName 2548 may must use 128 If present, the
UTF8String or CA'’s state or
PrintableString province
information.
localityName 2547 may must use 128 If present, the
UTF8String or CA'’s locality.
PrintableString
organizationName 25410 | must must use 64 The CA’s name
UTF8String or or DBA.
PrintableString
commonName 2543 must must use 64 The contents
UTF8String or should be an
PrintableString identifier for the
certificate such
that the
certificate’s
Name is unique
across all
certificates
issued by the
issuing
certificate.
Any other attribute should not

Table 8: Root Certificate Attributes

A.1.7 Subject Public Key

The following requirements apply to the subjectPublicKeylnfo field within a Certificate. No
other encodings are permitted.

V2.0 Page 71 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

A1.71 ECDSA

The CA shall indicate an ECDSA key using the id-ecPublicKey (OID: 1.2.840.10045.2.1)
algorithm identifier. The parameters shall use the namedCurve encoding.

o For P-384 keys, the namedCurve shall be secp384r1 (OID: 1.3.132.0.34).
o For P-521 keys, the nameCurve shall be secp521r1 (OID: 1.3.132.0.35).

When encoded, the Algorithmldentifier for ECDSA keys shall be byte-for-byte identical with
the following hex-encoded bytes:

e For P-384 keys, 301006072a8648ce3d020106052b81040022.

e For P-521 keys, 301006072a8648ce3d020106052b81040023.

A.1.8 Extensions

The following list of extensions is defined for root certificates. Any other extension not
defined herein shall not be included.

A.1.8.1 Subject Keyldentifier

This extension shall be present and shall not be marked critical. It should contain a value
that is derived from the Public Key included in the Root Certificate.

A.1.8.2 Key Usage
This extension shall be present and shall be marked critical.

Bit positions shall be set for keyCertSign and cRLSign. Other bit positions shall not be set.

A.1.8.3 Certificate Policies

This extension should not be present and should not be marked critical. It shall include
exactly one of the reserved policyldentifiers documented herein. The certificatePolicies shall
not include policyQualifiers.

A.1.8.4 Basic Constraints

This extension shall be present and shall be marked critical. The cA field shall be true.
pathLenConstraint field should not be present.

A.1.8.5 Vendor ID
This extension shall be present and should not be marked critical.

This extension asserts the Vendor ID assigned by the GSMA to the vendor that owns this
root.

id-gsmaRCSE2EE OBJECT IDENTIFIER ti=
{ joint-iso-itu-t(2) international-organizations(23) gsma(146)
rcs(2) rcsE2EE (1)}
id-rcsVendorId OBJECT IDENTIFIER ::= { gsmaRCSE2EE 6 }
vendorId ::= INTEGER

V2.0 Page 72 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

A.2 Intermediate CA Certificate Profile

A.2.1 Version
Certificates shall be of type X.509 v3.

A.2.2 Serial Number

CAs shall generate non-sequential Certificate serial numbers greater than zero (0) and less
than 22159 containing at least 64 bits of output from a CSPRNG.

A.2.3 Signature Algorithm

All objects signed by a CA Private Key shall conform to these requirements on the use of the
Algorithmldentifier or Algorithmldentifier-derived type in the context of signatures.

e The signatureAlgorithm field of a Certificate.
e The signature field of a TBSCertificate (for example, as used by a Certificate).

A.2.31 ECDSA

The CA shall use the appropriate signature algorithm and encoding based upon the signing
key used.

If the signing key is P-384, the signature shall use ECDSA with SHA-384. When encoded,
the Algorithmldentifier shall be byte-for-byte identical with the following hex-encoded bytes:
300a06082a8648ce3d040303.

If the signing key is P-521, the signature shall use ECDSA with SHA-512. When encoded,
the Algorithmldentifier shall be byte-for-byte identical with the following hex-encoded bytes:
300a06082a8648ce3d040304.

A.2.4 Issuer

The encoded content of the Issuer Distinguished Name field of a Certificate shall be byte-for-
byte identical with the encoded form of the Subject Distinguished Name field of the Issuing CA
Certificate.

A.2.5 Validity

The maximum validity period (From RFC 5280, “the period of time from notBefore through
notAfter, inclusive”) is 1827 days (approximately 5 years). The minimum validity period is
365 days (approximately 1 year). The notBefore date is the time of signing or a time no
earlier than one day prior to the time of signing.

For the purpose of calculations, a day is measured as 86,400 seconds. Any amount of time
greater than this, including fractional seconds and/or leap seconds, shall represent an
additional day.

A.2.6 Subject

The Subiject field shall contain a countryName, organizationName, and commonName, as
specified with OIDs, encoding requirements, and values as in table below. The Subject field
may contain a stateOrProvinceName and localityName, as specified with OIDs, encoding
requirements, and values as in table below. Other Attributes should not be included.

V2.0 Page 73 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

The subject shall encode the fields in the relative order as they appear in the table. Each
Name must contain an RDNSequence. Each RelativeDistinguishedName must contain
exactly one AttributeTypeAndValue. Each Name must not contain more than one instance of
a given AttributeTypeAndValue across all RelativeDistinguishedNames.

Attribute Presence Encoding
Requirements
countryName 2546 must must use 2 The two-letter
PrintableString ISO 3166-1
country code for
the country in
which the CA’s
place of
business is
located.
stateOrProvinceName 2548 may must use 128 If present, the
UTF8String or CA'’s state or
PrintableString province
information.
localityName 2547 may must use 128 If present, the
UTF8String or CA'’s locality.
PrintableString
organizationName 2.54.10 | must must use 64 The CA’s name
UTF8String or or DBA.
PrintableString
commonName 2543 must must use 64 The contents
UTF8String or should be an
PrintableString identifier for the
certificate such
that the
certificate’s
Name is unique
across all
certificates
issued by the
issuing
certificate.
Any other attribute should not

Table 9: Intermediate Certificate Attributes

A.2.7 Subject Public Key

The following requirements apply to the subjectPublicKeylnfo field within a Certificate. No
other encodings are permitted.

A.2.71 ECDSA

The CA shall indicate an ECDSA key using the id-ecPublicKey (OID: 1.2.840.10045.2.1)
algorithm identifier. The parameters shall use the namedCurve encoding.

V2.0 Page 74 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

o For P-256 keys, the namedCurve shall be secp256r1 (OID: 1.2.840.10045.3.1.7).
e For P-384 keys, the namedCurve shall be secp384r1 (OID: 1.3.132.0.34).

When encoded, the Algorithmldentifier for ECDSA keys shall be byte-for-byte identical with
the following hex-encoded bytes:

e For P-256 keys, 301306072a8648ce3d020106082a8648ce3d030107.
e For P-384 keys, 301006072a8648ce3d020106052b81040022.

A.2.8 Extensions

The following list of extensions are defined for intermediate CA certificates. Any other
extension not defined herein should not be included.

A.2.8.1 Authority Key ldentifier

This extension shall be present and shall not be marked critical. The keyldentifier field shall
be present and must be identical to the subjectKeyldentifier field of the Issuing CA.
authorityCertlssuer and authorityCertSerialNumber fields shall not be present.

A.2.8.2 Subject Key Identifier

This extension shall be present and shall not be marked critical. It should contain a value
that is derived from the Public Key included in the intermediate CA Certificate.

A.2.8.3 Key Usage
This extension shall be present and shall be marked critical.

Bit positions shall be set for keyCertSign and cRLSign. Other bit positions shall not be set.

A.2.8.4 Certificate Policies
This extension may be present and should not be marked critical.

The CA may restrict the policies which this CA may issue. If the CA is policy-restricted, this
extension shall include exactly one of the reserved policyldentifiers documented herein and
may contain one or more identifiers documented by the CA in its Certificate Policy (CP)
and/or Certificate Practice Statement (CPS) and must not include the anyPolicy Policy
Identifier.

The certificatePolicies shall not include policyQualifiers.

A.2.8.5 Basic Constraints

This extension shall be present and shall be marked critical. The cA field shall be true.
pathLenConstraint field may be present.

A.2.8.6 Authority Information Access
This extension may be present. This extension shall not be marked critical.

When provided, every accessMethod shall have the UniformResourceldentifier (URI)
scheme HTTP. Other schemes or GeneralName types shall not be present.

V2.0 Page 75 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

The authoritylnformationAccess extension may contain accessMethod values of type id-ad-
ocsp that specifies the URI of the Issuing CA’s OCSP responder.

The authoritylnformationAccess extension may contain at least one accessMethod value of
type id-ad-calssuers that specifies the URI of the Issuing CA’s Certificate.

Other accessMethod types shall not be present.

A.2.8.7 CRL Distribution Points

This extension shall be present and should not be marked critical. The CRL Distribution
Points extension must contain at least one DistributionPoint; containing more than one is not
recommended. The DistributionPointName must be a fullName with at least one
GeneralName. All GeneralNames shall have the URI scheme HTTP. The reasons and
cRLIssuer fields must not be present.

A.2.8.8 Extended Key Usage

This extension shall be present. The extension shall contain a single element, a
KeyPurposeld with value

id-kp-rcsMlsClient OBJECT IDENTIFIER ::= { id-gsmaRCSE2EE 3 }
A.3 Client Certificate Profile

A.3.1 Version
Certificates shall be of type X.509 v3.

A.3.2 Serial Number

CAs shall generate non-sequential Certificate serial numbers greater than zero (0) and less
than 24159 containing at least 64 bits of output from a CSPRNG.

A.3.3 Signature Algorithm

All objects signed by a CA Private Key shall conform to these requirements on the use of the
Algorithmldentifier or Algorithmldentifier-derived type in the context of signatures.

¢ The signatureAlgorithm field of a Certificate.
o The signature field of a TBSCertificate (for example, as used by a Certificate).
¢ The participantSignatureAlgorithm field of a Participantinfo.

A.3.31 ECDSA

The CA shall use the appropriate signature algorithm and encoding based upon the signing
key used.

If the signing key is P-256, the signature shall use ECDSA with SHA-256. When encoded,
the Algorithmldentifier shall be byte-for-byte identical with the following hex-encoded bytes:
300a06082a8648ce3d040302.

If the signing key is P-384, the signature shall use ECDSA with SHA-384. When encoded,
the Algorithmldentifier shall be byte-for-byte identical with the following hex-encoded bytes:
300a06082a8648ce3d040303.

V2.0 Page 76 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

A.3.4 Issuer

The encoded content of the Issuer Distinguished Name field of a Certificate shall be byte-for-
byte identical with the encoded form of the Subject Distinguished Name field of the Issuing
CA Certificate.

A.3.5 Validity

The maximum validity period (From RFC 5280, “the period of time from notBefore through
notAfter, inclusive”) is 76 days. The minimum validity period is 45 days. The notBefore field
must not be more than one day prior to the time of issuance and should be at least one hour
prior to the time of issuance.

For the purpose of calculations, a day is measured as 86,400 seconds. Any amount of time
greater than this, including fractional seconds and/or leap seconds, shall represent an
additional day. For this reason, Subscriber Certificates should be issued with a notAfter that
is not more than 6,566,340 seconds after the notBefore.

The CA or Rregistration Authority (RA) shall validate all identity attributes of the Subject and
SubjectAlternativeName to be included in the Certificate. If the evidence has an explicit
validity period, the CA shall verify that the time of the identity validation is within this validity
period. In context this can include the notBefore and notAfter fields of a digital signature
Certificate or the date of expiry of an identity document or the expiry of the ACS Signed
Tuple (section 7.12). The CA or RA shall retain information sufficient to evidence the
fulfillment of the identity validation process and the verified attributes.

A.3.6 Subject

The Subject Name should contain an id-clientldentifier Attribute type with an
RcsMisClientldentifer value containing a UUID (Universally Unique ldentifier) conforming to
RFC 9562 version 4 created with random bytes and using a UTF8String encoding. The
Subject Name may contain a CommonName containing the RcsMIsClientldentifer. The
Subject Name must contain either a id-clientldentifier type and a CommonName and must
not contain both a id-clientldentifier type and a CommonName. The Subject Name shall not
contain any other fields.

id-clientIdentifier AttributeType ::= { id-gsmaRCSE2EE 1 }
RcsMlsClientIdentifier ::= UTF8String (SIZE (36))

A.3.7 Subject Public Key

The following requirements apply to the subjectPublicKeylnfo field within a Certificate. No
other encodings are permitted.

A.3.71 ECDSA

The CA shall indicate an ECDSA key using the id-ecPublicKey (OID: 1.2.840.10045.2.1)
algorithm identifier. The parameters shall use the namedCurve encoding.

e For P-256 keys, the namedCurve shall be secp256r1 (OID: 1.2.840.10045.3.1.7).
e For P-384 keys, the namedCurve shall be secp384r1 (OID: 1.3.132.0.34).

V2.0 Page 77 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

When encoded, the Algorithmldentifier for ECDSA keys shall be byte-for-byte identical with
the following hex-encoded bytes:

e For P-256 keys, 301306072a8648ce3d020106082a8648ce3d030107.
e For P-384 keys, 301006072a8648ce3d020106052b81040022.

A.3.8 Extensions

The following list of extensions are defined for leaf certificates. Any other extension not
defined herein should not be included.

A.3.8.1 Authority Key Identifier

This extension shall be present and shall not be marked critical. The keyldentifier field shall
be present and must be identical to the subjectKeyldentifier field of the Issuing CA.
authorityCertlssuer and authorityCertSerialNumber fields shall not be present.

A.3.8.2 Subject Key Identifier

This extension should be present and shall not be marked critical. It should contain a value
that is derived from the Public Key included in the Client Certificate.

A.3.8.3 Key Usage
This extension shall be present and should be marked critical.

Bit positions shall be set for digitalSignature. Other bit positions shall not be set.

A.3.8.4 Certificate Policies

This extension shall be present and should not be marked critical. It shall include exactly one
of the reserved policyldentifiers documented herein and may contain one or more identifiers
documented by the CA in its CP and/or CPS. The certificatePolicies shall not include
policyQualifiers.

id-RCSE2EEPolicyId OBJECT IDENTIFIER ::= { id-gsmaRCSE2EE 2 }

A.3.8.5 Subject Alternative Name
This extension shall be present. This extension should not be marked critical.

The Subject Alternative Name shall contain at least one GeneralName of type
UniformResourceldentifier (URI). The URI shall be a Global Number tel URI per
[RFC3966]. The URI shall not contain visual separators. The Global Number shall not
contain any parameters, extensions, or isdn-subaddress.

Multiple GeneralNames are supported for re-numbering situations.

A.3.8.6 Basic Constraints

This extension may be present. The cA field shall not be true. pathLenConstraint field shall
not be present.

A.3.8.7 Extended Key Usage

This extension shall be present. The extension shall contain a single element, a
KeyPurposeld with value

V2.0 Page 78 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

id-kp-rcsMlsClient OBJECT IDENTIFIER ::= { id-gsmaRCSE2EE 3 }

A.3.8.8 Authority Information Access
This extension should be present. This extension shall not be marked critical.

When provided, every accessMethod shall have the URI scheme HTTP. Other schemes or
GeneralName types shall not be present.

The authoritylnformationAccess extension should not contain accessMethod values of type
id-ad-ocsp that specifies the URI of the Issuing CA’s OCSP responder.

The authoritylnformationAccess extension should contain at least one accessMethod value
of type id-ad-calssuers that specifies the URI of the Issuing CA’s Certificate.

Other accessMethod types shall not be present.

A.3.8.9 Participant Information
This extension shall be present. This extension shall be marked critical.

The Participant Information extension binds this client certificate to a particular participant in
the RCS/MLS ecosystem.

Extension ASN.1 definition:

id-participantInformation OBJECT IDENTIFIER ::=
{ gsmaRCSE2EE 4 }

ParticipantInformation ::= SEQUENCE ({
vendorId INTEGER,
participantSignaturevValidity Validity,
participantSignatureAlgorithm AlgorithmIdentifier,
participantSignatureValue BIT STRING,
participantKey SubjectPublicKeyInfo OPTIONAL,
participantKeyRolls [0] IMPLICIT SEQUENCE SIZE (1..5) OF

ParticipantKeyRoll OPTIONAL

}

Validity ::= SEQUENCE ({
notBefore Time,
notAfter Time }

Time ::= CHOICE ({
utcTime UTCTime,
generalTime GeneralizedTime }

ParticipantKeyRoll ::= SEQUENCE ({
participantRollSignatureAlgorithm AlgorithmIdentifier,
participantRollSignatureValue BIT STRING,
oldParticipantKey SubjectPublicKeyInfo

The vendorld shall match the vendorld asserted in the root certificate.

V2.0 Page 79 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

The participantSignatureValidity shall have a maximum validity period (from [RFC5280], “the
period of time from notBefore through notAfter, inclusive”) of 76 days. The
participantSignatureValidity shall have a minimum validity period of 45 days. The notBefore
field must not be more than one day prior to the time of signature creation and should be at
least one hour prior to the time of signature creation. The choice of Time format shall be
conformant with section 4.1.2.5 of [RFC5280].

The particpantSignatureAlgorithm and participantRollSignatureAlgorithm shall be one of the
allowed Algorithmldentifiers from Signature Algorithm.

The participantKey is the key that produced the participantSignatureValue. The
participantKey shall be one of the allowed algorithms in Subject Public Key. If omitted, the
participantKey is the same as the Subject Public Key. The issuer shall validate the
participantKey for the subject and subjectAltName of the certificate for lifetime of issuance.

The participantSignatureValue contains a digital signature computed upon the following
ASN.1 DER-encoded structure, matching fields from the tbsCertificate:

tbsParticipantInfo ::= SEQUENCE ({
subject Name,
vendorId INTEGER,
participantSignaturevValidity Validity,
subjectPublicKeyInfo SubjectPublicKeyInfo,
subjectAltName SubjectAltName }

The tbsParticipantinfo contains the Subject, Subject Public Key, and Subject Alternative
Name (byte-for-byte matching the fields in the tbsCertificate) and the vendorld and
participantSignatureValidity (byte-for-byte matching the fields in the Participantinfo). The
participant creates this signature upon user approval of a client that will use the subject
public key, subject, and subject alternative name. The issuer shall validate the
participantSignatureValue is valid before issuing the certificate.

The SEQUENCE OF ParticipantKeyRoll objects forms a chain of continuity across
ParticipantKeys as they are changed by Participants. In the first ParticipantKeyRoll, the
participantRollSignatureValue is a signature over the participantKey by the
oldParticipantKey. For each subsequent ParticipantKeyRoll item the
participantRollSignatureValue is a signature over the oldParticipantKey in the

prior ParticipantKeyRoll with the oldParticipantKey contained in that ParticipantKeyRoll item.

A.3.8.10 ACS Participant Information
This extension shall be present.

The ACS Participant Information extension value is an OCTET STRING of the encoded
SignedEncryptionldentityProof (section 7.12).

Extension ASN.1 definiton:

id-acsParticipantInformation OBJECT IDENTIFIER ::=
{ gsmaRCSE2EE 5 }

V2.0 Page 80 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

A.4 Certificate Validation Procedures

A.41 Client Validation
Client will validate the credentials on

1. Query receipt from Home KDS
2. All commits with special handling required for

a) Update
b) Re-sync

Note that except where specified, commits signed by expired (or otherwise invalid)
credentials will be rejected; however, the flows below allow a participant with an invalid
credential to update to a valid credential.

A4d4.11 Default Validation Requirements
Clients verifying RCS E2EE credentials must in all flows:

1. Verify that the client credential properly chains by verifying signatures to a provided
intermediate CA. (see [RFC5280]). Including the following detailed client certificate
verification items:

a) Ensure the extendedKeyUsage contains the id-kp-rcsMIsClient key purpose in
the leaf certificate and no others.

b) Ensure the key usage has the digitalSignature bit set.

c) Verify the correctness of the Participantinfo Extension:

i. Construct the tbsParticipantinfo from the certificate

ii. Verify the participantSignatureValue with the participantKey (or if not
present, the subject public key info of the certificate) against the
constructed tbsPartipantinfo using the
specified participantSignatureAlgorithm.

iii. Verify all ParticipantKeyRoll items by verifying the
participantRollSignatureValue with the oldParticipantKey against the
participantKey (or prior oldParticipantKey) using the
specified participantRollSignatureAlgorithm

d) Certificate lifetime is 76 days or fewer.
e) That the certificate and Participantinfo are not expired, except as in detailed in
specific flows below.

2. Verify that the provided intermediate CA properly chains to a trusted root
certificate (see [RFC5280]). Including the following detailed CA verification items:

a) That the CA certificate is not revoked per the CRL DP.

b) That the BasicConstraints extension has cA field equal to TRUE (where TRUE
is DER-encoded, meaning 0xff)

c) Ensure the key usage has the keyCertSign bit set.

d) Ensure the extendedKeyUsage contains the id-kp-rcsMIsClient key purpose in
the leaf certificate and no others.

V2.0 Page 81 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

e) Certificate lifetime is 1827 days or fewer.
f) That the certificate is not expired, except as in detailed in specific flows below.

3. Verify that the VendorlD in the Participantinfo matches the VendorID in the root
certificate.

A.4.1.2 Query Validation

In addition to the Default Validation, on query response from the Home KDS the client will
verify:

1. that the SAN URI matches the expected MSISDN of the RCS participant queried.
2. that the client certificate is not expired and has at least 30 days left before expiration.

A413 Add Proposal and Commit

Clients must not issue Add Proposals with less than 30 days remaining before the expiry of
the credential in the updated Leaf Node.

Ad414 Welcome Package

Upon receipt of the Welcome Package, a client should verify all of the certificates in the Leaf
Nodes of the group.

A415 Self Update Commit

In addition to the Default Validation Requirements, on a Commit with an Update Path that
changes the committer’s LeafNode with a new Certificate the client will verify:

1. That the new LeafNode credential has at least one matching SAN URI with the existing
certificate in the LeafNode.

2. That the new certificate an issuance date after the existing certificate.

3. Expiration of the existing LeafNode certificate is not checked in this flow (allowing a
participant with an expired certificate to update to a new, non-expired certificate).

Clients must not issue self update commits with less than 30 days remaining before the
expiry of the credential in the updated Leaf Node.

A.4.1.6 Resync Commit
In addition to the Default Validation Requirements, on a Resync Commit, the client will verify:

1. That the certificate for the participant the Remove Proposal has at least one matching
SAN URI with the certificate in the Add Proposal.

2. That the external commit is signed by the certificate in the Add proposal.

3. That the client certificate in the Add Proposal has an issuance date after the certificate
in the Removed node.

4. Expiration of the certificate in the Remove Proposal is not checked.

Clients must not issue Add Proposals with less than 30 days remaining before the expiry of
the credential in the updated Leaf Node.

A.4.2 KDS Validation
KDSs will validate the credentials on

V2.0 Page 82 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

1. KeyPackage update
2. Query receipt from a peer KDS

A4.21 Default Validation Requirements
KDSs verifying RCS E2EE credentials must in all flows:

1. Verify that the client credential properly chains by verifying signatures to a provided
intermediate CA. (See RFC 5280.) Including the following detailed client certificate
verification items:

a) Verify that the client certificate has a remaining lifetime of at least 30 days.

2. Verify that the provided intermediate CA properly chains to a root certificate on the
GSMA Trust List. (See RFC 5280.) Including the following detailed CA verification
items:

a) That the CA certificate is not revoked per the CRL DP.

w

That the certificate and Participantinfo are not expired.
4. Verify that the VendorID extension in the root certificate asserts the KDS vendor’s ID
for KeyPackage update or the same vendor ID as the replying KDS.

A.4.2.2 KDS Query Fulfillment Behavior

KDSs must not return KeyPackages to a query where the credential has less than 30 days
before expiry. This requirement prevents situations where the KDS fulfills a query without the
client being able to perform the Add proposal and have delivery of that proposal within the
lifetime of the certificate.

A.4.3 RCS SPN Validation
RCS SPN shall validate the credentials on

1. All commits
2. Within all proposals

A.4.3.1 Default Validation Requirements
RCS SPN verifying RCS E2EE credentials shall in all flows:

1. Verify that the client credential properly chains by verifying signatures to a provided
intermediate CA. (See RFC 5280.) Including the following detailed client certificate
verification items:

a) That the certificate is not expired and has 30 days before expiry, except as in
detailed in specific flows below.

2. Verify that the provided intermediate CA properly chains to a trusted root certificate.
(See RFC 5280.) Including the following detailed CA verification items:

a) That the CA certificate is not revoked per the CRL DP.
b) That the certificate is not expired.

3. Verify the ACSParticipantinfo extension:

V2.0 Page 83 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

a) Verify that the participantKey matches the ParticipantKey in the Participantinfo
extension

b) Verify that the VendorID asserted the root certificate matches the VendorID
asserted in the Participantinfo and ACSParticipantinfo

c) Verify the MSISDNs asserted in the ACSParticipantinfo extension match the
SAN URIs in the client certificate.

d) Verify that the MSISDNs asserted in the ACSParticipantinfo match the
expected MSISDN for the RCS channel.

e) Verify the signature with one of the ACS certificates.

f) Verify that the ACSParticipantinfo is not expired.

A.4.3.2 Self Update Commit

In addition to the Default Validation Requirements, on a Commit with an Update Path that
changes the committer’'s LeafNode with a new Certificate the RCS SPN will verify:

1. That the new LeafNode credential has at least one matching ACSParticipantinfo

MSISDN with existing certificate in the LeafNode.

That the new certificate has an issuance date after the existing certificate.

3. Expiration of the existing LeafNode certificate is not checked in this flow (allowing a
participant with an expired certificate to update to a new, non-expired certificate).

A

A.4.3.3 Resync Commit
In addition to the Default Validation Requirements, on a Resync Commit, the client will verify:

1. That the certificate for the participant the Remove Proposal has at least one
matching ACSParticipantinfo MSISDN with the certificate in the Add Proposal.

2. That the external commit is signed by the certificate in the Add proposal.

3. That the client certificate in the Add Proposal has an issuance date after the certificate
in the Removed node.

4. Expiration of the certificate in the Remove Proposal is not checked.

Annex B Inter-KDS Interface
A The schema for the Inter-KDS Interface is written in gRPC.

Inter-kds.proto:

syntax = "proto3";
import "google/protobuf/timestamp.proto";

package kds proto;

message RequestHeader {
// UUID used to identify the request. Used for debugging and tracing
// only.
uint64 request id = 1;

}

enum ResponseStatus {
UNKNOWN STATUS = 0;

V2.0 Page 84 of 91

GSMA

Non-confidential

Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

NOT FOUND = 2;

MALFORMED ID = 3;

UNSUPPORTED CIPHER SUITE = 4;
NEWER ENROLMENT EXISTS = 5;

message Identifier ({

enum Type {
UNKNOWN = 0;
// Specified as E.164 format.
PHONE NUMBER = 1;

}

Type type = 1;

string identifier = 2;

message GetSupportedCipherSuitesRequest {
RequestHeader header = 1;
repeated Identifier participant id = 2;

message ParticipantCipherSuite {
ResponseStatus status = 1;
Identifier participant id = 2;

// All the Cipher Suites supported by the participant.
// The Cipher Suites are defined in [RFC 9420]
repeated uint32 cipher suite = 3;

message GetSupportedCipherSuitesResponse {

repeated ParticipantCipherSuite participant cipher suite = 1;

message GetKeyPackagesRequest {

RequestHeader header = 1;

// The highest common Cipher Suite supported by all the participants.
uint32 cipher suite = 2;

repeated Identifier participant id = 3;

message KeyPackage {

// The client id that is contained in the key package. Must be a
// globally unique identifier.

string client id = 1;
// As defined in [RFC9420]. No encoding, padding or escaping
// applied.

bytes key package = 2;

message ParticipantKeyPackage {

V2.0

ResponseStatus status = 1;
Identifier participant id = 2;

Page 85 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

repeated KeyPackage key package = 3;

message GetKeyPackagesResponse {
repeated ParticipantKeyPackage participant key package = 1;

message ParticipantRegistration {
Identifier participant id = 1;

// Timestamp of when the user is registered. If the Participant on the
// local KDS is newer than this timestamp, it may ignore this request.
google.protobuf.Timestamp enrolment time = 2;

// Sending a list of participants that have registered with the calling
// KDS. Can send a maximum of 50 participants in a single request.
message ParticipantRegistrationNotificationRequest ({

RequestHeader header = 1;

repeated ParticipantRegistration participant registration = 2;

message ParticipantNotificationStatus ({
ResponseStatus status = 1;
Identifier participant id = 2;

message ParticipantRegistrationNotificationResponse ({
repeated ParticipantNotificationStatus participant notification status =
1;

service InterKdsService {
// Fetch the Cipher Suites supported by the Participants.
rpc GetSupportedCipherSuites (GetSupportedCipherSuitesRequest)
returns (GetSupportedCipherSuitesResponse);

// Fetch KeyPackages for specified Participants and Cipher Suite
rpc GetKeyPackages (GetKeyPackagesRequest) returns
(GetKeyPackagesResponse) ;

// Updates this KDS instance that the Participant has registered with
// another KDS instance.
rpc
NotifyParticipantRegistration (ParticipantRegistrationNotificationRequest)
returns (ParticipantRegistrationNotificationResponse);

Annex C Cryptographic Operations

In this section, all cryptographic primitives, including hash functions, KDF, and AEAD are
defined by the Cipher Suite chosen by the group if not explicitly specified.

V2.0 Page 86 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

The symbol || denotes the append operation.

The symmetric key is an AEAD key of the AEAD algorithm defined by the group Cipher
Suite.

UInt32 is a 32 bit unsigned integer that is encoded in Big Endian representation.
== denotes equality checking

= denotes an assignment

C.1 Creating a Commitment for a Value
Given a value V and a label L, a Commitment for the Value V is computed as follows:

Commitment = Hash (HashContent)
struct {

opagque label<V>;

opagque value<V>;
} HashContent

And the fields are set to:

label = L;
V;

value

C.2 Encrypting a File

HKDF references HKDF<SHA256>.

HMAC references HMAC<SHA256> with a 256-bit tag output.

M is a byte vector of length <2731 - 1 bytes representing the file to be encrypted.
Kis a 256 bit randomly chosen key used for one and only one file.

Info denotes the original filename and is a byte vector of length < (2*16) - 1 bytes.

Encrypt (Key, M, Info)

Let ZV be a vector of 0 bytes of length 4.

Let IV be a 96 bit random nonce

Let salt =
0x3243f6a8885a308d313198a2e03707344a4093822299£31d0082efa9%98ec4ebc8
be the 256 bit hex representation of pi.

Let k enc| |k hmac = HKDF (Key, salt, Info) where each of k enc and k hmac
are exactly 256 bits long.

Variable messagelength is a UInt32 value
Let messagelLength = LengthInBytes (M)

Variable paddingLength is a UInt32 wvalue
Let paddingLength = Padme (messagelLength)- messagelength

Let pad be a vector of 0 bytes that that has length equal to paddingLength

Let paddedMessage = M| |pad| |messagelength]| |paddingLength
Let IV’ = IV]||ZV

V2.0 Page 87 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

Let Ciphertext = AES CTR ENC (k _enc, IV’, paddedMessage)
Let Tag = HMAC(k hmac, IV||Ciphertext) (Tag is exactly 256 bits)

Output (IV, Ciphertext, Taqg)

C.3 Decrypting a File

Kis a 256 bit random key.

IV is a 96 bit nonce.

FileInfo, containing FileMetadata and FileEncryptioninfo, is received separately.
Ciphertext is the encrypted file which is a byte vector of size < (2432)- 1.

Key = FileEncryptioninfo.key material
IV = FileEncryptioninfo.iv

Tag = FileEncryptioninfo.hmac_tag
Info = FileMetadata.file_name

File_length_hint = FileEncryptioniInfo.file_length_hint

Decrypt (Key, Info, IV, Ciphertext, Tag).

Let ZV be a vector of 0 bytes of length 4.

Let salt =
0x3243f6a8885a308d313198a2e03707344a4093822299£31d0082efa%8ecd4eb6c8 be the
256 bit representation hex of pi.

Verify LengthInBytes (C)>=8 else output error: ciphertext too small

Let k dec| |k hmac = HKDF (Key, salt, Info) where each of k dec and k hmac
are exactly 256 bits long.

Let ComputedTag = HMAC (k hmac, IV]||Ciphertext) where ComputedTag is 256
bits long.

Verify that ComputedTag == Tag otherwise output error: Validation failure.

Let IV’ = 1IV]||2ZV
Let plaintext = AES CTR DEC(k dec, IV’, Ciphertext)
Let plaintextLength = LengthInBytes (plaintext)

Variable messagelength is a UInt32 value

Let messagelength = plaintext[plaintextLength -8 .. plaintextLength -5]
Verify messageLength<2#31 else output error: message too long

Verify messagelLength = File length hint else output error: message length
mismatch

Variable paddingLength is a UInt32 wvalue
Let paddinglLength = plaintext[plaintextLength -4 ..]
Let paddedMessage = plainText[0.. plaintextLength -9]

Verify LengthInBytes (Ciphertext) == (8 + messagelLength + paddingLength)
else output error: ciphertext decoding
Verify paddingLength == (Padme (messagelength) - messagelength) else output

error: ciphertext decoding

Let message = paddedMessage[0.. messagelength -1]

V2.0 Page 88 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

Let pad = paddedMessage|[messagelength ..]
Verify pad byte vector is all Os vector else output error: ciphertext
decoding

Output (message)

C.4 One to one HPKE Encryption for Re-Sent Messages

This section defines an encryption schema to a single client in the MLS group using the
node HPKE Key.

It involves two layers of encryption: inner encryption using the recipient Leaf Node HPKE key
followed by outer encryption using the group MLS message encryption.

Struct {
opaque discriminant[26] = “MLSvl RCSvl 1:1 Encryption” (UTF8 Encoded);
opaque group id[32];
uint64 epoch;
uint32 era;
uint32 receiver leaf index;
uint32 sender leaf index;
} OuterInfo;

Struct {
opaque group id[32];
uint64 epoch;
uint32 era;
uint32 receiver leaf index;
uint32 sender leaf index;
} HPKEAADStruct;

C.41 Encryption

The Outerlnfo struct and recipient Leaf Node public HPKE key are used to set up the HPKE
context and key per [RFC9180] and then the context is used to encrypt the serialized
ResentMessage struct as defined in section 7.5.7.

HPKEEncapsulatedKey, ContextS = SetupBaseS (pkR, OuterInfo);
HPKECiphertext = ContextS.Seal (HPKEAADStruct, message)

The key and the ciphertext are then wrapped in HPKEInnerEncapsulatedKeyAndCiphertext
struct.

Struct {
uint32 receiver leaf index;
opaque HPKEEncapsulatedKey<V>;
opaque HPKECiphertext<V>;
opaque original message hmac<V>;
} HPKEInnerEncapsulatedKeyAndCiphertext;

A SecurePayload struct is constructed as defined in section 7.5.4to include the serialized
HPKEInnerEncapsulatedKeyAndCiphertext struct, and the type field of the SecurePayload is
set to hpke_1_to_1_message. The SecurePayload will be encrypted using the normal MLS
message encryption.

V2.0 Page 89 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

C.4.2 Decryption

After the client decrypts an incoming MLS message and the SecurePayload type is
hpke_1_to_1_message, and the receiver leaf_leaf_index matches the client leaf index in the
MLS ratchet tree, it constructs the HPKE context and decrypts the payload.

contextR = SetupBaseR (HPKEEncapsulatedKey, skR, info):
message = context.Open (HPKEAADStruct, HPKECiphertext);

C.5 Identity Verification Code

Given a pair of Participants with their MSISDNs and Participants Keys, calculate the
following values:

struct {

opaque msisdn<v>;

opaque participant identity public key<vV>;
} User;

// Users are sorted by MSISDN ascending
struct {

User first user;

User second user;
} UserPairKeys;

string generate code (UserPairKeys user pair keys) {
if (user pair keys.second user.msisdn >
user pair keys.first user.msisdn) { swap(&user pair keys.first user,
&user pair keys.second user); }
hash = SHA512 (user pair keys)
// returns ~265 bit representation
return HASH TO DIGITS (/*digit count=*/80, hash);
}

identity verification code = generate code (userl, user2);

The identity verification code is the value shown to the user.

Annex D Document Mangement

D.1 Document History

Version | Date Brief Description of Change Approval Editor /
Authority Company

1.0 28 Initial version ISAG Basel Al-
February Naffouri /

2025 Google
2.0 18 July Include approved CR1002 ISAG Basel Al-
2025 Naffouri /

Google

V2.0 Page 90 of 91

GSMA Non-confidential
Official Document RCC.16 - Rich Communication Suite — End-to-End Encryption Specification

D.2 Other Information

Type ‘ Description

Document Owner RCS Group
Editor / Company Basel Al-Naffouri / Google

V2.0 Page 91 of 91

