

Lessons from the 5G trials in China

Dr. Guangyi Liu 5G Program Coordinator, GTI

Introduction of GTI 1.0

- 122 TD-LTE commercial networks in 61 countries, and 152 TD-LTE commercial networks in 77 countries in progress
- 2.96 million TD-LTE base stations (Q4, 2017)
- 1.4 billion TD-LTE subscribers
- **8014 TD-LTE** terminals, **66.8%** supporting TDD/FDD

Opportunities from 5G

(URLLC)

TIGHT SCHEDULE FOR INDUSTRIALIZATION

DIVERSE SPECTRUM: SUB 6GHZ VS. MM-WAVE

- 3.5GHz seems a global band with better coverage, above 6GHz (focus in 26GHz&40GHz) provides larger bandwidth
- US/Korea/Japan are interested in 28GHz, while other operators focus on C band first, e.g. 3.5GHz

DIVERSE PATHS FOR EARLY 5G DEPLOYMENT

experience for enterprise and vertical industries

GTI 2.0 kicked off in 2016: sub 6GHz 5G industrialization

GTI Released Groups of 5G White Papers and Technical Reports to drive the 5G industrial maturity

5G eMBB Progress: Products and Prototypes

Base Station :192 antenna elements

- Baseline: 64Tx/Rx for coverage and capacity
- Alternative: 16Tx/Rx base stations

Base Station KPIs

Current Prototype

5G eMBB Progress: 5G PoC Trial

Lab Test

Hardware/OTA Test, functions and performance

5G BS prototype

test UE/CPE/instruments

Frequency	3.4-3.6GHz		
BW	100MHz		
Power	200 w		
antenna	192/128		
elements	192/128		
Path	64TR		

antennas	4T8R/2T4R*
Power	23 dBm@1Tx /26dBm@2Tx
	* in different scenarios

Field Test

- key performance of 5G:
 - 4G/5G coverage, latency, data rate, capacity...
- in Beijing, Shanghai, Guangzhou, Ningbo, Suzhou

Beijing , 5 sites/vendor Shanghai, 7 sites

Guangzhou, 7 sites

Ningbo

Achievements:

- Basic coverage and system performance has been verified
- Hardware architecture has achieved pre-commercial capabilities
- Valuable experiences has been accumulated for 5G pre-commercial trial

Questions to be answered for PoC coverage trials

- Propagation discrepancies between 3.5/4.8GHz and 1.9 GHz/2.6 GHz (current TD-LTE bands)?
- With 5G coverage enhancement schemes, whether NR can achieve similar coverage with current TD-LTE network?

	Coupling Loss of Each System/Band Compared to 1.9 GHz TD-LTE (dB) ¹					
Sc	cenario		1.9 GHz TD-LTE	2.6 GHz TD-LTE	3.5 GHz NR	4.8GHz NR
	Theoretic Outdoor		0	-4.3	-6.38	-10.71
	utuooi	Test	0	-4.3	-7.3	-9.76
		Theoretical	0	-6.3	-10.38	-16.71
	Low Penetration -	Test	0	-6.5	-10 ~ -10.5	-17.7~-18.2
O2I		Theoretical	0	-	-	-
	High Penetration	Test	0	-9	-13.5~-15.5	-24.2~-27.2 (*can reach -34.1 in some scenarios)

Note1 : The discrepancies above is composed of the differences of antenna gain, propagation and penetration loss of each system/band Note2: No 5G NR coverage enhancement scheme is considered above

GTI

Findings from 5G PoC trial : Coverage enhancement in 5G

2.6 GHz (8TRX) and 3.5 GHz 5G NR downlink throughput

2.6 GHz TDD (8TRX,20MHz) Vs. 3.5 GHz 3D-MIMO

2.6 GHz TDD (8TRX, 20MHz) Vs. 3.5 GHz 3D-MIMO

• Coverage of downlink data channel :

Due to the large bandwidth and the 3D-MIMO beamforming of 3.5GHz 5G NR, DL THP for 3.5GHz 5G NR can achieve obvious gain more than 5X vs. 2.6GHz TD-LTE (8TX)

1.8 GHz (FDD, 4TRx), 2.6 GHz (8TRX) and 3.5 GHz 5G NR Uplink throughput

- **Observation for coverage of uplink data channel**:
 - Coverage of 3.5GHz 5G NR is limited at PUSCH with the 5G NR control channel enhancements.
 - O2I, UL THP at cell edge for 3.5GHz is about 2~4X vs. 2.6GHz TD-LTE with one/two wall penetration, and is close to 2.6GHz TD-LTE with deep penetration
 - O2I: UL THP at cell edge for 1.8GHz (4TRx, FDD LTE) is 2~3x vs. 3.5GHz (64TRx) at low load case with one/two wall penetration

GTI

Findings from 5G PoC trial : Throughput

	• •	
Test case	A	В
test data rate	3.203Gbps	2.3Gbps
theoretical data rate	3.29Gbps	2.33Gbps
layers (8Rx/4Tx)	8	8
Modulation	256QAM	64QAM

Single UE peak thoughput for downlink

Single UE peak thoughput for uplink

Test case	А	В
test data rate	558Mbps	388Mbps
theoretical data rate	558Mbps	390Mbps
layers (8Rx/4Tx)	4	4
Modulation	256QAM	64QAM

Note1 : TDD DL/UL configuration is assumed as 3:1 or 70% DL Note 2 : 8Rx/4Tx were configured for 5G UE prototypes

Observation for throughput:

- 3.5GHz 5G NR can achieve peak data rate close to theoretical value, which depends on the configuration and test environments.
- Though peak data rate is high for 8Rx/4Tx UE prototype, **4Rx/2Tx are the available config.** for pre-commerical TUE (SA)

Cell peak thoughput for downlink

Test case	А	В
test data rate	6.03 Gbps	11 Gbps
theoretical data rate	6.98Gbps	12.41Gbps
total UEs	12	16
total layers	24	32
layers /ue	2	2

Cell peak thoughput for uplink

Test case	А	В
test data rate	0.79 Gbps	1 Gbps
theoretical data rate	0.8 Gbps	1.16Gbps
total UEs	4	12
total layers	8	12
layers /ue	2	1

GTI

Findings from 5G PoC trial : Latency

• Observation for latency:

- UP latency: < 4ms(eMBB) , 0.4-0.54ms (uRLLC 32Byte with short TTI and Grant-free transmission)
- CP latency: ~20ms from "inactive" state -> "connected" state with 5G NR enhancements
- Latency is still to be optimized , since U-Plane latency is only a minor part of end-to-end latency (~X*10ms)

Observation against the ITU-R requirements:

— ITU-R requirements can be achieved at multiple scenarios by different numerology configuation.

Next step: Pre-commercial trial

GTI 5G eMBB Objective

Experience on 5G Key Solutions, Networking & Deployment

serves as the output for 5G key solutions and experience

construction

network planning

operation & optimization

Pre-commercial Trial

Commercial Industrialization

prmoting maturity of 5G networks, terminals, chips and instruments

3.5GHz Commercial Product 5G Chipset and Terminals

>6GHz RF Components

Innovative services and applications

Cultivate the new service, application and new business model for personal, enterprise and vertical industry

- Promote the end-to-end products compliant with 3GPP specs and accelerate 5G pre-commercial phase as soon as possible, targeting the commercial launch of 5G in 2020
- Experience Sharing on 5G networking, deployment scenarios and key solutions
- Sharing on 5G+vertical industry requirements, use cases and solutions

Jointly Creating a Bright 5G Future!