

Welcome – CEPT

Glyn Carter
Senior Spectrum Advisor
GSMA

Impact of mmWave spectrum in Europe

Luciana Camargos
Senior Director, Future Spectrum
GSMA

5G needs spectrum across three ranges

Sub-1 GHZ 1-6 GHZ AND ABOVE 6 GHZ

The socio-economic benefits of mmWave 5G (2020-2034)

Europe Edition

GDP impact of mmWave spectrum by 2034 \$135 billion TAX \$55bn The share of 5G services using mmWaves

MOBILE CHANGES EVERYTHING

Use cases for mmWave spectrum 5G: reaching it's full potential

Remote manipulation

Industrial automation

Quick/temp. deployment

High-speed broadband

Virtual reality and meetings

Next-gen transport connectivity

In Summary: A lot at stake – WRC-19

A successful identification of spectrum for IMT under Agenda Item 1.13 is vital to realise the full potential of 5G networks

The GSMA supports the **26 GHz and 40 GHz** bands

The GSMA also supports **66-71 GHz**

Due to the large amount of spectrum needed for 5G services, the range **45.5**-**52.6 GH**z also needs to be considered

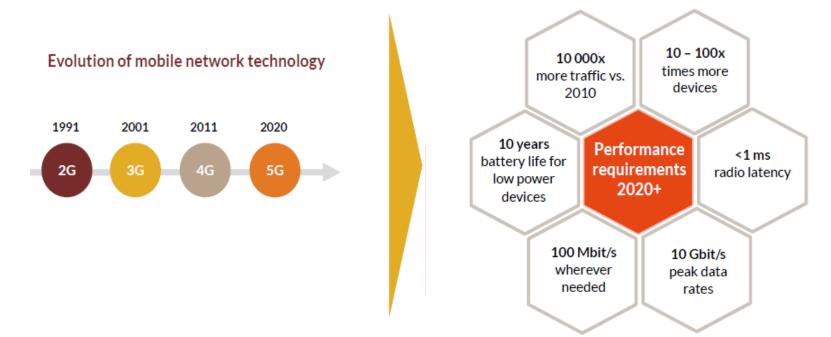
Technical studies show coexistence between IMT and other services is possible

The result will have a major impact on the future of 5G

7

Target bands around the world

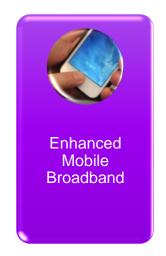
Mats Öhman
Senior Spectrum Manager
Telia Company



IMT-2020 AND MILLIMETRE WAVE

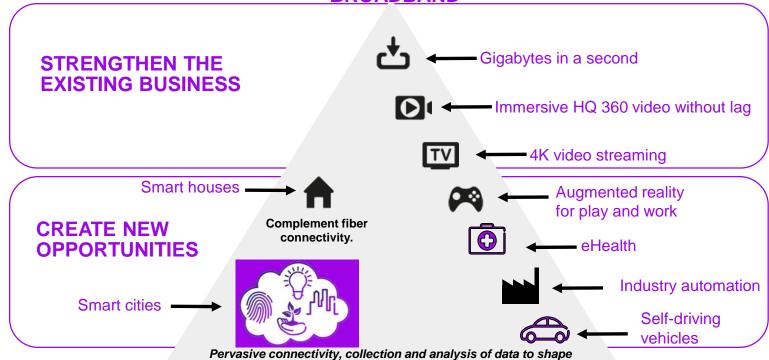
GSMA Seminar for CEPT CPM19-2 Geneva 2019-02-25

5G IS THE NEXT MOBILE NETWORK 10 YEAR CYCLE



5G networks are expected to meet increasing performance requirements for capacity, data rates, latency, battery life, in order to support future needs and use cases.

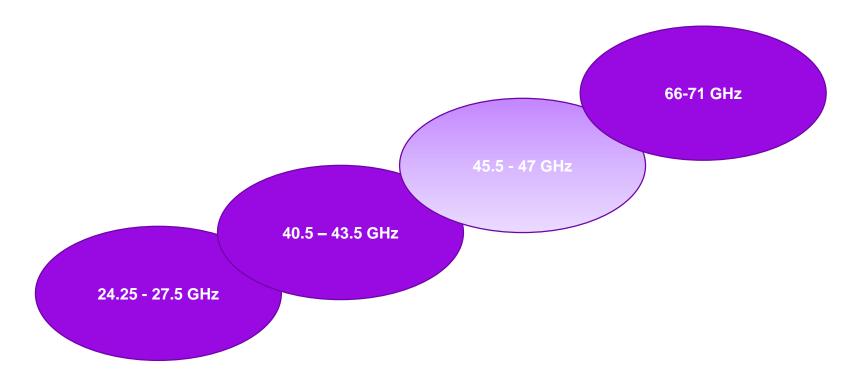
USE CASE CATEGORIES



TELIA COMPANY BUSINESS AMBITIONS FOR 5G

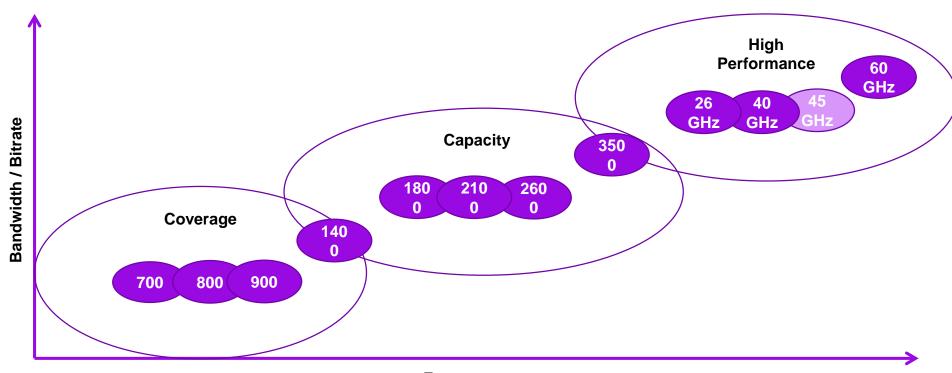
ENHANCED MOBILE BROADBAND

MASSIVE IOT –
MACHINE
COMMUNICATION

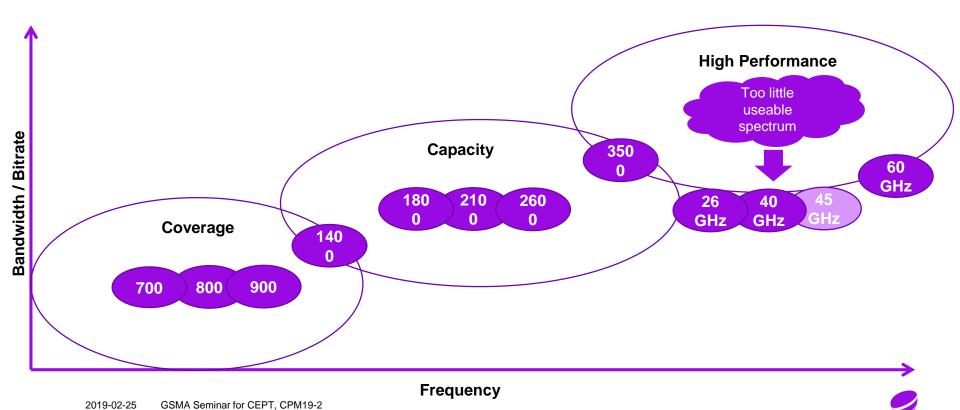

Solutions that can help improve citizens' lives.

CRITICAL IOT

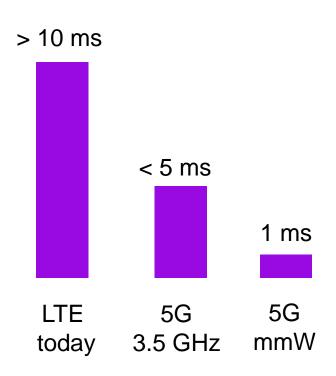
ULTRA-RELIABLE & LOW


LATENCY

TELIA COMPANY PRIORITY BANDS FOR WRC-19

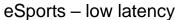


MAPPING OF MOBILE BANDS



MAPPING OF BANDS

TOTAL LATENCY


- 3.5 GHz TDD can provide nice latency (< 5 ms), but not ultra-low latency.
- Network synchronization impacts on latency, but is needed for 3.5 GHz.
- 3.5 GHz TDD expected to use 1:3 UL:DL ratio, 30 kHz SCS.
- Local content needed for ultra-low latency, 100 km adds 1 ms.

TRIALS AND PARTNER PROGRAMS

- Telia has active 5G partner programs Several companies have already joined to develop future services and new business models together. Open for more!
- Several 5G trials mm-wave trials for testing very high speed and low latency.

VR – low latency, high speed

Real time quality analytics in remote data center – high speed, low latency

Cruise ship at and near port high speed and capacity

WRC-19 STUDIES

- The results concluding,
 - good possibilities to share between IMT and incumbent services in most cases (e.g. with FSS, ISS)
 - in some cases coordination may be needed, but feasible to accomplish on a national basis (e.g. with FS, EESS s-e, RAS)
 - in one case (EESS passive in 26 GHz) some general limitations may be needed to find a way forward for both concerned services
- Better sharing possibilities between IMT and incumbent services than in lower bands
 - Higher attenuation
 - Higher clutter losses
 - Higher antenna isolation due to the beamforming, in particular for aggregated cases
 - More similar to the sharing situation between FS and other services

WHY IMPORTANT

- Demand for increased mobile capacity and bandwidths are driven by changed user behavior and new use cases.
- The frequency bands >24 GHz will be very important for new use cases and areas with very high data demand which cannot be supported in lower bands due to limited bandwidth.
 - Without sufficient amount of new spectrum, 5G in dense areas may be experienced as 3G/4G
 - New mobile services will demand the capacity, bandwidth and performance that only the bands above 24 GHz can support, e.g. high definition 360 video, industrial applications and FWA as a complement to fiber
- Besides high bandwidth and capacity, the low latency and ultra reliability of IMT-2020/5G open many new possibilities.
 - IoT IMT-2020/5G capabilities offer many new opportunities for IoT and M2M applications
 - Other industries possibilities to support specific industry applications, both as dedicated deployments/applications but also as a part of the public network
- Our vision A future multi-purpose network that could be used for many versatile applications.

GLOBAL HARMONISATION OF MILLIMETER WAVE SPECTRUM **FOR IMT-2020**

February 2019 Global mobile Suppliers Association

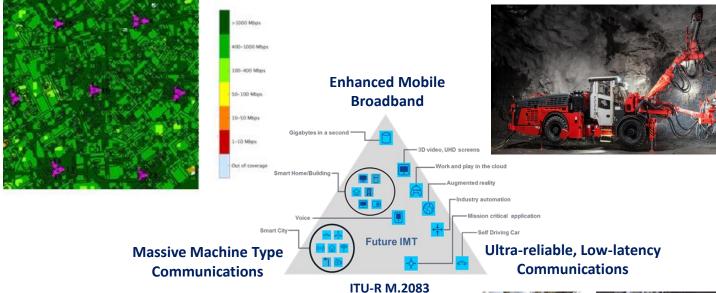
GSA

See https://gsacom.com/

- GSA (the Global mobile Suppliers Association) is the Voice of the Global Mobile Ecosystem and has been supporting the industry since 1998
- GSA actively promotes the 3GPP technology and spectrum road-map – 3G; 4G; 5G – and is a single source of information resource for industry reports and market intelligence
- GSA reports are free to download and are based on our leading industry database – GAMBoD
- Regulators can access specific reports and consultation responses at https://gsacom.com/regulators/
- Regulator members have access to GAMBoD

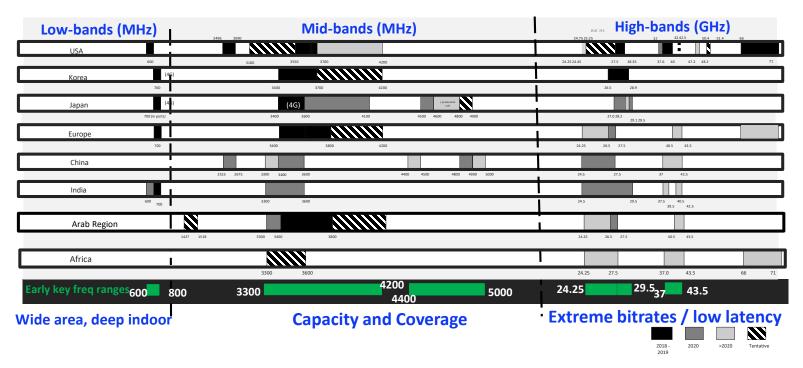
5G SPECTRUM GSA Making 26 GHz a Successful 5G band in Spectrum for 5G Networks: Licensing LTE in Unlicensed **Shared Spectrum:** two operators investing in LAA acros B GSA REPORT PR RI IAN 2019 Six of these have announced... Re-5G Investments: Trials, Deployments, Launches -Networks, Technology & Spectrum Database Evolution from LTE to 5G Modeler 5.4% Industry reports **Ecosystem reports**

Spectrum reports

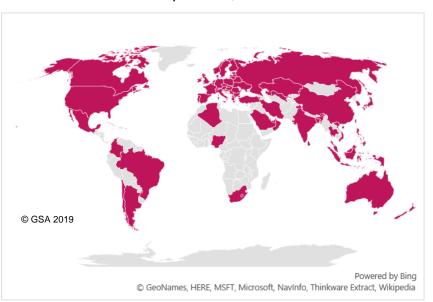

5G Reports

https://gsacom.com/gambod/

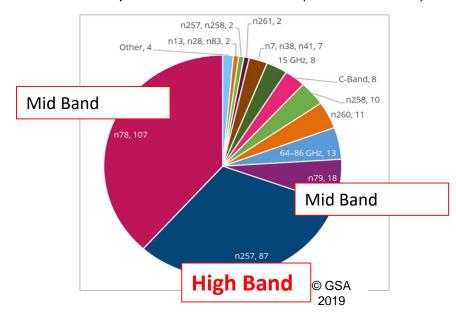
ENABLE A VARIETY OF USE CASES



ENABLE A VARIETY OF FREQUENCY BANDS - EXAMPLES



Key frequency ranges for early 5G NR deployments globally: 600/700 MHz, 3.3-5 GHz, 26/28 GHz and 37-43.5 GHz


TRIALS

Tests/trials/launches: 201 operators, 83 countries

Spectrum bands used in IMT-2020 / 5G trials, mapped to 3GPP 5G spectrum band allocations (November 2018)

COMMERCIAL

3GPP

- Initial 3GPP standard (Rel 15) completed
- Work started on release 16
- mmWave frequency bands specified, in addition to mid and low bands

NR – mmWave			
Band	Frequencies GHz	BW MHz	Duplex mode
n257	26.5 – 29.5	50 – 400	TDD
n258	24.25 – 27.5	50 – 400	TDD
n259	[40.5] – 43.5	50 - 400	TDD
n260	37.0 – 40.0	50 - 400	TDD
n261	27.5 – 28.35	50 – 400	TDD

Commercial equipment

- 5G Infrastructure base stations, chipsets, 5G/Wi-Fi routers and phones available 2018 – 2020 to support frequency bands available
- 5G Operator commercial deployments commenced

Key frequency ranges for early 5G NR deployments globally: 600/700 MHz, 3.3-5 GHz, 26/28 GHz and 37-43.5 GHz

The Industry Voice of the Global Mobile Ecosystem

https://gsacom.com

Closing remarks

Luciana Camargos
Senior Director, Future Spectrum
GSMA

How will the industry prepare for 5G?

26 GHz

24.25-27.5 GHz

EESS (passive) -32 to -35 dB(W/200MHz)

FSS / ISS sharing studies show significant protection margin

40 GHz

37-43.5 GHz

EESS (passive)
Res 752 applies
Active band

FSS sharing is a national issue

66 GHz

66-71 GHz

Flexible use by 5G systems

Enabling both IMT and non-IMT technologies

https://www.gsma.com/spectrum/wrc-series https://www.gsma.com/spectrum/5g-spectrum-guide/

MOBILE CHANGES EVERYTHING

mmWaves: unlock the full potential of 5G