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The GSMA launched the Global AI Challenge in partnership with The 
Alan Turing Institute to explore areas where AI can make a significant 
impact on operators’ businesses and also deliver societal and 
economic benefits on a global basis. By bridging the gap between 
mobile operators and the very best academic talent, deeper analysis 
and more diverse insights have been achieved when interrogating the 
complex and very valuable datasets that operators have. 

As one of four mobile operators who became challenge owners, 
Telenor, along with the GSMA and the Turing embarked on this Data 
Study Group (DSG) addressing dynamic power saving for mobile 
networks. Artificial Intelligence will have a profound impact on mobile 
operators’ businesses and the wider mobile ecosystem. Today, many 
operators are experimenting and deploying machine learning and 
other AI techniques at scale, but getting it right and scaling production 
is not an easy task, especially considering the limited resources in this 
nascent field which highlights the importance of initiatives such as this.

The GSMA represents the interests of mobile operators worldwide, 
uniting more than 750 operators and nearly 400 companies in the 
broader mobile ecosystem, including handset and device makers, 
software companies, equipment providers and internet companies, as 
well as organisations in adjacent industry sectors. The GSMA also 
produces the industry leading MWC events held annually in Barcelona, 
Los Angeles and Shanghai, as well as the Mobile 360 Series of regional 
conferences.
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1 Executive summary

1.1 Challenge overview

Traffic demand of a cell site or sector exhibits strong spatial and temporal

variation. For instance, commercial areas only experience high traffic

demand during day-time while close to zero demand in the evenings and

weekends. Power consumption in mobile networks varies in accordance

with network traffic load [9]. Mobile network parameters are typically

statically configured, hence the cell sites are dimensioned for handling

peak traffic loads at all times. This leads to wastage of network resources

during off-peak hours resulting in additional power consumption [3].

Goal of this challenge is to minimise the power consumption in radio-cells

or sectors in order to reduce overall operational expenditure (OPEX)

incurred by mobile operators. Specifically, our goal is to develop a

framework that understands and takes advantage of the traffic load

variations by automating next-day power saving schemes for each

individual cell tower in a country. Expected outcome of the project is an

algorithm which determines, based on current load and expected demand

profile in the area, when to turn off radio-cells or sectors to save

power.

1.2 Data overview

This project makes use of rich datasets from multiple sources. The main

dataset consists of traffic demand from mobile users aggregated at the

sector or radio-cell level. Traffic demand for each sector is provided at

hourly intervals and span a period of over two years.

Traffic demand values are provided in the form of number of Physical

Resource Blocks (PRB) – the smallest unit of bandwidth allocation in time

and frequency [2]. A given number of PRBs, forming part of coverage

layer, are always turned-on providing basic coverage for all sectors.

During periods of high traffic demand, additional PRBs, part of capacity

layer, are made available to each sector [1].

In addition to cellular traffic dataset, other datasets providing external

information which were supposed to influence mobile traffic demand are
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also supplied. These include sector location data, weather data for each

day as well as holiday information.

1.3 Main objectives

Mobile demand varies both spatially and temporally. For example, the

temporal usage patterns are very different in residential vs business areas.

During off-peak hours there will be periods with overcapacity, resulting in

unnecessarily high power consumption. To reduce power consumption,

the current best-practice has been to turn off cells during night time for all

areas, but this approach is not optimal [19]. Hence, the goal of this project

is to design an intelligent strategy which determines when to turn-on/off

the additional capacity layer of radio-cells to save power. This problem is

divided into the following main objectives:

1. Understand spatial and temporal trends in mobile data usage across

a country, as this will allow to better plan future capacity upgrades.

2. Forecast the next-day traffic demand to design an informed optimal

policy for turning off capacity layer of the radio cells.

3. Recommend an individual power-saving scheme depending on

mobile usage in the area covered by the site.

1.4 Approach

The rich availability of mobile network data with Telecom operators serves

as a strong motivation to explore data-driven solutions for solving the

problem at hand [21]. Hence, the solution approach adopted in this

project includes (a) understanding the underlying characteristics of

mobile network traffic data using advanced data analytics techniques, (b)

applying state-of-the-art machine learning methods to forecast next day

traffic demands and (c) enabling the automated and informed decision

decision-making leading to a reducted network OPEX.

The approach adopted in this project is structured into the following

phases,

1. Exploratory data analysis: To understand traffic demand data

better, spatial and temporal analysis is performed providing
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descriptive statistics on the data. Details on data analysis are

presented in Section 3.

2. Traffic forecasting: This is the data modelling phase in which

multiple models to predict hourly traffic load of the subsequent day

are developed. Various traffic forecasting models considered are

described in Section 4.

3. Power-saving strategy: Finally, an activation policy is designed

that recommends next day power-saving scheme based on traffic

forecasts made in previous step. This is described in Section 5.

4. Sector clustering: To overcome the issue of scalability, sectors

with similar temporal traffic demand profiles are clustered so that a

common power-saving strategy can be designed for the group of

sectors. Clustering mechanism is presented in Section 6.

1.5 Main conclusions

Traffic demand in sectors exhibits high temporal correlation or

seasonality, thus serving as an enabler for traffic forecasting models to be

used to predict next-day traffic demands. Among various forecasting

models implemented, we found that multivariate Gaussian distribution

based model achieved highest prediction accuracy, however it suffered

with huge processing costs.

Based on traffic forecasts, an activation policy is proposed that determines

the next day on-off period for various sectors based on their predicted load.

As seen in the results, the parameters of proposed policy cost function

allow us to adapt for different traffic models and thus performs well for

both overestimating as well as underestimating models.

To overcome scalability issues, sector clustering is presented as a viable

solution. The clusters obtained clearly segregate various sectors with

distinguished traffic characteristics such as residential and industrial

sectors.
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1.6 Limitations

1. Traffic forecasting models presented in this report have not exploited

spatial correlation to make predictions. One known model that could

exploit spatial as well as temporal information jointly is a Gaussian

Process model [8]. This model has been proven useful in areas

such as crime, epidemiology, modelling demand, etc. where data is

spatially correlated, and hence can potentially be beneficial for the

current problem.

2. It is well understood that traffic demand of a sector evolves with time.

While such changes are gradual, in certain cases they can be abrupt.

It cannot be commented that whether the traffic forecasting models

implemented in this project are robust against abrupt traffic demand

changes and hence this aspect needs further investigation. More

advanced forecasting algorithms may be needed to overcome this

problem, in case it exists.

1.7 Recommendations and Future Work

1. There is a great potential to pursue this project further especially in

performing detailed traffic characterisation and more accurate

forecasting with the availability of more detailed datasets. This may

include finer data temporally – for better prediction of peak mobile

loads, and spatially, more data from rural areas – to overcome

skewness issues, channel quality data etc. Information regarding

the number of users requesting a service could also prove helpful in

studying the impact of power-saving policy.

2. Changes in traffic demand profiles of a sector are very common in

cellular networks due to the configuration changes or new service

launches. Given that prediction models are trained on historical

data, it is difficult to adapt these models to such scenarios. A

promising future research direction is to exploit the use of

Reinforcement Learning (RL) which has the potential to overcome

this problem by updating the previously learned network parameters

in a self-organising manner.

3. The number of power-saving windows is currently limited to only
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one per day i.e., the capacity layer may only be activated for one

continuous period per day. However, it is straight-forward to test for

more than one switches in future work. Moreover, switching-off the

capacity layer may incur certain operational costs. The

activation-cost function can incorporate this cost by means of an

additional parameter.

2 Data Overview

2.1 Dataset Description

2.1.1 Mobile Network Data Introduction

The utilisation of available bandwidth at each sector or a radio-cell is a

measure of the traffic demand in that sector. Bandwidth utilisation is used

to assess overall load on mobile networks and is measured as the fraction

of occupied Physical Resource Blocks (PRB), where PRB is the smallest

element of bandwidth that can be allocated to a mobile user by a sector

[2]. A mobile cell site generally has 3 sectors, each covering 120 degrees.

Each sector has a coverage layer and a capacity layer. The coverage

layer has to be always turned-on to supply connectivity and basic services.

The capacity layers are added to handle heavier loads e.g. during peak

hours. Generally, the baseline coverage layer supplies 50 units of PRBs

and operates at 800 MHz band. Capacity layer can supply up to 300 units

of PRBs of capacity and uses higher bands like 1800 MHz or 2100 MHz

[1].

2.1.2 Traffic Demand Dataset

The dataset for this challenge consists of 1310 sectors with an average of 3

sectors per cell site (hence 437 different cell sites). For each sector, we are

provided hourly average PRB demand. The dataset spans over a period

of 27 months from 01/04/2017 to 01/06/2019 and covers two big cities of

Denmark.

Table 1 presents a snippet of traffic demand dataset. For each sector, the

dataset consists of number of PRBs utilised (traffic demand) in the field
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prb used pdsch avg. The field prb avail capacity consists of the

maximum number of PRBs available in the basic coverage layer. If

prb used pdsch avg is less than prb avail capacity (i.e., 50), PRBs from

basic coverage layer are used. However, if prb used pdsch avg exceeds

prb avail capacity, additional capacity layer is turned on to supply more

PRBs.

S.No. sector period start

time

prb used

pdsch avg

prb avail

capacity layer

0 J4041xx2 2017-11-12

01:00:00

0.02 50

1 J0811xx3 2017-11-25

12:00:00

15.82 50

2 J2781xx1 2017-11-24

18:00:00

51.90 50

3 J0602xx2 2017-11-24

17:00:00

46.98 50

Table 1: A Snippet of Dataset for Representation Purposes

2.1.3 Sector Location Data

Mobile network traffic data is supplemented with location data consisting

of latitude and longitude coordinates for all sectors. Table 2 below shows

the format of location dataset.

sector lat lon

J3227xx1 10.17 56.12
J2254xx1 10.14 56.12
J3528xx1 10.09 56.18
J2284xx1 10.16 56.22

Table 2: A Snippet of Sector Location Dataset

2.1.4 Meteorological and Holiday Data

Meteorological data consist of weather records with one entry for each

day. Dataset consists of daily minimum and maximum temperature, wind

speed, precipitation and solar irradiation information. Although location

dataset shows that sectors are mostly spread over the South Denmark,

8



weather data is only provided for one city but is assumed to be

homogeneous across all sectors located in various regions present in the

dataset. Table 3 provides an overview of meteorological dataset.

date temp

high

wind 10 min

mean hightest

wind gust

highest

temp

low

temp

mean

wind

mean

precipi-

tation

sun

2017-05-01 12.7 11.8 15.5 1.9 7.5 6.2 0.0 13.2
2017-05-02 16.5 9.4 13.2 2.2 9.0 4.9 0.0 14.4
2017-03-03 16.4 7.3 8.7 2.1 10.1 3.9 0.0 11.4

Table 3: A Snippet of Weather Dataset

2.1.5 Holiday Data

Information containing school holiday dates as well as other public holidays

is also supplied as part of the dataset.

2.2 Data Quality Issues

2.2.1 Missing Data

A noticeable number of sectors had missing PRB demand data for many

hourly intervals. This could pose a problem while running traffic

forecasting models. Interpolation was used to fill in PRB values for

missing intervals.

Also, it was observed that a bunch of sectors did not have PRB demand

data for the exact same period. This could be an error while data collection

or aggregation, or could be due to power outage which may have led to

multiple sectors reading being lost during the same period. Sectors with

such huge anomalies were discarded from further analysis.

2.2.2 Abrupt Changes in Traffic Demand

Abrupt changes in the overall traffic demand were noticed for various

sectors. Such changes were not consistent in terms of time period when

they exhibited. As per Telenor, this could possibly be due to

reconfiguration of the towers. For instance, addition of more towers could

have abruptly decreased the demand of sectors next to them and vice

versa.
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3 Exploratory Data Analysis

3.1 Network Data Behaviour

The variation of traffic demand across various sectors is represented in

Figure 1. In Figure 1a, we plot CDF of base station sectors against total

PRB load seen over two years of hourly data. Figure 1b shows sorted

PRB load in sectors over two years. Both the CDF plot as well as PRB

load plot show that there are very few sectors with significantly high or

significantly low traffic demand. This shows that data does not contain

significant outliers.

(a) Cumulative Distribution Function of

number of sectors against PRB load.

(b) Total traffic demand at each sector

(sorted) summed over 2 years

Figure 1: Network Traffic Distributions

3.2 Spatial Analysis

To study geographical context, PRB load across 437 cell locations is

analysed using QGIS, a geographic information system application for

viewing, editing, and analysing geospatial data [15]. Spatial variation of

network traffic load is analysed along the land-use map of Denmark

(provided by OpenStreetMap (OSM)). The provided dataset has most of

the high density sectors belonging to two main cities in Denmark along

with some low density sub-urban areas.

To understand spatial load patterns better, two regions with very different

demographies are selected for detailed investigation, one representing
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the urban area while other from a rural locality. The urban region is one of

the biggest cities in Denmark with 88 towers. The region consists of

residential-cum-industrial areas with smaller green spaces and

represents the urban traffic load profile. While the rural region is a small

island characterised by green space with few scattered residential areas

and a mere 4 towers representing the rural traffic load profile.

Average PRB load of various sectors were plotted as heatmaps over the

geographical map using QGIS. It was observed that sectors located in the

urban region present more distinctive and visible trends in data compared

to the four sectors of rural region. These plots are omitted from the report

for due to sensitivity concerns.

3.3 Temporal Analysis

To study temporal load variation, daily average loads of all sectors are

plotted with the 75% confidence interval for the two regions over a years’

course. We see in Figure 2 that the urban region witnessed highest

amount of traffic load during winters, while the spring season, February

till March, witnessed lowest traffic load.
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Figure 2: Summary of daily average loads of sectors in the urban region

for 12 months (from left to right, from upper to lower).
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In figure 3 representing the rural region, the load profile sees a strong

weekly trend at the residential sectors with load being higher during the

weekdays. The significant load increase in July results from the region

specific annual festival.

Figure 3: Summary of daily average loads in the rural for 12 months (from

left to right, from upper to lower).
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4 Forecasting Mobile Network Traffic

After understanding network traffic behaviour, next step is to forecast the

traffic (PRB) load for next day. Multiple machine learning models are

experimented with, in order to perform traffic prediction including:

1. Simple Linear Regression

2. Decision Tree

3. Light Gradient Boosting Machine (LightGBM)

4. Multilayer Perceptron (MLP)

5. Multilvariate Gaussian Distribution (MGD)

While estimating PRB load for the next day, these models are designed to

consider the following:

1. Check the variation for different hours across each day,

2. Check the variation for different days of a week, and

3. Check the variation for holidays and weather.

4.1 Feature Engineering for Traffic Forecasting

For linear regression and decision tree, the following feature set is

created:

• hour of the day,

• month of the year,

• holiday, and

• various weather features

For more advanced models i.e. Gaussian Process Regression, LightGBM,

MLP and MGD, the following features are considered in addition to the

initial feature set:

• twenty four hour lagged traffic demand,

• previous day mean traffic demand, and
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Figure 4: t-statistics value per regressor.

• previous day maximum traffic demand.

Categorical features such as hour of the day, month of the year, are

represented in one-hot encoding format, except for tree models (decision

tree and light gradient boosting machine) where these are label encoded.

For MLP, input features are also normalised to zero mean and unit

variance.

4.2 Simple Linear Regression

To evaluate the benefit of using non-linear models, a linear model is built

to serve as a benchmark [12]. This linear model considers each hour

separately to allow for a different marginal effect of each regressor. Various

available regressors are considered including daily, weekly and monthly

lags of the dependent variable, weather variables and dummies for public

holidays.
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Figure 5: Step-indicator Saturation to model structural breaks.

Using this model is helpful in understanding what are the main features

that determine PRB demand and by what factor. In total, there are 336

regressors. Figure 4 shows the range of t-statistics for each regressor

[10]. We find that variables related to weather do matter significantly; in

particular, temp low and temp mean. Surprisingly, weekdays don’t seem to

matter much over the whole range of models. As expected, the temporal

regressors are very often relevant, with yesterday’s realisation of hourly

demand being most significant.

Ideally, linear regression model should detect and account for structural

breaks in the data which can include location shifts and outliers. This

could be done within an indicator saturation framework pioneered in [5]

and implemented in R package gets [16]. We applied Step-indicator

Saturation to model structural breaks [7]. Figure 5 shows that such an

algorithm is needed, as the data is contaminated with many structural

breaks.
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Pros

• Fast to compute: model provides estimates in seconds except when

robustification in regard to structural breaks are implemented, which

are slow.

• Great explainability: easy to see magnitude of marginal effects and

statistical significance of regressors.

Cons

• Does not on capture non-linearities and limited success in predicting

bandwidth demand.

4.3 Decision Tree

The main intuition behind decision trees is to recursively partition the data

space into sub-regions until a stopping condition is met. This partition can

be expressed as a splitting rule, which can be combined into a tree [11].

The two common heuristics for decision trees to select the best split are

Gini index and Information gain.

Pros

1. Decision trees are usually preferred due to its understandability and

low computational cost, both when learning from the data as well as

making prediction.

2. Decision trees can be visualised and interpreted, which allows the

most deciding factors to be perceived immediately.

3. Decision trees are capable of capturing complex and non-linear

relationships between features and outputs.

Cons

1. They do not guarantee robustness: a small change in the training

data can lead to significant change in the tree structure, thus the

final prediction.

2. Greedy approach in learning a decision tree is long-considered to be

sub-optimal for simple concepts, which result in local optimality being

made at each node.
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3. Over-complex trees result in overfitting. To tackle such problems,

pruning is necessary, which requires additional hyper-parameters.

4.4 Light Gradient Boosting Machine

The idea behind boosting is to combine multiple weak classifiers to form

one final and stronger classifier by reducing statistical bias and variance

[4]. It derives its methodology from gradient descent algorithm using a

convex cost function.

Pros

1. LightGBM is an implementation of gradient boosting decision trees,

which is capable of handling sparse data and suitable for parallel and

distributed computing.

2. It exploits out-of-core computation which makes it suitable to analyse

big datasets with more than say 10 million examples.

3. It also guarantees good predictive performance with minimal hyper-

parameter tuning

Cons

1. LightGBM requires a large amount of data to extend its full potential.

For applications where not data much data is available, traditional

models such as Gaussian Process or Support Vector Machine are

preferred.

4.5 Multilayer Perceptron

MLP is a class of feedforward artificial neural networks consisting of at

least three layers of nodes: an input layer, one or more hidden layers

and an output layer. The data travels through these layers in a forward

direction from input layer to output layer of neurons, and are trained using

back-propagation algorithm during which the error is calculated using least

squares method [13].

Pros
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1. The neurons include a non-linear activation function that can help

model complex dependencies among various variables.

2. Network contains one or more layers of hidden neurons which enable

the network to learn complex tasks.

Cons

1. MLPs may suffer from over-fitting, high computational cost as well as

local minima can be a problem with optimisation.

2. Unlike some other neural networks, there is also a lack of biological

plausibility.

4.6 Multivariate Gaussian Distribution

This methods uses a mixture of multiple Gaussian distributions with

different means, (µi), and variances, (σi) [6]. In the scenarios where we

observe significant outliers or periodic variation that are sort of repeated,

pattern based models might not be a very good approach, especially

when prediction accuracy is of utmost importance. But if those repeated

patterns follow a certain distribution (say normal distribution), a mixture of

different distributions can be used to capture outliers and reduce the

noise effect. For MGD, time-series prediction algorithm in R is utilised

(specifically Prophet package [14]) together with the concept of mixture

model with some fixed effects.

Pros

1. Outliers can be detected with a high probability and hence noise

effect can be reduced.

2. Long term seasonality (monthly or even yearly) is captured well using

MGD, hence the traffic demands for longer periods of time can be

easily estimated.

Cons

1. There might be risk of overfitting or underfitting data in the case that

considerable amount of historical training data is not available.
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As an enhancement, the MDG model is applied together with some

random effects, so that we can obtain fixed as well as random effects.

This helps in boosting the model’s performance for unobserved

features.

4.7 Performance of Traffic Forecasting Algorithms

Various models are trained on the first 24 month data while

hyper-parameter tuning is performed on the following 2 months of data.

Finally last one month is used as the validation set. Mean Absolute Error

(MAE) is used as the metric to compare different traffic forecasting

models. Table 4 compares the performance of various models in

predicting traffic demand for the next 24 hour for a randomly chosen

sector, J0536xx1. Notice that the MAE for MGD is least among all, hence

it surpasses all other models in terms of accuracy of prediction. The table

also also gives an idea about the execution cost of each algorithm where

MGD is lagging far behind others questioning its scalability.

Model Training time MAE on test data

Linear Regression – –

Decision Tree 0.5s 7.68

LightGBM 2s 6.98

MLP 6s 7.1

MDG 190s 6.3

Table 4: Performance comparison of different forecasting models

Given highest prediction accuracy of MGD approach, traffic (PRB load)

forecast for last week of March 2019 using MGD is presented in figure

6.
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Figure 6: Predicted PRB load using Multivariate Gaussian Distribution
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5 Optimising Energy Consumption

5.1 Radio-cell Activation Policy

The ultimate output of our models is an ‘activation policy’, which describes

for each hour, whether the capacity layer for a sector should be enabled or

not. Therefore, this policy should be calculated such that the cost (C) of

the sector is minimised. The cost function is defined as a function of the

following:

1. Activation Hours (A): this equals the cost of power consumption for

the duration for which the extra capacity layer is turned on, and

2. Unmet Demand (U ): this is the organisational cost of failing to meet

demand when the excess capacity is switched off while demand

exceeding the coverage layer of 50 PRBs.

The cost of this unmet demand is scaled by a factor that must be

determined by the organisation and is based upon domain knowledge.

For example, the decision to turn on capacity layer when demand is only

1 unit over the coverage layer is more difficult than when demand is 50

units over the coverage. In the former case, the cost of a slightly slower

network may be acceptable. Considering this, a scaling factor λ, is

introduced in our cost function which represents the cost of one unmet

PRB demand as a proportion of the cost of running the capacity layer for

one hour. For example, a λ factor of 0.25 defines a demand of 54 PRBs

(i.e., 4 above the coverage layer) as the point at which it is neutral to turn

on extra coverage. Hence, the final cost function of our activation policy is

defined as:

C =

∑

i

Ai + λ
∑

i

Ui (1)

Given this optimisation function, we can create an activation policy which

minimises the cost for various levels of λ. This policy function takes

hourly forecasts of PRB demand as input, which we derive from our

models’ predictions. To evaluate our models, we can compare our policy’s

cost against the original data as the gold standard i.e. a policy calculated

22



directly on the real data. The difference between the costs of these

policies is the true loss of the model.

5.2 Activation Policy Under Traffic Forecasts

The policy described above has no bearing on the cost function where a

model incorrectly predicts a value if both prediction and actual value are

within coverage layer bandwidth i.e. 50 PRBs (as either value is

represented as 0 unmet demand and therefore a non-activation). Figure 7

provides better clarity on this where yellow curve represents actual traffic

demand and green curve represents predicted demand. When both

curves are either below or above capacity layer threshold of 50 PRBs,

optimal decision making is straight forward. However, when one of them

is below the threshold and other is above, optimal decision making

becomes tricky. Hence a carefully selected value of λ plays an important

role in activation policy.

Figure 7: Policy implications for predicted demand vs actual traffic

demand. Yellow - actual demand. Green - Predicted demand

The same is true for high values - if the λ is such that it causes an activation

for a predicted value of x PRBs, it makes no difference to the cost when

the true value is greater than x (or indeed, if the true value is less than

x but still greater than the ‘tipping point’ as determined by the choice of

lambda). This leads to models which over-predict to do better when the

cost of not meeting demand when λ is high and under-predicting models

to do better when λ is low. Figure 8 shows the affect of using different λ
values against optimal policy.
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(a) λ = 0.5 (b) λ = 0.25

Figure 8: Optimal activation policy (yellow) against proposed activation

policy (blue) for different λ values. Y-axis represents traffic demand above

50 PRBs.

5.3 Forecasting Models against Activation Policy

Each of traffic forecast models are evaluated against the activation cost

described in equation (1) for a range of λ values. In addition to the ML

models described earlier, two naive models are also included for

comparison. These models simply adopt the best policy under the

assumption that the next day traffic demand will follow the same demand

distribution as either its preceding day or the preceding same day of the

previous week (i.e. 7 days prior).

P
P
P
P
P
P
P
P
P

Model

λ
0.05 0.1 0.25 0.5 1.0

Decision Tree 1.28 3.24 6.20 13.50 28.27

Multivariate Gaussian 1.36 2.62 4.16 8.34 17.14

Light Gradient Boosting 1.16 1.16 6.79 12.44 26.89

Linear Model 2.22 3.35 9.12 18.29 37.23

Multilayer Perceptron 1.94 5.31 16.5 31.08 73.95

Last Week 2.85 6.42 8.10 16.45 33.35

Yesterday 1.81 3.20 6.50 12.80 26.68

Table 5: Cost C for different models at different λ values

Table 5 shows the losses for each model as we adjust the λ value. For
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low values of λ, both the predicted and true models will not respect unmet

demand and therefore design ‘always off’ policies. As this is an easy

decision as we expect loss to naturally decrease for low λ values. The

inverse is true as λ approaches 1 when model avoids unmet demand at

all costs. The most interesting cases would arise for λ values that are in

between these two extremes.

6 Clustering of Sectors

6.1 Clustering Motivation

Based on the discussions in Section 4, it is established that traffic

forecasting algorithms with higher accuracy demand longer execution

times. This may easily lead to scalability issues for predicting traffic

demand at a nationwide scale. Also, it is generally observed that different

sectors may have different behaviours in terms of traffic demand, they

exhibit similarity at an aggregate level [17]. Hence, it is suggested

clustering of sectors based on their demand profiles and forecasting the

traffic demand for representative sectors of each cluster.

Figure 9 shows the histogram of sectors witnessing peaks at each hour

of the day, separately for weekdays and weekends. Notice that most of

the base stations experience peaks between 6 − 11 pm. Although both

weekdays and weekends show similar trend, but actual sectors under each

bar (range) could be different.

(a) Weekdays (b) Weekends

Figure 9: Histogram of sectors with peaks at each hour
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A simplistic approach had initially been adopted to categorise sectors –

divide time into multiple slots (e.g., morning, noon, evening, etc.) and

categorise sectors by allocating them to each time slot based on which

slots their peaks occurred in. However as seen in figure 9, this approach

is not very effective because many sectors experience prolonged (or

multiple) peak hours (e.g., hospitals or holiday resorts) leading to a

biased or unbalanced clustering. Hence, a more advanced technique

grounded in machine learning is adopted for clustering of sectors as

explained below.

6.2 Feature Selection for Clustering

As per the exploratory data analysis, there are noticeable similarities

among sectors in terms of hourly, weekly, and yearly seasonality. To

capture such similar trends, for each time series, following feature sets

were extracted:

1. average traffic demand by hour of the day (24 features)

2. average traffic demand by day of the week (7 features)

3. average traffic demand by month(12 features)

This gives a total of 43 features. Since only the trend and movement of the

series were considered, all time series were normalised to the same scale

by applying zero mean and unit variance normalisation.

6.3 Clustering Algorithm

Given the above feature set, a multi-step k-means clustering approach is

used to categorise various sectors [20]. This approach was found to be

very effective in identifying distinctive load patterns among sectors.

Performing clustering on all features at the same time (43 features) could

be problematic for distance-based methods due to the curse of

dimensionality because of which distance loses meaning in high

dimensions. Therefore, clustering was performed on each of the features

sets separately. The results from each feature set were then used as

input to another clustering step yielding the final grouping. The process is

illustrated in figure 10.
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Figure 10: Multi-step Clustering Algorithm

6.4 Cluster Analysis and Visualisation

k-means clustering produced 4 different clusters. Upon investigating their

traffic patterns, it is inferred that one of them belonged to the residential

land-use, another one to the business area, third one belonged to rural or

green space while the remaining one had a mixed traffic pattern. This was

also verified by plotting various clusters on the map using QGIS (this image

is not published due to privacy concerns). The clusters are therefore very

distinctive in their traffic demand profiles ascertaining the quality of clusters

obtained.
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Figure 11: Hourly traffic demand for 3 randomly selected sectors from 4

clusters.

28



Figure 11 shows hourly traffic demand pattern of three randomly picked

sectors from each cluster for one day. As can be seen, the representatives

demonstrate similar patterns, and noticeably varying trends can be seen

cluster-wise. Further analysis is provided below.

Figure 12 shows hourly traffic averaged over two years for all 4 clusters.

Cluster 0 consists of 1105 sectors. Based on its traffic demand pattern,

this cluster is tagged as residential. It was also noticed that the traffic

demand of this cluster follows similar pattern on weekdays as well as

weekends (Fig. 13(left)). Cluster 1 consists of 24 sectors. Based on its

traffic demand pattern, this cluster is tagged as business or commercial

as its sectors experience maximum traffic between 8am and 5pm.

Moreover, weekend traffic demand of this cluster is significantly lesser

than on weekdays reasserting that it belongs to business areas (Fig

13(right)). Cluster 2 consists of only 3. Although this cluster does not

have any clear pattern, looking at the spatial map using QGIS, it is seen

to belong to a forest area. Cluster 3 consists of 97. Traffic demand pattern

in this cluster seems to be a combination of both residential and business

areas.
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Figure 12: Hourly traffic of 4 clusters averaged over 2 years.

Figure 13: Daily traffic of cluster 0 (left) and cluster 1 (right) averaged over

2 years.
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7 Future Work and Research Avenues

7.1 Operating on More Detailed Dataset

The dataset used in this challenge provides hourly average of PRB

demand, however actual PRB usage per millisecond can be 6-7 times

higher than the average usage. Not having more fine-grained information

can be seen as a limitation since our prediction models may not be able

to capture actual peak traffic demand at each second (or millisecond)

level. Access to more fine grained data in time can resolve this

issue.

Moreover, the dataset only consists of PRBs demand. This means that

only the number of PRBs requested above coverage layer are known. If

this information is supplemented with the number of users are requesting

those extra PRBs, that can determine whether more users are getting bad

quality of experience (which might be seen as more costly) or is it just a

single user with high PRB demand.

7.2 Adapting to Sector Reconfigurations and Traffic

Changes

Figure 14 shows traffic demand for the most loaded sector (left) and a

randomly selected sector (right) over two years. It is seen that in the

former case, last 3 months have considerably higher load than the initial

24 months. Similarly, in the latter case, traffic pattern changes

significantly after approximately 1 year.

Although, such changes in traffic patterns are expected in cellular

networks due to configuration changes or new service launches, adapting

network to such changes is the most challenging task. A promising future

research direction is to exploit the use of reinforcement learning (RL)

techniques to solve this problem [18]. RL can be used to update the

previously learned network parameters in a self-organising manner.
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(a) Sector with most traffic (b) Randomly selected sector

Figure 14: Average PRB traffic load in two different sectors in the urban

region over a period of two years.

7.3 Tackling Network Data Skewness

Network data is generally highly skewed based on whether a sector is

installed in a highly urban area or a rural village. However, as seen in

Section 3, the dataset provided is cleaned in a manner that it discards

many sectors from rural areas, thus the skewness is missing. Although

this type of cleaning has been helpful in providing non-sparse data, this

could be an issue when the traffic forecast models built on the current

dataset are applied to the real world data having the rural scenarios as

well.

7.4 An Updated Activation Policy

There may be additional cost associated with switching-off the capacity

layer as it requires reconfiguration and also causes users to be moved to

other frequency bands. The technical details of this cost were unknown at

the time of challenge, this cost is currently ignored. It can be included into

equation (1) to design a more comprehensive activation policy.

The number of switches of capacity layer are limited to one per day; that is,

the capacity layer may only be activated for one continuous period per day.

However, it is also straight-forward to test for more switches in future work,

and also implement the cost of switching (say γ) once that is supplied by

the domain experts. Hence, the cost function can be updated as,
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C =

∑

i

Ai + λ
∑

i

Ui + γ
∑

i

Ci (2)

33



8 Team members

Elizabeth Forde is a fourth-year Atmospheric Science PhD student at the

University of Manchester. In this project, she conducted QGIS spatial data

analysis, data preparation and assisted with cluster validation.

Farhad Hatami is a post-doctoral researhcer at Lancaster University. His

work has mainly focused on the application of ML on Neurodegenerative

diseases. Specifically, he is working with developing a methodology to

handle prediction of disease progression (the method is implemented for

high-dimensional longitudinal data). He has got his PhD in Mathematics

at the Universitat Autonoma de Barcelona, Spain.

Juan Ungredda is a first-year PhD student at the University of Warwick.

Main responsability was working on modelling using Gaussian processes

to account for spatio-temporal relations in the data.

Matthias Qian is a Departmental Lecturer in Oxford, with a research

portfolio of applying AI to financial, labour and property markets. His

primary contribution to this project was the baseline model which evaluate

the significance of the individual regressors.

Quy Vu is a data scientist at the Smart Infrastructure division of Mott

MacDonald. His day to day work involves building and deploying machine

learning pipelines into production. In this project, Quy was responsible for

exploratory data analysis, time series clustering, feature engineering and

model training (Decision Tree, LightGBM, and MLP).

Rajkarn Singh is a third-year PhD student at the University of Edinburgh

working in mobile network data analytics and optimisation. In this project,

Rajkarn was involved in exploratory data analysis and sector clustering.

He also presented implications and future work of the project.

Ross Gales is completing his PhD in Oxford, where he studies how AI

can aid intelligence-gathering by response organisations during natural

disasters. His primary contribution to this project was in the design of

optimisation function and evaluation of the set of models.

Yifu Ding is a first-year PhD student at University of Oxford, majoring in

Engineering Science. She was responsible for data cleaning, spatial data

analysis and processing the input data for the QGIS heatmap.
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